Chapter 3

Stepwise Refinement by Stem
Rule

As discussed in the previous chapter, one bottle neck of using AR
for query refinement is that too much ARs are generated, because
user will have to take the responsibility of browsing and choosing
from a large number of refinement candidates. To address this
problem, we introduced the concept of stem rule as mentioned in
section 2.3. In this chapter we discuss formally the definition and
generation of stem rules and the technique of stepwise refinement

by using stem rules.

3.1 Preliminaries

In this section, we give the notations used in the following discus-

sions in brief.

Let D and K be the universe set of documents and the universe



set of keywords, respectively.

Definition 3.1 (Operation p):
An operation p, which extracts keywords from a document d €

D, 1s dehned as
p(d) ={k | (k€ K} A (kis a keyword included in d)}.

Furthermore, let I C D, Ugep p(d) is denoted by p(D), and in par-
ticular p(D) = K.

Definition 3.2 (Evaluation o):
Let ¢ (C K) be aset of keywords.
A conjunction evaluation o{q) will retrieve all the documents

that contain all the given keywords in ¢, and is defined as
olg)={d|deDArqCp(d)}.

Furthermore, let Q@ € Q = Ugep 2°¥. A disjunction evaluation
o retrieves a set of documents which is the union of all the results

of each conjunction and is defined as

o(Q) = U o(q)

qed)

Here, a query is described as a disjunctive normal form of key-
words. A conjunction form retrieves the documents each of which
contains all the atom keywords in the conjunction. The query re-

trieves a set of documents which is the union of all the results of

26



each conjunction.

Definition 3.3 (Association Rule):

An AR is an implication of form ¢ = ¢2 ~ ¢;. Where ¢, C ¢» C
K.

The support and the confidence of a rule ¢, = ¢ — q, are

calculated as follows.

Sptlgn = ¢ —q1) = lo(a)]

Cnflgy = ¢ —q) = lo(@)l/lo(q)]

Here, g; 1s called original query. ¢ is called refined query. ¢2—¢i
1s called refinement candidate.
In addition to the minimal confidence as used in [Fayy96, Han95,

Sava95, Srik96], the maximum confidence is defined for the pur-

poses of query refinement.

Definition 3.4 (Base Condition):

A rule, g1 = g2 — g1, satisfies a base condition if and only if

MinSpt < Spt(qr = ¢ — q1)
MaxCnf > Cnf(q = ¢ — ¢1)

Here, MinSpt, and MazChnf are minimum support and maxi-

mum confidence of the rule, respectively.

27



3.2 Stem Rules

[n order to reduce the total number of rules that we need to store
and to process, stemn rTule 1S introduced. Stem rules are the only
rules we need to store in the rule base. All the other applicable
association rules can be generated from the stem rules at run time

instead of being generated from scratch.

Definition 3.5 (Stem Rule):

Ciiven two rules r, and 7a. If ry satisfying the base condition
implies that 7 satisfies the same base condition, we say that rule
ry is derived from rule r;. A stem rule is a rule that can not be
derived by any rules. In particular, for a stem rule, g = p, there
exists d € D such that ¢ U p C p(d).

This definition restricts the keywords of a rule to appear in at
least one document. This restriction is natural because in keyword
retrievals, if a set of keywords does not appear in any documents,

then the retrievals by this set of keywords will get no hits.

Following properties are used for generating stem rules.

Property 3.1
2) g C K0 o ()] < D) |

by ¢ €' S Kimplies o(¢') C o(g);

28



Association rule for query refinement is based on Property 3.1.
User can refer to rule ¢ = ¢ ~ ¢ o decide a new query ¢ that
retrieves the result o(¢"}(C o(q)). That is. the size of result set
will be reduced.

Property 3.2

a} Let Ag C K. Spt(g = p) > MinSpt implies Spt{q — Aq =

pUAg) > MinSpt;

b) Cnf(q = p) < MaxCnf implies Cnf(q = Aq = pU Aq) <
MaxCnf:

¢) If (¢ =+ p) satisfics the base conditions, then (¢ —Ag = pUAQAq)

meets the base conditions.

Property 3.2 is used to exclude non-stem rules.

According to property 3.2, the stem rules are those that have
only one keyword in the right hand side of the rules because if there
are more than one keyword in the right side of the rule, this rule
can be derived by moving keywords in the left side of the rule to
it’s right side.

In Table 2.2, the following list is all ARs including ¢ = {ki}
when MinSpt is set to 2 and MaxCnf is set to 0.8,

ki = kg, Spt=3, Cnf=0.75

ky = ko, Spt=2, Cnf=0.5

ky = kokg Spt=2, Cnf=0.5

29



kyke = kok Spt=2, Cuf=0.66

In this example, A& = kakg 1s not a stem rule because it can be

derived by the rule Ak = ks,

3.3 Stepwise Refinement

By using stem rule, a technique called stepwise refinement is in-
troduced in this section. The idea is to show only the refinement

candidates appear in stem rules instead of any rules.

Property 3.3:

Let g0 C g1 € -+ C qi C g1 < - i—t C© G C K and
Spt(q,,) > MinSpt.

Let a path be L= (qo,q1), -+ (@i Giv1), - (Gmi—15 G) which are
based on ARS gy = q1 — oy~ i = Qiv1r = qis s Gt = o™ G
and Cnf((qiqiv1)) = Cnfl{g = g1 — @) be the weight of path

(¢i,qi+1). Suppose that the AR of {qo, ) exists, then

C’nf((q“’ qm)) - (_/Y'ﬂf((qn’ql)‘) X (,’]’Lf((([la([:.’.))
x o x Cnf((gingivn)) X X Cnf (Gu1,m)

and

Cnf((qo,gm)) < max(Cnf({qu, q1))s Cnf{{qi,q2)), -,
C‘be(((]i, (Ii"r“l))? B C';.nf((([rrlwl ) Qru))

30



gl =

{a) {2}

{gl}

aql =>» gl-g0 gl == gd-gl

{103 {aa}

Figure 3.1: Stepwise

The following explains stepwise refinement based on the prop-
erties mentioned above.

Figure 3.1 shows the process of query refinement. Let g be
an original query. The refined query may he ¢, or . The path
(¢o, q1)s (g1, q2) and the path (qo, q2) are based on ARs g9 = ¢1 — qu,
g1 = ¢ — gl and g = G2 — Go. According to Property 3.2, qo =
g2 — qo can be derived from ¢ = q2 -~ qt, and according to Property
3.3, the path (g0, q1), (a1, ¢2) can be used instead of the path {(qo, ¢2)-

Obviously, concentrating only on the paths corresponding to

stem rules has two main advantages.
1. Reduce the time spent on displaying rules because non-stem

31



rules need not be derived.

2. Reduce the number of refinement candidates displayed so that

users can browse casily.

3.4 Generation of Stem Rules

First, support of keywords in document is computed, which is a
preparing of generating stem rules. Given a document database
D, Algorithm 3.1 retrieves all keywords contained and in the same

time, calculates the support for each keyword.

Algorithm 3.1 (Counting Supports):
Input: a set of documents D.
Output: a set of keywords and a support for cach keyword in the

set.

let KO = §;
foreach d € D do
calculate p(d);
foreach k € p(d) do
if k € K then
Spt(k) = Spt(k) + 1;
else

K =Kulk};



Spt(k)=1;
endif
endforeach

endforeach

The following Algorithm 3.2 extracts a set of stem rules from
a document database D. First, a candidate set of rules, “Cand”,
will be generated in Algorithm 3.2, Second, a set of stem rules is
generated from “Cand”. Anr is added to “Cand” again even if its
confidence is smaller than MazCnf because 7 may derive other
stem rules. In other words, r can not be excluded at this point of

time because the inverses of Property 3.2 ¢) does not hold.

Algorithm 3.2 (Generating Stem Rules)
[uput: A set of documents D.

Output: A set of Stem Rules, H,.

let Cand = §;
let 12, = 0 be a set of Stem Rules;
foreach d € D do
calculate p(d);
foreach X C p(d) do
if MinSpt < Spt(X) then

33



Append X = 0 to Cand;
endif
endforeach
endforeach
while Cand # § do
remove a rule X = Y from Cand;
foreach £ € X do
let = (X — {k} = Y U{k})
if Cnf(r) € MazCnf and r cannot be derived from R, then
add r to K
delete those rules which can be devived from v from Cand;
else
add r to Cand;
endif
endforeach

endwhile

. . RPN § TN o
In generating a candidate set of rules (“Cand”}, unlike using

Agrawal’s algorithm in {[Agra93]) which computes 1-Itemsets, 2-

[temsets, ..., n-Itemsets from a set of itemns K, we generate a set

of stem rules from each document instead. At the step of com-

. ) - Il - f " Ik ?‘Q
puting n-ltemsets for each n, the complex1ity of using Agrawal’s

- - . - - . g -- ¢ J. .. l| ‘. \:1718
algorithm directly is O(,,_C’I;q), because all combinations of iter

(keywords) K must be checked. However, Of the other hand, the

34



time complexity ol our algorithm is O(,,(ﬁ';m;,)i), because we ouly

need to check keywords in a document.

checked combinations “Cand”

*klke {Spt=3)
*k2k6 (Spt=2)

*klk&(Spt=3)
k3k6 (Spt=0)

kdké (Spt=0) 2k (Ept=2)

“k5k6 (Spt=1)

* checked combinations of this algorithm

Figure 3.2: An Example of Algorithm

Figure 3.2 is an example of generating “Cand” from Table 2.2.
This algorithm only checks the combinations having support ex-

ceeding 0. That is, the combinations exist in documents.

In this section, maximum confidence is proposed to be used in-
stead of minimum confidence used in other researches about asso-

ciation rules. According to maximum confidence, refinement can-



didates have better eflectiveness of screening. By using stern rufes
and siepwise refinement, the number of vefinement candidates and

the size of the rule base are reduced.

36



