Chapter 1

Introduction

As the rapid growth of on-line documents and electric publications,
the size of document databases has become very large and the num-
ber of document databases has quickly increased. When an user
searches very large databases, the original query of the user is often
a naive query that retrieves too many documents to browse exhaus-
tively. Facing to large result set of the original query, the user has
to refine the original query. However, the task of refining an effec-
tive query is difficult in the sense that it requires users, without
any knowledge about the collection of documents. Therefore, 1t
is highly desirable that a system can support query refinement by
displaying information about the collection of documents to users.

Query refinement is mainly concerned to information retrieval
field in which a number of researches have been developed such as
query expansion, relevance feedback, etc. In the other hand, data

mining([Fayy96]), also known as knowledge discovery in databases,

has been recognized as a new area for database research. Query
refinement also relates to data mining and knowledge discovery
in databases because query refinement is not ouly the process of
retrieval but also the process of discovering knowledge that can be
displayved to users as a guide for improving query.

In this paper, a method of query refinement support for keyword
retrieval of document databases is proposed by mining Association
Rules (ARs) among keywords being extracted from a document

database.

1.1 Document Retrieval by Keyword

Keywords have been widely used as queries in document databases,
web search engines, etc. In document databases, a document in-
cludes a set of keywords and a keyword associates with a set of
documents. A query is described as a disjunctive normal form of
keywords. A conjunction of keywords retrieves the documents each
of which contains all the atom keywords in the conjunction. The
query retrieves a set of documents which is the union of all the
results of each conjunction. The relationship between the retrieval
result and the query is described as follows. The more the number
of keywords in a conjunction is, the less the number of documents
retrieved by the conjunction is. The more the number of conjunc-

tions in a query is, the more the number of documents retrieved

Adds keywords|p ¢ .4

Document

o Databae

Figure 1.1: Query refinement

by the query is. Adding keywords to conjunction form can reduce
the size of result set and adding keywords to the disjunction form
can increase the size of result set.

The original query submitted by user is not often an effective
query that retrieves a large result set or small result set. In order
to formulate an effective query, it is important that each of con-
junction in the query has a suitable size of result set. This research

discusses how suitable conjunctions are formulated.

1.2 Query Refinement Support

If the original query submitted by an user retrieves a very large

[y |

result set the user has to refine her/his original query by conjunc-
tively adding appropriate keywords to the original query or choos-
ing a new keyword as a new query. Figure 1.1 shows the process
of query refinement. An user’s original query ¢ retrieves the result
set. D(q) that has a lot of documents. In order to get a suitable size
of result set, the user refines the original query ¢ to a new query q.
The new query ¢ retrieves the result set D(q’) that satisfies user’
need.

Query refinement is the process of transforming a query into a
new query that more accurately reflects the user’s retrieval need.
However, it is difficult for users, without any knowledge about the
collection of documents, to predict the keywords that will appear
in the documents the users want to have. Therefore, it is highly de-
sirable that a system can provide information about the collection
of documents for helping users to refine their queries.

Figure 1.2 shows an example of query refinement support. First,
the system offers a set of the refinement candidates with respect
to the user's original query. Then, user references the refinement
candidates and adds appropriate keywords selected from the refine-
ment candidates to the original query. In the example, the original
query submitted by an user is “digital communication” that has
a large result set of 810 documents. The refinement candidates

with respect t0 “digital communication” are displayed on the right

IrAE BEE FTW BB SRIAUW ~lIdg :

! : : -4 a : \ F

- v od - i Lo 4 “;s.} | o o
B> Pk ¥ A BR BWoAY AEB seldi ‘iﬁfﬂj’é? ,44:;};) :&%F ‘
FELA i(ﬂ hitp / Mlocathest/dmexpsd '] : ety

(Resat] [Koyword List] Unput] elp) Rafinoment Candidates - 48

Spt Kayword

HF LR g

Quary Form

OuftE

Result: containing documents 810

G S0 AR B B LT AT AL U D AR SRATIE 0L F AT T TR E RO “it LA LB A G
27 LAREHSR S

T T LA REYEREIEORE

FHERFTHINMSES - FEOERA LA PAIEIBOE B & H{CFAREZ R EIPATRBO B HE - WA RIS
B L A FL 7T M =S (LAY — LU ASHERIEOGH

CriREIC LA Gats! S —FETOME

S EEMOMEE I B ATMES f b

F AL R T 8 O o) BIILRE OPSK (4HEPSIO

Fignre 1.2: An example of query refinement

frame of screen. Associating to each candidate, the number on the
right side of refincment candidate shows the size of result set re-
turned by conjunctively adding the keyword to the original query

“ligital communication”. If the user chooses refinement candi-

date keyword “picture communication” and adds conjunctively to

the original query, the query {“digital communication”, “picture

communication”} will retrieve 79 documents each of which contains

both “digital communication” and “picture communication”. This

Lirile

process will be carried out repeatedly until the user successfully
refines the query.

Here, the reflinement candidates are extracted from document
database by statistics methods based on co-occurrence between
keywords. Co-occurrence between keywords means that pairs of
words occur frequently together in documents. In the example
above, the relationship between keywords “digital communication”
and “picture communication” is called co-occurrence because these
two keywords appear together in more than one documents. Key-
word “picture communication” is an relevant keyword of “digital
communication” and vice versa. In very large databases, a keyword
always has a lot of relevant keywords. Therefore it is hard for users
to browse all co-occurrence keywords. In such databases, query re-
finement support systems choose only the part of co-occurrence
keywords to be displayed to users. The method of choosing refine-
ment candidates from co-occurrence keywords will be discussed in
this research.

When document databases are very large, the computation of
co-occurrence keywords might spend a lot of time. The computa-
tion of co-occurrence keywords need to also be taken into consid-

eration in query refinement support systemt.

1.3 Related Researches

Our rescarch mainly relates to query expansion, reference feedback

and query refinement by similarity.

1.3.1 Query Expansion

Query expansion is a traditional method of query modification. In
brief, the technique of query expansion is based on an association
hypothesis which states: if an index term is good at discriminating
relevant from non-relevant documents then any closely associated
index term is also likely to be good at this ([Van79j). In prior works,
synonyms and variant spellings of the original query are automati-
cally added by means of thesauri and controltled vocabularies. More
recent works on query expansion ([Peat91, Qiu93, Voor94, Buc95b,
Srin96, Xu96]) have been based on global and local analysis etc.
These researches add automatically related keywords to the origi-
nal query according to keywords extracted from the matched doc-
ument set. These researches use statistics techniques to identily
keywords that are similar to query and that should be added to
the query. Calculation of the degree of similarity between pairs
of keywords is usually based on similarity coeflicients, such as the
cosine, Dice or Tanimoto coeflicient [Peat91] which are defined in
the following.

Giiven two keywords X and Y oceurring in F(X) and F(Y') doc-

ument, respectively, these coeflicients are defined to be

F(X,Y)

COSINE(X,Y) = TR B

L 2XP(XY
DIC]D(x\,})':— [‘,(\.) 'El“ [J»(})')

and

F(X,Y)

DICE(X,Y) = A
(X.Y) FX) + F(Y) = F(X,Y)

where F(X,Y) is the number of documents in which X and Y
co-occur. Tt will be noticed that these coeflicients are symmetric .

The extracted keywords have high similarity to the keywords
used in the original query. However, these approaches have the
difficulties to differentiate between relevant and non-relevant doc-
uments, because the keywords with higher similarities intend to
include the similar documents. It is also difficult for the system to

accurately reflect the user’s retrieval request.

1.3.2 Relevance Feedback

The relevance feedback in [Salt90, E{th93, Spin94] is the method of
interactive query modification. It request the user to browse the re-
sult set of documents and choose relevant documents the keywords
in which are added to the original query. Relevance feedback is

10

based on probabilistic model to rank the result set of documents,
in response to a query, in order of decreasing probabilities relevance
([Koll90. Aalbod, Coopdd, Pers94]). That is, il X, a vector of bi-
nary weights of keywords, is the description of a document, then
that document’s rank is determined by the conditional probabil-
ity P(relevance| X). The process of document rank is as follows.
I'irst, numerical weights are assigned to individual keywords in doc-
uments(and possibility in queries). Then, the individual weight are
combined to obtain an overall measure of significance of the doc-
ument to the compound query. Finally, these significance values
are used to produce ranking of documents. But, in order to choose

refinement keywords, users have to browse a lot of documents.

1.3.3 Query Refinement by Similarity

Query refinement is also an interactive method of query modifi-
cation. Query refinement ranks documents with respect to user’s
original query and chooses keywords from ranked documents as
suggested candidates ([Véle97]). The suggested candidates are
added to the original query by user. When an user gives a query,
query refinement system first finds all documents matching the
user’s query. The system then combines and ranks the keywords
in documents, and finally displays the highest ranked keywords

as suggested candidates. The user can get information about the

i1

collection by browsing the list of suggested candidates.

Query refinement also chooses the keywords with higher similar-
itics as suggested candidates. This 1s similar to query expansion.
The usage of symmetric similarity leads to bad effectiveness of
screening and dynamic computation of similarity delays the query

response.

1.3.4 Summary

The rescarches above are based on co-occurrence between keywords
to refine queries. This seems to be a common principle of query
refinement. The researches above use symmetric similarity to esti-
mate relationship between keywords and choose the keywords with
higher similarities as refinement candidates. This leads to bad ef-
fectiveness of screening and has the difficulties to differentiate be-
tween relevant and non-relevant documents. Query expansion is a
automatic method of query modification. But it is also difficult for
the system to accurately reflect the user’s retrieval request. Rele-
vance feedback is an interactive method query modification. But,
in order to choose refinement keywords, users have to browse a
lot of documents. Query refinement offers a set of the suggested
candidates for user to choose. But the method of generating refine-
ment candidates in query refinement have some weak point such as

effectiveness of screening, dynamic computation of similarity etc.

We will discuss the detail in the next chapter.

The rest of this thesis is organized as follows. Chapter 2 intro-
duces the overview of this research. In Chapter 3, the preliminaries
of this study is given and the stem rules and the stepwise refinement
will be discussed. Chapter 4 defines the coverage and a relinement
query space based on the coverage. Chapter 5 gives an outline of
our prototype system and addresses experimental results, Chapter

6 concludes our discussion.

13

