Chapter 2

Sound Spatialization
Management

In a virtual reality environment, users are immersed in a scene with ob-
jects which might produce sound. The responsibility of a VR environment is
to present these objects, but a practical system has only limited resources,
including spatialization channels (imixels), MiD1/audio channels, and process-
ing power. A sound spatialization resource manager controls sound resources
and optimizes fidelity (presence) under given conditions. For that, a priority
scheme based on psychoacoustics is needed. Parameters for spatialization
priorities include intensity calculated from volume and distance, orientation
in the case of non-uniform radiation patterns, occluding objects, frequency
spectra (low frequencies are harder to localize), expected activity, and oth-
ers. Objects which are spatially close together (depending on distance and
direction} can be mixed. Sources that can not be spatialized separately can
be mixed as ambient sources. Important for resource management is the
resource assignment, i.e., minimizing swap operations, which makes it de-
sirable to look-ahead and predict upcoming events in a scene, Prediction is
achieved by monitoring objects’ position, speed, and past evaluation values
(i.e., priorities, probabilities, ...). Fidelity is contrasted for different kind of
resource restrictions and optimal resource assignment.

To give standard and comparable results, the VRMLO7 specification [Bell
et al., 1997] is used as an application programmer interface. Applicability is
demonstrated with a helical keyboard [Herder and Cohen, 1996], a polyphonic
MIDI stream driven animation including user interaction (a user may move
around, playing together with programmed notes). The developed sound
spatialization resource manager gives improved spatialization fidelity under
runtime constraints. Application programmers and virtual reality scene de-
signers are freed from the burden of assigning mixels and predicting the sound

21

22 CHAPTER 2. SOUND SPATIALIZATION MANAGEMENT

sources locations.

Spatial sound used in virtual reality environments fulfills different pur-
poses. As passive feedback [Burdea and Coiffet, 1994, pp. 234-236] it enhance
the realism of the display and informs the user about scene changes. In case
of active feedback, the sound is directly coupled to user interaction (e.g., use
of a manipulator, movement). Information presented include the position,
orientation, movement, and speed of objects and the user in the scene. Be-
sides that, room acoustic helps to understand the scene and get a feeling for
space, walls, and materials. In this chapter, we mostly neglect room acous-
tics and focus on direct sound, which is important for localization of objects
in space.

User interaction

new Scurce

Handles all preferences
source Direction
source Location
source Intensity

number of available
resources

hew Sink

sink Orlentation
sink Location
sink Sensitivity

coordinate
/ Abstract interface

for spatialization
module

Figure 2.1: System schematic

Figure2.1 shows a system schematic. We applied and tested the spatial-
ization resource manager with two applications. In the Helical Keyboard
project, shown in Figurel.4 [Herder and Cohen, 1996], keys are objects in
space which are activated by a MIDI stream, The number of requested simul-
taneous spatialized sources is defined by the polyphony of the song.

2.1. REQUIREMENTS 23

In the case of multiple sinks (see Section 2.2.3), the quantity of required
resources (i.e., mixels) increases with the number of sinks. Each sink defines
its own space, which is then is folded together with its siblings’. In a second
application developed to show the capabilities of the resource management,
objects follow a motion test pattern of distribution functions.

2.1 Requirements

Besides to the requirements given in the introduction (see page 13}, the
requirements for the algorithm introduced in this chapter are extended to:

¢ support for multiple sinks,

e using the API defined in Chapter 5, giving the application programmer
eagy control over resource assignment process,

¢ dynamic resource allocation/control, and

e low computation costs.

2.2 Resource management

Resource management can be static, in which the resource assignment is
predefined by the VR scene designer, or dynamiec, which means the mapping
from source to channel is established at runtime. In systems in which the
number of users and their sound spatialization requests are not predefined
and the number of resources are limited, dynamic assignment of the resources
will allow maximum system use.

What are sound spatialization resources? “Mixels,”"— acronymic for
‘[sound] mixing elements,’ in analogy to pixels, taxels (tactile elements),
texels (texture elements), or voxels (a.k.a. hoxels)— since they form the
ragter across which a soundscape is projected, define the granularity of control
and degree of spatial polyphony.

Input (monaural) audio channels are associated with sources in the virtual
space. Dynamic resource allocation assigns the source<+sink mappings to
mixels, whose number is determined by the breadth of the directionalizing
backend.

24 CHAPTER 2. SOUND SPATIALIZATION MANAGEMENT

2.2.1 Strategies

A spatialization resource manager must decide how input channels are mapped
to the resources. Figure2.2 shows the principal task. Out of all relevant
sources, sources for spatialization are selected. Our implementation is based
mainly on the application programmer interface given by VRML 2.0 (see also
Section 5).

Reflrieval

i,

Sorting and Selecting

Figure 2.2: Scurce sets for spatialization

A simple algorithm would prioritize the relevant sources, assigning them
to resources starting with the highest priority until no more resources were
available. This operation might involve preemption of a source, which wouid
be swapped out of the set of active sources. The following sections develop
a more detailed and sophisticated approach.

Filtering relevant resources

Filtering Algorithm 1 is given in pseudo-code.
For simplicity the algorithm assumes an ellipsoidal radiation pattern of
the sound sources and a spherical sensitivity pattern for sound sinks. The

2.2. RESOURCE MANAGEMENT 25

Algorithm 1 Simple filtering algorithm
for each sink in sinks do
if sink is enabled then
for each source in sources do
if source is ambient then
if source is background then
add source to background set of sink
else
add source to ambient set of sink
end if
else
if source is low frequency then
add source to ambient set of sink
else
distance 4 distance(source,sink)
f not(sourcelnSinkFarRange(source,sink) and
sinkInSourceAudibleRange(source,sink))
add source to inactive set of sink
else
volume <= f(intensity, sensitivity, distance)
. sourcelnSinkNearRange(source,sink) and)
. . then
sinkInSourceCoreRange(source,sink)
volume <= 1
end if
if volume < minVolume then
add source to inactive set of sink
else
add source to active set of sink
end if
end if
end if
end if
end for
end if
end for

) then

26 CHAPTER 2. SOUND SPATIALIZATION MANAGEMENT

domain | trigger | operation cost

multiprogramming/multi- || preemption, inter- [swap out jobs thrashing
tasking cpu rupt {0s timeslice} | (linked list of

processes)
virtual memory, caching || page fault swap out pages to | time
RAM ' disk
andio resource manage- || “interrupt® or | swap out mixel | “fidelity," sound-
ment reprioritization to ambient space | scape stability

& gpatialize new

mixel

Table 2.1: Resource management

function £ defines the attenuation of sound in the medium and is used in
Algoritm 1 and 2 for setting the volume value:

intensity x sensitivity
distance?

t(intensity, sensitivity, distance) = (2.1)

Intensity and sensitivity are linearized and normalized gain values of
source and sink, respectively.!

The boolean function sourceInSinkFarRange returns True if the source
is within the far range sphere of the sink. Sources which are outside of this
sphere are not audible to the specified sink. The field farDistance is fold
of sink controlled by an application.

sourceInSinkFarRange(source, sink) =
distance(source, sink) < farDistance (2.2)

The boolean function sourceInSinkNearRange returns True if the source
is within the near range sphere of the sink. Sources which are outside of
this sphere are attenuated or not audible to the specified sink, The field
nearDistance is field of sink controlled by an application.

sourceInSinkNearRange(source, sink) =
distance(source, sink) < nearDistance (2.3)

Equation 2.4 defines when a sink is in the audible range of a source.
The fields maxBack, maxFront, location, and direction specify an audible

1In this notation, “intensity” is not the physically defined term of acoustical power per
unit area.

2.2. RESOURCE MANAGEMENT 27

ellipsoid. If the sink is not inside of the ellipsoid, then the source is not
audible by the sink. An ellipsoid is given by two focal points f1 and f2.
Assume f1 is the location of the source node, then f2 can be calculated by
fl+direction/|direction| * (maxFront — maxBack). Let Is be the sink
location, then the source is audible if [ls — f1] + |ls — f2| < maxBack +
maxFront,

sinkInSourceAudibleRange (source, sink) =
distance(sink,source) +
distance(sink,location(source) +
direction/length(direction) *
(maxFront — maxBack))
< maxBack + maxFront

(2.4)

A sink is in the core range of a source is defined in Equation 2.5 in the
same way.

sinkInSourceCoreRange (source, sink) =

distance(sink,source) +

distance(sink,location{source) +
direction/length(direction) *
(minFront — minBack))

< minBack + minFront

(2.5)

The values minFront, maxFront, minBack, and maxBack are attributes
of the source, as defined by the AP1 in Chapter 5, conforming to the Sound
node definition [Carey and Bell, 1997, p. 277—284]; values farDistance and
nearDistance are associated with the sink, Figure 2.3 shows the different
ranges for sound source and sink as defined in Section 5.2 and Section 5.3.
Source frequency is calculated by source chaunel, which in the case of MIDI
is the normalized note number.

Sorting

For all active sources, as determined by techniques in this section, priority is
calculated with Algorithm 2 based on volume, source and sink priority.

28 CHAPTER 2. SOUND SPATIALIZATION MANAGEMENT

N
/ N\
/ e A
; ~) .
- ~
f)
sink ““{“*—— “)’— —— source

i) ., . .
|\ sinknearrange . < ™ source audible range

\\‘, sink far range

.\‘

"~ source core range

Figure 2.3: Audible and intensity ranges for sound source and sound sink

Algorithm 2 Simple algorithm to calculate source processing priority
for each sink in sinks do
if sink is enabled then
for each source in active sources attended by sink do
distance & distance{source sink)
.o { sourcelnNearRange(source,sink) and)
. . hen
sinkInSourceCoreRange(source,sink)
volume <=1
else
volume <= f(intensity, sensitivity, distance)
end if
source processing priority <= volume * (sink priority + 1) * (source
priority + 1}
end for
end if
end for

2.3. OPTIMAL SOUND SPATIALIZATION MANAGER 29

For efficiency, this caleulation can be done together with filtering of rele-
vant source. Sorting the set for priority and using the best for spatialization
would already give a good strategy for resource allocation, but in the next
section we optimize it further.

2.2.2 Reservation scheme

Resource reservation is available on three different levels. An application
might reserve resources in advance via the API. In a spatialization server
environment, the server might reserve resources. The spatialization resource
Inanager reserves resources for sources which are currently not active but have
shown in the past large values in probability in moving and high priorities.
The past priorities (maximum and average) are set in contrast to the current
active sources.

2.2.3 Multiple sinks

The spatialization resource manager must also consicler multiple sinks [Co-
hen, 1995] [Herder and Cohen, 1996] which idiom was developed partly to
address the issue of soundscape control in an shared context, allowing users
to redirectionalize multiple sources without moving them {which might dis-
turb other users) by installing and adjusting colocated sinks. An arbitrary
number of users might experience a relaxed common view of a conference
room or concert hall, each designating (possibly shared) sinks and using a
personal gain adjustment profile, individually tuned for hearing acuity and
control/display characteristics.

Roles of sources and sinks A classification of sound sources and sinks
is given in Table 1.1, Multiple sinks allow forked presence in auditory space,
'This is being like being in more than one place at once, a concept famil-
lar from teleconferencing and studio recording. Two methods have been
suggested for disambiguating the paradoxes of multiple presence. One is to
partition the sources across the sinks, in which cage the required mixels num-
ber is the same as a virtual space with a single sink. A second method crosses
all sources and sinks, in which case required mixels numbor is the product.

2.3 Optimal sound spatialization manager

A spatialization module has a limited number of channels. An optimal spa-
tialization resource manager would asgign the channels to minimize the dif-

30 CHAPTER 2. SOUND SPATIALIZATION MANAGEMENT

ference between a configuration with limited number of resources and an
ideal one with unlimited resources.

2.4 Implementation

Our prototype was developed on an SGI Indigo 2 Extreme, connected with
an Acoustetron II from Aureal/Crystal River Engineering and Roland Sound
Module. The Open Inventor graphics toolkit was expanded for classes (nodes)
to support the spatial sound extensions, which were used for our virtual real-
ity applications. Open Inventor is a superset of the VRML 1.0 standard [Bell
et al., 1995, which does not support sound or dynamic behavior of objects.

Bibliography

[Bell et al.,, 1995] Gavin Bell, Anthony Parisi, and Mark Pesce. The Vir-
tual Reality Modeling Language, Version 1.0 Specification, May 1995.
http://www.vrml, org/Specifications/VRMLL.0/.

[Bell et al., 1997] Gavin Bell, Rikk Carey, and Chris Marrin. 1s0/1EC
14772-1:1997: The Virtual Reality Modeling Language (VRML97), 1997.
http://wuw.vrml.org/Specifications/VRMLI7/.

[Burdea and Coiffet, 1994] Grigore Burdea and Philippe Coiffet. Virtual re-
ality technology. Hermes, 1994, 18BN 0-471-08632-0.

[Carey and Bell, 1997] Rick Carey and Gavin Bell, The Annotated VRML 2.0
Reference Manual. Addison-Wesley Developers Press, 1997, 18BN 0-201-
41974-2,

[Cohen, 1995} Michael Cohen. Besides immersion: Overlaid points of view
and frames of reference; using audio windows to analyze audio scenes.
In 1cAT/VRST: Int. Conf. Artificial Reality and Tele-Existence/Conf. on
Virtual Reality Software and Technology, pages 29-38, Makuhari, Chiba;
Japan, Novemnber 1995.

[Herder and Cohen, 1996] Jens Herder and Michael Cohen. Design of a He-
lical Keyboard. In Steven P. Frysinger and Gregory Kramer, editors,
ICAD 96 — Int. Conf. on Auditory Display, Palo Alto, CA; USA, Novem-
ber 1996,

