Chapter 2

SUPERFLUID HELIUM

2.1 Superfluid Helium

Helium exists in two stable isotopic forms, *He and ‘He. In this study,
“He is exclusively concerned with. The liquefaction of helium was first con-
ducted by H. K. Onnes in 1908. The phase diagram of helium is schemat-
ically shown in Fig.2.1. The normal boiling point is 4.2 K and the criti-
cal temperature is 5.19 K. Liquid helium exists in two phases, He I and
He IT (Superfluid Helium), separated by a phase boundary called the A-
line. At saturated vapor pressure this transition occurs at the temperature
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Fig. 2.1: The phase diagram of ‘He
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Fig. 2.2: The speciﬁc. heat of liquid helium along the saturated
vapor curve as a function of the temperature,

To=2.17 K founded by H. K. Onnes’ research group in 1911. There is no
latent heat associated with this phase transition and He II never solidifies
even at the temperature, absolute zero, if the pressure is below 2.5 M Pa.
Moreover, the heat capacity of liquid helium increase towards infinity at
A-point as shown in Fig. 2.2. Below the A-point liquid helium (He II) has
the most remarkable character, superfluidity and super thermal conduc-
tion. Superfluidity was discovered by Kapitza in 1927 and super thermal
conduction was also discovered by H. K. Onnes in 1927. Superfluidity and
super thermal conduction are the typical phenomena which are regarded
as the appearance of quantum effect in macroscopic level. Owing to su-
perfluidity property can flow without any friction even through narrow
capillaries. The practical thermal conductivity of He II is several hundreds
times higher than that of pure copper. This property is called super ther-
mal conduction. He II is not a classical liquid but a quantum liquid and
He II obey Bose-Einstein static. Liquid helium is only substance that dose
not solidify under its own vapor pressure. The reason for this is quantum
mechanical in that the zero point energy is sufficient to overcome the weak
binding potential between helium atoms. And He II has several attractive
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properties for cryogen, and so it is expected to be the efficient coolant for
superconducting magnets and space-borne infrared telescope.

2.2 Two-Fluid Model for He II

The fluid-dynamic behavior of He II is described on the basis of the
two-fluid model introduced by Tisza[35], which was then led to the two-
fluid equation presented by Landau[36]. The two-fluid model is considered
that He II is composed of two components, the normal fluid and super-
fluid components, The normal fluid component is a regular viscous fluid
being subject to classical fluid dynamics. It has finite viscosity and en-
tropy. On the other hand, the superfluid component has zero viscosity and
entropy. Both of the two components have their own densities, p, and p,
respectively. The total density p is given by

p = pPn+Ps (2.1)

In Fig. 2.3, the proportion of the super fluid component increases from zero
up to unity at absolute zero as the temperature goes down. In the view-
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Fig. 2.3: The ratio of the normal fluid density p, and the super-
fluid density p, to the total density p as a function of temperature.
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point of the quantum microscopic, the superfluid component corresponds
to helium atoms which occupy the quantum grand sate, Bose-Einstein con-
densation phase. On the other hand, the normal fluid component is the
thermodynamically excited phase. The excitations are described by the dis-
persion curve of energy as a function of the momentum in Fig.2.4. There
are two regions of specific interest on this curve:

1) The low momentumn range, where the curve is linear: Phonons

2) The high momentum valley in the energy spectrum: Rotons
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Fig. 2.4: The dispersion curve for liquid helium at the saturated
vapor and Top=10K

The energy spectra of these two groups of excitations are usually expressed
by following simple analytical expression:

Phonons : € = ¢p (2.2)
Rotons : e = A, + L1 (2.3)
2pr
where € and p are the energy and momentum of excitation, ¢ is the speed of

sound, and A,/xp = 8.6 K, p,./fi,zl.gz‘zl“1 and p,=0.15m4 are parameters.
h, kg and my are the value of the Plank constant divided by 2w, the

Boltzmann constant and the mass of a heliumn atom, respectively. At fairy
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low temperatures, Ty < 0.6 K, phonons which are simply sound waves of
quantized amplitude are excited almost to the exchusion of all other higher
energy excitations. At the temperature increases, the population of rotons
increases very rapidly due to its large density of states. So that above
Ty = 1.2 K, thermodynamics of He II is completely dominated by them.
The relation among phonons, rotons and normal fluid component in density
is given by
Pr. = Prp + Prr, (2'4)

where pppy and pp, are the density of phonons and that of rotons, respec-
tively.

At fairy low temperature, Ty < 0.6 K, a phonon and a roton can excite
a helium atom into vapor phase. This excitation is called as a quantum
evaporation phenomena. Recently, the quantum evaporation is studied by
many authers[37]-[39].

2.3 Landau Two-Fluid Equations

The basic hydrodynamic equations for He IT in the case of non-dissipative
effects are first introduced by Landau. The fundamental assumptions on
which Landau two-fluid equations is based are the following: The ordered
of motion of the excitations carries along with it only part of the liquid,
characterized by the normal fluid density p,. The remaining part, the
superfluid is characterized by superfluid density ps, and performs an in-
dependent motion. This independent motion has the important property
of being irrotational. Thus in a superfluid, there can exist two simultane-
ous but independent motions, one normal and the other superfluid, with

velocities U:% and v'; , with
curl v = 0. (2.5)

Eq. (2.5) which states that the superfluid motion is irrotational will not be
violated until the flow velocities have reached certain critical values where
the normal fluid and superfluid parts of liquid begin to interact. The total
density of He II, p is defined by Eq.(2.1). The equation of conservation
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where fis the total mass flux shown by

+divi =0, (2.6)

;: PnU:L + Ps'l;.;- (27)

Since dissipation is neglected and the entropy is transported only the nor-
mal fluid component, the equation of conservation entropy takes the form

0(ps)
ot

The flow of superfluid component is driven by the gradient of chemical po-

+ div(psv;) = (). (2.8)

tential. The equation of conservation momentum for the superfiuid com-
ponent is .

D,

Dt
where p is the chemical potential per volume of He II and its gradient is

+Vu=0, (2.9)

given as follows

VP pn - —i2
Vi=——sVI - =V(v, — v)", 2.10
p== SV (6~ ) (2.10)

Here, the conservation equation for the total momentum is introduced.

0j; N Ol _

2 2.11
ot 633,,; 0’ ( )

where II;; is the momentum flux density tensor indicated by

ip = Pl + prPripnk + PspsiPsk (2.12)

2.4 Two Mode of Sound Wave Propagation in He II

The structure of two-fluid model Egs. (2.6), (2.8), (2.9) and (2.11) sug-
gests that there are two kinds of propagating wave modes. In sound wave
the velocities v:.; and 'u: and are assumed to be small, and the thermody-
namic quantities almost equal to their equilibrium values, The propagation
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of sound in He II is described by the system of hydrodynamic equations,
Egs. (2.6), (2.8), (2.9) and (2.11), which in this case may be linearized, and

given

4 ‘

5 T divy =0, (2.13)
Olps) + ps divv, = 0, (2.14)

ot

81)3

B T Vu =0, (2.15)

85

5+ VP =0, (2.16)

From Eqs. (2.13) and (2.16), the momentum j is eliminated such as
0%
-a5+VP 0. (2.17)

Next, the velocities of v, and v, must be also eliminated from Egs. (2.14),
(2.15) and (2.16). For this, take the time derivative of Eq. (2.14) ancl the
divergence of Eqs.(2.15) and (2.16). By eliminating the terms a—dw Un

and % div 'u—; from the equations thus obtained as

Pn 52( 5)

P = .
VP-I—pS 5 +V 0. (2.18)
From Eqgs. (2.15) and (2.8), finally, the next equation given
0%s | ps o
8ﬂ—+p VT = 0. (2.19)

Egs. (2.17) and (2.19) determine the changes in the thermodynamic quanti-
ties in the presence of sound wave. In these equations, independent variable
P and T is represented by

P=R+P (2.20)

T=Ty+T (2.21)
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where the quantities with subscript zero denote the equilibrium values, and
the primed quantities the deviations from equilibrium due to the sound
wave. As a result, Eqs. (2.17) and (2.19) take the form

dp B*P! p 62T

— b — s , —_— L3
OP Ot? VP T ot2 =0 (222)

Op 0P p&* T  s2p,
opom YT om " 5y VT =0 29

Egs. (2.17) and (2.19) can be represented by a plane wave propagating in

some direction. In such a wave the quantities P’ and T’ vary as

P= B+ P exp (P0F _ it (2.24)
w

TIT()—I—TJ

where the x-axis can be chosen as the direction of propagation of the wave,

(2.25)

kg, u and w are the wave number, the velocity of sound and the frequency.
The system of the equations, Eqgs. (2.22) and (2.23), may be written in the
form

Op 2 / ap 2t
(ap 1) P/ SEutT =0, (2.26)
8y, (D5 3 $0s\ 1y _

As usual, the above equations will be compatible if the determinant of their
coefficient is equal to zero. Expanding the determinant, the next equation
is given as

d(s, p) Js ps Op s
(I ARSI T i Noud o s g2
Yo, Py " (azr“ b ) TS =0 (2.28)

After some simple tranSformations, Eq. (2.28) is simplified as

OP o ps {OT 20s ( OT (BP)
opP ps (0T i
(ap)s“pn(as)p (%) (5),=0 @

Furthermore, Eq. (2.29) is written as

u2 cp |
| — 1l =1 —. 2.30
(aw ) (61202 ) cy (2.30)

ud—u
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where,

(57),
5

Eq. (2.31) determines two possible velocities of sound in He II. The coef-
ficient of thermal expansion is in practice, very small for all conventional
substances, for He II it is anomalously small. Therefore, according to the
well-known thermodynamic relations one can consider two specific heats cp
and cy to be practically equal in He II. From this equal condition, the right
hand side of Eq. (2.30) can be neglected. Then the solutions of Eq. (2.30)
are given as,

&P
U = ap = -_ ' 2.32
( Op ) s 22
2T
Ugp ~ agp = Ps’ (2.33)
PnCP

Eq. (2.32) determines the propagation speed of the ordinary sound called
first sound wave in He II. From Eq. (2.17), the first sound wave is produced
by pressure (density) oscillations. On the other hand, Eq. (2.33) determines
the propagation speed of the temperature wave. From Eq. (2.19), the sec-
ond sound wave is produced by pressure (entropy) oscillations. According
to the two-fluid model, when the first sound wave travels in He II, the
normal and super components move together in phase. However, in the
second sound wave, the two comnponents move oppositely in zero center-
of-mass motion. Fig. 2.5 shows the propagation speeds of the first sound
and second sound as a function of temperature. The difference between
cp and cy is not always negligible for He II, in particularly for conditions
near the A point and at high pressures. In such cases the term 1 — EB must

be retained. Keeping term to first order in 1 — CV’ the first sound and the
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Fig. 2.5: The propagation speeds of a first sound and a second
sound as a function of temperature.

second sound wave speed are given by

2 2
an a cC
ug? = ayg? 4 N (1 - ..ﬂ) , (2.34)
ap”® — an cy
2 2
ana c
'U,102 = a.loz s 1— £ . (235)
2 2
app” — a0 cy

By recognizing the non-zero difference between cp and cy, additional in-
sight into the physical nature of first and second sound wave may be
achieved by Lifshitz[40] and Landau and Lifshitz[41]. From the thermody-

namic identity
cp cp 2 8P
]. T e— L —— ea: - 3 .
-~ CVTa op (5;0)3 (2.36)

where gy = —%(%)P is the thermal expansion coefficient. it is clear

that keeping terms of order 1 — -é—:{; is equivalent to keeping terms quadratic
in apypT'. Here, working only to first order in oe,T. Next, if the varying
part of each quantity is denoted by prime, the next equations are given
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from Egs. (2.6), (2.8), (2.9) and (2.11).

’U!,p! - jl = 0:
usp’ + ups — spv, = 0,
uwj — P'=0,

uvg + sT" — %P’ = (.

Furthermore, Eq. (2.37) is simplified as follows

(2.37)

P’ = ugp, = ’u,j’ (2.38)

2
r _ UWPn 9 UpPp
From Egs. (2.34), (2.35), (2.38) and (2.39), the coefficients of proportional-

ity between the velocities and variable parts of the temperature and pres-

sure in the case of first order thermal expansion coefficient c.,, are given
by Lifshitz[40] as follows;

Vs = @ Up,
P! = bu,, (2.40)
T = cu,.

where, for the first sound

Oy ,0 a 2(1 2
—1 pf 19" agg
W= AT s a10” — a2
by = pag, (2.41)
— Cegppl CL102

PR

C]_ T .
CP ap® — ay”
for the second sound
2 9
_ ezl aip’a
ay =Ly Semp _apan
8 ?; a210 — agp
by = Qexpfl  aqgQ (242)
H
; ai” — amn '
€y = —-%Q.

As the thermal expansion coefficient ceqp is negative above 1.0 K in He II,
for the first sound, the pressure rise will decrease through the compression
and increase through the rarefaction. On the other hand, for the second
sound, the pressure and the temperature rises have the same sign.
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2.5 Thermal Shock Wave in He I1

When the amplitudes of waves becomes large, the linear theory be-
comes no longer valid. Moreover, each sound may develop into a shock
wave. The shock wave of second sound wave origin is called a thermal
shock wave. It is Khalatnikov[42] who investigated the dynamic behavior
of the sounds with finite amplitude in He II. In the case of a finite ampli-
tude disturbances the propagation speed within a wave profile differs from
point to point depending on the deviation from the equilibrium value, AT
or AP. For the first sound wave, the local propagation speed is expressed
to the first order smallness by

u(AP) = ay [1 +a (%)] , (2.43)

where the steepening coefficient is written as

¢=P (5%) In(ee), (2.44)

and for the second sound wave,

ugg (AT = agg [1 +b (%3-:)} , (2.45)

where the steepening coefficient b is given by

b= T(%)Pln (“‘gfp) . (2.46)

As a result of non-linear feature due to finite amplitude waves, a second

sound wave develops into a thermal shock wave characterized by a discon-
tinuity in the temperature. It is known from theoretical consideration that
the shock profile in the final stage of propagation is a Buger’s triangle.
It is of interest that shock waves in He II appears not only in the form
of a frontal shock similar to a compression shock as seen in conventional
gases but also in the form of a back shock similar to an expansion shock.
The distinction of these wave forms results from the sign of the steepen-
ing coefficient, b, defined by Eq. (2.46). Fig. 2.6 shows the variation of the
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Fig. 2.6: The temperature dependence of steepening coefficient b
at P=1 bar.

steepening coefficient with the temperature, calculated with the aid of the
tabulated data of Maynard[43] at P=1 bar. As the steepening coefficient
becomes positive below T = 1.884 K, a front-steepening shock is formed
below 1.884 K. In this case, points with higher in temperature within a
thermal shock wave move faster than those with lower temperature. On
the other hand, at temperatures above 1.884 K, b is negative, and a ther-
mal shock wave steepens on the back side. The back shock is never seen
in usual compressible fluids under regular condition. In addition to two
shock waves, a double shock wave exists in He IL. It has two discontinuities
on both sides, front and back sides. If the temperature of undisturbed is
taken a little lower than 1.884 K, it can be expected that some local points
stay lower than 1.884 K although others might be higher than 1.884 K and
go the double shock is formed. In the case of a thermal pulse with large
amplitude, a thermal shock wave is deformed and attenuated also by the
effect of quantized vortices[44], [45], [46], [47]. Higher amplitude results in
higher relative velocities between the two components. If the relative ve-
locity vns (=vs—up) exceeds a critical value v,, superfluid breakdown takes
place. The deformation and attenuation are considered to be caused by the
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interaction between a tangled mass of vortices and a shock wave, that is by
the mutual friction. It gives rise to additional dissipation. The quantized
vortex is almost the same as that in conventional fluids except the facts
that the circulation is quantized and the radius of core is extremely small,
being comparable with the inter atomic distance among helium atoms.



