List of Figures

2.1	The phase diagram of ${}^4{\rm He}$	9
2.2	The specific heat of liquid helium along the saturated vapor	
	curve as a function of the temperature	10
2.3	The ratio of the normal fluid density ρ_n and the superfluid	
	density ρ_s to the total density ρ as a function of temperature.	11
2.4	The dispersion curve for liquid helium at the saturated vapor	
	and $T_0 = 1.0 K$	12
2.5	The propagation speeds of a first sound and a second sound	
	as a function of temperature	18
2.6	The temperature dependence of steepening coefficient b at	
	P=1 bar	21
3.1	The x-t diagram of He II evaporation induced by a thermal	
	pulse impingement	23
3.2	General view of whole experimental setup	25
3.3	Schematical drowing of a glass dewar and a evacuation system	25
3.4	The main assembly of experimental section to be set in the	
	He II dewar	26
3.5	The photos of the main assembly of experimental section in	
	the He II dewar	27
3.6	The temperature distribution in vapor phase	28
3.7	The photo of a probe type pressure transducer	28
3.8	The photo of a wall mount type pressure transducer	29
3.9	The photo of a miniture type pressure transducer	29
3.10	The photo of a superconductive temperature sensor with the	
	bent needle sports	30

LIST	OF	FIGURES		•	1	16
_		-				

	3.11	The sensing element of a superconductive temperature sensor.	31
	3.12	The photo of a double probe type superconductive temper-	ΩŢ
		ature sensor	32
	3.13	The typical voltage-bias current characteristics of a super-	
		conductive temperature sensor	33
	3.14	The heating ratio of the electric resistance of sensing element	
		of a superconductive temperature sensor as a function of the	
		bias current	34
	3.15	The block diagram of the temperature measurement	35
	3.16	The block diagram of the pressure measurement	36
	3.17	The arrangement of optical element for the laser holographic	
		interferometer	37
	3.18	The photo of the cryostat with optical windows for the vi-	
·		sualization	39
	3.19	The cross-sectional view of the cryostat with optical win-	
		dows for the visualization	40
	3.20	The frontal view of the experimental cell in the cryostat for	
		the visualization	41
	3.21	The block diagram of the visualization.	41
	4.1	The schematic drawing of the temperature variation in the	
		whole vapor flow region	44
	4.2	The x-t diagram and the finite-fringe interferogram of the	
		evaporation phenomena, I	45
	4.3	The x-t diagram and the finite-fringe interferogram of the	
		evaporation phenomena, II	46
,	4.4	The infinite-fringe interferograms showing the evaporation	
		wave taken at three instances t_d measured from the thermal	
		pulse incidence onto the He II free surface	47
	4.5	The time variations of the temperature rise of impinging and	
		reflected thermal pulses in He II for several values of $q . .$	48

LIST OF FIGURES 117

4.6	The time variation of the temperature rises resulting from	
	the impinging and the reflected thermal pulses measured	
	adjacent to the He II free surface	49
4.7	The temperature rises as a function of the heat flux q	50
4.8	The time variation of the pressure in the evaporation wave	51
4.9	The pressure rise in the evaporation wave as a function of	
	the heat flux q	52
4.10	The time variation of the temperature rises in the evapora-	
	tion wave	53
4.11	The comparison of the density rise in the evaporation wave	
	measrued with LHI used in the finite-fringe mode with that	
	estimated from the pressure and the temperature measure-	
	ment data	55
4.12	The shock Mach number of evaporation wave, Ms, as a func-	
	tion of P_e/P_0	56
4.13	The temperature of evaporation wave, T_e/T_0 as a function	
	of pressure, P_e/P_0	57
4.14	The slip coefficients for the non-linear slip boundary condi-	
	tion, $h_1(M_{n\infty})$ and $h_2(M_{n\infty})$ as a function of $M_{n\infty}$	61
4.15	The comparison of the experimental result with the kinetic	
	analysis result with respect to the slip boundary condition	62
4.16	The comparison of the experimental result with the theoret-	
	ical pressure rise in the evaporation wave	66
4.17	The numerical calculation results of the vapor flow region	
	for He II evaporation solved by Onishi	68
4.18	The numerical calculation result of the vapor flow region	
	calculated by solving the Navier-Stokes equation	69
5.1	The condensation coefficient α_c as a function of temperature.	75
6.1	The temperature amplitude reflection coefficient R_{22} of a	
	thermal pulse at a He II free surface as a function of tem-	
	perature	85

118

6.2	The picture of the experimental cell for the reflection experiment of a second sound from a rigid wall	86
6.3	The x-t diagram and the finite-fringe interferogram of the	
	reflection of a second sound thermal pulse from a rigid wall of the top plate	87
6.4	The temperature amplitude reflection coefficient $R_{22,rigid}$ of	88
	a thermal pulse from a rigid wall as a function of heat flux q	00
7.1	The x-t diagram of He II condensation experiment	92
7.2	The condensation processes onto a He II free surface	93
7.3	The comparison of the pressure behind the reflected evapo-	
	ration wave from a rigid wall with that from a free surface	
	as a function of the shock strength P_e/P_0	94
7.4	The temperature dependence of the pressure amplitude re-	
	flection coefficient R_{GG} on a free surface	95
B.1	The schematic drowing of He II evaporation phenomena in-	
	duced by a thermal pulse impingement onto a He II-vapor	
	interfece with some angle $ heta$	105

List of Auther's Papers

- T. Furukawa and M. Murakami, Transient Evaporation Phenomena Induced by Impingement of a Second Sound on a Superfluid Helium-Vapor Interface, in Rarefied Gas Dynamics Vol. 1, eds. R. Brun, R. Campargue, R. Gatignol and J. C. Lengrand, pp. 519–516, Tolouse: Cépadués-Éditions, (1999)
- S.Kimura, T. Furukawa, T. Kanari and M. Murakami, Numerical Simulation and Experiment on Second-sound Pseudo Piston Effect in He II, Japanease Cryogenics Vol. 33, No. 2, pp. 77–81, (1998)
- 3. T. Iida and T. Furukawa, Pulsed Ruby Laser Holographic Interferometry Application to a Transient Evaporation of Superfluid Helium, Optical Science, Engineering and Instrumentation, edited by A. Davidhazy, T. Etoh, C. B. Jhnson, D. R. Snyder and J. S. Walton, Society of Photo-Optical Instrumentation Engineers Proc. Vol. 3173, pp. 286–294, Washinton: Society of Photo-Optical Instrumentation Engineers, (1997)
- 4. T. Iida, M. Murakami, T. Shimazaki, H. Nagai and T. Furukawa, Visualization Study of Highly Transient Thermo-Fluid Dynamic Phenomena in He II, Advances in Cryogenic Engineering, edited by P. Kittel, Vol. 41, pp. 249–256, New York: Plenum Prsee, (1996)
- 5. H. Ohokubo, T. Furukawa and M. Murakami, Development of Super-conductive Hot-wire Anemometer for the Use Around 2K, Advances in Cryogenic Engineering (To be published)

List of Contributing Papers

- 1. T. Furukawa, M. Murakami and T. Iida, Measurement of He II Evaporation Induced by Impingement of a Thermal Pulse on a He II-Vapor Interface, Experiments in Fluids
- 2. T. Furukawa, M. Murakami and T. Iida, Study of He II Evaporation in Continuum Region from He II-Vapor Interface Induced by a Thermal Pulse Impingement, Journal of Low Temperature Physics