Chapter 2

THEORETICAL FORMULATION

2.1 Superfluid Hydrodynamics

2.1.1 Landau two-fluid equation

Helium exists in two stable isotopic states, *He and ‘He. We primarily
treat ‘He. Helium is the only element that can exist as a liquid at absolute
zero (0 K).

" The structural symmetry, both nuclear and electronic, of a *He atom
results in extremely weak interaction of the helinm attractive forces. Con-
sequently, the condensation of helium into liquid or solid state is possible
only at very low temperatures where the disruptive thermal energy is signif-
icantly reduced. For temperatures approaching absolute zero, the thermal
energy is vanishingly small and the total energy of a system of helium atoms
is the sum of the potential energy and the quantum mechanical ground state,
or zero-point, energy which is no longer negligible. As a result of the con-
tribution of the zero-point energy, the liquid is the stable phase of *He
for temperatures approaching absolute zero (at pressure not exceeding 0.25
MPa). The low temperatures associated with this liquid permit the mani-
festation of certain quantum effects which have a profound influence on the
hydrodynamics.

~ The phase diagram for 4He is shown in Figure 2.1. The critical point is
at Ter = 5.20 K and P = 0.2274 M Pa, and normal boiling point (for P =
0.1013 M Pa.) is at 4.21 K. There is no triple point at which gas, liquid,
and solid are in equilibrium. The solid can be produced even at the lowest
temperatures only by application of pressures in excess of 0.25 M Pa. At
lower pressures, the liquid state is preferred. As indicated by the phase dia-
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Figure 2.1: Phase diagram for *helium

gram, there are two liquid phases — referred to as liquid helium I (Hel) and
liquid helium II, which is called a superfluid helium (HelI). The transition
from Hel to Hell is called the ” Atransition” and involves no latent heat
and no discontinuous change in the density. Hel is a classical fluid which
exhibits some properties which are liguid-like and others such as the vis-
cosity and the thermal conductivity, which are more gas-like. On the other
hand, Hell exhibits behavior which in fact is dominated by macroscopic
quantum effects. Table 1 shows the feature of liquid helium.,

Table 1:Feature of liquid helium (*He)
Hel e Ordinary Fluid
e Superfluidity
Hell (Superfluid) e Super Heat Transfer
e Second Sound Wave exist

To account for the unique behavior of Hell, a theory known as the two-
fluid model has been developed. This theory postulates that Hell may be
viewed as a mixture of two interpenetrating liquids -— one being referred to
as "superfluid” and the other as "normal fluid” seen in Table 2. The 1He
atom has no net spin, either nuclear or electronic; therefore, Bose-Einstein
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statistics governs an assembly of 4He atoms, permitting unlimited occupa-
tion of any energy level. The superfluid, then corresponds to that fraction
of the liquid which has actually dropped into the ground state, having un-
dergone a Bose-Einstein ” condensation” in momentum space. The normal
fluid corresponds to particles in the excited energy levels. The superfluid
has no entropy and its motion is inviscid; the normal fluid has non-vanishing
entropy and exhibits viscous effects,

Table 2. Two-fluid model
Superfluid component | Normal fluid component,
Density Ps Pn
Viscosity 0 N
Entropy 0 S
Bose-Finstein statics Ground state Excited state

The hydrodynamic behavior of Hell on a macroscopic scale is described
by the two-fluid equations. In this model, the total density of the liquid, p,
is taken to be the sum of the normal fluid density, pn, and the superfluid
density, ps:

p = ps+pn (2.1)

For temperatures approaching absolute zero, ps/p — 1; conversely, ps/p
— ( at the A-point where the liquid reverts completely to normal fluid seen
in Figure 2.2. The superfluid and normal fluid have separate velocity fields,
vy and vy respectively, and their relative velocity is denoted by

W = Vp — Vg (2.2)

The two fluids can move relative to one another without exchange of the
energy or momentum as long as the magnitude of the relative velocity does
not exceed a critical value, we. The net mass flux (or momentum density)
of the liquid is given by

J = pv = psVs + pp¥n, (2.3)
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Figure 2.2; Temperature dependence of the normal fluid density ratio of total density p,/p,
the superfluid density ratio of total density ps/p at the saturated vapor pressure.

where v is the effective bulk fluid, or center-of-mass, velocity.
On the basis of the above definitions, and considering only non-dissipative
processes, the equations of mass, momentum, and entropy conservation are:

i05-+V-pv:-o (2.4)

ot
8J; an;j
el 2.5
ot " om; (25)
dps
E + V. (,OSVn) =0 (2'6)

where F;; = pdy; + psVsj + pnVny = momentum flux
p=pressure
=entropy/unit mass

This system of equations is closed by an equation of motion for the super-
fluid, Landau postulates that the superfluid flow is irrotational and that it
is driven by gradients in the chemical potential [29]. The resulting equation
of motion for the superfluid is



CHAPTER 2, THEORETICAL FORMULATION 10

Dvy  Ovg
== * ] _ — 2-7
or equivalently,
v v?
2 - 2.8
B +V ( 5 + ;u) 0 (2.8)

where g is the chemical potential per unit mass. The chemical potential
is considered as the driving force for the superfluid to obey the following
formula using w.

dy = —sdT + (~1—-) dp — Pr - dw (2.9)
P P

where the first two terms are contributed by the fluid at rest, and the last
term is due to the relative motion of the two fluids. Thus superfluid is
accelerated not only by the pressure gradient and the temperature gradi-
ent but also by the gradient of the square of the relative velocity w. The
above equations are the Landau two-fluid equations. These eight equations
in eight independent variables (two thermodynamic variables and six ve-
locity components) yield a complete description of the hydrodynamics for
non-dissipative processes when supplemented by equations of state for the
remaining thermodynamic variables. The state equations are complicated
by the fact that quantities such as p, s, and p are functions of two indepen-
dent thermodynamic variables and relative velocity, w.

The law of energy conservation is a consequence of the two-fluid equations
and is given by

oF
—4+V-Q= 2,
- +V-Q=0 (2.10)
where
1 2
E=E+vs (J—pvs) + 5PYs (2.11)

Ey = Galilean invariant energy density
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Q= (;u + %v?) J+ psTvy = ppvn (Vo * (Vn — Vs)) (2.12)

= energy flux

The boundary conditions for the above hydrodynamic equations require
that the normal component of J and the tangential component of v, must
vanish at a solid surface. In addition, the normal component of the heat
flux, q = psT'v, must be continuous across the interface.

2.1.2 Propagation of sound in superfluid helium

Weak disturbances propagate at two characteristic velocities in Hell. Pres-
sure disturbances, known as ”first” sound, travel at the classical isentropic
sound speed, which is on the order of 220 m/s. In addition, weak tem-
perature disturbances, referred to as ”second” sound, travel at a separate
characteristic velocity which is typically on the order of 0-20 m/s.

Landau has theoretically investigated the propagation of sound in Hell
by linearizing the hydrodynamic equations. The equations are simplified
by (i) assuming that v and w are small for sound waves, and (ii) consid-
ering small perturbations of p, p, T, and s about their equilibrium values.
By neglecting terms that are quadratic in small quantities, the system of
equations (2.4), (2.5), (2.15), (2.8) for sound waves becomes

dp
EE"FV-J—O (2.13)
oJ
En +Vp=20 (2.14)
dps
—— -+ ps(V-vy) =0 (2.15)
ot
vy _
5 +Vu=0 (2.16)

Differntiating Eq.(2.13) with respect to time, and eliminating 83 /8¢ with
the aid of Eq.(2.14) one obtains,

&%p

= VP (2.17)



CHAPTER 2. THEORETICAL FORMULATION 12

A combination of Eqgs.(2.16) and (2.14) supplemented with the thermody-
namic identity dy = —sdT + %dp yeilds

Prar Y 4 psVT =0 (2.18)

Taking the divergence of Eq.(2.18) and using the relation

Js (18ps s0p 8 _ 3ps
i (p r Y sV v, + EV J) m—) CwW (2.19)

We obtain

Ps 22
T 2.2
Y] pns \% (2.20)

This pair of Eqgs.(2.17), (2.20) governs the propagation of sound in Hell,
and it follows that there will be two characteristic wave speeds. Expanding
p, p, T, and s in terms of equilibrium ( ), and perturbation ( )’ quantities
yields,

p=p1+yp T=T+T (2.21)

p=m+p s=38 +4 (2.22)

and, for small perturbations,

0s Os
==} p — | T 2.23
¢ = (5),7 + (57),7 (22
Op Op
=L ! 2.24
¢ = (o5), 7+ (57), T (224
Using the above relations, the wave equations may be rewritten as
dp\ 0%  [0p\ O¥ 5
had = 2.25
(3p)T T (6T) gz = VP (2.25)
Op/)p OF2 or/), 82  p, '
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Assuming a plane wave solution in which p’ and 7' are proportional to
e~ (%) where u is the wave speed of disturbance, we have

1 Op 1 ( dp ) /
N — =] T"= .
[fu? (BP)T] P T, 0 (2.27)
ds . [ pes? Js ,
— — — T"=0 :
( 5p)Tp Lnug ( aT)J (2.28)
The above two equations are rewritten in a matrix form as
2} 7]
. o] =0 (2.29)
G

The condition for compatibility of Eq.(2.29) demanding that the determi-
nant of the coefficient matrix is equal to 0 results in

[1715 - (%)T] lg;i ” (3;),,} - (S%)p (g—;)T =0 (2.30)

The Eq.(2.30) can be reduced to an equation of u as

O(s,p) 4 !pss2 (83) (53) } 5  PsS
a(T,p) Prn \Op/p or » Pn ( )

where 0 (s, p)/0 (T, p) is the Jacobian of the transformation of s and p with
respect to 7" and p. From the thermodynamic relations, one has

8(s,p) ¢ (('?p)
w B[ ZF 2,32
8(T,p) T \Op/r (232
ds\ T (0p dp
— ) =X} === 2.33
(6T)p Cy (GP)T (Bp)s (2:33)
Finally, we obtain
2 2
W Ka_p) n &£] 4 PesT (@) =0 (2.34)
8,0 s Pn Cy Pn Cy ap T

where c, is the specific heat per unit mass at constant volume. The condition
should be satisfied for the existence of nontrivial solutions for p’ and 77,
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In general, (g%) and (gE)T are related by the thermodynamic identity
)

D@0, e

where ¢, is the specific heat per unit mass at constant pressure, and v =
¢p/cy. By defining the quantities a; and ajzr as

Op

ar = \ (%)S (236)
s 82T

a1 =\ ,E_SC , (2.37)

the condition (2.34) is rewritten in terms of ay and ayy.

2 2
U c
(“—2-1) (——2——1) —1-= (2.38)
af arr Cp
For Hell at low pressures and low temperatures, the specific heats aft,
constant volume and constant pressure are nearly equal, ¢, == ¢,. Under such

circumstance the term (1 - ¢,/cp) is negligible, and the two characteristic
wave speeds are given by

Op
Ur = ay = (—) (2.39)
ap 8 '
o 827
urr = agr = 4|22 (2.40)
Pn Cu

Disturbances propagating with the speed ay are referred to as ” first”
sound which are quite analogous to ordinary acoustic waves. Disturbances
which travel at speed ajy are referred to as ' second” sound, which is unique
to Hell. The expression for arr indicates that ayr — 0 as the A-point is ap-
proached since p; — 0. In Figure 2.3 and Figure 2.4, ay and ajy are plotted,
respectively, as functions of temperature under the saturated vapor pressure
and the other four pressure condition. As pointed out by Putterman the
difference between c, and ¢, is not always negligible for Hell, particularly
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under the conditions near the A-transition and at high pressures. For exam-
ple, at T = 1.80 K and p = 0.20 M Pa, v = 1.0935; at T'= 1.85 K and p
= 0.25 M Pa, v = 1.397 (Maynard 1976). In such cases the term (1 - ¢,/c,)
must be retained. Keeping terms to the first order in 2.38, the first- and
second-sound wave speeds are given by

Figure 2.3: Dependence of [first-sound velocity on temperature and pressure.
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By recognizing the non-zero difference between ¢, and ¢,, additional in-
sight into the physical nature of first and second sounds may be achieved.
From the thermodynamic identity, one has

where

cy I 4 (Bp)
l——=—0ao |4
Cp ¢ op/ s

— _Ll(dp — . : ;
a=— ( aT)p = Thermal expansion coefficient

(2.42)
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Figure 2.4: Dependence of second-sound velocity on temperature and pressure.

It is clear that keeping terms of (1 - ¢,/c,) is equivalent to keeping terms
quadratic in aT. Working only to first order in o', the following relations
are found to be valid to a first-sound wave:

al's p a?
Vo =Vg |14+ — 2.43
Ramcece (24
Ap=p =wv{par)[l+o (aT)g] (2.44)
AT =T =y 2T (2.45)
T ¢ af — ajy '

e 2 . )
where ¢ = ¢, = ¢, since ¢, = ¢, [1 +0(aT)?]. The equivalent relations for a
second-sound wave are:

2
ps) al's p af
Up = —Ug | — — — 2.46
" ’ (Pn [ ¢ pn(af - G%I)] ( )

als  a?
)

Ap=p' = —w (paarr) (2.47)

(a,?r - a’.2TI
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2
AT =T =uw (pS“”) [1 LT (2.48)
ps

cn pn{af — afy)

Since aT is small, those quantities which have factors of o1 are small
compared to those which do not. For a first-sound wave, v, = v; = v and so
the superfluid and normal fluid move together in phase. For a second-sound
wave, Vn = —(ps/pn) Thus, the superfluid and normal fluid move in anti-
phase and to the lowest order the net mass flux is zero (J = psvs+pnvn = 0).
The first-sound wave is basically a pressure disturbance which produces only
higher-order temperature changes. On the other hand, the second-sound
wave is basically a temperature disturbance which produces only higher-
order pressure changes.

‘The examination of thermodynamic data reveals that the thermal expan-
sion coefficient, o, of Hell is negative as seen in Figure 2.5. As a result,
for a first-sound wave the preceding analysis predicts that the tempera-
ture decreases through a compression and increases through a rarefaction;
in other words, the pressure and temperature fluctuations have ”opposite”
signs for first sound. In the case of a second-sound wave, the pressure and
temperature fluctuations have the »same” sign.

2.1.3 Shock waves in superfluid helium
(Khalatnikov theory)

The theoretical analysis of sound propagation in Hell has been achieved
by considering disturbances for which the induced velocities and perturba-
tions in thermodynamic quantities are small enough to permit linearization
of the hydrodynamic equations. For finite-amplitude disturbances, the ve-
locities and changes in thermodynamic quantities are no longer negligible,
and the full two-fluid equations must be used. The inherent nonlinearity
of these equations results in a variation of wave velocity with amplitude
and the subsequent development of shock waves for large amplitudes. Cor-
responding to the two possible types of weak wave propagation in Hell,
first- and second-sound shock waves may be generated by sufficiently strong
disturbances. First-sound shocks produce large changes in pressure and
only higher-order temperature changes; second-sound shocks produce large
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Figure 2.5: Thermal expansion coefficient « of liquid helium at saturated vapor pressure.
c:Thermal expansion coefficient.

changes in temperature and only higher-order pressure changes. The propa-
gation of a one-dimensional discontinuity, or shock wave, in Hell has been
examined theoretically by Khalatnikov. If the velocity, Uz, of the disconti-
nuity in the laboratory reference frame is constant, then the analysis may
be simplified by transforming to a frame of reference moving with the dis-
continuity (at velocity Ur in the lab frame). In the shock-fixed, or ”steady”,
coordinates, the equations of mass, momentum, and energy conservation
and the equation of motion for the superfluid result in the following set of
jump conditions which relate the fluid properties on the two sides (1 and 2)
of the shock:

o = 0 (2.49)

p+ psv? + pnvg’w]f =0 (2.50)
9 12

[psTfun + pn'unw]l =0 (2.51)

{u + -—vz}j =0 (2.52)
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where [ f]% denotes the difference fo - fi.

Assuming that the fluid ahead of the shock wave is at rest (v, = vy = 0)
in the laboratory reference frame, transformation of the jump conditions
from the shock-fixed back to the lab-fixed reference frame yields

por=pUr —v) (2.53)
p1+p1U12=p+ﬁ(Uf~v)2+%f’—“-w2 (2.54)
p ps 12
PlSITl'Ul == ﬁgT [UI -t — ESU}] — PpW [UI — v — Tb':g-’wl (255)
1, . 1 on 1%

where the subscripted variables ( ); denote the undisturbed, equilibrium
conditions ahead of the shock, and the notation g, §, j over a quantity
indicates that it is a function of p, T, and w.

~ In principle, the above system of equations may be solved to find the
shock velocity, Uy, and the magnitude of the jumps in the velocities and
the thermodynamic variables across the shock., Such a solution is extremely
difficult due to the complicated dependence of the thermodynamic variables
on the relative velocity, w. However, by considering small discontinuities.
Khalatnikov [53] has solved the system of jump conditions by expanding the
variables fi, 8, and p to the second order in w:

2
~ n W
BT w) =pp,T) - 2 (2.57)
w? 8 (p
5(p,T\w)=s(p,T +——(—”-) 2.58
(r,Tow) = 5 (0, T) + g (2 (2.58)
50, T, w) = p(p,T) + 2pPu—- (Eﬁ) (2.59)
? H } 2 8p p

Defining Ap = p — p; and AT =T — T3, the analysis continues by expand-
ing p, pn, Ps, t, and s in Taylor’s series in Ap and AT (up to quadratic
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terms). Since the coeflicient of thermal expansion, c, is small, additional
simplification is achieved by neglecting the dependence of the density p on
the temperature (i.e., assume a=0).

For a first-sound shock wave of strength Ap, Khalatnikov’s results show

Ap 8
= 2.60
Ur 051[14- 5 apln(PaI) (2.60)
pur
3
C‘;?T _ [-é’g (2.62)
1 par
3
w Ap
— =0 |—5 2.63
ay [Pa%} ( )

where Ur is the first-sound shock velocity and ar is the first-sound wave
speed ahead of the shock. Since the factor z; & In(par) is on the order of
5 x 10™%atm.™! for Hell, pressure jumps AP of only several atmospheres
can lead to shock Mach numbers, Ur/ar, appreciably greater than unity.
For a second-sound shock wave of strength AT, Khalatnikov’s results are

AT 8
Uy = ajy [1 o+ — 5 ln (aHaTH (2.64)
w= AT [ } (2.65)
Pn QI
Ap pspn 1 o O (Pn)]
= = — —pad;— £ 2.66
patr a%r 2 2" e\ ) (2.66)

and, using the acoustic approximation Ap = pajv,

2
vay u
—— =0 |— 2.67
(112'1 ¢ [aﬂ'] ( )

where Uy is the second-sound shock velocity and ajr is the second-sound
wave speed ahead of the shock., The expression for the second-sound shock
velocity may be rewritten as
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Using the thermodynamic identity (g%)p = ¢ and the definition a?; =
%%22, the coefficient of AT'/T in the above equation may be evaluated as a
function of temperature at the saturated vapor pressure using data given by
Maynard (1976). The result is shown in Figure 2.6, and it is immediately
apparent that the coefficient %5%1- In (GE"I'g‘%) changes sign in the vicinity of
1.88 K. For regions where the coefficient is positive {e.g., T < 0.50K and
095 < T < 1.88K), those parts of a second-sound wave in which AT is
positive will steepen. However, for regions where the coefficient is negative
- (eg., 0.5 < T < 0.95K and 1.88 < T < 2.172K) , those parts of a second-
sound wave in which AT is negative will steepen, and portions with positive
AT will disperse.
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2.2 General Properties of Gasdynamic Shock Wave

A small pressure disturbance in a compressible fluid propagates as a sound
wave in every direction, while a large amplitude pressure change that is
generated as a compression wave in explosion propagates with a speed ex-
ceeding speed of sound, which is called a shock wave. A shock wave is a
surface in a flow field across which the flow variables change discontinuously.

A shock wave is a relatively thin region of rapid state variation across
which there is a flow of matter. Because the region of variation is quite thin,
it can almost always be idealized as a surface of discontinuity in space. The
surface may propagate through the fluid and is not necessarily stationary.
In general, all fluid properties — the pressure p, velocity v, density p, etc.
— are discontinuous across the surface. As a shock wave can be regarded
as a surface with zero thickness in the absence of such dissipative effects as
viscosity and heat conductivity, it is usually treated in the framework of an
inviscid gasdynamics.

2.2.1 Shock conditions in a gas

To investigate the relation among the thermodynamic properties before and
after a shock wave, one selects a control volume bounded by surfaces just
before and after the wave as in Figure 2.7. It is assumed that the gas is
an inviscid perfect gas with zero thermal conductivity. The following one-
dimensional steady-flow relations are considered by letting the region 1 be
upstream and 2 be downstream sides of the shock wave to compute every
variation in physical property as well as the wave speed. It is preferable to
transform the lab-fixed coordinate system as shown in Figure 2.7 (a) into
the system in which the shock is fixed as shown in Figure 2.7 (b). For the
control volume in the shock-fixed system, the conservation law of mass and
momenturn are applied.

p1(Us —v1) = pz2 (Us — va) (2.69)

p1+ o1 (Us — v1)* = pa + pa (Ug — )’ (2.70)

Here v is the particle velocity, p is the pressure and Uy is the shock wave
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Figure 2.7: One-dimensional steady flow for shock wave.

speed in the gas. (The shock wave speed Ug is equal to U; for the compres-
sion shock, which mean first sound shock, in § 2.1.3.)

The velocity and the temperature gradient are extremely large in inside
of a shock wave and, as a result, the entropy of the gas passing through
the shock wave increases owing to such dissipative effects as viscosity and
heat conductivity. Nevertheless, one may consider an adiabatic flow because
the heat exchange between the control volume and the outside of it can be
ignored. Accordingly, it is reasonable to consider that the stagnation point
enthalpy of a flow is kept constant across a shock wave, Consequently, the
conservation of energy is represented as follows,

M o, 1 9 Y2 p2 1 2
+ = (Us — ) P + 5 (Us — vg) (2.71)

where -y is the ratio of the specific heats of the gas. These three equations
compose the basic equations. In the case of superfluid helium, the equation
of momentum for superfluid component is necessary in addition to the above
equations as described in § 2.52.
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~ The thermodynamic states of before and after a shock wave are derived
from equations, (2.69) ~ (2.70) supplemented by the expressions,
a9 = 'y%, Mg = KUSG—':”Q , as follows,

P _ M — (1)

2,72
P 1+1 (2.72)
pz _ (m+1) M
LA 2.73
e T (2.73)
Iy _ 2y MG — (v - D)) [( [ n-D)ME+2] ( )2 (2.74)
Ty (v 1—|—1) M3 a1

where a is the speed of general sound and Mg is the shock Mach number
defined by Ug/a;. These equations are called the Rankine-Hugoniot relation.
In this thesis, the Rankine-Hugoniot relation for gas is abbreviated to the
R-H-Gas and that for superfluid helium to the R-H-Hell.

Let consider the entropy change passing through a shock wave. The
entropy change is calculated from the second law of thermodynamics as
follows,

T P2 '
e — 2 _ Rln 9.
Sy — 81 =¢pln ) R p (2.75)

Substituting, eqs.(2.72) and (2.74) into this equation, one obtains

281 M [(71 — 1) M2 +2] T [P ME - (= 1)
R 71— 1 (v +1) M2 m—1 1+ 1
(2.76)

where s is the specific entropy, R is the gas constant and ¢, is the specific
heat at constant pressure. For a weak shock wave in which the discontinuity
in every quantity is small, the entropy change is further simplified as follows,

1 (0%
85— 81 = T ( ) (p2 — Pl) (2.77)

3}’31

" The entropy change in a weak shock wave is of the third order of smallness
relative to the discontinuity of pressure. Accordingly, when the discontinuity
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of pressure the (pg - p1) is small, there is not a large error even if an isentropic
process is assumed for a shock wave. That is the entropy change by a shock
wave can be considered as isentropic.

2.3 Simple Theory of Shock Tube Operation

A shock tube is a versatile tool for the studies of a shock wave and a high-
speed gas flow, etc. A shock tube was first designed by Vieille in 1899, in
which a long tube was partitioned into a high-pressure gas section and a low-
pressure driven gas section by cellophane diaphragm. He observed that the
shock wave propagated into the low-pressure section when it was broken.
This very simple device is called a shock tube. Some improved types of
shock tubes are used for studies of aerodynamics, physics and chemistry. In
this section, the operation principle and the theory of a shock tube in the
simplest standard form is described.

2.3.1 Operation principle and the feature

In a simple model of a shock tube, a fixed long tube is divided into a high-
pressure chamber and a low-pressure tube with a diaphragm as shown in
Figure 2.8 (a). The extremely simple device is filled with gas of low-pressure
in the low-pressure tube and with high pressure gas in the high-pressure
chamber. The high-pressure gas expands suddenly into the low-pressure
section when the diaphragm is broken by large pressure difference after
piercing it with a pin, and the low-pressure gas is compressed. By the
piston effect of expanding high pressure-gas, a shock wave is formed in the
low-pressure tube, propagating rightward into the tube. A high-speed gas
flow develops behind the shock wave propagating.

Shock tube has the following characteristic in the device which is been
most suitable for to study various phenomena with propagating shock wave.

(1) A device is simple, and production is easy, and is economical compared
with other wind tunnel.

(2) The initial pressure ratio between the high-pressure chamber and the
low-pressure tube let to be only decided, from subsonic speed to super
sonic speed flow, Mach number can be changed in one range voluntarily.
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(3) Tt is suitable for a study of transient flow and non- steady flow.

(4) Because a change of pressure and temperature induced by shock wave
are in a moment, it is employed by proofreading of various detector
element of high response of the small damping time constant.

(5) As for heating by shock wave, it is done a stepwise and it can be get
an extremely high temperature homogeneous gas. Accordingly, shock
tube is suited for a flow of high speed and high enthalpy and a study
of a chemical reaction in a high temperature,

On the other hand, the continuance time of & flow to be provided with
shock tube is extremely short and is generally from the several msec to
10 several msec. On this account, advanced technology is demanded from
the measurement of power and moments to act on a test model. However,
one of a good point is been because, now, shock tube become widely used
by the progress of the measurement technique in high-speed phenomenon,
and it does consideration such as an insulation or cooling of a device with
uselessness that the continuance time is short.

2.3.2 Simple theory of shock tube
The flow in a shock tube is treaded by assuming the followings:

(1) The flow is one-dimensional and isentropic (adiabatic flow).

(2) The gas is an inviscid perfect gas with zero thermal conductivity.

(3) As soon as the diaphragm is broken, a shock wave is formed and prop-
agates with a constant strength specified by initial condition.

A flow in shock tube on the basis of an above-mentioned assumption is
shown in Figure 2.8. Figure 2.8 (a) shows an initial state in the high-
pressure chamber and low-pressure tube, each state of which is denoted by
the regions 4 and 1, respectively. And Figure 2.8 (b) shows a wave motion
diagram. Upon breaking a diaphragm, a shock wave propagates into the
rightward of the low-pressure tube with a constant velocity Ug, and an
expansion fan (rarefaction wave) propagates into the leftward of the high-
pressure chamber. Finally after repeated reflections of the shock wave, the
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whole system will reach a uniform pressure state. A speed of wave front
and tail for an expansion fan are shown in -a4 and w3 - ag, respectively.
This figure shows a case of v3 | a3, that is a wave tail propagates into the
rightward. Since we assume that a diaphragm is broken in a moment, an
expansion fan formed is a centered rarefaction wave.

The gas in the low-pressure tube designated by the region 2 is heated
up and accelerated by the shock wave compression and called as hot gas.
The gas remained in the high-pressure chamber designated by the region
3 i3 cooled down in the action of an expansion fan and called a cold gas.
The dashed line in Figure 2.8 (b) is a contact surface between regions 2
and 3, or between gases originally in the high-pressure chamber and low-
pressure tube. The temperature and density differ on both sides of the
contact surface, but the fluid velocity and pressure must be equal on the
both sides. Accordingly, the relations of py = p3 and vs = vg hold. Figure
2.8 (c) ~ (f) show spatial distributions of the fluid velocity, the pressure,
the temperature, and the density at the time ¢ = #; denoted in Figure 2.8
(b). In a centered rarefaction wave, the distribution of fluid velocity in the
z-direction is indicated as a straight line at arbitrary time. Accordingly, the
variation from the vy to v is a straight line.

- The Rankine-Hugoniot relations (R-H-Gas) and other relations among
physical quantities before and after a shock wave yield the following rela-
tions.

p2 _ M7 - (n—1)

2.78
2 m+1 (2.78)
B blfn oMY ()
i (7 + 1)7 M3 ”

U2 2 ( 1 )

a1 Mg 2.80

a mti\ T Mg (2.80)

Here ~; is the ratio of the specific heat of driven gas, Mg is the shock Mach
number in a gas, v is the fluid velocity and « is the sound velocity.

~ Since the Riemann invariant, P = v + ,Y—lgi—l, must be conserved, the fol-
lowing relation holds across the expansion fan in the high-pressure chamber.
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Figure 2.8: One-dimensional steady flow in shock tube,
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2(1,4 — a4 2&3
-1 1

(2.81)

As an isentropic relation is held between the regions 3 and 4, one obtains

214 2
P _ (_61_4)74 T (1 M4 1"1:’_?,_) Ta—1 (2.82)
D3 ag 2 ay

Moreover, since the relations p; = p3, v9 = w3 hold on both sides of the
contact surface, one obtains

2y 2T
P4 g\ 11-1 v4— lag ( 1 )] Fa—1
2 (63) { m+lag\ 7 Mg (2.83)
Multiplication of Eqs. (2.78) and (2.83) yields
ps_ 2nME—(y—1) [1_74_191(1143——1-)]—% (2.84)
P1 1 +1 11+ 1lay Mg '

Accordingly, the ratio 74/, the ratio of speeds of sound ai/as and the
pressure ratio p;/p, in the initial state is found to give a shock Mach number
M.

Next let consider a hot and a cold gases flow following after a shock wave.
The Mach number M3 in the region 2 is written as

—1 —1 -3
e 2= 2200 o~ 252 (o)
ag a1 as
(2.85)

And the Mach number Mj in the region 3 is written as

_23__?)2&1@4_ 2 al(M 1)[1_74—1@

Z (s-3)]
3“@3_51"51a3—71+1a4 g Mg v+ 1lay 7 MfZSB)

Generally a hot gas flow is used for an experiment in shock tube.
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Furthermore let consider a shock wave reflected from the bottom of the
shock tube. The reflected shock Mach number My are described that,

. Ur + vy
ag

Mp

(2.87)

Applying this Mach number to the Eq.(2.78), the pressure ratio ps/pg is
obtained.

ps _ 2mME — (1 —1)
D2 v +1

(2.88)

And applying the Mach number Mg to Eq.(2.88), the reflected shock Mach
nurnber Mp is eliminated.

ps _ B —1)Mg—2(y 1)

= 2.89
P2 (71— 1) Mg+2 2.89)
Multiplication of Egs. (2.78) and (2.89) yields,
D1 7+ 1 (y1— 1) M+ 2

In the same way, the temperature ratio T5/T} is represented as follows.

T 2(n-1)ME+(B—7)] [(Byr — 1) ME — 2 (v — 1)]
T (1 +1)° M2

(2.01)

In addition, the speed ratio between the incident and reflected shock wave
and the reflected shock Mach number My are represented as

Up _2(m—1)M§+ (3 —m)

Us (i + 1) M3

(2.92)



