4 Simulation

In Chapter 2, we obtained the results that the quench propagation velocity and cur-
rent redistribution also depend on the contact clectrical conductance between strands.
We found that the field gradient across the cable cross section influenced the current
reclistribution during quench propagation. In order to examine the influence of current
redistribution on the quetich propagation velocity in more detail, & numerical simula-
tion was performed. To simplify the simulation, we consider s model with two-parallel
strands connected clectrically and thermally, This chapter presents the description of

the model and simulation results.

4.1 Model

Figure 4.1 shows the two-pm‘éllel strand model. The parameters of strands for the
simulation are the samc as those used in the experiment discussed in Chapter 2, and
shown in Table 2.1, Two strands arc in contact electrically'with each other, and the
strands are shorted electrically at the end of the cable. Therefore, the current can
flow between the strands and at the both ends. Although generated heat can also
transfer betiveen the strands, it is neglected in order to pay attention only to the current
redistribution. For the saine reason, the cooling effect by liquid helium is also neglected.
Namely, the calculation is performed under an adiabatic condition. The total current
Lot is kept constant during a quench process. A quench is initiated at the center of
strand 1. The total length of the cable is 3.1 m. Siuce the actual Rutherford cable is
twisted, strands in the cable are exposed to a varying maguetic field with the period of
a cable bwist piteh. For the siimulation, this fact is simulated by applying the periodic

change of a magnetic feld to the strands.



4.2 Method

The two basic equations for simulating the ciuench propagation are a thermal equilib-
rium equation and an electrical circuit equation. These equations are solved step by step
nuerically, and the temperature and current distributions are obtained at every time
step. In an actual calculation, since the current distribution and quench propagation
are symnmetric with respect to the quench origin, the calculation is done only in a half
length of the cable.

The calculation procedure is as follows [37):

L. the temperature distribution is calculated with the thermal equilibrium equations,

3]

. the resistance distribution is determined from the temperature distribution,

[~

. the current distribution is calculated with the electrical circuit equation using the
resistance obtained above,

4. the Joule heat generation is determined from the current and resistance,

[ah

. the timne is advanced by one time step, and

G. the calculation is repeated [rom the first procedure.

4.2.1 Thermal Equilibrium Equation

It is assuined that the thermal propagation in & strand is in one dimension, In this
case, all the material properties are averaged over the strand cross section. Including
the Joule heat gencration owing to the current redistribution through the electrical
conductance between strands in B, (1.3), the thermal equilibrium equation for a strgmd
is given by

2 (x55) +o+a.- a5 (1)
where g. is the Joule heat generation at the clectrical contact conductance between
strands. The cooling effect by liguid helium and the heat transfer betwecn strands are
neplected as deseribed hefore. The pactial differential equakion is solved by the Grank-

Nicholson metltod, and the temperature distribution of the strands is obtained at every



Line step.

The Joule heat generation g is given by

where p is the average resistivity over the strand cross section and J is the strand current
density. p equals 0 when the strand is completely superconducting. The details of the
resistivity p will be shown in Section 4.2.3.

The Joule heat generation at the electrical contact conductance g, is calculated from
the tr.ansferrcd current between strands and electrical contact conductance. The equa-

tion is described in the next section,

4.2.2 Electrical Circuit Equation

The electrical circuit of two-parallel strands is shown in Fig. 4.2 [38]. In order to
regard a distributed constant circuit as a lumped element circuit, the cable is divided
into small elements, —fezy ooy ~13 0, 1, ooery Tings. Because of the symmetry with respect
to element 0, the actual calculation is performed from element 0 to element 7,42 Bach
clement consists of a resistance and an inductance, and elements are connected by

contact resistors. The circuit equation representing the loop at element 4 is given by

Roandon—Raylag + Redewy — Relgi-1y

2 n dI
+ ) { M nek) — Meagk) ("’")} 0, (4.3)
T.k=1,0 .
Ic(i)m-[(l.:') - I(I‘H_l),and (4.4)
Low=Iu 4 + L2, (4.5)

where R, and Rz are the resistance of strands 1 and 2 at element i, I1 iy and fea
are the currents of steands 1 and 2 ab clement 4, 1. is the contact resistance, I is the
current transfer thirough R, ab clement &, and Mg oge and Meagse are the mutual
induetanee between clement 4 -()f strancs 1 and 2 and elenent & of strand j. When

(. iy = (1.0 or (2.8), hes Mgy or Menens M s the self inductance.



Since the calculation model is symmetrical with respect to element 0, Eq. (4.3) should

be modified slightly. For clement § = 0, since Le(—1y = —I¢(0y, Eq. (4.3) is rewritten as

2.1
] dli s
Ramlom — Reoglee + 20:Lg + D {(M(l.n)(j,k) — Muoighy) c(ti'”} =0. (4.6)
Fik=1,0

"The strands are clecirically connected to each other at the end of the cable. Since the

contact resistance at clement 4 = iy, is null, Bq. (4.3) is rewritten as

R(lr"mn:)f(luﬂnmm) _R(z;?lnlnz)f(2,flalln:) - RGIG’(ﬂmaz“‘l)

2.n
! dle;
+ ) { (M(Lmaa)ik) = M2z )(ib)) gt'k)} =0, {(4.7)

j|k=l,0

From these simultaneous differential equations, the éurrent. at each element is obtained
at every time stép by the Runge-Kutta method which provides numerical solutions for
cliflerential equations,

The Joule heat generation al the contact conductance is calculated from I,. The

equation is given by

1 (Rc[ i) + chg(m))

Je=TAIN " 4 1
1 Iy Ly
~AAl (4%At + 4crcAl) ’ (4.8)

where Al is the element length and o, is the electrical contact conductance between the

strands per unit length.

4.2.3 Parameters
(a) Critical current and temperature

For the critical temperature of NbTi, T, we consider the dependence of an external
magnetic ficll. 7, at the external magnetic field 3 and the current density of 0 A/ m?

is given by

To(B) = Tu (1 - (4.9)



where 7o is the critical teriperatare for the external magnetic feld of 0 T and the
current density of 0 A/m?, and B is the critical magnetic field at 0 K and the current
density of 0 A/m?,

The critical current density of NOTL, J, yeri, depends on the temperature and external
magunelic field. For the caleulation of J, yyry, we used approximate equations derived by
G. Morgan [39] and M. A. Green [40]. These equations need the standard value of J,.
In the present caleulation, the value of Je.muri Was selected so that the critical current of
the strand at 4.3 T and 4.22 K was 400 A. The critical current of the strand, I strana at
4.22 K as a function of external magnetic field is shown in Fig, 4.3(a), and Fig. 4.3(b)
shows 1o grana 88 8 function of temperature at 3.7 T, 4.0 T and 4.3 T,

Transition between normal and superconducting states will he described in Section

(c).

(b) Specific heat
The specifie heat [J/mPK] of a strand is given by

(8

Cp = mop,cu(T) +

mC]J,NbTE(T-I B): (4‘10)

where a is the Cu/Se ratio, Cp ¢y is the specific hieat of copper, and Cj, wyry is the specific
heat of NbTi.
The specific heat of copper varies depending on the temperature. For T < 15 K, the

equation for C, ¢, is given by
Cycu(T) = 24T3 + 10572, (4.11)

The specific heat of NbTi depends on the temperature and external magnetic ficld,

and is given by

Cpanii(T, BY=58.09T" +99.68T8 (T < T(D) (4.12)
Coiri(T) B)=37.08T% 4 (49.84B3 + 505.80) (T =Te(B))  (4.13)
Chnri(T, B)=16.07T" + 1011787 (T{B) < T < 10K) (4.14)
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Figure 4.4 shows an example of the specific heat of the strand. For the temperature
range except for those described above, thic interpolated values based on NIST (the

National Institute of Standards and Technology) data were used.

(c) Resistivity

Assuming a strand as a parallel circuit made of & NbTi wire and a copper wire, the

resistivity of the strand is given by

oo ! (4.15)
p (I+a)pce (14 Q)pwprs '

where pey, and pryp; ave the resistivities of copper and NbTi, respectively. They depend

on temperature and external magnetic feld, This equation is rewritten as

. p= (1 + a’) 'PCu(Ti B) ' pr'J"‘i(T> B)

4.16
pC‘u(Ta B) + apyyri (T) B) ( )
The equation for pey, is given by
po(T,0)=A) + Az + Ag,and (4.17)
peal Ty B)=(1 + 10%) pcy (T, 0), (4.18)
herod 15:58 10-9
whered | =——7———
: RRR
A 1.171 % 10~177449
P71 4.50 x 10-77%38 exp (—(50/T))6-128)’
AL Ag
Az=0.453]1 ———
a=U A8l
Ay=—2.662 + 0.31684; + 0.6220A2 — 0.1839A% + 0.01827 A7,
In(15.53 x 10798/ pe, (T, 0))
A5= - .
In 10
RIRR is the residual resistivity ratio of copper.
The equation for payyr; is given by
! Jnyri " ( Tsirand )”
weridd  BY=m | ——< | = ——— 4.19
f an( ) Fo (Jc,NbTi(fj B)) Po Ic‘.ﬁ'h'(m([ ( )

where pg is the resistivity to define the critical current density, 2 is the n-value of the

supercoteluctor, awd Jypp; is the eurrent density in the superconductor, NLTi In the
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present study, po is 1 x 1071 [Qm], and the n-value is 70. In the calculation, the
maximum payp; is defined to be 5.6 x 1077 [€un), and all the resistivity above this value
is regarded as this constant value. The resistivity of 5.6 x 1077 [Qum] is the resistivity
of NbTi in the normal state.

As an examnple of the strand resistivity, Fig. 4.5 shows the strand resistivity at the
strand current of 3500 A.

In the following calculation, the distinction between the superconducting and normal
states of the strand was done by resistivity. The normal state was defined as a state

whose resistivity was higher than 1 x 10~ Qm.

(d) Thermal conductivity

Since the thermal conductivity [W/mK] of NbTi is less than 1/100 of the thermal
conductivity of copper, it is neglected. The thermal conduetivity of the strand is given

by

(4
=K 1B| 2
k= k(T B) (4.20)

where Key is the thermal conductivity of copper, which depends on temperature and
maguetic feld. ke, is calculated from the Wiedemaun-Franz-Lorentz law,

Lol

= — 4.21
e pC-'u(Tl B) ( )

where Lo is the Lorentz number, Ly = 2.44 x 107 [WQ/K?], and pe, is the resistivity
of copper. Fig. 4.6 shows an example of the thermal conductivity of the strand. In
the temperature range from the temperature of the peak thermal conductivity to 50
I, the Wiedemann-Franz-Lorentz law is not valid. However, the simulation of quench
propagation is not influenced by this discrepancy, since the temperature range eritical

to the quench propagation is mainly from liquid helium temperature to about 20 K.
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(e) Inductance

In the calculation, one element is taken as a thin wire except for the calculation of
self inductance. For the inductance calculation, we refer to reference [41].

As shown in Fig. 4.7, the sclf inductance of wire element is calculated by the following

il 2\ 3
L=5 {111 (7) - i}‘ (4.22)

where [ and r are the length and radius of a wire element, respectively.

cquation

The mutual inductance between two parallel wires, as shown in Fig, 4.7(b), is calcu-

lated by

A’{pamliﬂl = (423)

ftol L+ 12+ h? VIR RY R
o In h - l + T

The mutual inductance between coaxial wires, as shown in Fig. 4.7(c), is calculated

Ly

Mmmpﬁ{ul iy d)n(ly + by + d)

—(L+dynlly +d) — (la+d) In{la+d) + dlnd}. - (4.24)

The mutual inductance, as shown in Fig, 4.7(d)}, is calculated by

1
AJ:‘Q“ {fw-gmmuet(ll + l?. + ds h) - ﬂ’irpamttel(h + da h’)

_A{[para”e!(lQ + ds -h-') + ﬂjfparu“el(dr h’)}' (425)

(f) Magnetic field

The actual Rutherford cable is twisted, and the feld distribution exists across the
cable cross section as shown in Fig. 4.8(a). Therefore a strand is exposed to a periodic
magnetic feld, For the two-parallel strand model, the magnetic field distribution is
applied Lo each clement as shown in Fig. 4.8(h). The maximum and minimum fields are
alternately applied to the element, By and B, are defined by Eqgs, (2.3) and (2.4),

respeckively.
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4.3 Results

4.3.1 Quench Propagation Vélocity

As the initial condition for calculations at time ¢ = 0, the following temperature
distributions were supplied to the cable; a portion of 15.5 mm of the center of strand
1 was at 9.2 K, and the other region was at 4.2 I{. The element length, Al, was 3.875
mm. The initial current distribution was assumed to be uniform.

An example of quench propagation is shown in Fig. 4.9, where the strand current was
387.5 A and the contact electrical conductance, a., was 2.5%10” S/m. The horizontal
axis is time £, and the vertical axis is the quench front position z. The cable center
is at 2 = 0. From Fig. 4.9(a), the normal zone propagates with constant velocity. As
shown in Fig. 4.9(b) which is a magnified fgure of Iig. 4.9(a), at the time interval from
2.6 to 3.0 msec, the quench front of strand 1 propagated faster than the quench front
of strand 2. On the other hand, at the time interval from 3.0 to 3.4 msee, the quench
front of strand 2 propagated faster than the quench front of strand 1. The alternating
propagation of the quench front like this was caused by the magnetic feld distribution.
The straid was in the maximunt and minimum magnetic fields in turns over a half of
the cable twist pitcll. For instance, in the region from & =124 mun to 139.5 mm, the
field of strand 1 was Bpae, and for the next half pitch, in the region of & =139.5 to
155 mum, the field was Bpin. For strand 2, the reverse fields were applied. Since the
quench propagation at the high field region was faster than that of the low field region,
the quench fronts of strands 1 and 2 propagated alternately.

Figure 4.10 shows the quench propagation velocities for three electrical contact con-
ductance, g, = 2.5 x 10°%, 2.5 x 107 and 2.5 x 10'® §/m . These conditions correspond
to low coutact cable, original cable and high contact cable, respectively, used in the
Rutherford cable Lests described in Chapter 2. The horizontal axis is the strand eur-
rent and the vertical axis is the quench propagation velocity, which corresponds to the
slope of the guench propagation cnrve, such as Fig, 4.9(a), obtained by the least squares
method. Comparing this figure with Fig. 2.15, we can see that the curves were similar

(o each other. From Fig. 4.10, in the lower current range, the difference ol the velocities
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ol three conditions were small, In the higher current range, the velocities of the cable
with high contact conductance were highor than those of the cable with low contact
concluctance.

The quench propagation velocity as a function of o, is shown in Fig. 4.11, where
the strand curent was 387.5 A. The calculated quench propagation velocity of a sin-
gle strand with the same magnetic feld distribution was 33.9 /s, and the velocity
taking into account the current redistribution between strands is higher than the ve-
locity of a single strand without the current redistribution. This fact suggests that the
current redistribution increased the quench propagation velocity in the cable made of
nou-insulated strands. Fig. 4.11 also indicates that the influence of the current redistri-
bution on the quench propagation velocity will become larger as the electrical contact
conductance increases, and in the region above g = 1 x 10° S/m, the velocity was

essentially independent of the electrical contact conductance.

4.3.2 Current Redistribution

The current redistribution is compared with the cable test results. Mig. 4.12 shows
the current change of strand 1 at 387.5 A and z = 240,3 mum, in which strands 1 and 2
were placed in B, and By, respectively, o, was 2.5 x 107 8/m, which corresponds
i.o original cable in the cable tests. In this figure, the position of the quench front is also
plotted. As shown in this figure, when the quench front passed through at about t = 6
msee, the current of about 35.4 A transferred from strand 2 in the high field to strand 1
in the low field, and then the current of about 25.7 A returned to strand 2 from strand
1 immediately. Such a cwrrent redistribution was quite similar to the result of original
cable in the Rutherford cable tests as shown in Fig. 2.24, In Fig. 2.24, the reason why
the signal width at £, was broad in comparison with the calculated results seeins to
be the influence of a low pass filter of the cdifferential amplifier.

The current change of strand 1 for g, = 2.5 x 10° 3/m and 2 = 240.3 mm is shown
in [Fig. 413, Although the time when the quench frout reached to this position was

about 6.5 msee, the current changed periodically hefore that time. The characteristic of



current redistribution is also quite similar to that of the results of low contact cable in
the cable tests. The dotted line in Fig. 4.13 represents the magnetic field at the quench
front position of strand 1. The periodicity of the magnetic feld at the quench front
almost agreed with that of the current oscillations. This fact indicates that the periodic
current changes in the cable with low contact conductance is cansed by the periodic
distribution of the magnetic field due to the twist of the cable.

This mechanism can be explained as follows. The region, where the current redistri-
bution occurs, spreads as the electrical contact conductance decreases. For simplicity,
we discuss a sinusoidal wave circuit as shown in Fig. 4.14. Line segments AB and A'B’
are in contact with each other continuously, and complex voltage source and impedance

Z;, are connected at the ends AA’ and BB, respectively. In,(z) is given by [42]

1
f.sw(:L‘)zf(ASiue“(adlu+jﬁ’w)m) (‘T > 0) (4.26)
Z
7 == .
=\7 (4.27)
Z=Ray + jwlse (4.28)
YEGsw + jwcsw (429)

where Ag, is an arbitrary constant, R, is the series resistance per unit length [§2/m),
L is the distributed series inductance per unit length [H/m}, G4y is the parallel con-
ductance per unit length [S/m], and Cj, is the distributed paralle]l capacitance per
unit length [F/m]. And o and 8 are called aitenuation constant and phase constant,

respectively, They are given by

1
f’iswzﬁ \[\/(ng + WL NGE, + wiCE,) + (flawGaw — @ LswCow) (4.30)

ﬁsuu:—\}_ﬁ \/(R%w + szgw)(Ggw + wzcszw) - (stGmu - ngststu) (431)

From Eq. (4.20), the amplitude of f;,(x) decrenses in proportion to e™™*, In order to
dlecreases the amplitude in short length, the larger ag, is preferable,

In the numerical simulation of the guench propagation, Ly, and Oy, were assumed to
be constant, and Ry, was determined Dy the strand resistivity and the clement length.
As the contact conductance, (7, increases, the attenuation constant, v, ncreascs,

namely, the current redistribution ocenrs in a smaller vegion,



Fig. 4.15 shows the calculated length from the quench front to the clement, whore the
influence of the current change at the quench front appears, The strand current was
at 387.5 A. The horizontal axis is the electrical contact conductance and the vertical
axis is the length between the quench front and the element of the current change more
than 0.1 A. We can see from this figure that, the region of the current redistribution
decreases with the electrical contact concuctance, and in the conductance region above
1 x 108 S/m, the region remains constant at 7.75 mimn.

Irom the above equatious, the region of the current redistribution decrcases with
inereasing contact conductance. However, as shown in Fig. 4.15, the region of the
current redistribution remains to be a constant length for o, > 1 x 108 §/m. The reason
for this is the inductance coupling between elements and the finite element length, When
the current changes near the clement of interest, the inductive voltage is induced and
the current changes at the element.

As seen from Fig. 4.15, in the conductance range below 1 x 108 S/m, the region of
the current redistribution is large. Namely, the influence of the current change appears
even ab a long distant clement. For example, when the current transfers from strand 1
to stramdd 2 at the quench front, the current transfer from strand 1 to strand 2 occurs
(uite faraway from the quench {ront.

The current change at the quench front occurs basically from the high field region to
the low field region. When the magnetic field distribution clianges periodically along
the route of the quench front, the current at the element which is quite distant from the
quench front also changes periodically depending on the current change at the quench
front. Fig. 4.16 shows the current changes at g, = 2.5 X 10° §/m and z = 240.3 mun
for two Lwist pitches. The solid and dashed lines represent the current changes for twist
pitehes of 31 mm and 62 mum, respectively. We can see from this figure that the period
of the current change is approximately proportional to the length of the twist piteh.
The periodic times of the current changes for twist pitches of 31 mm and 62 mm were
0.82 msoe and 1.63 see, respectively, and the quench propagation velocities were 34.46
m/see and 34,44 m/s, respectively.

Figure 4.17 shows the curvent change of strand 1 at @ = 240.3 mm and for o, =
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2.5 x 10" S/m. This electrical concductance corresponds to high contact cable in the
Rutherford cabloe tests. Let us compare the caleulated results in this figure with the test
results shown in Fig. 2.24, The current change oceurred only once in the cable tests,
while in the calculation results the current change occurred twice, This discrepancy
was due to the difference between the simulation model and the actual Rutherford
cable. In the two-parallel strand model for the caleulation, the heat conduction hetween
strands was neglected. However, the heat conduction ﬁctually influenced the current
redistribution and quench propagation. Especially for high contact cable in the cable
tests, since the cable was impregnated with solder, the thermal conductivity between
strands was very high and its influence could not be neglected.

In order to estimate the effects due to the thermal conductivity between strands, a
calculation taking account of the heat conduction between strands was performed. In
this case, by adding the heat conduction term in Eq. (4.1), the thermal equilibrium

equation is given by

g { aTy | Pen
Ba ("’EE) +g+g.+—=0Cp

(4.32)
where p., is the heal conduction between strands. In the calculation, it was difficult
to estimate the heat conduction between strands, since the measurement of thermal
conductivity among strands was very difficult and since there were little experimental
data available [43]. Therefore, in the present study, we used an approximate equation
in which the heat conduction between strands was assumed to be proporticnal to the

temperature difference between the strands. The heat conduction from strand 1 to

strand 2 is given by

Pen = h'const X (T2 - T1)1 (433)

where Regms 18 blic constant thermal conductivity between strands 1 and 2, and T} and
Ty are the temperatures of strands 1 and 2, respectively. The calculated results using
the above equation for various values of Degns, 0, 100 and 500 W/mK, are shown in
Fig. 4.18, where o, = 2.5 x 1019 S/ and the strand cwrrent was 387.5 A, From this

figure, as the thernal conduetivity hetween strands increases, the peak of the current
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change becomes low. The reason for this will be discussed in the next chapter.
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Fig. 4.1: Two-parallel strand model.
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Fig. 4.4: Example of the specific heat of the strand.
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Fig. 4.12: Calculated current change and quench front position of strand 1 at 387.5 A,

z = 240.3 mm and o, = 2.5 x 107 S/m.
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Fig. 4.13; Caleulated current change of strand 1 at the strand current of 387.5 A,
2 = 240.3 mm and o, = 2.5 x 10° S/m. The dotted line represents the magnetic feld

at the quench [ront position of strand 1.
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Fig., 4.14: Sinusoidal wave circuit.
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Fig. 4.15: Region of the current redistribution calculated at the strand current of 387.5
A. The vertical axis is the calculated length between the quench front and the element

that the current changes move than 0.1 A,
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Fig. 4.16; Calculated current changes in two twist pitches, where o, = 2.5 X L0% S/m

and © = 240.3 mm. The solid and dashed lines represent the current changes in the

twist pitch of 31 mm and 62 mn, respectively.
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Fig. 4.17: Calculated current change and quench front position of strand 1 at the strand
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current of 387.5 A, 2 = 240.3 mm and g, = 2.5 x 10 S/m.
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Fig. 4.18: Calculated current changes of strand 1 for three thermal conductivities
between strands for the strand current of 387.5 A, @ = 240.3 mm and g, = 2.5 X 1010
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