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Abstract

The naive perturbation theory is known to break down at high temperature (T ).

This is because higher order terms are enhanced by the powers of T and eventually

exceed the lower order terms even if the expansion parameter in the perturbation

is small. These large terms at high T are called the hard thermal loops (HTLs).

Therefore, we need to resum HTLs to obtain sensible results at high T .

So far, several methods have been proposed to carry out this resummation. As

one of the promising candidates, self-consistent resummation method has been stud-

ied for a long time. However, it was found that the method has di�culties in the

renormalization at �nite T and in the proof of the Nambu-Goldstone theorem at

�nite T .

In this thesis, we develop an optimized perturbation theory (OPT) at �nite

temperature in the O(N) �4 theory, which can resum higher order terms at �nite T

without the problems mentioned above. It has the following features:

1. Hard thermal loops are correctly resummed at high T .

2. The renormalization of the ultra-violet divergences can be carried out system-

atically in any given order of OPT.

3. The Nambu-Goldstone theorem is ful�lled for arbitrary N and the any given

order of OPT.



After presenting the general features of OPT, we �rst apply OPT to ��4 the-

ory to check whether it can describe the correct qualitative features of the phase

transition. In the leading order analyses in the self-consistent methods proposed so

far, it is known that the phase transition becomes �rst order, which has apparent

contradiction to the second order transition predicted in the renormalization group

and the lattice QCD analyses. This situation is similar in OPT in the leading order.

However, in the next-to-leading order analyses in OPT, we found that correct second

order behavior is obtained although the critical exponent � stays in the mean-�eld

value.

As an phenomenological application of OPT to physical system, we study the

O(4) linear � model. This model, which is described by � and � meson �elds,

can be regarded as a low energy e�ective theory of QCD with two 
avors. The �

�elds are regarded as Nambe-Goldstone modes associated with the chiral symmetry

breaking in QCD. The � meson (chiral partner of the pion) is recently appeared in

the Particle Data Table with a mass 400-1200 MeV and a width 300-500 MeV. Our

main purpose is to study spectral functions of the soft modes at �nite T by taking

into account the mode couplings between � and �.

Thanks to OPT, the physical threshold of the spectrum in the � channel, which

is determined by the tree level pion mass, is obtained in the one-loop approximation.

The threshold enhancement of the spectral function at �nite T in the � channel is

shown to be a typical signal of the partial restoration of the chiral symmetry. To

study the detectability of the threshold enhancement, the diphoton decay � ! 2


from the hot plasma is examined. In a relatively narrow window of T and the

invariant mass of the diphoton, the enhancement is shown to appear over the thermal

background �+�� ! 2
.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics at �nite temper-

ature

It is widely accepted that Quantum Chromodynamics (QCD) [1] describes the dy-

namics of quarks and gluons. At high energies, the interactions among the quarks

and gluons become weak, which is known as the asymptotic freedom [2]. This is the

reason why the perturbation theory works well at high energy, which has been tested

experimentally in the deep inelastic scatting and the e+e�-annihilations. According

to the asymptotic freedom, it is expected that there exists a phase at high energy

density in which quarks and gluons behave as free particles. This phase is called the

quark-gluon plasma (QGP) [3].

At low energies, however, quarks and gluons form baryons and mesons as the

interactions become strong. Namely the con�ned phase is realized. This implies

that there will be a con�nement-decon�nement phase transition as temperature (T )

or the energy density raises. The phase diagram expected at �nite temperature

and/or density is shown in Fig.1.1 [4].

Besides the decon�nement at high T , it is also believed that the chiral symmetry

in QCD is recovered at high T . This symmetry corresponds to the invariance under

the transformation

qi ! qi + i�a
�aij

2
qj; qi ! qi + i�a

�aij

2

5qj ; (�a; �a � 1) (1.1)

where qi is quark �elds and �a is the N 2
f � 1 Gell-Mann matrices for SU(Nf )-


avors. This symmetry is broken spontaneously in the vacuum where we live in,

and it explains why the pion is much lighter than other mesons. The results of

the numerical simulations on the lattice at �nite T [5] shows that chiral symmetry

restoration takes place at almost the same temperature with the decon�nement

temperature.
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Figure 1.1: Typical phase diagram for QGP and hadron. Figure from [4].

According to the big bang theory [6], the early universe was a very hot and high

density state. The present universe is realized as a result of cooling and expansion

of this hot and high density state. The thermal equilibrium has been achieved at

least after the era of the electroweak phase transition, because the reaction rates of

particles became much larger than the expansion rate after that time. The universe

had experienced various phases during the process of the expansion. It is believed

that the quark-gluon plasma (QGP) phase in which decon�nement and the chiral

symmetry restoration occur has also been realized as one of the phases in the early

universe. Therefore, understanding QCD at �nite T is essential for studying such

phase in the early universe.

Experiments for aiming at reproducing the QGP phase in the laboratory is

planned at Brookhaven National Laboratory (Relativistic Heavy Ion Collider (RHIC))

and at European Laboratory for Particle Physics (Large Hadron Collider (LHC))

[3]. The regions which these experiments (RHIC and LHC) cover are also shown in

Fig.1.1. QGP, which is a decon�ned phase in early universe, is going to be studied

experimentally.

Also, if the chiral symmetry restoration is of second order (continuous) or weakly

�rst order, long range 
uctuations of the order parameter exist. This is known as

soft modes, and it has been studied as a probe of second order phase transitions in
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the condensed matter physics [7]. Whether this mode is observed in QCD or not is

an interesting question.

Thus, to understand QCD at such high temperature is one of the most interesting

subjects in hadron physics.

1.2 Theoretical tools in QCD at �nite T

At present, there are two major calculational methods in QCD at �nite T :

� Numerical simulation in lattice QCD [5].

� Hard thermal loops resummation scheme (HTLRS) [8].

Numerical simulation in lattice QCD

The Numerical simulation in lattice QCD is the most rigorous method to study

QCD at �nite temperature. The simulations show that the restoration of chiral

symmetry takes place at Tc � 150 MeV. In the case of massless two 
avors, the

phase transition has been shown to be of second order. The detailed analysis in two

light 
avors and one medium-heavy quark, which corresponds to the real world, is

still under way [9].

At present, there are several problems in lattice QCD. Among others, there are

two di�culties which are related to this thesis:

1. The SU(N) � SU (N) chiral symmetry cannot be de�ned on the lattice in

four-dimension.

2. It is rather di�cult to treat real-time modes in a straight forward way.

From the reason 1, the pion, which is the Nambe-Goldstone boson, obtains a �nite

mass in lattice QCD [10]. The second problem is related to Euclidean space-time.

Since lattice QCD is de�ned in Euclidean space-time, one must translate Green's

functions from imaginary-time to real-time by analytic continuation to study real-

time modes. Although this analytic continuation requires information of in�nite

number of points, the numerical simulations produce only �nite number of data

points [11].

Hard thermal loops resummation scheme

Hard thermal loops resummation scheme (HTLRS) [8] has been known as a method

for resumming higher order terms of the QCD perturbation at �nite T . Generally,

it is known that the naive perturbation theory break down at the high temperature
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[12, 13], even if the coupling constant is small. Since number of excited particles

increases as T increases, particles properties are e�ectively modi�ed at high T . One

of such phenomena is the Debye screening. In the naive perturbation theory, such

e�ect appears in a manner that higher order terms have larger contributions than

lower order terms. This large contributions are called hard thermal loops (HTLs).

HTLRS resums the higher order terms at high temperature up to O(gT ), where g is

the coupling constant in QCD, when the external momenta are \soft". The \soft"

means that the scale is of O(gT ). By this method, soft gluon damping rate, dilepton

production rate and so on were calculated in the QGP phase [14] .

However, several di�culties appear in HTLRS.

� It is di�cult, in practice, to calculate the next-to-leading order term, namely

O(g2T ) contributions. No one has tried the calculation.

� Since it is an e�ective resummation which works only at high temperature, it

cannot be applied to the system at low temperature.

� When one studies theories with spontaneously symmetry breaking (SSB), loop-

expansion is relevant. However, HTLRS is the weak coupling expansion.

Thus, lattice QCD and HTLRS have some limitations. Apart from these meth-

ods, e�ective theories have been studied so far instead of QCD at �nite T [15]. We

will explain this approach in the following section.

1.3 Di�culties in self-consistent methods at �nite

T

It is di�cult to treat non-perturbative QCD e�ects at low energies by analytic

methods. Therefore, use of the e�ective models sometimes helps to understand

essential physics at low energies (see the reviews [16, 17] and reference cited therein).

The linear and non-linear � models, and the Nambu-Jona-Lasinio model are the

typical examples of such e�ective theories in QCD. However, a serious problem

of tachyonic pole may appear [12], when one studies the restoration of symmetries

using e�ective models such as the linear �-model. This problem shows up even below

Tc, and it causes the breakdown of the thermal perturbation theory. Therefore, a

resummation method applicable for wide range of temperature from low T to high

T is required when e�ective models are used at �nite T

So far, several methods have been proposed for this resummation [15], and the

self-consistent method among others is considered to be a promising one. However,

there are two major problems in such method [18].
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� T -dependent ultraviolet divergences appear, and the renormalization becomes

non-trivial at �nite T .

� The Nambe-Goldstone (NG) theorem at �nite T is not trivially satis�ed when

spontaneously symmetry breaking (SSB) occurs.

In �nite temperature �eld theories, T -dependent divergences should not appear due

to the Boltzmann distribution function e�E=T (E is an energy of the particle) [19].

Since �nite T loop integrals contain always the factor e�E=T , the integrals at �nite

T always converge at large momentum. However, in self-consistent methods, diver-

gences which depend on T appear, because mass terms, which are determined by

self-consistent conditions, receive T -dependence.

Another di�culty is the NG-theorem. The symmetry of the Lagrangian may have

been broken explicitly by self-consistent conditions, and the NG-theorem may not be

ful�lled. In other words, self-consistent conditions should, in principle, preserve the

symmetry, and some constraint on the self-consistent conditions from the original

symmetry should appear. However, in the methods proposed so far, such condition

was not clear.

1.4 Optimized perturbation theory at �nite T

Optimized perturbation theory (OPT) at �nite T has been developed by us in ref.[20]

as a resummation method for solving the above problems. It has the following

advantages.

1. It is possible to correctly resum hard thermal loops at high temperature.

2. Renormalization can be carried out at each order of OPT.

3. The Nambu-Goldstone theorem is satis�ed in any given order of OPT.

There are three major purposes of this thesis and the organization of this thesis

is as follows.

First of all, in chapter 2, we formulate OPT as a generalized mean-�eld theory

[21]. Similar idea is sometimes called the delta-expansion, the variational perturba-

tion theory and so on, and has been applied for the �eld theory at �nite T in [22, 23]

and for the quantum mechanics in [24].

Secondary, in chapter 3, we examine whether our method can correctly describe

the phase transition using ��4 theory as an example. The principle of minimal

sensitivity (PMS) condition and the criterion of the fastest apparent convergence

(FAC) condition [25] (see, Sec.2.2.2) in one-loop and two-loop order are investigated.
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Thirdly, in chapter 4, OPT is applied to a physical system, the O(4) linear �

model which is considered as an e�ective theory of QCD with two 
avors. We

investigate the soft mode which is a characteristic mode in second order or weakly

�rst order phase transition. One can see that OPT plays the crucial role for the

discussion in this chapter. Detectability of the soft mode through � ! 2
 process

at �nite T in experiments is also discussed.

In chapter 5, we give summary and remarks.
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Chapter 2

Optimized perturbation theory at

�nite temperature

In this chapter, we introduce the optimized perturbation theory (OPT) at �nite

temperature. Firstly, we illustrate the necessity of resummation at �nite T using ��4

theory. Secondly, we give our de�nition of OPT. The proofs of the renormalizability

and Nambu-Goldstone theorem in OPT are also shown.

2.1 Necessity of resummation at �nite T

It is known that naive perturbation theories break down at �nite T , especially at

high T [12]. This is because large T compensate the powers of the coupling constant.

To illustrate this, let us consider ��4 theory,

L =
1

2
[(@�)2 � �2�2]� �

4!
�4: (2.1)

Firstly, we consider the case �2 > 0 (� is always taken to be positive for the stability

of the system). At �nite T , the lowest order self-energy correction, which is shown

in Fig.2.1 (A), reads

�i��
2"

2

Z
dnp

(2�)n

"
i�h

p2 � �2 + i�
+ 2�nB(jp0j)�(p2 � �2)

#
: (2.2)

Here, we take the dimensional regularization scheme [26]: � is the renormalization

point which compensates the dimension of �, and " = (4 � n)=2. nB is the Bose-

Einstein distribution function:

nB(jp0j) =
1

e�jp0j � 1
; (2.3)

where � = 1=T . The �h is explicitly written for later use.
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The order of eq.(2.2) is �T 2 at high T . However, Fig.2.1 (B) is of O(�T 2 � �T
�
)

and n-loop diagram in (C) is of O(�nT 2n�1=�2n�3). The power of T=� increases by

one by attaching the tadpole diagram. Namely, the higher order diagrams are larger

than the lower ones at high T . Thus, higher order terms must be resummed to get

sensible results at high T [27].

The loop-expansion [28], which is another perturbation theory (not an expansion

of the coupling constant), also breaks down at �nite T . This can be also illustrated

by using eq.(2.1). At T = 0, the loop-expansion corresponds to the expansion by �h.

Therefore, it can treat the quantum e�ects systematically. Thus, the loop-expansion

is often used for theories with spontaneous symmetry breaking (SSB). However, at

�nite T , the equation (2.2) shows that the vacuum part (�rst term) is of O(�h), but

thermal part (second term) is of O(�h0). Therefore, the loop expansion does not

coincide with the expansion of �h at �nite T . When the thermal corrections become

large at high T , one should resum this classical e�ects �rst. The Debye screening is

one of such classical e�ects. Therefore, naive loop-expansion does not work.

When �2 < 0, the di�culty of the loop-expansion appears in another way. In

this case, the tree-level mass becomes

m2
0 = �2 +

�

2
'2(T ); (2.4)

where ' is the thermal expectation value of the �eld �;

'(T ) = h�iT : (2.5)

Usually, as the temperature increases, '(T ) decreases. Therefore,m2
0 becomes tachy-

onic even below the critical temperature Tc where '(T ) becomes zero. This tachyonic

pole destroys the perturbation theory, and makes studies of the phase transition im-

possible in e�ective theories at �nite T . Thus, one should resum the higher order

terms at �nite temperature even at low T .

(A) (B) (C)

Figure 2.1: Bubble and cactus diagrams in ��4-theory.
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2.2 Optimized perturbation theory

2.2.1 Motivations of OPT

The hard thermal loops resummation scheme (HTLRS) [8, 29] is one of the most

successful resummation method at high temperature, and have been applied to gauge

theory and ��4 theory [30]. Its concept is a \weak coupling expansion" and a

hierarchy of scales, namely O(T ) is called hard, O(gT ) and O(g2T ) are called soft

and super soft respectively. The advantage of it is to preserve the gauge symmetry

in contrast with the bare perturbation theory. The latter leads to gauge dependent

results for physical quantities at �nite T [31].

The e�ective Lagrangian for Euclidean SU(N) gauge theory is constructed by

adding and subtracting the following term to the Lagrangian:

�L = Lf + L
 ; (2.6)

Lf = im2
f
� (x)

Z
d


4�

K̂=

K̂ �D
 (x); (2.7)

L
 = �m2Tr
Z
d


4�
F��

K̂�K̂�

(K̂ �D)2
F��; (2.8)

where D� = @� + igA�, F
a
�� = @�A

a
� � @�A

a
� + gfabcA

b
�A

c
� and K̂ = (�i; ~k=jkj). In

QCD (SU(3) gauge theory), m2
f = g2T 2=6, m2 = g2T 2(3 + NF =2)=6 and NF is

number of fermions. One of the notable features is the existence of in�nite number

of vertices to preserve the gauge symmetry. Now, the e�ective Lagrangian is written

as

L = (L+ �L)� �L = Leff � �L; (2.9)

where L is the original (SU(N ) gauge theory) Lagrangian. The propagators and

vertices contain O(gT ) e�ects arising from the Leff term and the last term ��L is

treated as a counter term to avoid any double counting. Many physical quantities,

for example, the gluon damping rate, the production rate of soft dileptons in a

quark-gluon plasma, have been calculated using this method [8, 29, 14].

On the other hand, for theories with SSB, loop-expansion is relevant rather than

the weak-coupling expansion. This is because we need to calculate the e�ective

potential [32] to search the ground state of a system.

In the following, we will develop an optimized perturbation theory (OPT), which

is an improved loop expansion, to �nite T systems [20]. Similar idea have been

studied by Okopi�nska [22] and Banerjee and Mallik [23]. In ref.[22], they study

the O(N) �4 theory with the principle of minimal sensitivity (PMS) condition (see

Step 3 in Sec.2.2.2). Since their formulation is not based on the loop-expansion (see
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Step 1 in Sec.2.2.2), they could not prove renormalizability. Also, the NG-theorem

appears in rather complicated way. In ref.[23], they study ��4 theory with the

fastest apparent convergence (FAC) condition (see Step 3 in Sec.2.2.2) at high T .

They carry out the renormalization up to two-loop order in the symmetric phase.

However, the rigorous de�nition of their method in higher orders and a proof of

the renormalizability in higher orders are not given. Also, numerical studies of the

gap-equation (see Step 3 in Sec.2.2.2) are not performed. In this chapter, we will

give our de�nition of OPT (Sec.2.2.2), and prove the renormalizability (Sec.2.3) and

the NG-theorem in the O(N) �4 theory (Sec.2.4). These are proved at any given

order of � (an expansion parameter in OPT).

2.2.2 OPT

We will explain our method by dividing it into three steps. ��4 theory is used for

illustration:

L(�0; �
2
0; �0) =

1

2
[(@�0)

2 � �20�
2
0]�

�0

4!
�40

=
1

2
[(@�)2 � �2�2] � �

4!
�4

+
1

2
(Z � 1)(@�)2 � 1

2
(Z�Z � 1)�2�2 � �

4!
(Z�Z

2 � 1)�4 +D�4

=
1

2
[(@�)2 � �2�2] � �

4!
�4 (2.10)

+
1

2
A(�)(@�)2 � 1

2
B(�)�2�2 � 1

4!
C(�)�4 +D(�)�4

= L(�;�2; �):

Here we have explicitly written the arguments �2 and � in L for later use. The

su�x 0 indicates unrenormalized quantities. The terms A, B, C and D to the

standard notation of the counter terms are A = Z � 1, B = Z�Z � 1 and C =

�(Z�Z
2 � 1), where Z's are de�ned by �0 =

p
Z�, �0 = Z�� and �20 = Z��

2. Since

we adopt the mass independent renormalization scheme, namely MS scheme [33],

with the dimensional regularization, the argument of A, B, C and D is only �. For

simplicity, we omit the dimension-full factor �4�n to be multiplied to �. Here, � is

the renormalization point and n is the number of dimensions. The O(N) case will

be discussed in Section 2.4 and we show the NG theorem is ful�lled.

Step 1 (De�nition of the � expansion)

The loop-wise � expansion for the e�ective action is de�ned as

�['2] = � ln

Z
[d�] exp

"
1

�

Z 1=T

0
d4x

h
L(� + ';�2; �) + J�

i#
; (2.11)
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where J � �@�[']=@' and
R 1=T
0 d4x �

R 1=T
0 d�

R
d3x. At zero temperature, it cor-

responds to the naive �h expansion [32]. However, it dose not coincident with the �h

expansion at �nite temperature, because �h is also contained in the upper limit of

the integral.

The counter terms are also expanded in �. Because the renormalization is per-

formed at zero temperature, these are same with counter terms in the naive loop

expansion. Since we use the MS scheme, the UV divergences in the symmetry bro-

ken phase (�2 < 0) can be removed by the same counter terms in the symmetric

phase (�2 > 0) [34, 35].

In ref.[22], they introduce the \�" as

L� �
1

2
�iD�1�+ �(L � 1

2
�iD�1�): (2.12)

Here, iD�1 is determined by D�=DD = 0 (see Step 3), where � is the e�ective action

which is calculated by the �-expansion. Thus, this �-expansion does not correspond

to the loop-expansion in contrast with our approach.

Step 2 (Splitting the mass and coupling)

The mass and the coupling constant are split as

�2 = m2 � (m2 � �2) = m2 � �;

� = g � (g � �) = g � �:
(2.13)

Namely, we add and subtract the mass term m2 and the coupling constant g, and

de�ne � � m2� �2 and � � g� �. Then, eq.(2.13) is substituted in the Lagrangian

(2.10):

L(�;m2; �; g; �) � L(�;m2 � �; g � �)

=
1

2
[(@�)2 �m2�2]� g

4!
�4 +

1

2
��2 +

�

4!
�4 (2.14)

+
1

2
A(g � �)(@�)2 � 1

2
B(g � �)(m2 � �)�2

� 1

4!
C(g � �)�4 +D(g � �)(m2 � �2)2:

It is important that the identities (2.13) are used not only in the standard mass and

coupling terms but also in counter terms [36] to show the order by order renormal-

ization in OPT.

To get a non-trivial loop expansion, we need to assign � as

m2 = O(1); � = O(1); � = O(�); � = O(�): (2.15)
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Thus, the tree-level mass becomes m2+g'2=2 instead of �2+�'2=2 in the symmetry

broken phase. The order of � is increased by inserting the new vertex ��2=2 or

��4=4!. The physical reason behind this assignment (2.15) is the fact that � and �

re
ects the e�ect of interactions.

Since (2.14) is only a rearrangement of the parameters, the e�ective action should

not depend on the arbitrary parameters m2 and g. If they are calculated in all

orders, it must not depend on these. However, since we cannot calculate all orders

in actual calculations, the physical quantities depend on arti�cial parameters in

practice. Methods for determination of these parameters are given in the next step.

Step 3 (Determination of m2 and g)

One can determine the optimal parameters m2 and g by the methods proposed by

Stevenson [25].

(a) The principle of minimal sensitivity (PMS) :

@OL

@m
= 0;

@O0

L0

@g
= 0: (2.16)

The OL (O0

L0) is the physical quantity calculated up to L-th (L0-th) order.

Sincem2 and g are arti�cial parameters added by hand, the physical quantities

should not depend on these.

(b) The criterion of the fastest apparent convergence (FAC):

OL �OL�n = 0; O0

L0 � O0

L0
�n0 = 0; (2.17)

where n (n0) is chosen in the range, 1 � n � L (1 � n � L0). This condition

requires that the perturbative corrections in O0

L (O0

L0) should be as small as

possible for a suitable value of m (g).

These conditions reduce to self-consistent gap equations. Therefore, OPT corre-

sponds to a generalization of the mean �eld approximation.

When one studies a theory with spontaneously symmetry broken (SSB), the

ground state of the system must be searched. The vacuum is determined by the

stationary point of the e�ective potential V ('2) with respect to ' which is de�ned

as

V ('2) = ��['2 = const:]R 1=T
0 d4x

: (2.18)

However, as mentioned before, the perturbation theory at �nite order has explicit

m2 and g dependence. So, V calculated up to the L-th order, which is denoted

12



by VL('
2; m2; g), depends on m2 and g, and one must determine not only vacuum

expectation value '0 but also these parameters. The condition for the stationary

point reads

@VL('
2;m2; g)

@'

�����
'='0

= 0 (2.19)

The derivative with respect to ' does not act on m2 and g by de�nition even if

m2(') and g(') depend on ' after solving the equation (2.16) or (2.17). However,

if we choose VL(';m
2; g) as OL and O0

L0 in (2.16), which is most relevant quantity

to study the static nature of the phase transition, following relation holds:

dVL('
2;m2('); g('))

d'
=

@VL('
2;m2; g)

@'
+
@VL('

2; m2; g)

@m2

@m2

@'
+
@VL('

2;m2; g)

@g

@g

@'

=
@VL('

2;m2; g)

@'
(2.20)

This is an advantage of the PMS condition for theories with SSB.

2.3 Renormalization in OPT

We mention here why the renormalization in self-consistent methods is not a trivial

issue. In the naive perturbation theory, there is no new UV divergences at T 6= 0

because of the natural cuto� from the Boltzmann distribution function. Therefore,

all the UV divergences at �nite T are removed by the T = 0 counter terms. This

statement has been proved in imaginary-time and real-time formalisms [19].

On the other hand, in self-consistent methods, the naive renormalization pro-

cedure does not work, because the tree-level mass terms get T -dependence (for

example, M 2(T ) = m2 + g(T )'2=2) which is determined by the self-consistent gap-

equation [18]. Therefore, T -dependent divergences arise.

In ref.[23], however, the renormalization happened to be successful at least up

to the two-loop order. The main di�erence of ref.[23] and ref.[18] is whether the

renormalization is performed before of after imposing the gap-equation.

In the method of ref.[18], one imposes the unrenormalized gap-equation �rst, and

then the divergences are tried to be removed. However, in this procedure, it is hard

to carry out the renormalization in higher orders. Since the optimized parameters

such asm2(T ) and g(T ) contain higher loop contributions through the self-consistent

gap-equation, the divergences also contain higher loops. Thus, the counter terms

should be also resummed to higher order terms.

On the other hand, in our method explained in the previous section, the �nite

gap-equations are obtained initially, because the renormalization is performed at �rst

13



(in Step 2). This means that the resummations of counter terms are automatically

performed as well as physical parameters. (It is essential to use the resummed

parameters m2(T ) and g(T ) in the counter terms.) In ref.[23], similar idea appears

but was pursued only for weak coupling expansion at high T up to two-loop.

2.3.1 Proof of the renormalizability in OPT

Consider a naive m-th loop order renormalized correction to the e�ective action:

�
(m)
R . Then, the e�ective action up to n-th order can be written as

�nR =
nX

m=0

�
(m)

R : (2.21)

Here, each �
(m)
R is written by the sum of �(m) which does not contain any counter

terms and C(m) which contains at least more than one counter terms:

�
(m)

R = �(m) + C(m): (2.22)

Also, �
(m)

R can be expanded by the renormalized mass �2 and the renormalized

coupling � around �2 = 0 and � = 0:

�
(m)

R =
1X
i=0

lX
j=0

(�2)i�j(�
(m)
ij + C

(m)
ij ); (2.23)

where,

�
(m)
ij =

1

i!j!

@i

@(�2)i
@j

@�j
�(m)

�����
�2=0;�=0

; (2.24)

C
(m)
ij =

1

i!j!

@i

@(�2)i
@j

@�j
C(m)

�����
�2=0;�=0

: (2.25)

Since �
(m)
R is �nite, �

(m)
ij + C

(m)
ij must be �nite.

Next, we consider OPT. In this method, �2, � are re-shu�ed as eq.(2.13). Then,

eq.(2.13) is substituted in (2.23),

�
(m)

R =
1X
i=0

lX
j=0

(m2 � �)i(g � �)j(�
(m)
ij + C

(m)
ij ): (2.26)

Since m2 = O(1), � = O(1), � = O(�) and � = O(�), the order of � increases by

including � = O(�) and/or � = O(�). Thus, by expanding the parameters (m2��)i

and (g � �)j in eq.(2.26) higher order terms in � are generated:

�
(m)
R = �

(m)
R (�m) + �

(m)
R (�(m+1)) + � � � (2.27)

=
1X
i=0

lX
j=0

[(m2)igj � fi�(m2)i�1gj + j�(m2)igj�1g + � � �](�(m)
ij + C

(m)
ij );
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where,

�
(m)
R (�m+a+b) � iCa(��)a(m2)i�ajCb(��)bgj�b(�(m)

ij + C
(m)
ij ): (2.28)

After all, up to m-th � order correction, ��
m

R reads

��m

R =
mX
s=0

�
(m�s)
R (�m): (2.29)

Since the renormalization is carried out up to m-th order, each �
(l)
R (0 � l � m) is

�nite. Thus, ��m

R is also �nite.

If theory does not have a mass term, the renormalization of OPT is de�ned as a

limit �2 ! 0 of eq.(2.29). By doing this, one can obtain Debye mass even when the

original Lagrangian does not have a mass term.

2.4 Nambu-Goldstone theorem

Application of OPT to the Lagrangian with O(N) symmetry is straightforward. �2

is just replaced by ~�2 in (2.14):

L(~�;m2; �; g; �) =
1

2
[(@~�)2 �m2~�2]� g

4!
(~�2)2 +

1

2
�~�2 +

�

4!
(~�2)2

+
1

2
A(g � �)(@~�)2 � 1

2
B(g � �)(m2 � �)~�2 (2.30)

� 1

4!
C(g � �)(~�2)2 +D(g � �)(m2 � �2)2;

where ~� = (�1; � � � ; �N). The equation (2.30) has the manifest O(N) invariance.

Since our �-expansion is a modi�ed loop expansion, the e�ective action �[~'2] and

e�ective potential V (~'2) have invariance order by order under O(N) transformation:

'i = 'i + i�aT a
ij'j; (2.31)

where ~' is the thermal expectational value of ~� and Ta is the generator of O(N )

symmetry. This fact leads to the in�nitesimal invariant condition for the L-th order

e�ective potential:

@VL(~'
2;m2; g)

@'j

T a
jk'k = 0: (2.32)

The derivative with respect to 'i reads

@VL(~'
2;m2; g)

@'j

T a
ji = �@

2VL(~'
2; m2; g)

@'i@'j
T a
jk'k: (2.33)
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At the stationary point, the l.h.s. of (2.33) vanishes, and the r.h.s. of (2.33) satis�es

the following equation:

@2VL(~'
2;m2; g)

@'i@'j

T a
jk'k = D�1

ij (0)T
a
jk'k = 0; (2.34)

where we use the fact that the second derivative with respect to ' for the L-th

order e�ective potential is equivalent to the Matsubara propagator at zero frequency

and momentum calculated up to L-th order. Since the symmetry is spontaneously

broken, T a
jk'k 6= 0 for at least one direction. Thus, the NG theorem is proved.

There is a remark on the NG-theorem. The equation (2.30) is essential for

proving the NG-theorem. In general, the decomposition (2.13) may be replaced by

�2~�2 = m2
ij�i�j � (m2

ij � �2�ij)�i�j; (2.35)

where �ij is the Kronecker delta. If one takes m2
ij 6= m2�ij , the Lagrangian is not

O(N) invariant. This leads to non O(N) invariant e�ective potential, and (2.32)

is not satis�ed. Thus, the NG-theorem is not ful�lled in any �nite orders of the

�-expansion. For example, when O(N) symmetry spontaneously breaks down to

O(N � 1) symmetry, one may be tempted to make a decomposition

�2~�2 = m2
r�

2
1 +

NX
i=2

m2
c�

2
i � (m2

r � �2)�21 �
NX
i=2

(m2
c � �2)�2i (2.36)

to impose the self-consistent conditions for the radial mode and the rotational modes

independently. In this case, the e�ective potential V ('2
1;
PN

i=2 '
2
i ) has only O(N�1)

symmetry and we cannot have constraints for D�1
ij (0) such as eq.(2.34).

2.5 Summary of OPT

The optimized perturbation theory is explained in 3 steps:

1. Counter terms in the �-expansion is prepared.

2. The mass and coupling constant in the Lagrangian are split by introducing

arti�cial parameters.

3. The parameters are optimized.

OPT has several advantages from other self-consistent resummation methods.

The renormalization at �nite temperature is trivially performed in OPT. This method

can resum the counter terms systematically and the renormalization is carried out

before imposing the gap-equation. Since our approach preserves the symmetry,
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NG-theorem is also trivially satis�ed. Contrary to our method, many of the self-

consistent methods proposed so far su�er from these problems [18, 37].

Our solutions to the long standing problems in the self-consistent resummation

methods can be summarized as the following.

� One should resum the counter terms.

� Keep the original symmetry of the Lagrangian.

Our method naturally satis�es the above conditions.
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Chapter 3

Phase transition in ��4 theory

In this chapter, we demonstrate an application of OPT to ��4 theory. We calculate

the e�ective potential up to 2-loop level using the real time formalism [38, 39].

Only a mass term is optimized in this chapter. The PMS condition for the e�ective

potential and the FAC condition for the two point self-energy at zero momentum

are examined. We also discuss the extension to the shift of the coupling term.

3.1 Calculation of the e�ective potential in the

real time formalism

We brie
y explain how to calculate the e�ective potential in the real time formalism

[39].

In the real time formalism, the Lagrangian of (2.1) becomes

L[�1�2] =
1

2
�aD

�1ab
� �b � U [�1] + U [�2]; (3.1)

where Dab
� is 2� 2 propagator and U [�] = ��4=4!. In momentum space, the propa-

gator Dab
� reads

iDab
� (k) =

 
cosh � sinh �

sinh � cosh �

! 
i

k2��2+i"
0

0 �i
k2��2�i"

! 
cosh � sinh �

sinh � cosh �

!
; (3.2)

where

cosh2 � =
1

1� e��jk0j
; (3.3)

and � = 1=T . Using the equation

�(x) =
1

�
lim
"!0

"

x2 + "2
; (3.4)
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we �nd an useful expression:

iDab
� (k) =

0
@ i

k2��2+i"
0

0 �i
k2��2�i"

1
A+ 2��(k2 � �2)

0
B@

1

e�jk0j�1

�e��jk0j=2

1�e��jk0j

�e��jk0j=2

1�e��jk0j
1

e�jk0j�1

1
CA : (3.5)

The �rst term corresponds to the zero temperature propagator and the second term

is an additional temperature dependent term through the Bose-Einstein distribution

function.

The generating functional Z[j1j2] is de�ned as

Z[j1j2] =

Z
[d�a] exp[i

Z
d4xd4y

1

2
�aD

�1ab
� �b + i

Z
d4x� U [�1] + U [�2] + ja�a];(3.6)

where a; b = 1; 2. This leads the connected generating functional W [j1j2]:

W [j1j2] =
1

i
lnZ[j1j2]: (3.7)

The classical �elds '1[j1j2] and '2[j1j2] are de�ned as

'1[j1j2] =
�W [j1j2]

�j1
; (3.8)

'2[j1j2] =
�W [j1j2]

�j2
: (3.9)

The �nite temperature e�ective action �['1'2] in real time formalism is given as

the Legendre transformation of W [j1j2],

�['1'2] =W [j1j2]�
Z
d4xja'a; (3.10)

with

��['1'2]

�'a

= �ja: (3.11)

For the constant �elds '1, '2, we get the e�ective potential V ['1'2],

�['1'2] = �V ['1'2]

Z
d4x: (3.12)

The ground state where the external sources should vanish can be found by

��['1'2]

�'a
= 0; (3.13)

or alternatively,

@V ['1'2]

@'a

= 0: (3.14)
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It is proved [39] that the relationship between the e�ective potential calculated by

the imaginary time formalism V E
� and the real time formalism is as follow,

@V ['1'2]

@'1

�����
'1='2='

=
@V E

� [']

@'
: (3.15)

Thus, the procedure to calculate the physical e�ective potential in the real time

formalism can be summarized as:

1. Calculate the 1-point '1 (tadpole) function.

2. Set '1 = '2 = '.

3. Integrate over '.

This method corresponds to a generalized Weinberg's tadpole method [40] for the

evaluation of e�ective potentials in the �nite temperature �eld theory.

Here, let us calculate the e�ective potential in the two-loop order at �nite tem-

perature for (2.10):

L(�;�2; �) =
1

2
[(@�)2 � �2�2]� �

4!
�4 (3.16)

+
1

2
A(�)(@�)2 � 1

2
B(�)�2�2 � 1

4!
C(�)�4 +D(�)�4:

The coe�cients of counter terms in 2-loop level [41] are

A(�) = � �2

(4�)4
1

24�"
;

B(�) =
�

(4�)2
1

2�"
+

�2

(4�)4

�
1

2�"2
� 1

4�"

�
;

C(�) =
�2

(4�)2
3

2�"
+

�3

(4�)4

�
9

4�"2
� 3

2�"

�
; (3.17)

D(�) = � 1

(4�)2
1

4�"
� �

(4�)4
1

8�"2
;

where we adopt the modi�ed minimal subtraction (MS) scheme. (The multiple

factor �(4�n) to � has been dropped as before.) The Feynman rules in real time

formalism are given in Fig.A.1 in Appendix A. The e�ective potential for (3.16) has

been calculated in [42] at zero temperature and in [30, 39, 43] at T 6= 0. The resalt

is (see, Appendix C)

V = V 0 + V 1 + V 2; (3.18)

V 0 =
1

2
�2'2 +

�

4!
'4; (3.19)
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V 1 = � 1

(4�)2
M4

4
(
3

2
� ln

M2

�2
) +

Z
1

0

dk

(2�)2
2

�
k2 ln(1� e��E); (3.20)

V 2 =
�

2
K2

t +
�2'2

4
Ss +

�2'2

4
Cf ; (3.21)

where M = �2 + �'2=2, � = 1=T and E =
p
k2 +M2. The de�nitions of Kt, Ss

and Cf are found in Appendix C (eq.(C.7), eq.(C.14) and eq.(C.8), respectively).

3.2 Application of OPT to ��4 theory

Let us apply OPT to eq.(3.16). This leads to

L(�;m2; �; g; �) =
1

2
[(@�)2 �m2�2]� g

4!
�4 +

1

2
��2 +

�

4!
�4 (3.22)

+
1

2
A(g � �)(@�)2 � 1

2
B(g � �)(m2 � �)�2

� 1

4!
C(g � �)�4 +D(g � �)(m2 � �2)2;

where we used eq.(2.13). The additional Feynman rules are shown in Fig.A.2 in

Appendix A. New diagrams for the one-point function and the vacuum energy are

shown in Fig.D.1 and Fig.D.2, respectively.

Up to O(�), the e�ective potential (3.18) becomes

V = V 0 + V � + V �2; (3.23)

V 0 =
1

2
m2'2 +

g

4!
'4; (3.24)

V � = �1

2
�'2 � �

4!
'4 � 1

(4�)2
M4

4
(
3

2
� ln

M2

�2
) (3.25)

+

Z
1

0

dk

(2�)2
2

�
k2 ln(1� e��E);

V �2 = (�+
�'2

2
+
g

2
Kt)Kt +

g2'2

4
(Ss + Cf ): (3.26)

In ��4 theory at high T , the tadpole diagram Fig.2.1 (A) is the only hard thermal

loop (HTL), and we must resum these cactus type diagram (Fig.2.1). Since they

do not depend on external momentum, only the mass term is modi�ed. Thus,

HTLs resummation is performed by shifting the mass term. This happens only

when one considers the theory such as ��4 model. If we consider the quantum

chromodynamics, all vertices withN external gluons and vertices with N�2 external
gluons and two external quarks become HTLs which must be summed up. In ��4

theory, on the other hand, by optimizing the mass term is enough in order to resum

the HTLs.
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In the following, we adopt an optimization only for the mass term in ��4 theory

for simplicity. Namely, we set � = 0 in (3.22) and (3.23). We consider the case

�2 < 0, and the restoration of the symmetry is discussed under various conditions

(PMS and FAC, see Sec.2.2.2). The full OPT case (optimization of the mass and

coupling terms) is discussed in Sec.3.5.

3.3 The PMS condition

In this section, we investigate PMS conditions. Since we study the static nature

of the phase transition, the thermal e�ective potential V (';m2) is chosen as the

relevant physical quantity OL in Step 3 in section 2.2.2. As we will show in Sec.3.3.1,

O(�) e�ective potential with PMS condition cannot resum the HTLs. Thus, O(�2)

is the lowest order when one uses PMS condition.

3.3.1 1-loop analysis

When studying the phase transition, the most reasonable quantity to be optimized

is the e�ective potential. Therefore, in the O(�)-level, we adopt a condition

@V 0+�(';m2)

@m2
= 0; (3.27)

where V 0+�(';m2) = V 0+V � (see, eq.(D.1) in Appendix.D). However, this condition

does not lead to the appropriate gap-equation.

The di�erentiation with respect to m2 corresponds to cutting one of the internal

lines of V (';m2) because the power of the propagator is raised by one. As one can

easily see from Fig.C.4, cutting the internal line of V (';m2) cannot produce the

HTLs (like Fig.2.1 (a)). Therefore, eq.(3.27) cannot sum the tadpole type diagrams,

and it is not meaningful to adopt the PMS condition in the O(�)-level. Thus, we

need to go to the next order which is two-loop.

3.3.2 2-loop analysis

The PMS condition for the 2-loop e�ective potential reads

@V 0+�+�2(';m2)

@m2
= 0; (3.28)

where V 0+�+�2(';m2) = V 0 + V � + V �2. Cutting one of the internal lines of Fig.C.5

(a) leads to HTLs in scalar theory. The explicit form of (3.28) is shown in Appendix
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D 1. At high T (in the symmetric phase), eq.(3.28) reduces to

@V 0+�+�2(';m2)

@m2

�����
'=0

�m2
!0�! (�� �T 2

24
)

T

16�m
: (3.29)

This equation gives the following solution:

m2(T ) = �2 +
�T 2

24
; (3.30)

which corresponds to the Debye screening mass at high T . Thus, the condition (3.28)

correctly resums higher order terms and recovers the reliability of the perturbation

theory at �nite T .

To determine the vacuum, we must also solve 2

@V (';m2)

@'

�����
'='0

= 0: (3.31)

As we noted in section 2.2.2, the di�erentiation with respect to ' does not act on

m2. However, the gap-equation eq.(3.28) leads to

dV (';m2('))

d'
=

@V (';m2)

@'
+
@V (';m2)

@m2

@m2

@'

=
@V (';m2)

@'
: (3.32)

Thus, in this case, the total derivative with respect to ' is equal to the partial one.

This is one of the reasons why we adopt eq.(3.28) to study the phase transition.

Initial condition

We will solve eq.(3.28) and eq.(3.31) numerically. There are three parameters; �2,

� and �. (m2 is determined by eq.(3.28).) Since we assume that the loop expansion

at T = 0 is an valid approximation, the renormalization point � is chosen so that

�2 = m2 is satis�ed. This means that there is no e�ect from optimization at T = 0.

In other worlds, we use the OPT only for the resummation at �nite T , (Note that

�2 = m2 at T = 0 should be obtained from the result of solving eq.(3.28) and

eq.(3.31) simultaneously.) Although the explicit values of the parameters are not

important for our qualitative study (in fact, these parameters will be normalized by

their initial values), following initial values are used, � = 10:0 and '0 = 10:0, for

simplicity. As the result of solving eq.(3.28) and eq.(3.31) simultaneously, we obtain

�2 = m2 = �170, �2 = 87:6 and M 2 = m2 + �
2
'2
0 = 330.

1Here,
@V 0+�+�

2
(';m2)

@m2 means
dV 0+�+�

2
(';M2;m2;g=�;�;�=0)

dm2 as shown in Appendix D.

2Here,
@V 0+�+�

2
(';m2)

@'
means

dV 0+�+�
2
(';M2(');m2;g=�;�;�=0)

d'
.

23



Results of numerical calculation

The results of numerical calculations in the PMS condition are shown in Fig.3.1.

Fig.3.1 (A) shows the tree-level mass M2(T ) = m2(T )+�'0=2 with the left vertical

scale and the optimized parameter m2(T ) with the right vertical scale. M2(T ) is

clearly not tachyonic for all T . This result and eq.(3.30) con�rm that OPT with

two-loop PMS condition for V (';m2) is successful for the resummation of HTLs.

Fig.3.1 (B) shows the temperature dependence of the thermal expectation value

('0(T ) � h�iT ) divided by '0 at zero temperature. From this result, the phase

transition can be shown to be the second order. Fig.3.2 (A) shows the second

derivative of V (';m2) with respect to ', which also shows the second order nature

of the transition. Since the transition is of second order, the e�ective potential

becomes 
at at '0 = 0 at the critical temperature Tc, which is expressed by the

following equation:

@2V (' = 0;m2)

@'2
= 0: (3.33)

We can con�rm this feature also from Fig.3.2 (A). The e�ective potentials at T = 0

and Tc are shown in Fig.3.2 (B). We note here that the second order transition

for ��4-theory is expected from the renormalization group analysis [44] and lattice

simulation at �nite T [45].

We found that the critical exponent � which is de�ned by

'0(T ) /
����T � Tc

Tc

����
�

(3.34)

becomes 0:5 in the two-loop analysis. This is the value expected from the Landau

mean-�eld theory, which implies that our approximation is still within the level of

the mean-�eld theory. Since OPT corresponds to a generalized mean �eld theory,

it is in fact anticipated. A possibility of going beyond the mean-�eld exponents is

discussed in Sec.3.5.

In Fig.3.2 (C), the minimum value of the thermal e�ective potential V ('0; m
2),

which is equivalent to the Gibbs free energy, is shown. Its value decreases monotonously

as T increases.
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(A)

(B)

Figure 3.1: (A): The tree level massM 2(T ) = m2+�'0=2 with the left vertical scale

and the mass parameter m2(T ) with the right vertical scale obtained from the PMS

condition. They are normalized by their vales at T = 0. (B): Vacuum expectation

value '0 normalized by '0(T = 0).
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(A)

(B) (C)

Figure 3.2: (A): Second derivative of V (T ) with respect to ' in the PMS condition.

(B): E�ective potentials at T = 0 and Tc. (C): Minimum values of the e�ective

potential as a function of T .

3.4 The FAC condition

In this subsection, we apply the FAC condition. The simplest condition to resum

the HTLs in this case is

�R(! = 0; j~kj = 0; T ) = 0; (3.35)

where �R is a retarded two-point self-energy which is de�ned as

�R(!;~k; T ) =
@2V (';m2)

@'2

�����
'='0

: (3.36)
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In the following, we will investigate the above condition in one-loop and two-loop

orders.

3.4.1 1-loop analysis

The HTLs can be resummed even in the one-loop FAC condition of eq.(3.35). There-

fore, many studies before [18] have adopted this condition for simplicity, and it could

solve the tachyon problem at low T . However, the phase transition becomes �rst

order in this condition [18]. Here, we don't recapitulate these results because they

have been much discussed in the literature. Instead, we examine the two-loop con-

dition of eq.(3.35) in Sec.3.4.2 to compare the result with that in PMS condition

discussed in the Sec.3.3.2.

3.4.2 2-loop analysis

Since physics should not depend on arti�cial parameter m2, one expects that the

result should not depend on the choice of optimized conditions. However, the 2-loop

PMS condition eq.(3.28) leads to the second order phase transition, and 1-loop FAC

condition is known to lead to the �rst order transition. Therefore, it is necessary to

study whether the FAC condition in the two-loop level gives the second order phase

transition or not.

For the FAC condition in O(�2), we adopt

��2

R (!;
~k;T ) =

@2V �2(';m2)

@'2

�����
'='0

= 0: (3.37)

Explicit formula for V �2 is given in Appendix.D. At high T , eq.(3.37) is reduced to

@2V �2

@'2

�����
'=0

�m2
!0�! �T

16�m
(�� �T 2

24
) +

�2m2

2(4�)4
fc+ (�2 + 1

2
ln
m2

�2
) ln

m2

�2
g

+
�2T 2

24(4�)2
(3:30� ln

T 2

�2
): (3.38)

The �rst term of r.h.s. produces the resummation of the HTLs.

Initial condition

The initial parameters (at T = 0) are chosen as �2 = m2, � = 10:0 and '0 = 10:0

as well as pervious section. �2 = m2 means our perturbation corresponds to the

naive loop-expansion at T = 0. The resultant other values, which are determined

by solving eq.(3.31) and eq.(3.37) simultaneously, are �2 = m2 = �166, �2 = 137

and M2 = m2 + �
2
'2
0 = 334.
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Results of numerical calculation

The results are shown in Fig.3.3 and Fig.3.4. One can see that qualitative features of

the �gures are the same with the PMS results in Fig.3.1 and Fig.3.2 3. From Fig.3.3

(A), one can see that the tachyon problem is cured also in this case. Fig.3.3 (B),

Fig.3.4 (A) and Fig.3.4 (B) show the second order phase transition with � = 0:5.

The Gibbs free energy decreases uniformly (Fig.3.4 (C)). Thus, the 2-loop condition

in both PMS and FAC give qualitatively the same results. This is a desired property

and shows the validity of OPT.

3The physical reason for the shoulder structure around T=Tc ' 0:7 in Fig.3.3 (B) and Fig.3.4

(A) is not understood yet.
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(A)

(B)

Figure 3.3: (A): The tree level mass M 2(T ) = m2 + �'0=2 with the left vertical

scale, and the mass parameter m2(T ) with the right vertical scale in the case of

the FAC condition. They are normalized by their values at T = 0. (B): Vacuum

expectation value '0 normalized by '0(T = 0).
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(A)

(B) (C)

Figure 3.4: (A): Second derivative of V (T ) with respect to ' in the FAC condition.

(B): E�ective potential at T = 0 and Tc. (C): Minimum values of the e�ective

potential as a function of T .

3.5 Some remarks

We tested the two conditions (3.28) and (3.37) in OPT to study the phase transition

for ��4 theory. Both conditions give qualitatively the same results and show that

the resummations are successfully done. However, there are three remarks in order.
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FAC with O(�) + O(�2)

One may try a two-loop FAC condition:

��+�2

R (!;~k;T ) =
@2V �+�2(';m2)

@'2

�����
'='0

= 0: (3.39)

instead of (3.37). This condition implies that all the loop corrections vanish at zero

external momentum. In other words, m2 contains all contributions up to two-loop

order. From eq.(3.39), the following equation follows:

@2V 0+�+�2

@'2
=M 2 = m2 +

�

2
'2: (3.40)

At T = Tc, if one assumes a second order phase transition, eq.(3.40) must be zero,

namely m2(= M2) = 0. However, vanishing tree-level mass causes infrared diver-

gence in the loop integrals. Actually, the left hand side (l.h.s) of eq.(3.31) diverges

asM2 ! 0. Thus,M2 = 0 is never satis�ed at T = Tc. From this argument, one can

see the second order phase transition cannot be achieved in the condition eq.(3.40).
4

Full OPT

The full OPT, which includes an optimization of the coupling constant, has a possi-

bility not only of avoiding the above infrared problem but also of going beyond the

mean �eld approximation near Tc. Therefore, it will be very interesting to explore

this direction. The PMS condition for V (';m2; g) in such an approach requires

tree-loop calculation, which can be understood as follows. Suppose one chooses

PMS condition in two-loop level as

@V 0+�+�2(';m2; g)

@m2
= 0;

@V 0+�+�2(';m2; g)

@g
= 0: (3.41)

(As shown in Appendix D, eq.(3.41) implies that eq.(D.19) and eq.(D.23) are equal

to zero.) In the symmetric phase (' = 0), eq.(3.41) can be reduced to eq.(D.26) and

eq.(D.27). From eq.(D.27), Kt = 0 is obtained, which gives a solution for m2(').

(Note that Kt depends on g only throughM
2 = m2+g'2=2.) Then, it is substituted

in eq.(D.26) as;

@V (';m2; g)

@m2

�����
'=0

=
@Kt

@M2
� = 0: (3.42)

4In ref.[23], they use eq.(3.39) as the FAC condition. Thus, their calculation leads to a �rst

order phase transition. See also, ref.[46].
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Since it also does not depend on g, we can't determine g. Thus, eq.(3.41) cannot

give a solution for m2 and g, simultaneously.

On the other hand, in the three-loop calculation, V (';m2; g) has a following

term:

�g @Kt

@M2
(�+

g

2
Kt): (3.43)

This leads to the HTLs (tadpole diagram) in @V=@g in eq.(3.41), and eq.(3.41)

obtains g-dependence even in the symmetric phase. Thus, the full OPT with PMS

condition for tree-loop e�ective potential has a possibility to give a solution for m2

and g simultaneously.

What about FAC condition in full OPT ? Suppose we take the following FAC

condition:

@2V �2(';m2; g)

@'2
= 0;

@4V �2(';m2; g)

@'4
= 0: (3.44)

Unfortunately, we could not �nd a solution which improves the previous results

near Tc in the two-loop level. We have tried all possible variations (V �2(';m2; g)

in eq.(3.44) is replaced by V �+�2(';m2; g), V �(';m2; g) and so on), but improved

solutions were not obtained for the critical exponent. Thus, in the two-loop order,

it seems that it is not possible to improve the previous analysis near T = Tc in the

full OPT with FAC condition. In any case, further study along this line is necessary.

Limiting temperature

For su�ciently high T , there are no solutions in (3.28) and (3.37) for m2(T ), because

the logarithmic terms of the form ln(T=�) dominate. This means the renormalization

point �, which is removed at T = 0, becomes a bad choice as T increases. To

avoid this situation, one may try the renormalization group improvement. Since

the typical \scale" of this system is temperature T , one may choose � as � = T .

In this case, the logarithmic terms are �xed, and no large ln(T=�) appears. This

renormalization group improvement extends the applicability of OPT. However, in

non-asymptotically free theories such as ��4 and O(N) �4-theories, there eventually

appears the Landau pole where the running coupling constant �(�) = �(T ) diverges

at a certain T [47, 48]. Thus, beyond this temperature, the theory is not applicable

any more.
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Chapter 4

The O(4) linear � model

In this chapter, we consider the O(4) linear � model to study the soft mode in

QCD. Applying OPT is shown to be essential for this purpose. The soft mode

has been widely studied in condensed matter physics as a signal of second order

phase transition. From the results of lattice simulations [9] and renormalization

group analysis [44], it is believed that the chiral transition in QCD with massless

two 
avors is of second order. Then, it is important to study such soft mode in

QCD. Unfortunately, the lattice QCD simulations cannot treat the real-time modes

in a straight forward way [11]. Therefore, we have studied the soft mode using an

e�ective theory of QCD [16, 17], which is the O(4) linear � model.

The spectral function of the mesic mode in QCD is de�ned as

��(!;~k;T ) � �
1

�
ImDR

� (!;
~k;T ); (4.1)

where DR
� (!;

~k;T ) is the retarded correlation function

DR
� (!;

~k;T ) = �i
Z
d4xeikx�(t)h[�(t; ~x); �(0;~0)]iT : (4.2)

�(t; ~x) is quark bilinears such as �qq(t; ~x) or �qi
5q(t; ~x) in QCD, and h� � �iT denotes

the thermal expectation value. This spectral functions of mesons at �nite T were

�rst studied in [49] using the Nambu-Jona-Lasinio model as an e�ective theory of

QCD in the large Nc limit. This analysis shows that the mass and the width of

the scalar meson �, which has a large width due to the strong decay � ! 2� at

T = 0, decreases as T increases. Eventually, � shows up as a sharp resonance near

the critical point of the chiral transition. Also, the detectability of such resonance

was studied in the context of the ultra-relativistic heavy ion collisions [50]. Also,

the spectral integrals in QCD at �nite T were studied using the operator product

expansion [51].

In the following, we adopt a toy model \the O(4) linear � model" in the 1-loop

level at �nite T to study ��. This model is written in terms of the pseudo scalar
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meson � and the scalar meson �, and has the common O(4) symmetry with the two


avor QCD. Therefore, we can regard this model as a low energy e�ective theory of

QCD, and it has been used to study the real-time dynamics and critical phenomena

[52, 53] from its tractableness.

4.1 Determination of the parameters at T = 0

The Lagrangian of the O(4) linear � model 1 is

L =
1

2
[(@~�)2 � �2~�2]� �

4!
(~�2)2 + h�

+
1

2
A(@~�)2 � 1

2
B�2~�2 � 1

4!
C(~�2)2 +D�4; (4.3)

with ~� = (�;~�). �2" in which should appear front of � in the dimensional regular-

ization is dropped for simplicity. (� is the renormalization point and " = (4�n)=2.)
h� is an explicit symmetry breaking term which plays a role of the small �nite quark

masses in QCD. The � meson obtains a mass by this term in the symmetry broken

phase. The second line of eq.(4.3) shows counter terms, and their one-loop values

are

A = 0; B =
�

(4�)2
1

�"
; C =

�2

(4�)2
2

�"
; D = � 1

(4�)2
1

�"
; (4.4)

where �" � 2
4�n

� 
 + ln(4�) with 
 being the Euler constant.

When �2 < 0, this model breaks the symmetry asO(4)! O(3). The replacement

� ! � + � leads to the Lagrangian

L =
1

2
[(@�)2 �m2

0��
2] +

1

2
[(@~�)2 �m2

0�~�
2]

+
��

3!
�~�2 +

�

4!
(~�2)2 + (�m2

0�� + h)� (4.5)

+
1

2
A(@~�)2 � 1

2
B�2f(� + �)2 + ~�2g � 1

4!
Cf(� + �)2 + ~�2g2 +D�4;

where � � h�iT and

m2
0� = �2 +

�

2
�2; m2

0� = �2 +
�

6
�2: (4.6)

1This is also called the SUL(2) � SUR(2) linear � model. It is invariant under the SU(2) and

axial SU(2) transformations

�
� ! �

~� ! ~� + ~�� ~�
;

(
� ! � + ~� � ~�
~� ! ~� + ~��

:

This is consistent with the chiral transformation in eq.(1.1), if one assume � � �qq and ~� � �q~�
2
i
5q,

where ~� is the Pauli matrix.
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m�peak (MeV) �2 (MeV2) � h (MeV3) � (MeV) � (MeV)

550 �2842 73:0 1233 255 260

750 �3752 122 1243 325 657

1000 �4692 194 1253 401 995

Table 4.1: Vacuum parameters corresponding to m�peak = 550, 750, 1000 MeV

� is determined by the stationary condition of the e�ective potential;

@V (~'2)

@�

�����
�=�;~�=0

= 0: (4.7)

To determine the renormalized couplings �2, �, h and the renormalization point

� at T = 0, we adopt the following physical conditions:

1. Physical mass condition for the pion;

D�1
� (k2 = m2

�) = 0: (4.8)

Here, we take m� = 140 MeV, and D� is the Feynman propagator for the pion

in the one-loop order.

2. Partially conserved axial-vector current (PCAC) relation in one-loop;

f�m
2
� = h

q
Z�: (4.9)

Here f� = 93 MeV and Z� is the �nite wave function renormalization constant

for the pion on its mass-shell.

3. The peak position of the spectral function in the � channel

@��(k
2)

@k2

�����
k2=m2

�peak

= 0: (4.10)

The m�peak is taken to be 550 MeV, 750 MeV or 1000 MeV (see below).

4. On-shell condition for the pion:

m0� = m� = 140MeV; (4.11)

where m0� is the tree-level mass de�ned in (4.6) and m� is the physical pion

mass.
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Recently, the � meson was reported in the Particle Data Table [54] as

p
spole = (400� 1200)� i(300 � 500);

mBW = 400� 1200; �BW = 600� 1000; (4.12)

where spole is the pole position in the complex s-plane and mBW (�BW ) is Breit-

Wigner mass (width). Since the � meson has a large width, we de�ne the physical

mass as its peak position of the spectral function. The mass of the � meson deter-

mined from eq.(4.10) is chosen so that the value covers the range of experimental

ambiguity. Instead of eq.(4.10), one may take the �-� scattering phase shift [52]

to determine the parameters. Recently, the �-� scattering phase shift has been re-

analyzed in [55] and we can use these results, and our choice (4.10) is consistent

with these results. However, our main conclusions do not receive qualitative change

by the di�erent choice of the � meson mass.

The condition m0� = m� in (4.11) is crucial for our purpose. Generally speaking,

the condition to determine the renormalization point � is optional [56]. However,

since we are interesting in the spectral function, m0� = m� is the most relevant

condition. This is because the spectral function in the � channel starts from a

continuum threshold which is determined by the tree-level pion massm0� . Therefore,

we obtain the physical threshold at
p
sth = 2m� = 280 MeV by the condition of

(4.11) even in the one-loop level.

Resultant parameters are summarized in Table 4.1. In Fig.4.1 shown is the

spectral functions �� and �� de�ned in (4.1) at T = 0 with s � !2 � k2. �� has a

one particle peak at 140 MeV and a continuum. This continuum spectrum is made

by multi-particles states (� + � state) which starts from
p
sth = m0� +m0� in the

one-loop approximation 2. In the � channel, �� does not have one particle pole, and

shows a broad peak starting from the threshold 2m0� = 280 MeV. We de�ne the

peak position of this spectrum as the physical �-meson mass. Since the � meson has

a large phase space for decaying into two pions due to the strong � � 2� coupling,

the width becomes very large at T = 0. The half width of the peak is 260 MeV, 657

MeV and 995 MeV for m�peak = 550 MeV, 750 MeV and 1000 MeV, respectively.

This indicates that the � pole is located far from the real axis on the complex s

plane.

2In the two-loop level, the lowest threshold becomes
p
sth = 3m0� (< m0�)
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( MeV)

(A)∞

(a)

(b)
(c)

(a)

(b)

(c)

(B)

(a) : mσ =  550 MeV

(b) : mσ =  750 MeV

(c) : mσ = 1000 MeV

( MeV)

Figure 4.1: Spectral functions at T = 0 in the � channel (A) and in the � channel

(B) for m�peak = 550 MeV, 750 MeV and 1000 MeV.
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4.2 Application of OPT

Now, let us apply OPT to the O(4) linear � model. In this application, we consider

only a mass optimization for simplicity. Similar to the case of ��4 theory, HTLs

are only tadpole type diagrams in this model. Therefore, a resummation to cure

the various problems in the �nite T perturbation theory can be carried out in the

one-loop FAC condition for the self-energy of the pion.

According to Step 2 in Sec. 2.2.2, we rewrite eq.(4.3) in O(�) as

L =
1

2
[(@~�)2 �m2~�2]� �

4!
(~�2)2 +

1

2
�~�2 + h�

�1

2
Bm2~�2 � 1

4!
C(~�2)2 +Dm4: (4.13)

Since � is already O(�), B� and 2Dm2� starts from O(�2), and D�2 start from

O(�3). Therefore, these terms can be neglected in the one loop approximation.

The thermal e�ective potential V (~';m2) is obtained by the similar calculation

with that in ��4 theory in the previous chapter;

V (~';m2) =
1

2
�2'2 +

�

4!
(~'2)2 � h�

+
1

64�2

"
m4

0r ln

����� m
2
0r

�2e3=2

�����+ 3m4
0c ln

����� m
4
0c

�2e3=2

�����
#

(4.14)

+T

Z
d3k

(2�)2

h
ln(1� e�Er=T ) + 3 ln(1� e�Ec=T )

i
;

where,

m2
0r = m2 +

�

2
(~'2)2; m2

0c = m2 +
�

6
(~'2)2; (4.15)

and Ei �
q
~k2 +m2

0i for i = r; c. The �rst term 1
2
�2'2 of the r.h.s in eq.(4.14) is the

sum of 1
2
m2'2 (which is O(�0)) and �1

2
�'2 = �1

2
(m2 � �2)'2 (which is O(�)). The

stationary point � is determined by

@V (~'2;m2)

@�

�����
�=�;~�=0

= 0 (4.16)

as well as eq.(4.7). As we have mentioned before, the derivative with respect to �

does not act on m2. When � 6= 0, the tree-level masses become

m2
0� = m2 +

�

6
�2; m2

0� = m2 +
�

2
�2: (4.17)

�2 is replaced by m2 which has extra temperature dependence through the gap-

equation obtained in Sec.4.2.1.
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In the �nite T perturbation theory, a general form of the retarded propagator

can be written as

iDR
� (!;

~k;T ) =
i

k2 �m2
0� � �R

� (!;
~k; T )

; (4.18)

where k2 = !2 � k2. From eq.(4.1), the spectral function is written as

��(!;~k; T ) = � 1

�

Im�R
�

(k2 �m2
0� � Re�R

� )
2 + (Im�R

� )
2
: (4.19)

In the real time formalism, the retarded self-energy �R
� is calculated as follows

[38].

1. Calculate the 11-component of the 2 � 2 self-energy: �ab
� (!;

~k) (a; b = 1; 2).

2. The 11-component of the self-energy is related to the retarded self-energy

through the following equations:

Re�R
� (!;

~k;T ) = Ref�11
� (!;

~k) + �11
� (!;

~k;T )g;

Im�R
� (!;

~k;T ) = tanh(
!

2T
)Imf�11

� (!;
~k) + �11

� (!;
~k;T )g: (4.20)

i(m
2 − µ2

)
λC
2

ξ− i 2−iBm2

(e) (f) (g)

−iΣπ
11

(ω,k) −iΣπ
11

(ω, k;T )

(h) (i) (j)

i(m
2 − µ2

) λC
6

ξ− i 2−iBm2

(k) (l) (m)

−iΣσ
11

(ω,k) −iΣσ
11

(ω, k;T )

(a) (b) (c) (d)

Figure 4.2: One-loop self-energy �11 for � and � in OPT at �nite T .

Here we de�ned a T -independent 11-component self-energy �11
� (!;

~k) and an explicit

T -dependent 11 self-energy �11
� (!;

~k;T ). The term \explicit" means that it has the
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Bose-Einstein distribution functions. Note that �11
� (!;

~k) depends implicitly on T

through m2(T ) and �(T ).

Fig.4.2 shows one-loop diagrams in OPT for �11
� . Their explicit calculations

are given in Appendix E. One can easily check that the NG theorem discussed in

Sec.2.4 is satis�ed by comparing eq.(4.16) and the inverse pion propagator at zero

momentum [DR
� (0;~0;T )]

�1.

4.2.1 FAC condition

As a condition for optimization, we take a FAC condition for the self-energy of

the pion in the one-loop level. Since the PMS condition for the thermal e�ective

potential requires two-loop calculations to resum the HTLs as explained in the

previous chapter, an economical way to resum the HTLs is the FAC condition.

However, it must be noted that the calculation in two-loop order is necessary in

order to obtain the right second order phase transition in the chiral limit. As will

be shown in Sec.4.2.2, the phase transition does not occur, namely cross over, when

the pion mass takes the realistic value: m� = 140 MeV. Therefore, in the real world

case, the FAC condition in the one-loop order may still be valid. (See, Sec.4.2.3.)

Since we are interested in the spectral functions, a possible FAC condition is

�R
� (! = m�;~0; T ) = 0: (4.21)

This condition gives the correct threshold for the � channel because it is determined

by the tree-level mass m0�. However, eq.(4.21) does not always have a real solution

for m2. At �nite T , the pion obtains a width due to the Landau damping process;

� + �thermal ! �: (4.22)

Here, �thermal is a background thermal � meson. Therefore, when the kinematics

are satis�ed in the above process, eq.(4.21) has an imaginary part. For static pion,

the energy-momentum conservation law reads

�(!;~0) + �thermal(E�;~k) ! �(E�;~k);

! +

q
~k2 +m2

0� =

q
~k2 +m2

0�: (4.23)

From eq.(4.23) and k2 � 0 constraint, we obtain the following region where Landau

damping occurs;

0 � !2 � (m0� �m0�)
2; (m0� +m0�)

2 � !2: (4.24)

Therefore, the lowest pion pole has an imaginary part when m�(= !)+m0� � m0�.

Note that it is purely the thermal background e�ect.
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To avoid the problem of imaginary m2, one may try another condition,

�R
� (! = 0;~0; T ) = 0: (4.25)

This condition is investigated in [23] in the two-loop level (L = n = 2) for ��4

theory above Tc. Since Im�R
� (! = 0;~0;T ) vanishes identically, a real solution for

m2 exists. Unfortunately, eq.(4.25) is incompatible with the condition eq.(4.11) at

T = 0 for �nding the optimal renormalization point �:

�R
� (! = m0�;~0;T = 0) = 0: (4.26)

Thus, we adopt a hybrid condition

�11
� (! = m0�;~0) + �11

� (! = 0;~0;T ) = 0: (4.27)

This condition is consistent with eq.(4.26). Also, there is no imaginary part from

the Landau damping.

From Appendix E, the explicit form of the self-energy for pion can be obtained

as

�11
� (! = m0�;~0) =

�

6

�
5~I (1)� + ~I(1)� � i

2

3
��2 ~I (3)

�
!=m0�

� (m2 � �2); (4.28)

�11
� (! = 0;~0;T ) =

�

6

�
5F (1)

� + F (1)
� � i

2

3
��2 (F (4) + F (5))

�
!=0

(4.29)

The function ~I is de�ned as the �nite part of I, and the de�nitions of I and F are

found in Appendix E.

Since eq.(4.29) vanishes by de�nition at T = 0, eq.(4.27) must reduce to eq.(4.26).

There is only one solution which satis�es this condition:

m2(T = 0) = �2: (4.30)

Thus, at T = 0, OPT with the FAC condition (4.27) is equivalent to the ordinary

loop expansion.

At high T , the approximate O(4) symmetry of eq.(4.13) is restored, and �(T )

approaches zero. In that phase, the gap-equation eq.(4.27) reduces to

m2 = �2 + �

"Z
d3k

(2�)3
nB(E(m))

E(m)
+

m2

16�2
ln
m2

e�2

#
; (4.31)

with E(m) =

q
m2 + ~k2. When �M2 ' �m2 � 1, the thermal part (the �rst term

in the large parenthesis) dominates and eq.(4.31) reduces to

m2(T ) = �2 +
�

12
T 2: (4.32)
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This is nothing but the Debye screening mass in the O(4) scalar model, and is thus

desired at high T . Note also that eq.(4.21) and eq.(4.25) have the same solution at

high T . However, in this model, the coupling � is not so small (see, Table 4.1), and

the condition �m2 � 1 is not realized as a solution of eq.(4.27) at high T . Thus,

we needs to solve eq.(4.27) numerically which will be shown in Sec.4.2.2.

For intermediate values of T , namely � � T , there is no reason that the cactus

diagrams Fig.4.2 (h; i) dominate. Fig.4.2 (h; i) are roughly of O(�T 2) and Fig.4.2 (j)

is of O(�2�2T=M). In order for � �M , Fig.4.2 (j) may be larger than Fig.4.2 (h; i).

Thus, we should not neglect the contribution like Fig.4.2 (j) for the gap-equation.

OPT with the FAC condition (4.27) can sum not only the cactus diagrams Fig.4.2

(h; i) but also the diagram Fig.4.2 (j).

Similar to the results in the previous chapter, there is no solution of eq.(4.27)

at su�ciently high T with a �xed �. The limiting temperature is Tl = 500; 430; 420

MeV for m�peak(T = 0) = 500; 750; 1000 MeV, respectively. Also, it can be show

that this di�culty is cured by the renormalization group improvement. However,

the Landau pole exists in any case, and the running coupling �(� = T ) diverges at

T = 440; 450; 490 MeV for m�peak(T = 0) = 500; 750; 1000 MeV, respectively. Thus,

one again encounters an upper bound of T which limits the validity of the one loop

analysis in OPT.

4.2.2 Numerical Results

Temperature dependence of the mass parameters and the condensate are shown

in Fig.4.3 and Fig.4.4. Fig.4.3 (A) shows the tree-level masses eq.(4.17) and the

arti�cial mass parameter m2(T ) for m�peak(T = 0) = 550 MeV. The tree-level

masses m2
0�(T ) don't show tachyonic behavior and approaches to m2(T ) (because

�(T ) ! 0). Therefore, tachyon problem is cured by OPT with the FAC condition

eq.(4.27).

Fig.4.3 (B) shows the chiral condensate �(T ), which is de�ned by eq.(4.16), for

m�(T = 0) = 140 MeV and m�(T = 0) = 30 MeV with m�peak = 550 MeV.

�(T ) decreases uniformly as T increases, which is a behavior expected for the chiral

condensate away from the chiral limit. As h ! 0, namely approaching the chiral

limit, �(T ) starts to have sudden change at a certain temperature. Below a critical

value of h, �(T ) develops multiple solutions for given T , which could be an indication

of a �rst order phase transition. This will be discussed in the next subsection.

m�(T = 0) = 30 MeV corresponds to the case just below the critical value of

h which is shown by the dashed line in Fig.4.3 (B) for comparison. By using the

Gell-Mann-Oakes-Renner relation [57], we can translate the pion mass to the quark
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mass. The critical mass of the quark mcrit:
q corresponding to the critical h reads

mcrit:
q

m
phys:
q

=

 
mcrit:

�

m
phys:
�

!2

= 0:08; (4.33)

where mphys:
q is the physical light-quark mass to mphys:

� = 140 MeV. The critical

temperature Tc, which is de�ned as a point in which the derivative of �(T ) with

respect to T diverges, is Tc ' 170 MeV for mcrit:
q =mphys:

q = 0:08.

Fig.4.4 (A) shows m2
0�(T ) for m�peak(T = 0) = 750; 1000 MeV with m� = 140

MeV. The qualitative behaviors are similar to Fig.4.3 (A). Also, Fig.4.4 (B) shows

the chiral condensate �(T ) for m�(T = 0) = 750; 1000 MeV. A qualitative di�erence

from Fig.4.4 (A) and (B) is not observed. Therefore, our results are insensitive to

the choice of the � meson mass as far as m�(T = 0) = 140 MeV is imposed.
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Figure 4.3: (A) Masses in the tree-level m0�(T ) and m0�(T ) shown with left vertical

scale, and the mass parameter m2(T ) with the right vertical scale. (B) �(T ) for

m�(T = 0) = 140 MeV and 30 MeV with m�peak(T = 0) = 550 MeV.
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Figure 4.4: (A) Masses in the tree-level m0�(T ) and m0�(T ). (B) �(T ) for

m�peak(T = 0) = 750MeV and 1000 MeV with m� = 140 MeV.
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4.2.3 Chiral limit

As we mentioned before, FAC conditions in the one-loop level lead to incorrect result

for the order of the phase transition in O(N) scalar model, which has been known

for a long time [18]. As is shown in the �rst reference of [18], the �rst order nature

is an artifact of the mean-�eld analysis in the one-loop level. In this section, we will

give further analysis on this point.

In the chiral limit (h = 0), the FAC condition (4.27) for m2(T ) can be solved

analytically in the broken phase. From the NG-theorem, the pion channel must have

zero-mass pole (! = 0;~k = 0;T ). Therefore,

m2
0� + �R

� (! = 0;~0; T ) = 0: (4.34)

This equation can be also obtained by the stationary condition for �(T ):

@V chiral limit(~'2)

@�

�����
�=�;~�=0

= �[m2
0� + �R

� (0;~0;T )] = 0: (4.35)

For �(T ) 6= 0, a simultaneous solution of eq.(4.27) and eq.(4.35) reads

m2
0� = �R

� (0;~0; T ) = 0: (4.36)

Thus, we obtain the following solution:

m2 = ��
6
�2; m2

0� = 0 and m2
0� =

�

3
�2: (4.37)

By substituting this into eq.(4.35), one obtains

�

"
�2 +

�

6
�2 +

�2

96�2
�2 ln

����� ��
2

3�2e

�����+ �

2

Z
d3k

(2�)3

 
nB(E�)

E�

+
nB(E�)

E�

!#
= 0; (4.38)

where E� =
q
~k2 + ��2=3 and E� = j~kj.

The solid line in Fig.4.5 shows the chiral condensate in the chiral limit (the

numerical solution of eq.(4.38)), and the dashed line indicates the case for m� = 10

MeV. For T1 = 126MeV < T < T2 = 153MeV, �(T ) has multiple solutions for given

T , which is usually understand as a signal of the �rst order phase transition. T1 and

the behavior of �(T ) for T � T1 can be solved analytically by expanding (4.38) in

terms of � near � = 0, which leads to

T1 =

s
12

�
j�j; �(T > T1) '

4�p
3�

(T � T1): (4.39)

One can, however, show that this is not a real �rst order phase transition. In

fact, the Gibbes free energy V (' = �;m2;T ) near the chiral limit, which is a ther-

modynamic quantity, has a discontinuity at T = T2 (see, Fig.4.6). Since the free
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energy must be a continuous function of T , this fact can be taken as a signal that

OPT with the FAC condition in the one-loop level breaks down near the chiral limit.

The real world with m�(T = 0) = 140 MeV does not su�er from this di�culty, thus

we can use the FAC condition in the one-loop level for calculating physical processes

as far as the gap-equation has only one solution for given T .

mπ =   0 MeV

mπ = 10  MeV

ξ (
T

) 
 (

M
eV

)

T (MeV)

Figure 4.5: �(T ) for m�peak(T = 0) = 550MeV with m� = 0 MeV and m� = 10

MeV.
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Figure 4.6: Minimum value of the e�ective potential as a function of T for m�(T =

0) = 140 MeV and 0 MeV (chiral limit) with m�peak(T = 0) = 550 MeV.

4.3 Spectral functions

The spectral functions ��;�(!;~0;T ) for T = 50; 120; 145 MeV with m�peak(T = 0) =

550 MeV are shown in Fig.4.7 (A) and (B).

As we have mentioned before, a continuum develops for 0 < ! < m0� � m0�

in the �-channel. Although the pion obtains a width due to the induced decay

� + �thermal ! �, the pole structure is still distinct. The width is about 50 MeV at

T = 145 MeV. It is the property of the NG-boson that the peak position does not

change so much, and this is consistent with other calculations based on the low T

expansion [58].

In the �-channel, the peak position moves to the lower mass direction as T

increases. This is because the partial restoration of chiral symmetry occurs and the

�-meson mass begins to be degenerate with the pion mass. When T ' 145 MeV, the

�-spectral function just above the continuum threshold becomes very sharp. This

can be understood as follows. Let us de�ne !real as solutions of

Re[DR
� (!real;~0)]

�1 = !2
real �m2

0� � Re�R
� (!real;~0;T ) = 0: (4.40)
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!real controls the peak position of ��, because l.h.s. of eq.(4.40) appears in the

denominator of (4.19). Note that the imaginary part of [DR
� (!;~0)]

�1 is proportional

to the phase space factor:

Im�R
� (!;~0;T ) / �(! � 2m0�)

s
1� 4m2

0�

!2
; (4.41)

and it is a smooth function of !. In Fig.4.7 (C), Re[DR
� (!;~0)]

�1 for T = 50; 120; 145

is shown. For T < 145 MeV, Re[DR
� (!;~0)]

�1 has only one zero for given T , which

roughly corresponds to the position of the broad peak in Fig.4.7 (B). On the other

hand, when T = 145 MeV, eq.(4.40) has two solutions. Higher one is from the

original \e�ective" mass and lower one is from the cusp in lower ! region. This

cusp is located accurately at ! = 2m0� which is the continuum threshold of the �-

spectral function. The cusp originates from the fourth diagram of the � self-energy

in Fig.4.2. This cusp makes the threshold spike in the spectral function.

For T > 145 MeV, this cusp creates a pole without an imaginary part, which is

understood as an one-particle pole (see, Fig.4.8). Thus, since the threshold enhance-

ment occurs just before creating the one-particle peak, it is understood as the state

in which the threshold coincides with the one-particle peak. However, it occurs at

relatively low T . In fact, this one-particle pole is created not from the larger !real

which creates the broad peak at T = 0 but from the cusp structure. This is because

this phenomena is caused by a combined e�ect of the partial restoration of chiral

symmetry (decreasing m0�) and the strong coupling of � � 2� (cusp structure).

In the �-channel, similar threshold enhancement occurs just below ! = m0��m0�

for T ' 165 MeV. Since pion obtains a width at �nite T , the same mechanism is

applied. For T > 165 MeV, the pion becomes again an one-particle pole in this

approximation.

Fig.4.8 (A) shows the spectral functions of � and � at T = 180 MeV. � and �

have simple one-particle poles, which is expected in previous analyses [49, 51]. This

is because the decay � ! 2� and induced decay � + �thermal ! � are kinematically

forbidden. These poles gradually merge as T increases. The real parts of � and �

propagators are given in Fig.4.8 (B) for the comparison with Fig.4.7 (C).

For su�ciently high T , the system is expected to be a decon�nement phase in

QCD. In this phase, the decay (�; �) ! q�q should occur. However, in the linear �

model presented in the section, this sort of decay is not included. In the Nambu-

Jona-Lasinio model where such coupling is allowed above Tc, � and � generally

obtain large with for T � Tc. Nevertheless, it has been shown that such decays are

not important near T � Tc and stable collective modes exist for T � Tc [16].
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Figure 4.7: Spectral functions in the � channel (A) and in the � channel (B) for T =

50; 120; 145 MeV with m�peak(T = 0) = 550 MeV. The real part of (DR
� (!;~0;T ))

�1

as a function of ! is shown in (C).
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Figure 4.8: (A) Spectral functions in the � and � channels at T = 180 MeV. (B)
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� (!;~0;T ]

�1 and [DR
� (!;~0;T )]

�1 as a function of ! at T = 180

MeV with m�peak(T = 0) = 550 MeV.
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4.4 Diphoton emission rate through � ! 2


One of the main purposes of RHIC and LHC [3] is to observe decon�nement and

the restoration of chiral symmetry. Many signatures have been proposed to look for

the experimental evidence of this phenomena [59]. One of the candidates of such

signature is the emission of leptons and photons from hot plasma [60]. Since leptons

and photons interact only weakly with matter, it is possible to carry information of

the hot plasma. In this section, we propose a signature of the chiral restoration in

the diphoton emission from the decay � ! 2
 [61].

4.4.1 Formulation of diphoton emission rate

We �rst derive a formula of diphoton emission rate.

A S-matrix element of the � ! 2
 process can be written as

Sfi = ig�

hf + 2
j
Z
d4xF̂��(x)F̂

��(x)�̂(x)jii; (4.42)

where g�

 is the �

 coupling which will be given later. jf i (jii) is the �nial (initial)
state of a hot hadronic plasma, and

F̂�� = @�Â� � @�Â�; (4.43)

Â� =

Z
d3kq

2!(2�)3
"�[â(~k)e

�ikx + ây(~k)eikx]: (4.44)

Here, "� is polarization vector, â(~k) and ây(~k) are the annihilation and creation

operators for the photon, which satisfy

[â(~k); ây(~k0)] = �3(~k � ~k0);

[â(~k); â(~k0)] = [ây(~k); ây(~k0)] = 0; (4.45)

with k = (! = j~kj; ~k). Using �̂(x) = eipx�̂(0)e�ipx and j
(k) >=
q
2!(2�)3ây(~k)j0 >,

Sfi reads

Sfi = �4ig�

(2�)4�4(k1 + k2 + Pf � Pi)

�f(k1 � k2)("1 � "2)� (k1 � "2)(k2 � "1)ghf j�̂(0)jii; (4.46)

where, k1 and k2 are the four-momenta of photons and Pi (Pf ) is a total four-

momentum of the initial (�nial) system. The diphoton emission rate N� from the

�-meson in the hot plasma is given by 3

dN�

d4x
=

X
i;f

e��Ei
jSfij2
TV

d3k1

2!1(2�)3
d3k2

2!2(2�)3

3Since we use the invariant normalization, dN� = Fd�(� ! 2
;T ), where F = 2m� is the 
ux

and d� is the decay rate for a � into 2
 at �nite T .
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=
X
i;f

e��Ei
16jg�

 j2
4!1!2

f(k1 � k2)("1 � "2)� (k1 � "2)(k2 � "1)g2

�(2�)4�4(k1 + k2 + Pf � Pi)jhf j�̂(0)jiij2
d3k1

(2�)3
d3k2

(2�)3
; (4.47)

where TV is the space-time volume. Using the de�nition of the spectral at �nite T ,

we obtain

�� = (2�)3
X
n;m

e��En

Z
jhnj�̂jmij2(e��Emn � 1)�4(P + Pmn) (4.48)

= � 1

�
ImDR

� (4.49)

After summing up the polarization (
P
"
�
1"

�
1 = �g��), we get

!1!2

dN�

d3k1d3k2d4x

�����
k1+k2=0

=
2jg�

j2
(2�)5

!4��(!; ~q = 0;T )

e�! � 1
; (4.50)

where Q = (! = !1+!2; ~q = ~k1+~k2) is diphoton total four-momentum. To translate

the variables from k1 and k2 into Q, we integrate eq.(4.50) in terms of k1 and k2:

dN�

d4x
=

Z
d3k1d

3k2

!1!2

!1!2

dN�

d3k1d3k2

=
Z
d4q�4(q � k1 � k2)

Z
d3k1d

3k2

!1!2

!1!2

dN�

d3k1d3k2

=

Z
d4q

2

(2�)4
jg�

 j2!4��(!; ~q = 0;T )

e!=T � 1
: (4.51)

Dividing this by 2 originating from the bose statistics, we get a �nal expression of the

kinematics diphoton yield per unit space-time volume in back to back kinematics:

dN�

d4xd4q
=

1

(2�)4
jg�

j2!4��(!; ~q = 0;T )

e!=T � 1
: (4.52)

Diphoton rate from �0(!; ~q) ! 
(k1) + 
(k2) is obtained by replacing \�" of

eq.(4.52) with \�". The S-matrix element of this process is given by

Sfi = ig�0

hf + 2
j
Z
d4xF�� ~F

���0jii; (4.53)

where g�0

 is the coupling constant of �
0

 vertex including form factor and ~F �� =

"����F��=2 ("���� is totally antisymmetric tensor). The following calculations are

similarly done.
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4.4.2 Estimation of g�

 and g�0



In order to estimate g�

 , we consider the interaction of charged pions with U(1)

gauge �eld,

1
2
(@��

a)2 ! 1
2
(D��

a)2; (4.54)

D� = @� + ie3A�; with e3 = e

0
B@

1

0

�1

1
CA : (4.55)

In this extension, the � meson can decay into diphoton through the pion-loop. Here,

another contributions, which come from constituent-quark loops, are also included

in our calculation. The former corresponds to a long distant contribution, and the

later is a short distant contribution [62]. Thus, we de�ne the g�

 as

g�

 � g�!2�!

 + g�!q�q!

: (4.56)

In order to consider �0 ! 

 process simultaneously in a consistent way, we use the

chiral quark model with U(1) gauge interaction [16] to estimate it:

LCQM = �qiD=q� g�q(� + i
5~� � ~�)q � V (~�); (4.57)

where iD� = i@�� e�A� with e� =
1
2
e(�3+

1
3
), �qq = �uu+ �dd, V (~�) = 1

2
�2~�2+ �

4!
(~�2)2

(~� = (�;~�)). After the dynamical breaking of chiral symmetry, � is replaced as

� ! � + f�:

LCQM = �q(iD=�mq)q � g�q(� + i
5~� � ~�)q � V (� + f�; ~�); (4.58)

with mq = gf�. Here, we use mq = 300 MeV, which is a consistent-quark mass,

and f� = 93 MeV which is pion decay constant. The contribution to g�!2�!

 and

g�!q�q!

 are shown in Fig.4.9 4.

The result of the calculation of Fig.4.9 (a), (b) and (c) is

g�!2�!

 =
���

12�

8<
: 1

q2
� 4m2

0�

(q2)2

 
sin�1

p
q2

2m0�

!2
9=
; ; (4.59)

where q� = (!; ~q) is the total four-momentum of diphoton and � is the �ne structure

constant 1=137. Detail calculations are given in Appendix F. Fig.4.9 (d) and (e)

show the consistent-quark-loop contribution, and it reads

g�!q�q!

 = �
5m2

q�

3�f�

8<
: 1

q2
+
q2 � 4m2

q

(q2)2

 
sin�1

p
q2

2mq

!2
9=
; : (4.60)

4Our calculation for the coupling constants is performed at T = 0.
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The contribution to g�0

 is only from quark-loops [63], which is shown in Fig.4.9

(d) and (e), and the result is

g�0

 = �
�m2

q

�q2f�

 
sin�1

p
q2

2mq

!2

: (4.61)

Detail calculations are also summarized in Appendix F. Note that g�!2�!

 becomes

complex when
p
q2 > 2m0�, and g�!q�q!

 and g�0

 are complex when

p
q2 > 2mq.

Thus, the following replacement should be done in those cases;

sin�1

p
q2

2m
! �

2
+ i cosh�1

p
q2

2m
for

q
q2 > 2m: (4.62)

Results of g�

 and g�0

 are shown in Fig.4.10. Peaks of g�

 and g�0

 are

located at 2m0� and 2mq, respectively.

(a) (b) (c)

( )

(d) (e)

( )

Figure 4.9: Various contribution to g�

 . (a), (b) and (c) are the e�ects from pion-

loop, and (d) and (e) are from the quark-loop. g�

 has only quark-loop contributions

from (d) and (e).
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ω  (MeV)

Figure 4.10: The e�ective coupling g�

 and g�

 as a function of !.

4.4.3 Main background for diphoton

The main background to the � ! 2
 process is the pair annihilation of the thermal

pions;

�+
thermal(p1) + ��thermal(p2)! 
(k1) + 
(k2): (4.63)

This contributions are sketched in Fig.4.11.

The �+�� coss-section d� can be written as

d� =
jMj2
F

dQ; (4.64)

where M is an invariant amplitude, F is the 
ax and

dQ = (2�)4�4(p1 + p2 � k1 � k2)
d3k1

(2�)32k01

d3k2

(2�)32k02
: (4.65)

Here, ps denote the thermal pion momenta and ks are the photon momenta. The

diphoton emission rate reads

dN

d4x
=
Z

nB(E1)

(2�)32E1

d3p1
nB(E2)

(2�)32E2

d3p2F
d�

d4x
: (4.66)

The �nal form of the background diphoton rate with back to back kinematics is

given by

dN

d4xd4q
=

2�2

(2�)4
n2B(

!

2
)D

(
1 +

2m2
�

!2
+
2m2

�(!
2 � 2m2

�)

!4D
ln
1 �D

1 +D

)
; (4.67)
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with

D =

s
1� 4m2

�

!2
: (4.68)

Derivation of eq.(4.67) is given in Appendix F.

Figure 4.11: The main background to the � ! 2
 process. �+ and �� are the

thermal pions which obey the Bose-Einstein distribution.

4.4.4 Result

All of the above contributions to the diphoton emission rate at T = 145 MeV are

shown in Fig.4.12. The threshold enhancement through � ! 2
 process occurs in

a narrow region of the diphoton invariant mass and in a narrow region of T . Inde-

pendent analysis of this phenomena using NJL-model shows a similar enhancement

from � ! 2
 [64]. It is an open problem whether this enhancement can be seen

in the future RHIC experiment. Also, similar enhancement may be seen at �nite

density [65]. This is closely related to the recent CHAOS data on �+�� detection

in the pion-nucleus reactions.
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π0 → 2γ

π+ + π− → 2γ

σ → 2γ T=145 MeV

ω  (MeV)

Figure 4.12: Diphoton yield per unit space-time volume in the back to back kine-

matics at T=145 MeV for m�peak(T = 0) = 550 MeV.
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Chapter 5

Summary

In this thesis, we have developed an optimized perturbation theory (OPT) at �nite

temperature (T ) in the O(N ) ��4 theory. The naive loop expansion for theories

with spontaneous symmetry breaking is known to breakdown at low T (tachyon pole

problem) and high T (hard thermal loops (HTLs) problem). On the other hand, we

have shown that OPT does not su�er from such di�culties. This is because that

OPT can resum the higher order terms of the naive perturbation in a consistent

way by imposing appropriate conditions such as the principle of minimal sensitivity

(PMS) or the fastest apparent convergence (FAC).

In chapter 2, we have explicitly shown that OPT has two advantages over other

self-consistent resummation methods.

The �rst advantage is that one can carry out the renormalization of ultraviolet

divergences systematically in any given order of OPT. Because the renormalization

is performed before imposing the gap-equation, the �nite gap-equation is obtained.

Thus, the renormalization and the resummation can be done separately in OPT,

while they are mixed in other self-consistent approaches.

The second advantage is that the Nambe-Goldstone (NG) theorem at �nite T is

automatically satis�ed in OPT. Since OPT preserves the symmetry of the e�ective

potential in each orders of the expansion, the NG theorem follows automatically.

This is in contrast to the other self-consistent methods in which the symmetry of

the e�ective potential is not manifest in their approximation.

In chapter 3, we applied OPT to ��4 theory to examine whether it can be describe

the �nite T phase transition correctly. Carrying out the two-loop computation of

the e�ective potential in OPT, we have found that both PMS and FAC give the

correct second order transition. The critical exponent �, however, is found to take

the mean-�eld value at this level. The full OPT, where both the mass and the

coupling constant are shifted, may or may not improve the result. This remains as

an open problem.
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In chapter 4, we have applied OPT to the O(4) linear � model which is supposed

to be an e�ective theory of QCD. The spectral functions of the pion (NG-boson) and

the �-meson (
uctuations of the chiral order parameter) are studied using the FAC

condition for the pion self-energy in the one-loop order. Thanks to OPT, problems

related to the naive loop-expansion at �nite T are cured. Also, the spectral function

in the �-channel obtains correct threshold at the twice of the pion mass. We found

that the spectral function of �-channel has a strong enhancement near the two-pion

threshold at certain T , although the �-spectrum has only a broad structure at T = 0.

This is due to a combined e�ect of the partial restoration of the chiral symmetry

and the strong coupling of ���.

To study its phenomenological consequence, we examine the diphoton decay � !
2
 in the hot plasma. The threshold enhancement over the �+

thermal + ��thermal ! 2


background can be seen in a relatively small region of T and the invariant mass

distribution of the diphoton. Observation of such peak structure in future RHIC ex-

periment is an interesting but challenging problem. Similar threshold enhancement

with the same physical origin at �nite baryon density has been recently studied both

theoretically and experimentally.

Application of the idea of OPT to the gauge theories at �nite T will be also an

interesting future problem. However, to go beyond the hard thermal loops (HTLs)

resummation scheme, one must solve two problems.

� Since in�nite number of N-point vertex functions (N-gauge boson vertices and

(N-2)-gauge boson 2-fermion vertices) become HTLs in gauge theories and

a naive mass term breaks the gauge symmetry, one must take into account

in�nite number of e�ective vertices like HTLs resummation scheme. However,

this in�nite number vertices may cause a di�culty of the renormalization.

� It is known that HTLs resummation scheme breaks down at high T due to the

so called magnetic mass problem [66].

Therefore, one may need further generalization of OPT in gauge theories.
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Appendix A

Feynman rules for ��4 theory in

real time formalism

Figure A.1: Feynman rules for ��4 theory. The index 1 (2) corresponds to the type

1 (2) vertex.
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Figure A.2: Additional Feynman rules for ��4 theory in OPT. The index 1 (2)

corresponds to the type 1 (2) vertex.
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Appendix B

Useful formulas

In this appendix, we summarize formulas which are used in this thesis. Notations

for dimensional regularization are the following:

" =
4� n

2
; g��g

�� = n; (B.1)

where n is a space-time dimension. Formulas of momentum integrals are

Z
dnk

(2�)n
ln(k2 � 2kp�m2) = �i�("� 2)

(4�)2�"
(p2 +m2)2�"; (B.2)

Z
dnk

(2�)n
1

(k2 � 2kp�m2)�
= i

�("+ � � 2)

(4�)2�"
(�1)�

(p2 +m2)"+��2
; (B.3)

Z
dnk

(2�)n
k�

(k2 � 2kp�m2)�
= i

�("+ � � 2)

(4�)2�"
(�1)�p�

(p2 +m2)"+��2
; (B.4)

Z
dnk

(2�)n
k�k�

(k2 � 2kp�m2)�
= i

�("+ � � 2)

(4�)2�"
(�1)�p�p�

(p2 +m2)"+��2
(B.5)

� i
�("+ � � 3)

(4�)2�"
(�1)�g��=2

(p2 +m2)"+��3
; (B.6)

where � is � function which is de�ned as

�(�) =
1

s��

Z
1

0
e�stt��1dt: (B.7)

When " ' 0, � functions are expanded as

�(") =
1

"
� 
 +

"

2

 

2 +

�2

6

!
+O("2); (B.8)

�("� 1) = �1

"
+ (
 � 1)� "

2

 

2 � 2
 +

�2

6
+ 2

!
+O("2); (B.9)

�("� 2) =
1

2"
+ (

3

2
� 
) +

"

4

 

2 � 3
 +

�2

6
+
7

2

!
+O("2); (B.10)

�("� n) =
(�1)n
n!

"
1

"
+

nX
k=1

1

k
� 
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+
"

2

8<
:�

2

6
+

 
nX

k=1

1

k
� 


!2

+
nX

k=1

1

k2

9=
;+O("2)

3
5 ; (B.11)

where 
 is Euler constant. One may use following formulas in Feynman parameter

integrals:

Z
dx

Ax+B

(x� p)2 + q2
=

A

2
ln f(x� p)2 + q2g

+ (Ap+B)
Z

dx

(x� p)2 + q2
; (B.12)

Z
dx

x2 + a2
=

1

a
tan�1 x

a
; (B.13)Z

dx[lnx]2 = xf(lnx)2 � 2 lnx+ 2g; (B.14)

Z 1

0
dx lnx ln(1� x) = 2� �2

6
; (B.15)

Z 1

0
dx

1

x� 1
ln
ax(x� 1) + c

c
=

8><
>:

2
�
sin�1

q
a
4C

�2
for a=c � 0;

2
�
�
2
+ i cosh�1

q
a
4C

�2
for a=c � 0:

(B.16)

In real time formalism, we often use

�(x2 � a2) =
1

2a
f�(x� a) + �(x+ a)g; (B.17)

�(f(x)) =
1

jf 0(a)j�(x� a); (B.18)

"

x2 + "2
"!0�! ��(x); (B.19)

i

x+ i"

"

x2 + "2
= � i

2

@

@x

�
"

x2 + "2

�
+

�
"

x2 + "2

�2

"!0�! �i�
2

@

@x
�(x) + �2�2(x); (B.20)

where f(a) = 0.
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Appendix C

2-loop e�ective potential in

��4-theory

Here, we calculate the physical e�ective potential in (2.10) in the real-time formal-

ism, which is equivalent to the e�ective potential de�ned in the imaginary time

formalism. According to Sec.3.1, we compute the tadpole functions V (1;0) and then

it is integrated in terms of the classical �eld '. Since the propagator in the T = 0

part and T 6= 0 part decouples in the real time formalism, calculations of T = 0

parts are completely equal to that in the ordinary T = 0 perturbation theory. So,

we can calculate T -dependent term and T -independent term separately.

The Feynman diagrams contributing to the '1 tadpole functions up to the two-

loop level are shown in Fig.C.1 C.2 C.3. The vertex with number 1 (2) is indicated

as the type 1 (2) �eld self-interaction. The type 2 �eld is necessary to cancel patho-

logical pinch singularities.

Fig.C.1 contributes to the 1-loop e�ective potential in Fig.C.4, and reads

�iV (1;0)1 = �i�'1

2
�2"

Z
dnk

(2�)n
iD11

� + counter terms

= �i�'1

2
�2"

Z
dnk

(2�)n
i

k2 �M 2 + i"
+ 2�nB(jk0j)�(k2 �M2) (C.1)

+counter terms;

where,

M 2 = �2 +
�

2
'2; (C.2)

nB(E) = (e�E � 1)�1; (C.3)

and � is the renormalization point. The (1; 0)1 in V (1;0)1 means a function which

has one-point type 1 external �eld and zero-point type 2 external �eld in one-loop

level. Then, the integration over ' becomes

V 1 =

Z
d' V (1;0)1

���
'1='
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= � i
2
�2"

Z
dnk

(2�)n
ln(k2 �M 2) +

Z
1

0

dk

(2�)2
2

�
k2 ln(1� e��E)

+counter terms

= � 1

(4�)2
M 4

4
(
3

2
� ln

M2

�2
) +

Z
1

0

dk

(2�)2
2

�
k2 ln(1� e��E); (C.4)

where E =
p
k2 +M2.

(a) (b)

Figure C.1: (a):1-loop diagram contributing to the 1-point function. (b):Counter

term contribution (which includes all �h-order contributions in principle). The index

1 (2) corresponds to the type 1 (2) vertex. The cross represents the counter terms.

According to the tadpole method, Fig.C.2 (a) (b) lead to the 2 bubble diagram

Fig.C.5 (a):

�iV (1;0)2
2bubble =

(�i�)2'
4

�4"
"Z

dnk1

(2�)n
fiD11

� (k1)g2
Z

dnk2

(2�)n
iD11

� (k2) (C.5)

�
Z

dnk1

(2�)n
fiD12

� (k1)g2
Z

dnk2

(2�)n
iD22

� (k2)

#
+ counter terms;

where V
(1;0)2
2bubble shows contributions of '1 bubble diagram in two-loop level. Using the

eq.(B.20), the integral of (C.5) reads

V 2
2bubble =

�

8

"
�2"

Z
dnk

(2�)n
i

k2 �M2 + i"
+ 2�nB(jk0j)�(k2 �M2)

#2

+counter terms

=
�

2
K2

t �
�M 2

4
Cf ; (C.6)

where,

Kt =
M2

2(4�)2
(1� ln

M 2

�2
)� It (C.7)

Cf =
M2

(4�)4
fd� (
 � ln 4� � 1 +

1

2
ln
M 2

�2
) ln

M2

�2
g; (C.8)

It =

Z
1

0

dk

(2�)2
k2nB(E)

E
; (C.9)

d = �1

2
(
2 � 2
 + 2 +

�2

6
) + (
 � 1� 1

2
ln 4�) ln 4� ' �5:68496; (C.10)
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and 
 is the Euler constant.

(a) (b) (c) (d) (e)

Figure C.2: (a) and (b):2 bubble diagrams. (c), (d) and (e): Tadpole diagrams

including conter terms.

Also, Fig.C.5 (c) is the integral of Fig.C.2 (c) (d) (e), and the proper '1 tadpoles

including counter term V (1;0)2
c read

�iV (1;0)2
c = �i�

2
(�iB1�

2 � iC1'
2)�2"

Z
dnk

(2�)n
fiD(11)

� (k)g2 � fiD(12)

� (k)g2

�iC1'
2

2
�2"

Z
dnk

(2�)n
iD

(11)

� (k); (C.11)

where B1 = �=2(4�)2�" and C1 = 3�2=2(4�)2�". The �nite part V 2
c reads

V 2
c =

�

4
(�2 +

3

2
�'2)Cf ; (C.12)

The setting sun diagram Fig.C.5 (b) is calculated from Fig.C.3. The '1 tadpoles

which become setting sun (V (1;0)2
s ) read

�iV (1;0)2
s =

(�i�')3
4

�6"
Z

dnk1

(2�)n
dnk2

(2�)n
[fiD11

� (k1)g2iD11
� (k2)iD

11
� (k1 + k2)

�2iD11
� (k1)iD

12
� (k1)iD

12
� (k2)iD

12
� (k1 + k2)

+fiD12
� (k1)g2iD22

� (k2)iD
22
� (k1 + k2)] (C.13)

+
(�i�')(�i�)

6
�4"

Z
dnk1

(2�)n
dnk2

(2�)n
[iD11

� (k1)iD
11
� (k2)iD

11
� (k1 + k2)

�iD12
� (k1)iD

12
� (k2)iD

12
� (k1 + k2)]

+counter terms:

Then, we �nd

V 2
s = �i�

2'2

12
�4"

Z
dnk1

(2�)n
dnk2

(2�)n

"
i

k21 �M2 + i"

i

k22 �M2 + i"

i

(k1 + k2)2 �M2 + i"
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+
3i(2�)2nB(jk01 j)nB(jk02 j)�(k21 �M2)�(k22 �M2)

(k1 + k2)2 �M2 + i"

+
3i2(2�)nB(jk01j)�(k21 �M2)

f(k1 + k2)2 �M2 + i"gfk21 �M2 + i"g

#
+ conter terms

=
�2'2

4

M2

(4�)4
fa+ (
 � ln 4� � 3 + ln

M 2

�2
) ln

M 2

�2
g (C.14)

+
1

2(2�)2
(ln

M2

�2
� 2 +

�p
3
)It + Il

� �2'2

4
Ss;

(C.15)

where

a =
�2

12
+
9

2
+
1

2
(
 � ln 4�)(
 � ln 4� � 3)

+

Z 1

0
dx

Z 1

o
dy � ln y(ln� � (1� y)�

�
) (C.16)

' 10:16186� 2:17195 = 7:98891;

� = �(y � 1 +
y

x2 � x
); (C.17)

� = �(1 + 1

x2 � x
); (C.18)

and

Il =

Z
1

0

dk1dk2

(2�)4
k1k2nB(E1)nB(E2)

2E1E2

ln

�����4E
2
1E

2
2 � (M2 + 2k1k2)

2

4E2
1E

2
2 � (M2 � 2k1k2)2

����� : (C.19)

The sum of eq.(C.6), eq.(C.12) and eq.(C.14) leads to eq.(3.21).
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(a) (b) (c)

(d) (e)

Figure C.3: Diagrams which contribute the setting sun diagram.

(a) (b)

Figure C.4: One-loop e�ective potential diagrams.

(a) (b) (c) (d)

Figure C.5: Two-loop e�ective potential diagrams.
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Appendix D

Full OPT equations

Here, we summarize the calculations of the e�ective potential and its derivatives in

full OPT.

(a) (b) (c) (d)

Figure D.1: (a): Additional O(�) contributions to the 1-point function in full OPT.

(b), (c) and (d): Additional O(�2) contributions to the 1-point function.

(a) (b)

Figure D.2: (a): Additional O(�) contributions to the e�ective potential in full OPT.

(b): Additional O(�2) contributions.

The two-loop e�ective potential with the full optimized perturbation theory reads

V = V 0 + V � + V �2; (D.1)
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V 0 =
1

2
m2'2 +

g

4!
'4; (D.2)

V � = �1

2
�'2 � �

4!
'4 � 1

(4�)2
M4

4
(
3

2
� ln

M2

�2
)

+

Z
1

0

dk

(2�)2
2

�
k2 ln(1� e��E); (D.3)

V �2 = (�+
�'2

2
+
g

2
Kt)Kt +

g2'2

4
Tf ; (D.4)

where,

�2 = m2 � (m2 � �2) = m2 � �;

� = g � (g � �) = g � �;
(D.5)

Kt =
M2

2(4�)2
(1� ln

M 2

�2
)� It; (D.6)

Tf � Ss + Cf

=
M2

(4�)4
fc+ (�2 + 1

2
ln
M 2

�2
) ln

M2

�2
g

+
1

2(2�)2
(ln

M2

�2
� 2 +

�p
3
)It + Il; (D.7)

It =

Z
1

0

dk

(2�)2
k2nB(E)

E
; (D.8)

Il =

Z
1

0

dk1dk2

(2�)4
k1k2nB(E1)nB(E2)

2E1E2

ln

�����4E
2
1E

2
2 � (M 2 + 2k1k2)

2

4E2
1E
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M 2 = m2 +
g

2
'2; (D.10)

E =
p
k2 +M2; (D.11)

nB(E) = (e�E � 1)�1; (D.12)

c =
1

2
(7� 
 � ln 4�)�

Z 1

0
dx

Z 1

0
dy ln y(ln�� (1� y)�

�
)

' 2:30495; (D.13)

� = �(y � 1 +
y

x2 � x
); (D.14)

� = �(1 + 1

x2 � x
); (D.15)

and 
 = 0:5772 � � �.
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For PMS conditions

In the following, we will show equations to study the PMS conditions. For this pur-

pose, we rewrite the arguments of the e�ective potential as V (';M2;m2; g; �; �) for

convenience. (When the arguments are written like this, the partial di�erentiation

with respect to ' does not act on M2;m2; g; �; �. On the other hand, if we write

V (';m2; g), it act on g'=2 in M2 = m2 + g'=2.) Then, we can write the total

derivative with respect to ' as

dV

d'
=

@V

@'
+
@M 2

@'

@V

@M2
=
@V

@'
+ g'

@V

@M2
; (D.16)

@V

@'
= '

�
m2 +

g

6
'2

�
+ '

�
��� �

6
'2

�
+ '

"
�Kt +

g2

2
Tf

#
; (D.17)

@V

@M2
= [�Kt] +

"
@Kt

@M2
(�+

�'2

2
+ gKt) +

g2'2

4

@Tf

@M2

#
: (D.18)

The total derivative with respect to m2 is found to be

dV

dm2
=

@V

@M 2
+

@V

@m2
+
@V

@�
; (D.19)

@V

@m2
=

1

2
'2; (D.20)

@V

@�
= �1

2
'2 +Kt: (D.21)

(D.22)

The total derivative with respect to g reads

dV

dg
=

@V

@g
+
@V

@�
+
@M2

@g

@V

@M2
=
@V

@g
+
@V

@�
+
'2

2

@V

@M2
; (D.23)

@V

@g
=

1

4!
'4 +

"
1

2
K2

t +
g'2

2
Tf

#
; (D.24)

@V

@�
= � 1

4!
'4 +

"
'2

2
Kt

#
: (D.25)

Also, when ' = 0, (D.19), (D.23) read

dV

dm2

�����
'=0

=
@Kt

@M2
(�+ gKt); (D.26)

dV

dg

�����
'=0

=
1

2
K2

t : (D.27)

For FAC conditions

Next, we list di�erentiations with respect to ' for FAC conditions. (Here, the

arguments are written as V (';m2; g).) The �rst derivative of the e�ective potential
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with respect to ' reads

@V

@'
=

@V 0

@'
+
@V �

@'
+
@V �2

@'
; (D.28)

@V 0

@'
= '

�
m2 +

g

6
'2

�
; (D.29)

@V �

@'
= '

�
��� �

6
'2 � gKt

�
; (D.30)

@V �2

@'
= '

"
�Kt + g

@Kt

@M2
(� +

�'2

2
+ gKt) +

g2

2
(Tf +

g'2

2

@Tf

@M2
)

#
: (D.31)

The second derivative of the e�ective potential with respect to ' is found to be

@2V

@'2
=

@2V 0

@'2
+
@2V �

@'2
+
@2V �2

@'2
; (D.32)

@2V 0

@'2
= m2 +

g

2
'2; (D.33)

@2V �

@'2
= ��� �

2
'2 � gKt � g2'2 @Kt

@M 2
; (D.34)

@2V �2

@'2
= �Kt + g

@Kt

@M2
(�+

5

2
�'2 + gKt + g2'2 @Kt

@M 2
)

+g2'2 @2Kt

@(M 2)2
(�+

�'2

2
+ gKt)

+
g2

2
(Tf +

5

2
g'2 @Tf

@M2
+
1

2
g2'4 @2Tf

@(M2)2
); (D.35)

�
=

(
��� �

6
'2 + gKt

)

+g'2

(
(2� + g2

@Kt

@M2
)
@Kt

@M2
+ g

@2Kt

@(M2)2
(�+

�'2

2
+ gKt) (D.36)

+g2(
@Tf

@M2
+
g'2

4

@2Tf

@(M2)2
)

)
( for ' 6= 0)

#
:

Finally, we �nd the forth derivative with respect to ' as

@4V

@'4
=

@4V 0

@'4
+
@4V �

@'4
+
@4V �2

@'4
; (D.37)

@4V 0

@'4
= g; (D.38)

@4V �

@'4
= �� � 3g2

@Kt

@M2
� 6g3'2 @2Kt

@(M2)2
� g4'4 @3Kt

@(M2)3
; (D.39)

@4V 0

@'4
= 3g

@Kt

@M2
(2� + g2

@Kt

@M2
)
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+g2
@2Kt

@(M2)2
(3�+

39

2
�'2 + 3gKt + 18g2'2 @Kt

@M2
+ 3g3'4 @2Kt

@(M2)2
)

+g3'2 @3Kt

@(M2)3
(6�+ 7�'2 + 6gKt + 4g2'2 @Kt

@M2
)

+g4'4 @4Kt

@(M2)4
(�+

�'2

2
+ gKt) (D.40)

+
g3

2
(6
@Tf

@M2
+
39

2
g'2 @2Tf

@(M2)2
+ 7g2'4 @3Tf

@(M2)3
+
1

2
g3'6 @4Tf

@(M2)4
):

In the symmetric phase (namely, ' = 0), eq.(D.32) eq.(D.37) can be simpli�ed.

Eq.(D.32) is reduced as

@2V

@'2

�����
'=0

=
@2V 0

@'2

�����
'=0

+
@2V �

@'2

�����
'=0

+
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�����
'=0

; (D.41)

@2V 0

@'2

�����
'=0
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@2V �
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'=0

= ��� gKt; (D.43)
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'=0
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2
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Also, eq.(D.37) reads
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@M 2
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The di�erentiations with respect to M 2 for eq.(D.8) are
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= �1

2

Z
1

0

dk

(2�)2
R(E); (D.49)
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(D.52)
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where

R(E) =
nB(E)

E
; (D.53)

@R(E)

@M2
= �R(E)H(E); (D.54)
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�
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and f(E) = �
1�e��E

.

The di�erentiations with respect to M 2 for eq.(D.9) are
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The derivatives with respect to M 2 for L can be found as
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High T forms

Now, we give high temperature (�M ! 0) forms of eq.(D.6), eq.(D.8), eq.(D.9) and

derivatives of eq.(D.6). We �nd

Kt ! �T
2
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8�
+

M 2

2(4�)2
(1� ln

T 2
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2
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Appendix E

One loop formula for self-energy

at T 6= 0

Formulas corresponding to Fig.4.2 read

�i�11
� (!;

~k)� i�11
� (!;

~k;T ) = �i�
2
[I(1)� + F (1)

� + I(1)� + F (1)
� ]

+ (�i��
3
)2
3

2
[I(2)� + 2F (2)

� + F (3)
� ]

+ (�i��)21
2
[I(2)� + 2F (2)

� + F (3)
� ] (E.1)

+ i(m2 � �2) + counter terms
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3
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F (4) = i
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d4p

(2�)4
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Here " = (4� n)=2, p2 = p20 � ~p2, k2 = !2 � ~k2 and nB(!) = [e!=T � 1]�1.

The explicit forms of eq.(E.4), (E.5), (E.6) for k2 > 0 are
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Eq.(E.7), (E.8), (E.9), (E.10) and (E.11) for ~k = 0 read

F
(1)

� =
Z
1

0

dp

2�2

p2nB(E(m0�))

E(m0�)
; (E.15)

F
(2)

� = i

Z
1

0

dp

2�2

p2nB(E(m0�))

E(m0�)

1

!2 � 4E2(m0�)

+�(!2 � 4m2
0�)

q
!2 � 4m2

0�

16�!
nB(

!

2
); (E.16)

F
(3)

� = �(!2 � 4m2
0�)

q
!2 � 4m2

0�

8�!
n2B(

!

2
); (E.17)

F (4) = i

Z
1

0

dp

(2�)2
p2nB(E(m0�))

E(m0�)

�f 1

(! + E(m0�))2 � E(m0�)2
+

1

(! � E(m0�))2 � E(m0�)2
g (E.18)
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+

8>>><
>>>:

1
16�!2

q
(!2 +m2

0� �m2
0�)

2 � 4m2
0�!

2 nB(
j!2+m2

0�
�m2

0�
j

2!
)

for 0 < !2 < (m0� �m0�)
2 ; (m0� +m0�)

2 < !2

0 for (m0� �m0�)
2 < !2 < (m0� +m0�)

2;

+(m0� $ m0�)

F (5) =

8>>><
>>>:

1
8�!2

q
(!2 +m2

0� �m2
0�)

2 � 4m2
0�!

2 nB(
j!2+m2

0�
�m2

0�
j

2!
) nB(

j!2�m2

0�
+m2

0�
j

2!
)

for 0 < !2 < (m0� �m0�)
2 ; (m0� +m0�)

2 < !2

0 for (m0� �m0�)
2 < !2 < (m0� +m0�)

2;

(E.19)

where E(m) =
p
~p2 +m2.
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Appendix F

Calculation of diphoton emission

rates

Calculation of g�!2�!



The loop integral of Fig.4.9 (a) reads

L��
a� =

1

2

Z
d4p

(2�)4
i3Trf�ie3(2p+ k2 + q)�gf�ie3(2p+ k2)

�g(�i�
3
�)

(p2 �m2
0� + i")f(p+ k2)2 �m2

0� + i"gf(p+ q)2 �m2
0� + i"g ;(F.1)

where the Tr is performed over the 
avor index (e3). The loop integral of Fig.4.9

(b), L��
b� , is obtained by replacing k2 with k1 and exchanging � and �. The sum of

these is

L��
a� + L

��
b� =

ig��e
2��

24�2

(
1

�"
� ln

m2
0�

�2
+ 2� 2d arctan

1

d

)

+
ie2��

24�2

 
g�� �

k�1k
�
2

k1 � k2

! 
1� 4m2

0�

2k1 � k2
sin�1

p
2k1 � k2
2m0�

!
; (F.2)

where d =

r
4m2

0�

2k1�k2
� 1.

The Fig.4.9 (c) is given as

L��
c� =

1

2

Z
d4p

(2�)4

i2Tr2ie23g
��
�
�i�

3
�
�

(p2 �m2
0� + i")f(p+ q)2 �m2

0� + i"g

= � ig��e
2��

24�2

(
1

�"
� ln

m2
0�

�2
+ 2� 2d arctan

1

d

)
: (F.3)

The �rst line in eq.(F.2) and eq.(F.3) are canceled each other, thus g�!2�!2

 reads

4ig�!2�!

(k1 � k2g�� � k
�
1k

�
2) = L��

a� + L
��
b� + L��

c�

g�!2�!

 =
���

12�

8<
: 1

q2
� 4m2

0�

(q2)2

 
sin�1

p
q2

2m0�

!2
9=
; ; (F.4)

where � = e2=(4�) and q2 = 2k1 � k2.
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Calculation of g�!q�q!



The loop integral of Fig.4.9 (d) reads

L
��
d� = �

Z
d4p

(2�)2
i3Tr(�ig)(p=+mq)(�ie�
�)(p=+ k=2 +mq)(�ie�
�)(p=+ q=+mq)

(p2 �m2
q + i")f(p+ k2)2 �m2

q + i"gf(p+ q)2 �m2
q + i"g : (F.5)

Tr is performed over color, 
avor and spinor indices. L
��
d� is obtained by k2 ! k1

and 
� $ 
� . Thus, we get

4ig�!q�q!

(k1 � k2g�� � k
�
1k

�
2) = L

��
d� + L��

e�

g�!q�q!

 = �
5m2

q�

3�f�

8<
: 1

q2
+
q2 � 4m2

q

(q2)2

 
sin�1

p
q2

2mq

!2
9=
; :(F.6)

Calculation of g�0!



Contributions to g�0!

 are only from the quark-loops, and they are shown in Fig.4.9

(d) and (e). The loop integral of Fig.4.9 (d) is

L��
d�0 = �

Z
d4p

(2�)2
i3Tr(�ig)i
5�3(p=+mq)(�ie�
�)(p=+ k=2 +mq)(�ie�
�)(p=+ q=+mq)

(p2 �mq + i")f(p+ k2)2 �mq + i"gf(p + q)2 �mq + i"g
= 4ge2mq"

����q�k2�I3; (F.7)

where

I3 =
Z

d4p

(2�)4
1

(p2 �mq + i")f(p+ k2)2 �mq + i"gf(p+ q)2 �mq + i"g

=
�i
8�2

1

q2

 
sin�1

p
q2

2mq

!2

: (F.8)

Thus,

4ig�0

"
����k1�k1� = L

��
d�0 + L

��
e�0

=
�ie2gmq

�2q2
"����k1�k1�

 
sin�1

p
q2

2mq

!2

: (F.9)

Pair annihilation formula

The invariant amplitude of Fig.4.11 is given as

M�� = f�ie(2p1 � k1) � "�1g
i

(p1 � k1)2 �m2
�

f�ie(�p2 + p1 � k1) � "�2g

f�ie(2p1 � k2) � "�2g
i

(p1 � k1)2 �m2
�

f�ie(�p2 + p1 � k2) � "�1g(F.10)

+2ie2g�� :
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Square of this with summing over all polarizations leads to

jMj2 = 4e2
(
4 +

m4
�

(p1k1)2
+

m4
�

(p1k2)2
� 2p1p2

p1k1
� 2p1p2

p1k2
+

2(p1p2)
2

(p1k1)(p1k2)

)
: (F.11)

On the other hand, eq.(4.66) can be written as

dN

d4x
=

Z
nB(E1)

(2�)32E1

d3p1
nB(E2)

(2�)32E2

d3p2

Z
d4q�4(q � k1 � k2)

�jMj2(2�)4�4(p1 + p2 � k1 � k2)
d3k1

(2�)32k01

d3k2

(2�)32k02

=

Z (
nB(E)

(2�)32E

)2

�(2E � !)
jMj2
4

p2dpd cos �d4q; (F.12)

where E =
q
p2 +m2

� and we use the back to back kinematics (~q = 0). Substituting

eq.(F.11), and performing angular integral, we get eq.(4.67).
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