Vertex Operator Algebra with Two
T-involutions Generating S3

Shinya, SAKUMA

A dissertation submitted to the Doctoral Program
in Mathematics, the University of Tsukuba
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

January 2003

B

7 oy
Z8
]
ﬁlj
03302718

K |




1 Introduction

The notion of vertex operator algebras (VOAs) is introduced in [B, FLM]. The most inter-
esting example of vertex operator algebras is the Moonshine VOA V! = @32 V2. It was
constructed by Frenkel, Lepowsky and Meurman in [FLM] in order to solve the so-called
McKay-Thompson conjecture about the representations of the Monster simple group M,
the largest member of the 26 sporadic simple finite groups, and some modular functions.
The full automorphism group Aut(V?*) of V! is the Monster simple group M and the
character ¢~ 3.7 ((dim V;,)¢" is the classical elliptic modular function j(7) — 744, where
g = €™, The weight two subspace VJ coincides with a commutative (non-associative)
algebra (called the monstrous Griess algebra) of dimension 196884 with positive definite
invariant bilinear form constructed by Griess [Gr] in order to construct the Monster simple
group.

From the group theoretic point of view, one of the important results is that each 2A-
involution @ defines a unique idempotent e, (called an axis) of the monstrous Griess algebra,
such that the inner product (eg,ey) is uniquely determined by the conjugacy classes of
a product 8¢ of 2A-involutions § and ¢ [C]. In fact, the conjugacy classes of a product
of two 2A-involutions are 14, 2A, 34, 44, 5A, 64, 3C, 4B and 2B, and the inner prod-
ucts of the corresponding axis vectors are 1/4, 1/32, 13/219, 1727, 3/29, 5/210, 1 /28, 1/28
and 0, respectively. There is also a mysterious relation with Eg Dynkin diagram, which
was observed by McKay [Mc]. Namely, the conjugacy classes of a product of two 2A-
involutions are corresponding to multiplicities of simple roots in the maximal root ap =
— {204 + 3ap + 4o + By + Bayg + dog + ey - 20r8) of Eg-root system:
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Another interesting topic is the Y 5 s-diagram and the Bimonster M} Z;. The Bimonster
is presented by the single relation (ablclabgcQab_a,ca)w = 1 in addition to the Coxeter

relations of the Ys 5 5-diagram: es




where a vertex is an involution and an edge t ~ y means |zy| = 3 and no edge between z
and y implies |zy| = 2.

From the point of view of vertex operator algebras, irreducible highest weight modules
L{c, h) of the Virasoro algebra with central charge ¢ and highest weight / are very useful.
It was proved in [FZ] that L(c,0) is a VOA, which is the simplest example of VOAs.
Whenec=c¢, =1~ Wﬁm’ which is called the discrete series, it is proved by Wang
[W] that L{cm,0),m = 1,2,..., is rational and Licm, i), 1 <r <m-+11< s <
m + 2, are exactly all the inequivalent irreducible modules of L{cy,0), where A", =

{r(mdrv'aft);;)((rfn—:gg)}2_l' Moreover, L(cy,,0) admits a non-trivial unitary form [GKO]. The

study of the moonshine VOA as modules for a subalgebra isomorphic to a tensor product
of rational Virasoro vertex operator algebras in the discrete series was initiated by Dong,
Mason and Zhu [DMZ]. Along this line, it was shown by Miyamoto [M1] that a rational
conformal vector with central charge  define an involution on a VOA, which is called 7-
involution or Miyamoto involution. If e is a rational conformal vector with central charge
%, i.e., e generates a rational VOA L(%, 0) called the Ising model, then one can define an
involutive automorphism 7, of V by

_ { 1 on Wy® W%
Te -1 on Wi,
10
where W}, denotes the sum of all irreducible VA{e}-submodules isomorphic to L(3, &) and
VA(e) is a subVOA generated by e. In the monstrous Griess algebra, a conformal vector e
with central charge % is corresponding to an axis and 7, is a 2A-involution of the Monster
simple group.

A VOA V over R is referred to be of moonshine type if it admits a weight space
decomposition V' = &2V, with V5 = Rl and ¥} = 0 and it possesses a definite invariant
bilinear form {:, ) such that {1,1) = 1. If V is of moonshine type, by defining a X b = a)b
for a,b € Vs, (Va, x) becomes a commutative (non-associative) algebra called a Griess
algebra with a positive definite bilinear form {-,-) satisfying {a x b,¢) = {b,a x ¢) for
a,b,c € Va, where (a,b) is given by (a,b)1 = a3)b € Ri.

In [M3], Miyamoto studied a vertex subalgebra VA(e, f) of a VOA V of moonshine
type generated by two conformal vectors e and f with central charge 3 whose 7-involutions
generate S3. He determined that the possible inner products of such a pair of conformal
vectors are 2}1—% or 51,;. In the monstrous Griess algebra VZ", the inner products of such
conformal vectors are 51% and —2% corresponding to 3A-triality and 3C-triality, respectively.
In each case, the structure of a subalgebra of a (general) Griess algebra V5 generated by
such conformal vectors is uniquely determined. In the case where the inner product is 511%,



VA(e, f) is @ VOA with central charge $8 and dim(VA(e, f))s = 4. Moreover, VA(e, f)
contains L($,0) and L(£,0) as a subVOA, which are in the discrete series.

In this paper, we determine the VOA structure of VA(e, f) generated by two conformal
vectors e and f with central charge § such that |7,7;| = 3 and (e, f) = 2% and construct
such a VOA.

We set U = VA(e, f). Asshown in [M3], U, has mutually orthogonal conformal vectors
w® and w* with central charge 2 and &, respectively, and so contains L(3,0) ® L(3,0) as
a subVOA. Then, as a L(%,0) ® L(£,0)-module, we will show

4 6 4 ¥}
U ~ L|-= e — —
(5,0)®L(7,0)@L(5,3)®L(7,0)
4 6 4 6
iz 2 =z 2
©® (5,0)®L(7,5)€BL(5,3)®L(7,5) (1.1)
4 2 G 4 4 2 6 4
@L(g,g)®L(?,§)®L(g,§)®.ﬂr(-7—,g).

In particular, U contains the 3-state Potts model W(Q) = L (%,O) ® L (%,0) and the
tricritical 3-state Potts model N(0) = L (£,0) @ L (£,5) as a subVOA, which are studied
in [KMY] and [LY]. Then, viewing U as a W(0) ® N(0)-module, U has a Zj-grading

2\* 4\ * 2\~ 4\F
wooxoew (2) ox() ow (2) on(2)"

3 3 3 3
Hence, 7.7y is an automorphism defined by the Zs-symmetry of the fusion algebra for W (0)
[M2]. We will also show that all Zs-graded VOAs of this form are isomorphic to each other
and so the VOA structure of U is uniquely determined. Therefore, the Moonshine VOA
V't has a subVOA isomorphic to W(0) and the automorphism determined by W(0) is a
3A element of the Monster simple group.

The main idea of our construction is the GKO construction (or coset construction) of
the unitary Virasoro VOA L(cm,0). We note that cs = £ and ¢4 = £. First we obtain
a decomposition of the lattice VOA Vym+1 as a module of a direct sum of certain copies
of Virasoro algebras and the affine Lie algebra sl (€) by using the GKO construction,
where A, is the root lattice of type A;. We then extend Af to a larger lattice L and show
that (1.1} is actually a commutant (or coset) subalgebra of Vz. We also show that all
irreducible V-modules can be constructed using the similar method.

The organization of this paper is as follows: in Section 2.1 we recall some basic def-
initions about vertex operator algebras and modules. We also review Virasoro VOAs
L(¢m,0) in the discrete series in Section 2.2 and the GKO (coset) construction of these
Virasoro VOAs and irreducible modules L{cy, A7,) in Section 2.3. In Section 3.1, we
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determine the structure of a vertex algebra U = VA(e, f) generated by conformal vectors
e and f with central charge 1/2 in the case where 7, and 7y generate Sy and the inner
product {e, f} is 13/2'°, In Section 3.2, we construct such a VOA U in the lattice VOA
associated with a certain lattice L by using the GKO coustruction. In Section 3.3, we
classify all irreducible U-modules and show that U is rational. In Section 3.4, we deter-
mine fusion rules among the irreducible I7-modules, which is determined by fusion rules
among irreducible U%-submodules. In Section 3.5, we calculate all conformal vectors in
U and determine the automorphism group of U.

I would like to express my sincere gratitude to Professor Masahiko Miyamoto for his
helpful advice and encouragement. I am also very grateful to Doctor Hiroshi Yamauchi
for useful informations and discussion in a joint work with him.,

2 Preliminaries

2.1 Vertex Operator Algebra and Module

In this subsection, we recall some basic definitions for a vertex operator algebra and a
module (cf. (B, DL, FHL, FLM]).

A wertex operator algebra (VOA) V is a Z-graded vector space V = €, .z V equipped
with a linear map Y : V — (End V)[fz,27], 0 = Y(a,2) = 3 cpamz ™™ fora eV
such that dimV,, is finite for all integer n and that V,, = 0 for sufficiently small integer n
(see [FLM]). For ¢,b € V and m,n € Z, we have the commutativity

ad m
[agmys bm] = ( z) (a@yb)(m-+n—i) (2.2)
i=0
and the associativity
oo
(agmb)m = > (-1 ( z) (#m-bins) = (1) bmtn—ia0) - (2.3)

i=0
There are two distinguished vectors called the vecuum vector 1 € Vy and the Virasoro
element w € V3. By definition Y (1, 2) = idy, and the component operators {Ln} of
Y(w,2) = Y, cq Linyz ™2 gives a representation of the Virasorc algebra on V' with central
charge ¢ € C, that is, we have

m? —m
[L(m) y L(n)] = (m - n)L(m+n) + 6m+n,0 ——~—"12 c (24)
for m,n € Z. Each homogeneous space V;, is an eigenspace for L with eigenvalue
n. An element e of V is called a conformal vector with central charge c if operators

Lty = €nt1), n € L satisfy the Virasoro relation (2.4).
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A Z-groded weak V-module M is a Zyo-graded vector space M = DPrez., M(n)
equipped with a linear map Yys : V — (End M){z}, a = Yis(a, 2) = Y neq )2 "
satisfying the commutativity (2.2) and the associativity (2.3), such that aimM(n) €
M(k+n—m—1) for a € V3. We also have Yjs(1, 2) = idps, and the component operators
{Lin} of Ya(w,2) = 3, cp Liny2™™® gives a representation of the Virasoro algebra on
M with central charge c. If a Z,-graded weak V-module M is irreducible, for some
A € C, each M(n) is an finite-dimensional eigenspace for Loy with eigenvalue n+ A. A
vertex operator algebra V' is said te be rational if any admissible V-module is completely
reducible.

Let W', W2 and W3 be V-modules. An V-intertwining operator of type W x W2 —
W? is a linear map I : W2 — (Hom(W2, W3)){z}, u > I(u,2) = ¥, cctimz ™}, such
that for a € V, u € W', v € W2 and @ € C, u(aqnyp = 0 for n >> 0, I(Li_nyu,z) =
A I(u, 2) and the Jacobi identity holds:

zyt8 (Z1_Z—Z_2) Y(a, z1)I (¢, 22) — 25 146 (%ﬂg) I(u, )Y (a, )
0 0

= 212_15 (Z1 ; Zo) I(Y(a: zO)u’z2)1
2

where §(2) = 3, ., 2". We denote by Iy (W‘f’:vz) the space of V-intertwining operators

of type W! x W? — W3 and Nw”ff we = dim Iy (W‘{V:W). We use an expression
W x W2 =Y "N W,
W

called the fusion rule or fusion product, where W runs over all irreducible V-modules. An
irreducible V-module X is called a simple current V-module if it satisfies that for every
irreducible V-module W, the fusion rule X x W is also irreducible.

An automorphism g of V' is an endomorphism of V such that Y(g(a), z)g = g¥ (a, 2)
for any @ € V. We denote by Aut(V) the group of all automorphisms of V. If g be an
automorphism of V and (M, Y3s) a V-module, we can define a new vertex operator on M
by Yii(a, z) = Y(g(a), ) for a € V. Then, g(M) = (M,Y},) is & V-module.

A (symmetric) bilinear form (-,} on V is said to be invariant if (Y (e, 2)u,v) =
(u, Y(e"0) (=27 00g, —2)v) for a,u,v € V. If dim (Vo/L)V4) = 1, then V has a unique
invariant bilinear form (., ) satisfying (1,1) = 1 [Li],

2.2 The Discrete Series of the Virasoro VOAs

For any complex numbers ¢ and h, denote by L{c, h) the irreducible highest weight repre-
sentation of the Virasoro algebra with central charge ¢ and highest weight A. It ig shown
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in [FZ] that L(c, 0) has a natural simple VOA structure. Let
6

:;1_(m+2')(m+3) (m=12,...), (2.5)

Bom) . {r(m+3)—s(m+2)}> -1

4{m+2)(m + 3)

forr,se€N, 1<r<m+land1<s < m+2. It is shown in [W] that L{cy,, 0) is rational
and L(cpy, (m)) 1 <s <r <m+1, provide all irreducible L (¢, 0)-modules (see also
[DMZ]). The fusion rules for these modules are given by

L(cma h’n,sl) X L(Cﬂu hrz,s'z) = Z L(Cm)h|r1——r2!+2i—1,|31—sg|+2j—1)1 (27)
ieljed

Cm

(2.6)

where
I={1,2,...,min{r,re,m+ 2~ 7, m+2—ry}},
J={L,2,...,min{sy,80,m + 3 — s1,m + 3 — s3}}.
In the case m = 1, L(3,0) is a rational VOA called an Ising model and has exactly
three irreducible module L (3,0), L (3,1) and L (},4). The fusion rules among these
modules are given by

L(58)xL(53) = L(3%), abel,
L8 xL(pd) = L(nd),
L(z%) xL(5w) = L(50)+L(33)
If a VOA V contains L(3,0) as a subVOA with the Virasoro element e, one can define an

involutive automorphism 7, of V by

. 1 on WOG)W%
Te -1 on W’rlﬁ’

where W), denotes the sum of all irreducible L(2, 0)-submodules isomorphic to L%, h).

By (2.7), L{cm, hmt1,1) X L(cm, Firs) = L(Cmy Amt1-r,s) and 50 L{cm, Rmy1,1) i a simple
current module. It is known that V™ = L(cp,0) ® L(cm, hm41,1) i8 a simple VOA if
hm+1,1 € Z and a simple superVOA if hpy1; € § + Z (cf. [LLY]).

In the case m = 3, a VOA W(0) = L(£,0) @ L(},3) is studied in [KMY, M2]. For
h =2, &, since L(§,3) x L(§,h) = L(3,h), M = L(%, h) has two VOA structure (M,Y")
and (M, ¥) of W(0) such that Y'(v,2) = ¥(v,2) for v € L($,0) and Y(v,2) = ~¥ (v, 2)
for v € L(3,3), which we denote by L(3, h)*.

Theorem 2.1. [KMY] W(0) is a rational VOA and has ezactly siz inequivalent irre-
ducible modules:

W(0) := L(5,0) @ L(3,3), W(3)* = L(3 §)*,
W)= L Do LD, Wit = M)



Let 63 be an automorphism of W (0) defined by 1 on L(%,0) and ~1 on L($,3). Then,
O3(W (k)) = W (k) for k = 0, £ and 63(W(h)*) = W(R)T for h = Z, &. The fusion algebra
for W(0) is determined in [M2]. For convenience, we use the following Zs-graded names.
Define

Ag = W(0), Ay = W(%)-'-r Af = (%)_:
A =W(E), Al=W(E)", A=w(L)~

Theorem 2.2. [M2] The fusion rules for irreducible W (0)-modules are given as
Abx AL = AF AR x Al = AT AL x A = AT 4 AR
where 1,7 € L. Therefore, the fusion algebra for W(0) has a natural Za-symmetry.

If a VOA V contains a subVOA W isomorphic to W(0), by the Zs-symmetry of the
fusion algebra for W (0), we can define an automorphism ow of V with o8, = 1 as follows:

1 on W(k), k=0,%,
ow - /3 on W(R), h=2

L
'15°

(=]

In the case m = 4, a VOA N(0) = L(%,0) @ L(&,5) is studied in [LY, LLY]. For
h = 3,50 315 since L($,5)x L(&, h) = L(&, h), M = L($, h) has two VOA structure (M, Y)
and (M,Y) of N(0) such that ¥ (v,2) = ¥(v,2) for v € L(%,0) and Y(v,2) = ~V (v, 2)

for » € L($, 5), which we denote by L(&, h)*.

Theorem 2.3. [LY, LLY] N(0) = L(%,0) ® L(£,5) is @ rational VOA and has exactly
‘nine inequivalent irreducible modules:

NO) = L0 0 L(3,5), N = LS, D,
N = LE D) 0L, 2), NE* = L, 1)
NE) = LG LG D), NI =13 )=

Let 64 be an automorphism of N(0) defined by 1 on Z(%,0) and —1 on L(G 5). Then,
0a(N(k)) = N(k) for k = 0,1,% and 0,(N(h)*}) = N(h)T for h = £,4,22. The fusion
algebra for N(0) is also determined in [LY] and [LLY]. To state the fusion rules, we assign
Z3-graded names to irreducible modules (cf. [LY]). Define

By :=N(0), Bj:=N(5)*, Bi:=N(-,
B := N(}), Bl:=N({)*, Bl:=N(),
BY:= N(&), Bj:=N(5)%, Bj:=N(3)".



Theorem 2.4. [LY, LLY] The fusion rules for irreducible N(0)-modules are given as

Bl x BI = Biti  5=0,1,2,
BixB{ = By"+B;",
Bix B} = By Biti,
Bix B} = B+ B+ B,

where 1, j € Zs. Therefore, the fusion algebra for N(0) has a natural Zs-symmetry.

2.3 GKO Construction of the Virasoro VOA L (¢, 0)

Let g be the Lie algebra sl,(C) with generators e, f and « such that [e, f] = o, [e, €] = 2¢
and [a, f] = ~2f. We use the standard invariant bilinear form on si3(C) defined by
(@, ) = 2,{e, fy =1 and (e, €) = ([, ) = (o, ¢) = (@, /) = 0. Let § = sly(C)QC[t, 1]
Cc & Cd be the corresponding affine Lie algebra of type Agl) and Ag =d, A, = d+ o the
fundamental weights for §. Then the dominant integral weights of § are given by

1
P++={(m-—j)A0—|—jA1:md+ Eja m@Z"’,jGZ"’U{O},jSm}.

Let £L{m,j) = L((m — j)Ao + jA1) be the irreducible highest weight module of § of the
weight (m — j)Ag + jA, € Py,. 1t was proved by Frenkel and Zhu [FZ] that £(m,0)
is a rational simple VOAs for all m > 0 and {L(m,5)| 4 =0,1,--- ,m} is the set of all
inequivalent irreducible £{m,0)-modules. The Virasoro vector (™ of L£{m,0) is given by

1 1
Om .= m T D) (Ea(_l)a + ey f + f(_l)e) (2.8)

with central charge 3m/{m + 2). Moreover, the fusion rules (cf. [FZ}) are given by
‘ming,k
Llm, ) x Lm, k)= > L(m,j+k—2i), (2.9)
i=max 0,j-+k—m

The weight 1 subspace of £(m,0) forms a Lie algebra isomorphic to g under the 0-
th product in £{m,0). Let o',e!, f! be the generator of g in £(1,0); and o™, e™, fm
those in £(m,0);. Then H = o™ @14+ 1® ¢, E =e¢™" @1+ 1®¢' and F = f*®
1+ 1® f* generate a sub VOA isomorphic to £(m + 1,0) in £(m,0) ® £(1,0) with the
Virasoro vector Q™! made from H, F and F' by (2.8). It is shown in [DL] and [KR]
that w™ = Q" @ 1+ 1® Q! — Q™! also gives a conformal vector with central charge
¢m = 1—6/(m+2)(m+3). Furthermore, Q™! and w™ are mutually commutative and w™
generates a simple Virasoro VOA L{c,,, 0). Hence, £{m,0) ® £(1,0) contains a sub VOA
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isomorphic to L(¢p, 0} ® L(m + 1,0). Since both L(cy,0) and £(m + 1,0) are rational,
every £(m,0)®£L(1,0)-module can be decomposed into irreducible L{cy, 0) ® L(m+1, 0)-
submodules. The following decomposition is obtained in [GKO]:

Lm )@ LL )= D  Lem ) ® Lim+1,s), (2.10)

0<sm-1
agEidj mod 2

where i = 0,1 and 0 < § < m. Note that h,(nf’;) = hf,ﬁgz_,,m +3-s+ This is the famous GKO
construction of the unitary Virasoro VOAs,

As a consequence, one knows that all the irreducible modules L(cy,, hsf,'? B1<r<
8 < m+ 1 can be realized as certain submodules of £L(m, j) ® £(1,7) for 0 < § < m and
1 =0,1.

2.4 GQGriess Algebra

A VOA 'V over R is said to be of moonshine type if it admits a weight space decomposition
V' = @pep Vo with Vg = R1 and ¥} = 0 and a (unique) invariant bilinear form (-, ) on V
satisfying (1,1) = 1 is a definite on V,, for each n.

If V' is of moonshine type, by defining a x b = ayb for a,b € Vi, (V5, x) becomes a
commutative (non-associative) algebra called a Griess algebra with a (positive) definite
invariant bilinear form (, -), which is given by {a,b)1 = a(zb for a,b € Vo. To simplify
the notation, ab denotes a x b for a,b € Va. It is shown in [M1] that we have a one-to-one
correspondence e — ¢/2 between the set of conformal vectors with central charge ¢ in V
and the set of idempotents with squared length ¢/8 in V;.

3 VOA with two 7-involution generating Ss

Assume that a VOA V of moonshine type contains two distinet rational conformal vectors
e and f with central charge 1/2. In [M3], Miyamoto studied a vertex algebra VA(e, f)
generated by e and f in the case where 7, and 7 generate S3. In this section, we study
VA(e, f) in the case where the inner product (e, f) is 13/2!°. For convenience, we will
treat the complexification C®g V of V, which we also denote by V. We set U = VA(e, f)
throughout this section.

3.1 Structures

In this subsection, we shall determine the VOA structure of U. Let U = {u € U | 7o(u} = +u}
and Uf = U, NU%. As shown in [M3], the Griess algebra U, is of dimension 4 and we



can choose a basis {w?, w!, u, v} such that U7 = Cw® L Cw! L Cu and U; = Cv, where
w3 + w! is the Virasoro vector of U and the multiplications and inner products in U are
given ag

i ' H 14 10
1 1 LA - 4 3 4 — - W 4 =
(.U(l)w 2w (T; 3, ), UJ(I)W 0, U.(l)u 6(—0 4 9 ) 1,
2 4 1
w?l)m = Exa w‘(il)m = Em (.’G € Cun + CV), Wyv = -—S-;)—V, (311)
(w3,w3) - z <w4 wd) — ..:3_ (u u) o E (V,V) — 1'
5? ) 7! ] 2!

In particular, w® and w? are conformal vectors with central charge -5‘3 and 2, respectively.
We set L’E'n) = wfn—t-l) for i = 3, 4.

Let T = VA(w®w?!), which is isomorphic to L (3,0) ® L (8,0), and M{v) the T-
submodule of V generated by ¥ € V. An element v % 0 of V is said to be a highest weight
vector for T' with highest weight (h, k) if L3 v = hv, L ( oV = kv and Lin)v =0forn>1
and i = 3,4. Then we note that h + k is an integer if and only if (k, k) is (0,0), (3,0),

(0,5), (3,5) or (3, %),
Set

5
w = u(g)V — 5(.[/?“1) - L?_l))v

52 (11 52 3 s 3 4
wh o= o (3 Li_g — 2L{p)L¢ 1))V+ g3 (2Lt — Ly Liy) Liyv

T (20, 7 4 74 3
tar (3 (-2 — Lol 1)) v+ g 8Ly — Lieylin) LV

_____5 - 1 3 3 3 3 28 4 3
" 9.13 (§L?—2) - gL(—1)L(—1)) W+ -§*L(_2)w — U_gyV.

Tt is easy to see that w® € Uy and w° € Uy

Lemma 3.1. (1) w® is a highest weight vector for T' with highest weight (3,0) and so
M(w?) =~ L(%,3) @ L(£,0).

(8) W5 is a highest weight vector for T with highest weight (0, 5) and so M(w?) ~ L( £,0)®
L(S,5).

Proof. By the commutativity of VOA, we can see that for z,y € V5 and m,n € Z,

[2m)» Y]
m
= [3), Ymin-1)] + (M = D@0 ¥) mtn—1) + Imin-2,0 ( 3 ) (z,9)1.  (3.12)
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Using this identity, for n > 1, & > 0 and ¢ = 3,4,

Ligue-ov = [Lhy,uey]v

= ([Z{oy un-ry] + n(Ligyu))v
= (L’(:o) + (n—~ 1)ki)u(n—k)V, (3.13)
k+3
Uiy = ((k+ 1)(11(1)11)(1) + 3 (u,u))v
113 1{k+2
= (Gr+D+ 5( 3 ))v, (3.14)

where &% = 2 and k* = §. Hence, by (3.13) and (3.14), it is easy to check that L wi=0

for n > 1,4 = 3,4, and (w3, w?) = 1 since (L y) = (2, Liyy) and (umyz,y) =

{Z,u@-nyy) for z,y € V. Therefore, w* is a highest weight vector for T and dim Us =3.
By using LiyyLiy = [Z4u), Lig)| + LigyLiy = (m + Ligy)Li,, and (3.13),

LiyLina) *** Ly -V
fruncad (L'Eo) 'I" Ns_..l + (ns - 1)kl) T (Lio) + Nl "+' (n2 - 1);’1:!’)( Eo) '“|"' (n_g - l)kl)u(Na_k)V
for ny,ng, -+ ,n, > 1, where N; = Zf;,:l np. Hence, by this and (3.14), we can check that

(L?(::ﬂa) h .Ll(.inz)L%“ﬂl)m’ws) =0

58001
5 By
W ws) = o= 13

forn; 21,4, =3,4,1<¢ < sandz = v, w®. Thus Liyw® € (M(vV)oM (W)U, =0
for n > 1 since there is no highest weight vector for 7 in U,. Therefore, w® is a highest
weight vectors for T, O

By the above lemma and fusion rules for L (£,0) ® L (§,0),

Proposition 3.2. We have a decomposition U =U* @ U~ and as a L (3,0) ® L (&,0)-
module

Ut o~ L(%,O)@L(g,o)@L(g,?,)@L(g,s) @L(%,%)@L(;,g),
U~ ~ L(%,o)®L(§-',5)€BL(§-,3)®L($,0) @L(%,%)@L(g,g—).

Let G = (T, 7s) = S3. The symmetric group & on three letters has 3 irreducible
modules C(4), C(—) and B, where C(+) is a trivial module, 7, and 7; act on C(—) as
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—1 and B is an irreducible module of dimension two. Therefore, I/ has a subVOA U
such that U decomposes into the direct sum

U=U°pX®C-)oW®B,

where X and W are irreducible U%-modules, see [DM1}. Then, w? w? € U% and it
follows from Proposition 3.2 that U¢ ~ L(£,0) ® L(§,0) @ L (£,3) ® L(§,5), X =~
L($0)0L(5,5)0L(33)0L(5,0)andW~L (§,2)®L (%2 asal (,0)0L(L0)-
module.

By Proposition 3.2, it is easy to see that U contains W(0) = L (%, 0)a L (-g—, 3) and
N(0)=L(%,0) & L(%,5) as a subVOA.

Theorem 3.3. A VOA U contains a sub VOA W{0)@ N(0). As a W(0)® N(0)-module,
U is isomorphic to

W(0) ® N(0) ® W (—2—) o N (g) Teow (%) enN (g) ) (3.15)

after fizing suitable choice of +-type of N(§)*.

2mit

Proof. Let p = 7,17 and Ut = {v elU|pw=es v}. Then, U° is a subVOA of U
isomorphic to W(0) ® N(0) and U = U’ @ U' @ U*? is Zs-grading. Since U' o~ U?
L3, )L (5,%) asL{2,0)®L (£,0)-module, Ut o2 W(2)4 @ N(£)% as a W (0) ® N(0)-
module, where ¢;, & = . By fusion rule for W(0) ® N(0), €, # €2 and & # &. [}

Let D be a finite abelian group and V? a rational simple VOA. Assume that a set of
irreducible V"-modules {V*| a € D} indexed by D is given. A D-graded extension Vp
of V' is a simple VOA with the shape V = ®,epV* whose vacuum element and Virasoro
element are given by those of V° and vertex operations in Vp satisfies Y (u*,2)v? €
Veth((z)) for any u® € V® and v# € VA A D-graded extension Vp = @aep Ve of V0 is
called a simple current extension if all V*, o € D, are simple current V°-modules. By
Theorem 3.3, U is a Zs-graded simple current extension of W(0) ® N(0).

Theorem 3.4. All Zs-graded simple current extensions of W(0) ® N(0) are isomorphic.
In particular, U has o unique VOA structure,

Proof. Let V = @®,ez,V* and V= @sezs‘[?ﬁ be Zj-graded simple current extensions of
W(0) ® N(0). Then, V° = V® o~ W(0) ® N(0) and V* and V* are simple current
W(0) ® N(0)-modules. Since the simple current W (0) ® N(0)-modules are W(0) & N(0)
and W(2)* @ N($), VI = W(E)F® N(3)f and Ve W(2) @ N($)Y, where ¢, €, £, =

+. Since f3(W(3)%) ~ W(E)¥ and 64(N(3)*) = N(3)F, there is an automorphism
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0 € (fa,04) of W(0) ® N(0) such that o(V!) =~ V! and o(V?) ~ V2, where 65 and
04 are natural automorphisms of order 2 defined by the Zo-grading of W(0) and N (0),
respectively. Then, o(V) = @®sez,0(V*) has a VOA structure isomorphic to V. Tt follows
from Proposition 5.2 of [DM2] that (V') is isomorphic to V and so V ~ V7. 0

3.2 Construction

In this subsection, we construct a VOA generated by two conformal vectors such that 7,7;
is of order 3 and (e, f) = 13/20,

First we recall a construction of the lattice VOA associated with an even lattice from
[FLM]. Let L be an even lattice with a positive definite symmetric Z-bilinear form (-, )
and h = C®z L. Let h = hCfi~!, t~!|@CC be the affinization of commutative Lie algebra
h. For convenience, we denote A ®1t™ by h(n) for h € h and n € Z. Let [ = {+e,|e € L}
be the canonical central extension of L by the cyelic group (4-1) with commutator map
c(a, B) = (—1)@#) for 0,8 € L. Let L* = {z € Q®z L| {x,a} € Z} be the dual lattice
of L. Then there is an L~-module structure on C[L*] = @aecrCe®, where —1 acts on C
as multiplication by —1. Set C[M] = @aenrCe® and Viy = S(H~) ® C[M] for a subset M
of L*, where S(h~) is the symmetric algebra of h~ = {h(—n)| h €l,n > 0}. Then V,
is a simple vertex operator algebra and V,..p is a irreducible V;, -module for o € L* (cf.
(B, FLM]).

Let Ay = Za with (o, @) = 2 be the root lattice of type A; and Vy, the lattice VOA
associated with A;, Then A} = A; U (o + A1), It is well known that V4, and Viepa,
are both level 1 representations of sly(C) (¢f. [DL, FLM)]). In fact, V4, =~ £(1,0) and
Vieta, = £(1,1). Let AP = Za® @ Zo' @+ ® Za™ be the orthogonal sum of m + 1
copies of A;. Then we have

VATH 2V, @@ Vy, EE(].,O) - ®.C(1,0)
as a vertex operator algebra and

Vo paps = £(1,00) ® -+ ® L{1, am)

as a module of £(1,0)® : -+ ® £L(1,0), where a = (ao, a1, ,ap) € {0,1}™* and 7, ==
3 2o G0 ‘ _
Let Hf = o®(=1)1+ - 4+ (1)1, Bf =" + ... ¢ and Ff = e ... J g0,
Then {HY, B¢, F7} forms a simple Lie algebra sl3{C) inside the weight one space of V.
It is shown in [DL, FZ) that HY, B¢, FJ generates a simple VOA £(5 +1,0) of level j + 1
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and the Virasoro element of £(j + 1,0} is given by

. 1 1. . X ) . , .
¥ — v X] Y]
Vo= ( ZH(_I)H’+E(_1)FJ+F(_1)E?)
= -—1—{§iap(_1)21+1 S e(-Det(-D1+2 Y }
2+3) |24 20 o

and the central charge of (7 is ﬂ;—:%l On the other hand, the Virasoro element of the
lattice subVOA V(= V4,) is given by %aj (-1)1. By using the GKO construction, we
know that w’ = $0d(—1}1+ 0/~ — O generates a Virasoro subVOA L{c;,0) with central
charge ¢; = 1—6/(j+2)(j+3). Thus, we know that we have an orthogonal decomposition
of the Virasoro vector w of Vym+: into a sum of mutually commutative Virasoro vectors
as w=w!+ -+ +w™+ Q™ and the VOA VAY‘“ contains a subVOA isomorphic to

7™ = L(er,0) ® L(c3,0) ® - - - ® L{cp, 0) @ L{m -+ 1,0).

Moreover, we have the following decomposition.

Lemma 3.5. [LLY, Lemma 8.1] Fora = (ay, a1, , am) € {0, 1} defineb; = 31 a;,
then
Vo amtt = @ L(ei, h'zg+1,k1+1) ®- @ Licm, h}em_l+1,km+1) ® L(m + 1, k).
0k <51
J=0,
by =b; mod2

We consider the case m = 4. Set v = 1o + 3o + 1o? + jo® and L = (A},7) =
A3 U (y + A%). Then L is an even lattice so that we can construct a VOA V, associated
to L and we have VL = Vg @V, 4. By Lemma 3.5, we have the following:

Lemma 3.6. As a module for T® = L (—2»,0) ® L (170,0) ® L ( O) ® L (7, 0) ® L(5,0),

Vk’y+ AS

~ P & (%,hl)@:L( hg) (;i,ha) (g,h4)®£(5,2¢)

~z~0 1 2 (h1 hz)EX
=0,1 (haha)EYE

for k= 0,1, where
Xi= { 2’10)}

Y‘“’“{(O’O’ L(%,%)}, Yip = {( 0) (2,5), (&, 1)},
Yo1-—{(0 5),3,9),E 4} Y= ((2,5),(3,1),(,4)},
Yo, ={0%),6G R} Y= {w% (2,1, (%, 9],
YO,O = {(0:5)? (3,0), (%# %) ; Yl,o = {( ,0), (%,5)’ (1_15., :;,)} ,
Ybl,l = {(0’ l’iz'):(S’ %),(5,%)}, Yll - {(5’%): (%? lfz'): (Tlg, '2111')} )
Y01,2 = {(0’ %): (3, 2"72')! (%’ %g)}’ ,112 - {(51 2772)3 ('57: }f')’ (%’ 1—(1])} '
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We define
W={veV,| w(ll)u = w(zl)v = Q‘(‘l)v = 0}.

Then, W is a subVOA of V;, with the Virasoro element w® + w? and, by Lemma 3.6, as a
L(;3,00®L (£,0)-module,

4 6
W o~ [ 7
@ L(5,h3) ®L(71hd)
(haha)eYPUY
4 6 4 6
~ L[=0 L= z [
(5’ ) . (7’0) oL (5’3) o (7’0)
4 6 4 6
(4 6 :
or(g0)or(ps)or(3e)er(3s) e
49 6 4 42 6 4
L L L L
@ (53)® (7 3)@’ (5 3)® (7 3)
We set
1 1
e = Ig((aa—of’)(—l)) 1—1:03;3_04
RS W SR ..
T 18 9 9"
vy = (Oc‘i+C¥u+ﬂ'51+a’2'"4a4)m£(m2a;+cxo+a1+az"ﬂ’3)
i=0,1,2 ’
—4

Z 272( 26 +oo+ortoatas—204)
1=0,1,2

+
T 123;%(&0 +on+og+ag—2a4)°

where :c;f = g*4e"* for o« € L. Then we can show that e, u and v are contained in W, and

w3, wt, u and v span W, since dim Wy = 4, Moreover, w®,w*, uand v = vy satisfy

{vo,vo}
the equation (3.11) and e is a conformal vector with central charge 1/2. In particular, u

and v are highest weight vectors for T ~ L(#,0) ® L(£,0) with highest weight (%,3). We
also set

105
= 23 (
9v/6
96

32
wtuwt—e), b= 2—8(—5w3+7w4-4e),
€= v, f=etat+b+ec

Then, a, b and ¢ are eigenvectors of ¢1y with eigenvalue 0,1 5 and <% 1> respectively. Moreover,
by direct calculations one can show that the multiplications and inner products in the
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Griess algebra of U are given as follows:

1 1
ema =0, ewb = 5, e = 15°
_ 105 32.5.7 31-105
(1(]_)0'; - “2—7a’1 a'(l}b = 29 b, a,(l}c pruas -—2-]3-——01
3 L% 32. 93 $ 31 23

bayb = g1 ¢ + o7t dpe = G CWe= gEet+ gget 2—51),

38.5. 7 a7 3%
(a,a) = ‘—W, (b,b) = o1 (c, c) = i

and f is a conformal vector with central charge 1/2 and (e, f) = 2%. Thus, W, is

isomorphic to a Griess algebra given in [M3]
By the decomposition (3.16) and Theorem 3.4, we have

Theorem 3.7. W = VA(e, f}, that is, W is a simple VOA generated by two conformal
vectors e and f with central charge 1/2 such that (e, f) = 13/21°,

3.3 Modules

In this subsection we will classify all irreducible U-modules. We may assume that [/ =
VU @ U with U = W(0)® N(0), U = W(2)* @ N(£)* and U? = W(Z)~ ® N(4)".

Theorem 3.8. U has exactly siz inequivalent irreducible modules as follows:

W(0) @ N(O)® W(2)* & Nt & W(2)- @ N(3)-,
W) & N(G) @ W(E) © NI & W(2)- © N(i2)-,
W(0)® N(E) @ WY & N(H)* @ W(EZ)~ ® N(k)-,
W(2) ® N(©) @ W(L)* & N()* & W(k)- & N(), (3.17)
W) @ N(2) @ W) ® N(2)* & W(k)~ @ N(2)-,
W(2)®NE) @ WL ®NE)* 6 W(k)- ® N

Proof. Let Wiy = {v €V w(l)v =hw,j =1,2, va = —‘—(','I"—llv} in Lemma 3.6, where
(ha, ha) € X,. Then, W, is a W-submodule of ¥ and as a L (£,0) ® L (£,0)-module
Wisg) = @(ha,h‘l)ey;ﬂiiu};l'iL (%, h3)®L (g, h,4). Therefore, all spaces in {3.17) are U~modules.

Let (M,Y) be an irreducible U-module and P? an irreducible U%submodule of M.
It follows from the fusion rules for U% = W(0) ® N(0)-modules that U* - P® o [J9 . pP?
as U%modules if 4 # § mod 3. Therefore, M = P9 P! @ P? with P! = U' x P® and
P? = U2 x P° and M has a Zz-grading under the action of IJ. The vertex operators
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Y(-,2) on M give U'-intertwining operators of type Ut x Pi — P for i.4 € Za.
The powers of z in an intertwining operator of type Ut x P¥ — Piti are contained in
—hyi — hpi + hpiti + Z, where hy denotes the top weight of a U%module X. Since the
powers of z in Yy, (-, z) belong to Z, by considering top weights M is isomorphic to one of
(3.17) as a U-module. At last, we show that there exists a unique U-module structure on
@sczP°. Let (M = P°@ P'@ P2, V) be an U-module such that P* =~ P* as U-modules
for all s € Z3. By assumption, there exists U%isomorphism ¥, : P* — P$ such that
Y(a,z)1hs = %Y (a,2) for all a € U®. Then both Y (, 2)|gexpt and ¥ LY (-, 2)thilusxpe
are U'-intertwining operators of type U® x Pt — P* and hence there exist non-zero
scalars c(s,t) € C such that Y(a, 2)4b, = (s, )90s4:Y (e, 2) for all @ € U*. Then, by the
associativity we obtain

(s +1,7) = cfs,t +r)elt, ) (3.18)
for s,t,7 € Zs. Define 9 : M — M by 1/)~[Pa = ¢(s, 0)th,. Then, for a € U*, we have

Y{(a,2)P|p = c(t,0)¥ (a, 2)1h;

= C(t: O)C(S, t)ws,ty(aa z)

= ofs + £, 0¥ (1, 2) by (3.18)
= T,Z|Ps+cY(a, Z)

Therefore, 1 defines a U-isomorphism between M and A7. This completes the proof. [
Theorem 3.9. U is rational.

Proof. Let M be an admissible U-module. Take an irreducible U%-submodule P. Since
U=U'@U'®U? both U'- P and U?. P are non-trivial irreducible U/%-submodule of M.
Since U*-P £ U?-Pifig j mod 3, P+(U'-P)+(U* P) =P ({U'-P)®(U?-P)isan
irreducible U-submodule of M. Hence, every irreducible U%-submodule of M is contained
in an irreducible U-submodule. Thus M is a completely reducible U/-module, O

3.4 Fusion rules

Here we determine all fusion rules for irreducible I/-modules. We will denote the fusion
product of irreducible V-modules M! and M?* by M! xy M2, Recall the list of all irre-
ducible U-modules shown in Theorem 3.8. each irreducible U-module contains one and
only one of the following irreducible U%modules:

oo
o
i
=
e
Il

W(h) ® N(k), h =0,
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Therefore, seen as U%-modules, all irreducible U-modules have the shapes
W(h) @ N(k)® {U" xypo (W(h)® NEN}Y @ {U? xyo (W(h) ® N(ENY

with = 0,% and k = 0,1, 2, which we denote by Ind% W {h) ® N(k) to emphasize that
it is a U-module. Using this notation, the fusion products for irreducible {/-modules can
be computed as follows:

Theorem 3.10. All fusion rules for irreducible U-modules are given by the following
formula:

Ind¥ W (hs) ® N(ks)
InngW(hl) & N(kl) Indgnw(h2) ® N(ki’.))
(

UXUD (W ha)@N(ka)) )
W(h)® N(k:) W(ha) ® N(ks))’

where hy, hg, hg € {0,% and ]ﬂ1, kg, ks € {0, -.1(-,% .

dimc IU (
(3.19)

dimg Iyo (

Proof. Let X, W and T be irreducible U-modules and let X% W?° and T° be irre-
ducible U%submodules of X, W and T, respectively. Denote by Iy (XTW) the space
of U-intertwining operators of type X X W — T. Then from [DL] by a restriction we
obtain the following injection:

T T
e IU(X W) 3 I(,2) = I(:, 2)| x00cwo € Iyo (XU Wn)'

Since all irreducible U-modules are Zs-graded, by the same argument as in the proof of
Lemma 5.3 in [LLY], for any U’-intertwining operator I(-,z) of type X® x W0 — 70,
there exists a U-intertwining operator I(-, z) of type X x W — T such that #(I(-, z)) =

~

I('1z)

xoxwo = I(,z). Therefore, the assertion follows. O

3.5 Conformal vectors and Automorphisms

In this subsection, we classify all conformal vectors in I/ and determine the automorphism
group of U.
The Griess algebra U, has three conformal vectors ¢, f and f/ := €™ = f7. As shown
in [M3], U = Cw + Ce + Cf + Cf' and
105 9 105 9

9 7 7 9 .
ey f = ——2—9*w+'2'g€+§gf+§gf', eqyf = —“2Tw+§g6+ '2"gf+"2‘gf:
13

fiof = gt e+ o+ fy ()= (6 f) = () = 5
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Set g = —Fw+ é—?,.e + %%f + -3—% f'. Tt is easy to check g is a conformal vector with central
charge . Set
C={e,f, " g.97, 97", " w',w}.

We see that for any z € C, ¢ and w — z are conformal vectors in L.

Theorem 3.11. The set CU (w — C) gives all conformal vectors in Uy, where w — C =
{w—1x|xzeC}. In particular, there are exactly three conformal vectors with central
charge 1/2 in Uz, namely e, f and f'.

Proof. Let £ = cw + Be+vf+6f be a conformal vector. Solving the equation zqyz = 2z
with respect to o, 8, v, § by direct calculation, (e, 8,7, 8), (e, 7,4, 8) or (e, 6, B8, 7) is one

of
(01010:0)3 (1:0:010): (0:150}0)1 (1:"'1a0:0)1
(14/9, —32/27, —32/27,—32/27), (—7/18,14/27, 32/27,32/27),
(—5/9,32/27,32/27, 32/27) and (25/18, —14/27, —32/27, —32/27),

which give elements in C'U {(w — C). Thus, the assertion follows. O
Theorem 3.12. Aut(U) = (7, 7¢).

Proof. Let g € Aut(U). Since U is generated by e and f, the action of g on U is completely
determined by its actions on e and f. By Theorem 3.11, the set of conformal vectors with
central charge 1/2in U is {e, f, f'} so that we get an injection from Aut(U) to Ss. Since
(Te, 7y} acts on {e, f, f'} as S3, we obtain Aut(U) = (1, 7y). £l
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