Notation

H	specimen's height, mm
$M_{\scriptscriptstyle T}$	applied torque, N·m
Nc	number of cyclic loading
Nl	number of loading set
f	frequency, Hz
p	mean normal stress, kPa
q	deviator stress, kPa
\mathbf{r}_{i}	specimen's inner radius, mm
r_o	specimen's outer radius, mm
u _a	pore air pressure, kPa
u_w	pore water pressure, kPa
δ	cyclic torsional angle, rad
ф	angle of internal friction, deg
γ_a	double amplitude of torsional shear strain, —
$\gamma_{z\theta}$	torsional shear strain, —
η	effective stress ratio, —
ν	specific volume, m ³ /Mg
ρ	bulk density, Mg/m³
σ_{l}	major principal stress, kPa
σ'_{i}	effective major principal stress, kPa
σ_2	intermediate principal stress, kPa
σ'_2	effective intermediate principal stress, kPa

- σ₃ minor principal stress, kPa
- σ'₃ effective minor principal stress, kPa
- σ_c confining stress, kPa
- σ'_c effective confining stress, kPa
- σ_h horizontal stress, kPa
- σ_m mean normal stress, kPa
- σ'_m effective mean normal stress, kPa
- σ'_n effective normal stress, kPa
- σ_{oct} octahedral normal stress, kPa
- σ_v vertical stress, kPa
- τ shear stress, kPa
- τ_A cyclic shear stress, kPa
- $\tau_{\rm f}$ shear stress at failure, kPa
- τ_{oot} octahedral shear stress, kPa
- τ, residual shear stress, kPa
- τ_{vh} horizontal shear stress, kPa
- $\tau_{z\theta}$ cyclic torsional shear stress, kPa
- χ wet area per unit gross area,—

List of tables

Table 3.1 Physical properties of test soil	26
Table 3.2 Test combinations	33
Table 3.3 Loading frequencies induced by traffic	
during tractor operation in the field	40
Table 4.1 Test combinations	53
Table 4.2 Shear strength's parameters with test conditions	62
Table 4.3 Critical state's parameters with test conditions	67
Table 5.1 Test combinations	74

List of figures

Fig. 2.1	Stress components on a soil element	
	(a) stress relative to arbitrary axes x, y, z	
	(b) principal stress cube	14
Fig. 2.2	State space	17
Fig. 2.3	Soil stresses below the center of	
	a uniformly loaded circular area	18
Fig. 2.4	Stress path due to a traveling load	19
Fig. 2.5	Stresses beneath the centerline of the tire	20
Fig. 2.6	Stress components under front and rear tire	21
Fig. 3.1	Particle size curve	27
Fig. 3.2	(a) Soil specimen,	
	(b) stress state on soil element	28
Fig. 3.3	Test procedure	29
Fig. 3.4	Cyclic torsional shear loading test apparatus	31
Fig. 3.5	Time histories of (a) torsional shear stress,	
	b) torsional shear strain and (c) pore water pressure	34
Fig. 3.6	Relationship between torsional shear stress	
	and effective confining stress	36
Fig. 3.7	Double amplitude of torsional shear strain versus Nc	37
Fig. 3.8	Double amplitude of torsional shear strain versus	
	cyclic torsional shear stress	38
Fig. 3.9	No requirement for same double amplitude of	

	torsional shear strain	39
Fig. 3.10	Cyclic torsional shear stress versus torsional	
	shear strain ($\rho = 1.0 \text{ Mg/m}^3$, Nc = 20)	41
Fig. 3.11	Torsional shear strain versus effective stress ratio	41
Fig. 3.12	Cyclic torsional shear stress versus torsional	
	shear strain ($f = 0.2$ Hz, $Nc = 20$)	44
Fig. 3.13	Time history of torsional shear	
	strain ($\rho = 0.8 \text{ Mg/m}^3$, $f = 0.2 \text{ Hz}$)	44
Fig. 3.14	Confining stress versus torsional shear strain	
	(f = 0.2 Hz, Nc = 20)	45
Fig. 3.15	Confining stress versus torsional shear strain	
	$(\rho = 1.0 \text{ Mg/m}^3, \text{ Nc} = 20)$	46
Fig. 3.16	Effective stress ratio versus torsional shear strain at Nc = 20	47
Fig. 3.17	Stress ratio versus torsional shear strain at Nc = 20	47
Fig. 4.1	Effective shear strength	50
Fig. 4.2	Stress paths and critical state line	51
Fig. 4.3	Stress and strain relationship	51
Fig. 4.4	Mohr's circle and principal stress directions	52
Fig. 4.5	Stress path for cyclic torsional shear loading	55
Fig. 4.6	Effective stress path of cyclic undrained shear test for Toyoura sand	
	and $Dr = 96\%$ (After Zang et al., 1997)	55
Fig. 4.7	Hysteresis loop of torsional shear stress and strain	56
Fig. 4.8	Shear modulus versus Nc	56
Fig. 4.9	Torsional shear stress and torsional shear strain	58

Fig. 4.10	(a) Torsional shear stress and	
	(b) effective confining stress versus Nc	58
Fig. 4.11	Double amplitude of torsional shear stress versus Nc	60
Fig. 4.12	Cyclic torsional shear strength ($f = 0.2 \text{ Hz}$, $\rho = 1.0 \text{ Mg/m}^3$)	61
Fig. 4.13	Cyclic torsional shear strength (f = 0.5 Hz, ρ = 1.0 Mg/m ³)	61
Fig. 4.14	Cyclic torsional shear strength (f = 0.2 Hz, ρ = 0.8 Mg/m ³)	62
Fig. 4.15	Torsional shear strain rate during experiment	
	$(\rho = 1.0 \text{ Mg/m}^3, f = 0.5 \text{ Hz})$	63
Fig. 4.16	Double amplitude of torsional shear strain	
	versus effective stress ratio	64
Fig. 4.17	Critical state for cyclic torsional shear loading	66
Fig. 4.18	Torsional shear stress versus Nc at failure	68
Fig. 4.19	Torsional shear stress versus pore water pressure at failure	69
Fig. 4.20	Loading intensity versus pore water pressure at failure	69
Fig. 5.1	Loading pattern	73
Fig. 5.2	Amplitude of torsional shear strain versus loading set	75
Fig. 5.3	Pore water pressure versus loading set	75
Fig. 5.4	Axial strain and bulk density versus loading set	76
Fig. 5.5	Shear modulus versus loading set	77
Fig. 5.6	Torsional shear strain versus Nc	- 7 9
Fig. 5.7	Shear modulus versus Nc	80
Fig. 5.8	Effects of loading magnitude ($\rho = 1.0 \text{ Mg/m}^3$	
	and loading set with Nc = 4)	83
Fig. 5.9	Effects of number of loading in loading set	•

	$(\tau_{z\theta} = 14.9 \text{ kPa and } \rho = 1.0 \text{ Mg/m}^3)$	84
Fig. 5.10	Effects of bulk density ($\tau_{z\theta} = 14.9 \text{ kPa}$	
	and loading set with Nc = 4)	86
Fig. 5.11	Pore water pressure versus loading set	86
Fig. 5.12	Torsional shear strain and shear modulus versus loading set	
	$(\rho = 0.8 \text{ Mg/m}^3)$	87
Fig. 5.13	Increment of bulk density versus NI \times $\tau_{z\theta}$ (ρ = 1.0 Mg/m³ and Nc = 4)	87
Fig. 5.14	Stress path in state space	89
Fig 5 15	Stress nath on (a) σ' - τ , plane and (b) σ' - ν plane	90