PA 2265 (HG) 1999

Dynamic Behavior of a Hollowed, Cylindrical Soil Specimen under Cyclic Torsional Shear Loading

Division of Agricultural and Forest Engineering Doctoral Degree Program in Agricultural Sciences University of Tsukuba

Prathuang Usaborisut

Table of contents

Title page	i
Table of contents	ii
Notation	vi
List of tables	viii
List of figures	ix
Chapter 1 Introduction	1
1.1 Background of the study	1
1.2 Objectives	2
Chapter 2 Literature review	4
2.1 Soil compaction	4
2.1.1 Definition and nature of soil compaction	4
2.1.2 Causes of soil compaction	4
2.1.3 Effects of soil compaction	5
2.1.4 Researches needed on soil compaction	5
2.2 Current situation of researches on soil compaction	6
2.2.1 Behavior of traffic-induced soil compaction	. 6
2.2.2 Methods to estimate soil compaction	8
2.2.3 Other parameters affecting soil compaction	10
2.2.4 Influences of soil compaction on growing plant	10
2.2.5 Degree of compactness suitable for growing plant	11
2.2.6 Reduction of soil compaction in a field	12
2.2.7 Effects of soil compaction on the quality of the environment	13
2.2.8 Chemical and biological effects of soil compaction	13

2.3 Stress on soil			
2.3.1 The stress state on soil			
2.3.1.1 Effective stress			
2.3.1.2 State space	16		
2.3.2 Stress induced by traffic wheel	18		
2.3.2.1 Estimated stress distribution	18		
2.3.2.2 Stress beneath traffic wheel	19		
2.4 The cyclic loading test	21		
2.5 Rationality of using cyclic torsional shear loading test			
in simulating traffic-induced loading system	23		
Chapter 3 Cyclic behavior of soil and interrelationships among			
parameters involved	25		
3.1 Introduction	25		
3.2 Methodology	26		
3.2.1 Material	26		
3.2.2 Preparation of specimen	27		
3.2.3 Test procedure	28		
3.2.4 Test apparatus	30		
3.2.5 Theoretical description	31		
3.2.6 Test combinations	32		
3.3 Results and discussion	34		
3.3.1 Soil behavior under cyclic torsional shear loading	34		
3.3.2 Effect of cyclic torsional shear stress	37		
3.3.3 Effect of loading frequency	40		
3.3.4 Effect of bulk density	43		

3.3.5 Effect of confining stress				
3.3.6 Torsional shear strain and effective stress ratio				
3.4 Summary		48		
Chapter 4 Dy	namic shear strength of soil under cyclic torsional shear loading	49		
4.1 Introduction	on	49		
4.2 Methodolo	ogy	50		
4.3 Results an	d discussion	54		
4.3.1 Failur	e characteristics of soil	54		
4.3.2 Dynar	nic shear strength behavior	57		
4.3.3 Residu	ual torsional shear strain	63		
4.3.4 Critica	al state behavior	65		
4.3.5 Nc at	failure and some parameters involved	67		
4.4 Summary		70		
Chapter 5 Inf	luence of loading and loading-free processes of cyclic			
tors	sional shear to soil compaction	72		
5.1 Introduction	on	72		
5.2 Methodolo	ogy	73		
5.3 Results an	d discussion	74		
5.3.1 Dynai	nic soil responses	74		
5.3.2 Comp	arison with cyclic torsional shear loading test	78		
5.3.3 Effect	s of loading magnitude, Nc and bulk density	81		
5.3.4 Stress	path in state space	88		
5,4 Summary		90		
Chapter 6 Co	nclusions and recommendations	92		
Acknowledgme	nts	95		

References		98	
Appendix-A	Test apparatus	109	
Appendix-B	Example of soil specimen after test	112	-
Appendix-C	Selected results of torsional shear stress, strain and		
	pore water pressure recorded	113	

.