4. ASSESSMENT OF LANDSLIDE AFFECTED ARILAS
USING SATELLITE DIGITAL DATA

4-1 METHODS OF ANALYSIS

In this chapter, the potential of multitemporal Landsat Thematic Mapper (TM) data
to identify landslide-affected area was examined. This was done by determining the
changes in spectral characteristics exhibited by land cover, in response to disturbances
in visible, infrared and mid infrared parts of the spectrum. The digital images obtained
prior to and following a disaster were analyzed using five different kinds of change
detection techniques. The change detection techniques applied are 1) spectral image
differencing, 2) vegetation index image differencing, 3) tasseled cap transformation
image differencing, 4) spectral change veclor analysis, and 5) principal component
analysis.  Different change detection techniques were then compared for their

applicability in the assessment of affected areas associated with landsliding,

4-1-1 The Remotely Sensed Satellite Digital Data

.. Two Landsat TM images dated 20 December 1990 and 29 December 1993 of
Path 144, Row 041 were used for the analysis. The 1990 image characterizes the pre-
disaster condition, and that of 1993 characterizes the post-disaster condition. Since land
use had not changed appreciably in the study area between 1990 and 1993, it was
expected that the spectral changes exhibited in 1993 should reflect the effect of
landsliding. When the change detection analysis is based on data acquired in the same
season, immediately prior to, and following a disturbance, spectral changes should be
related to disturbance change with a reasonably high degree of certainty, Otherwise,
spectral changes associated with a specific disturbance may be confounded with land-
use change, annual phenological differences, climate, and other factors that differ
between the pre- and post-disturbance imagery. Figure 4-1 is a full scene of Path 144,
Row 041, bulk rectified TM data of 29 December 1993, which was one of the two
pieces of data used in this study, The processes of change detection techniques
employed can be broadly categorized into three phases as pre-processing of the data,
selection of change detection algorithms and analysis, and thresholding and accuracy

assessment. Figure 4-2 is the flow diagram of the change detection technique stages.
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Figure 4-1 Landsat thematic mapper image (full scene) of path-141 row-041 of
29 December 1993 (bulk rectified) with the band 4, 3 and 2 displayed in red, green
and blue, respectively. The scene covers 185 km x 172 km. Kulekhani watershed
is bounded by a rectangle in the fourth quadrant (bottom right).
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Figure 4-2  Flow diagram of change detection processes for the assessment of

landslide affected areas using satellite digital data,
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4.1-2 Pre-processing of TM Data |

When a sensor on a satellite records the image data, it may contain errors in both
geometry and the measured brightness values of the pixel. Errors in image geometry
are caused due to 1) rotation of the earth during image acquisition, 2) wide field of view
of sensors, 3) curvature of the earth, 4) type of sensor, 5) variation in platform altitude
and velocity, and 6) panoramic effects related to image geometry, The geometric
distortions present in the images need to be corrected when data taken at different times
are to be compared, or when GIS operations such as overlay are to be performed,

In addition, a problem associated with using multitemporal remotely sensed data
for change detection is that the data are usually captured with varying sun angle,
atmospheric, and soil moisture conditions. Ideally, the multiple dates of remotely
sensed data should be “normalized" so that these effects can be minimized or eliminated
(Eckhardt et al., 1990; Hall et ai., 1991).

4-1-2.1 Geometric rectification

There are two techniques to correct geometric distortions present in a digital
image. In the first method, the nature and magnitude of the distortion is modeled
mathematically by quantifying the causes of distortions. The method requires
characterization of the distortions precisely. The second method is to define a
mathematical relationship between the addresses of image pixels to corresponding
ground coordinates via maps or other coordinate information. This is the method
applied in this study. In this method, it is required to identify clearly identifiable
features on the image and corresponding ones on maps. These well defined points both
in the image and maps are called control points.

Thirty four ground control points (GCPs) digitized from thé topographic map of
scale 1:25000 were used to rectify the 20 December 1990 Landsat TM image to a
Universal Transverse Mercator (UTM) map projection (root mean square error: RMSE
= 0.46 pixel / 14 m). The RMSE in the X-direction and Y-direction were respectively
0.30 and 0.35 pixel. The 1993 image was registered using 50 GCPs obtained from the
rectified 1990 image (RMSE = (.31 pixel/ 9 m). The RMSE in the X-direction and Y-
direction were respectively 0.19 and 0.24 pixel. The RMSE were considered acceptable

for carrying out the pixel to pixel change detection analysis. The images were
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resampled to a 30 m pixel size using the nearest neighbor resampling technique 1o retain
radiometric integrity (Jensen, 1996). Figure 4-3 is the geometrically rectified TM
images of 1990 and 1993 with the boundary of the study area overlaid,

4-1-2.2 Image normalization

The ability to use remotely sensed dala to change detection is based upon the
fact that a relationship between data captured by a sensor and actual surface conditions
do exist. However, factors such as sun angle, Earth/sun distance detector calibration,
differences between the various sensor systems, atmospheric condition, and sun/ target/
sensor (phase angle) geometry will also affect pixel brightness value (BV) between
dates. Differences in the direct-beam solar radiation due to variation in sun angle and
Earth/sun distance can be calculated accurately, as can variation in pixel BVs due to
detector calibration differences between sensor systems. However, removal of
atmospheric and phase angle effects require information about the gaseous and aerosol
composition of the atmosphere and the bi-directional reflectance characteristics of
elements within the scene {Eckhardt et al,, 1990). Because the atmospheric and bi-
directional information is usually not available, an empirical scene normalization
approach was used to match the detector calibration, astronomic, atmospheric, and
phase angle conditions present in a reference scene.

The 1993 TM scene was selected as the reference scene to which the 1990
scene was normalized, because large-scale aerial photographs were available for the
date close to the 1993 TM data, The image normalization was achieved by applying
regression equations to the 1990 imagery which predicted what a given BV would be if
it had been acquired under the same conditions as the 1993 reference scene, For this,
operation pixel clusters of “normalization targets” were extracted from wet (water;
reservoir) and dry (rock outcrops and grassland) areas in both the 1993 and 1990
images, Normalization targets were assumed to be the constant reflectors, so any
changes in their brightness values were attributed to astronomic, atmospheric, and phase
angle differences. In this study, normalization targets consist of three points in the
reservoir area, three points from rock outcrops, and three points from the grassland.
These points were first located on the available aerial photographs. They were then

examined in both images using a display device for their similarity in natural color
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Figure 4-3 Post- and pre-disaster Landsat TM images (rectified) used for the study.
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composites. Finally, the points were then confirmed from the field survey using GPS.
The pixel values for these points from each band were plotted against each other to
verify the linear relationships between the data of both images. The linear relationships
existed. Then the regression equation was derived for the relationship for each band
(Figure 4-4). The coefficients and intercept of the equation were used to obtain
normalized 1990 TM image. Each regression model contained an additive component
that corrected for the difference in atmospheric path radiance between dates, and a
multiplicative term that corrected for the difference in detector calibration, sun angle,
Earth/sun distance, atmospheric attenuation, and phase angle between dates. Once these
variations in the multiple date images were removed, changes in BV could be related to

changes in surface conditions,

4-1-3 Change Detection Techniques Examined in Detecting Landslide Affected

Areas

The identification of landslide affected areas using multitemporal data is based
on the assumption that, the disturbances such as landsliding cause abrupt changes in
spectral characteristics exhibited by land covers in the visible, infra red and mid infrared
part of the spectrum. The average brightness value (BV) exiracted for different areas
affected by landsliding from the images of 1993 and 1990 are shown on Figure 4-5 (A-
L). The location of these arcas were measured (at least 100 m wide) in the field with
GPS. The measured location values were brought into ARC/INFO and rasterized before
overlaying with the 1990 and 1993 images. Table 4-1 summarizes the preliminary
understanding (based on Figure 4-5) on the characteristics of six different bands for
detecting different type of changes, as landslides or sediment deposition. With this
information in mind, five different change detection methods such as spectral image
differencing, vegetation index image differencing, tasseled cap differencing, spectral
change vector analysis, and principal component analysis were employed. Altogether 11
algorithms were generated from these five methods. These are subsequently discussed.

Table 4-2 shows the details on the change detection techniques applied in this study.

4-1-3.1 Spectral image differencing

The image differencing technique was performed by subtracting the BV
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both 20 December 1990 and 29 December 1993 in TM bands 1-7 (excluding
band 6). The regression equations are used to normalize radiometric

characteristics of the 1990 TM data.
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Table 4-1 Preliminary understanding on the characteristics of six different bands for
detecting different types of landslide affected areas,

Sediment deposition areas

Sand deposit

Cobble deposit

Boulder deposit

increase in BV

increase in BV

increase in BY

increase in BV

increase in BY

increase in BV

increase in BV

increase in BV

increase in BV

increase in BV

decrease in BY

increase in BY

increase in BY

decrease in BV

increase in BY

Bands Landslides
Band 1 increase in BV
Band 2 increase in BY
Band 3 increase in BV
Band 4 increase as well as
decrease in BV
Band 5 increase as well as
decrease in BV
Band 7 increase in BV

increase in BV

increase in BY

increase in BY

BV: Brightness value

Table 4-2 Change detection techniques employed in the study,

No. Change Detection | Different algorithms within the | Total number of
Techniques change detection techniques algorithms in
each technique
1. Spectral image 1. Band1 4
differencing
2. Band 2
3. Band 3
4, Band 7
2. Vegetation index 1. Difference vegetation index 3
image differencing image differencing
2. Ratio vegelation index image
differencing
3. Normalized difference
vegetation index (NDVI)
image differencing
3 Tassalled cap 1. Tasselled cap brightness 1
transformation function image differencing
image differencing
4 Spectral change 1. Band 1, band 2, and band 3 2
vector analysis (sector code 8)
2. Band 3 and band 4
(sector code 3)
5 Principal 1. Band 1, band 2, and band 3 1
component analysis
Total 11
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(brightness value) of spatially registered TM images of 1990 to 1993, pixel by pixel in
order to produce the change image which represented the change between the two times.
Spectral image differencing was performed on the four bands {band 1: blue, band 2:
green, band 3: red, and band 7: mid infrared). The selection of these bands was guided
by their clear responses in the areas affected by landslide disturbances (see Figure 4-5).
All these bands show clear increase in the BV in the affected areas,

The subtraction (differencing) produces an image data set where positive and
negative values represent areas of change and values close to zero indicate areas that
remain relatively unchanged, In an 8 bit analysis with pixel values ranging from 0 to
255 (256 levels), the potential range of difference values is —255 to 255. The range of
the values in difference images were checked and transformed into positive values by
adding the median value (127) to the original value resulting from the subtraction. For
the pixel located at row 7 and column j, the difference in the brightness value (DBVkij)

for band k between the two dates can be mathematically written as;

10D A (O B : A (2 o e —— (2)
Where, BV = Brightness value, t; = second date (in this case 1993), t; = first date (in
this case 1990), C = constant (taken as 127)

Figure 4-6 (A-D) show the smoothed histogram of four change images. The
histograms show normal or nearly normal distribution in all cases, The mean, standard
deviation, median, and mode values for each histogram are also shown. Values near the
mean indicate they have similar spectral values on both dates, and therefore have
experienced no disturbances. As values increase or decrease from the mean, greater
change is presumed to have occurred between the dates. For TM bands 1, 2,3 and 7,
the values that are less than or close to mean (i.e. represented by the left side tail of the
histogram) indicate areas where spectral values decreased in 1993 or remained
relatively unchanged. These are the pixels, which are considered not affected by
disturbances, because these pixels rather indicate the annual ephemeral changes in the
land cover in which I was not interested. Hence, values greater than the mean,
representing areas that exhibit an increase in brightness value (i.e. represented by the

right side tail of the histogram) were considered as affected by landslides.
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Figure 4-6 (A-D) Histograms of change images for spectral image differencing change
detection method. Bands and statistics are shown,
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The question in all change images was then where to place the threshold
boundaries between change and no-change pixels displayed in the histogram of the
change image. It is called thresholding and is a most critical element in change detection

analysis. Considering the importance of the topic, thresholding and accuracy assessment

are discussed below in detail,

Thresholding and accuracy assessment

Frequently the standard deviation from the mean is established as the threshold
value, which has been usually found suitable (Jensen, 1996). However, in this study two
steps were carried out to determine the threshold value. The following discussion
illustrates the method of determination of the optimal threshold value employed. The
histograms of the four change image sets were examined, and the mean and the standard
deviation for each data set were calculated (see Figure 4-6). The threshold values, with
which to separate the change pixels from the no change pixels were examined in the
following way. In this procedure I took only the right side tail of the histogram for the
reasons explained in the last section. [ added the value of the standard deviation x N {o
the mean, with the starting value of N = 0.25 and the increment of 0.25 until N = 3.0,
The threshold images produced are binary images in which a value of 0.0 or 1.0
represents no change or change, respectively,

In the first step, a range of threshold values depicting the "realistic amount of
change" (Jensen, 1996) was selected based on the familiarity of the study area. Three
surveys had been carried out between 1997 to 1999 and at least a month had been spent
in the study area each time for this purpose and others. Then in the second step, the
change images produced at each selected ranges of threshold were verified with the
reference sample data, Emor matrices were produced and analyzed for accuracy
assessment for the ranges selected to determine the optimal threshold. Two accuracies,
"overall accuracy" and "Khat" (kappa coefficient of agreement) were used. The
producer’s accuracy, which measures the error of omission and the user’s accuracy that
measures error of comission were also calculated. _

The reference data for the accuracy assessment included randomly sampled
areas of no change and change sites, The location of these areas were measured (at least

100 m wide with the exception of few landslides) in the field with GPS. The measured
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location values were brought into ARC/INFO and rasterized before overlaying with the
change images produced at ranges of threshold values. The reference data consisted of
1,468 pixels from the areas of no change, and 1,075 pixels from the areas affected by
landsliding, Among 1,075 change pixels, 388 pixels represented landslides (slope
failures) pixels, and the rest represented the sediment deposited areas located in the
alluvial fan and river terraces. The change in speciral bands 1, 2, 3 and 7 were
considered to depict both landslides and sediment deposited areas in terms of overall
affected areas and the accuracy assessment was carried out with 1,468 no change pixels
and 1,075 change pixels, The various accuracies used for the thresholding are described
below. Table 4-3 shows the example of calculation of various accuracies from the error
matrix for the change image produced, using band 1 at threshold when N equals 1,

The overall accuracy is the total number of correctly classified samples
(diagonal cells of the matrix) divided by the total number of samples. It is 0.87 in Table
4-3. It measures the accuracy of the entire image without any indication of the accuracy
of individual categories. Overall acchracy has a tendency to be biased toward the
category with a larger number of samples (Nelson 1983; Singh 1986). It is for this
reason, that the Khat accuracy was given importance in this study as it uses all the
elements of the matrix. The Khat, also known as kappa coefficient of agreement, was

originally developed by Cohen (Bishop et al., 1975) and is calculated as shown below.

r r
2 Xii - z (X % X4)
i=1 i=1

r
Nz' 2 (xi+*x+ﬁ)
i=1

where, 1 is the number of rows in the matrix, x; is the number of observations in row i
and column i (ith diagonal element), Xj; and x4 are the marginal totals of row i and
column i respectively, N is the total number of observations, The Khat takes into
account the degree of agreement expected by chance by using all elements of the matrix
and not just the main diagonal to its calculation, It represents thé proportion of
agreement obtained after removing the proportion of chance agreement. The Khat value
in Table 4-3 is 0.726.
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Table 4-3 Generation of error matrix and calculation of different accuracy measures
in order to set a threshold value. An example of Band 1 change image; threshold
value = mean + standard deviation (i.e. N = + 1).

Reference data

No Change ~ Change Total
Classified  No Change 1411 274 1685
data Change 57 801 858
Total 1468 1075 2543
Overall accuracy (1411 + 801) /2543 = 0.870
Khat 0.726 ( For calculation see text)
Producer's accuracy User's accuracy
No Change 1411/1468 = 0.961 |No Change 1411/1685 = 0.837
Change 801/1075 = 0.745 [Change 801/858 = 0.934
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The producer’s accuracy is the number of correctly classified samples of a
particular category divided by the total number of reference samples for that category,
In Table 4-3, it is 0.745 (801/1075) and measures the error of omission, The user’s
accuracy is an alternative measure for individual category accuracy. It is a measure of
correctly classified samples of a particular category divided by the total number of
classified samples for that category, In Table 4-3, it is 0.934 (801/858) and measures
the error of comission, Producer’s accuracy refers to how well the producer of a map
can delineate the areas of change and no change. For example, if the producer of a map
is standing on some change area in the field, the producer’s accuracy for change class
refers to the probability of that area (on which he is standing) being identified as change
on the map. The user’s accuracy is the accuracy in which the user is interested, For
example, if the user chooses one of the change areas from the map, the user’s accuracy

represents the probability that the area actually changes in the field.

4-1-3,2 Vegetation index image differencing

Landsat TM Band 3 and 4 are well suited for monitoring green vegetation. The
0.63 to 0.69 um region (band 3) is centered on the chlorophyll absorption wavelengths
of a green canopy. The 0.8 to 1.1 um of the infrared region (where band 4 of TM falls)
is highly reflected by vegetation due to the internal structure of the leaf (Tucker and
Maxwell, 1976). Hence the development of vegetation indices from brightness values
is based on the differential absorption, transmittance, and reflectance of the energy by
the vegetation in the red (band 3) and infrared (band 4). It has been shown over the
years that the ratio of near infrared MSS band 4 and red MSS band 2 is significantly
correlated with the amount of green leaf biomass (Tucker, 1979; Nelson, 1983;
Anderson and Hanson, 1992). The same is true with the bands 4 and 3 of TM data.

Numerous vegetation indices have been formulated {0 make use of the differences
of red and infrared bands, The use of TM data in the derivation of different vegetation
indices have been discussed in detail by Richardson and Everitt (1992), and Lyon et al,
(1998). Basic techniques include the subtraction of the near infrared band and red band,
the division of near infrared by the red band, and the combination of both in such a way
so as to seek to normalize the response such as normalized difference vegetation Index

(NDVI). Iusein this study three types of vegetation indices image differencing, which
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are called difference vegetation index (Band 4 - Band 3) image differencing, ratio
vegetation index (Band 4 / Band 3) image differencing, and normalized difference
vegetation index [NDVIL (Band 4 - Band 3) / (Band 4 + Band 3)] image differencing.
Each of the three vegetation index image produced for 1990 was subtracted from that of
1993 to produce three change images: the change in difference vegetation index, the
change in ratio vegetation index, and the change in NDVIL

The vegetation index change images are the images, showing changes in remote
sensing measurements directly related to green biomass between 1990 and 1993, When
landslide or debris-flow occurs in vegetated areas, it is expected that vegetation (green
biomass) will be damaged or disturbed. With this, I hypothesized that the decrease in
vegetation should imply the disturbance in vegetation due to landsliding. Hence, pixels
which showed values smaller than the mean or close to the mean (the left side tail of the
histogram) were considered to detect vegetation responses to disturbances (Figure 4-7
A-C). Pixels whose values are greater than or close to the mean (the right side tail of
the histogram) indicate areas where vegetation indices increased in 1993 or remained
relatively unchanged. These pixels rather indicate the annual ephemeral changes in the
vegetation which was of no concern in this study, hence were not considered for further
analysis. In Figure 4-7 (A-C) a factor should be noted concerning the characteristics of
this data transformation, The change image produced from the difference vegetation
index, is an 8-bit image in which a median value of 127 was added. However, the ratio
and the normalized vegetation index differencing images are real, continuous images in
which an arbitrary constant of 5 and 2 were added respectively, in order to produce a

non-negative image.

Thresholding and accuracy assessment

The threshold value that separated the pixels of change from those of no change
determined following two steps in the same way as explained in the preceding section.
Vegetation indices were expected to show the vegetation responses to disturbances.
The reference data in non-vegetated areas for accuracy assessment in this case were
alluvial fan or river terraces, where sediment deposition had been observed, Hence, the
accuracy assessment was carried out using 1,468 no change pixels and 388 landslide

pixels only.
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Figure 4-7 (A-C) Histograms of change images for vegetation index image
differencing (A) Diffrence vegetation index differencing, (B) Ratio vegetation
index differencing, (C) Normalized difference vegetation index (NDVI) differencing.
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4-1-3,3 Tasseled cap brightness image differencing

Tasseled cap transformation, also called Kauth and Thomas transformation, was
first developed by Kauth and Thomas (1976) using Landsat -MSS data. Crist {1983)
and Crist and Cicone (1984) extend the tasseled cap transformation to the Landsat TM
data excluding band 6 (Crist and Kauth, 1986). Details on the tasseled cap
transformation can be found in Jensen (1996} and Mather (1988). A new coordinate
system is defined from this transformation where the characteristics of the remotely
sensed data can be more readily viewed, The axes of this new coordinate system are
termed “brightness", "greenness" and “wetness", In this study, only the brightness
function of tasseled cap transformation was employed, which is a weighted average of
the six bands. In three dimensional space, the positions of individual pixels can be

computed using the equation 4 as shown below,

Brightness = 0.3037 (TM1) + 0.2793 (TM2) + 0.4343 (TM3) + 0.5585 (TM4)
+0.5082 (TM5) + 0,1863 (TM7) ---wremnvrmmmnn (4)

. A brightness image was produced from the TM images of 1990 and 1993 using
above transformation equations and the 1990 image was subtracted from that of 1993,
The ranges of tasseled cap brightness values in 1990 and 1993 vary between 2-231 and
10-321, respectively, The brightness image differences vary between (-91)-127.
Considering this range in the difference image a constant value of 150 was added, and a
non- negative change image was produced. The values higher than the mean indicate an

increase in the brightness in 1993 (see Figure 4-8).

Thresholding and accuracy assessment
The threshold value was determined in the same manner as explained in the
preceding sections. The accuracy assessment was carried out using 1,468 no change

pixels and 1,075 change pixels, using the right side tail of the histogram.
4-1-3.4 Spectral change vector analysis
When the land undergoes a change due to disturbances, its spectral value

changes between dates, If two spectral variables are measured and plotted for the area
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both before and after change occurs, it can be expressed by a vector (Jensen 1996). The
vector describing the direction and magnitude of change from the first to the second
date is a spectral change vector (Malila, 1980; Michalek er af., 1993). The total change
magnitude per pixel (CMyixc1) is computed by determining the square of the Euclidean
distance between the points through x-dimensional change space (Malila, 1980;
Michalek et al,, 1993, Jensen, 1996).

n

CM v = ;[BVE, i aatey ~ BVi kdareny | (5)

Where, BV jjiare2) and BY ;jxpaaery are the date 1 and date 2 pixel valuesin band k. A
scale factor (e.g., 5) can be applied to each band to magnify small changes in the data if
desired. The change direction for each pixel is specified by whether the change is
positive or negative in each band. Thus 2" (where 1 is the number of bands used)
possible types of changes can be determined per pixel (Virag and Colwell, 1987). For
example if two bands are used, there are 2° or 4 types of changes or sector codes
possible, whereas for three bands, there will be 8 possible sector codes (Table 4-4), Let
us consider a single registered pixel measured in two bands (band 3 and band 4) on two
dates. The change in band 3 was positive with values 45 and 40 for date 2 and datel,
respectively, Similarly the change in band 4 was negative with values 40 and 45 for
date 2 and date 1, respectively, Then the change magnitude of pixel would be 52 + (-5)
= 50. The change sector code or direction for this pixel would be +, -, and will have
value 3 (Table 4-4). Two spectral change vector analyses were applied in this study.

i) Three visible bands (band 1: blue, band 2: green, band 3: red) were selected
because the preliminary result show that all the three visible bands show abrupt increase
in BV in the areas of disturbances (see Table 4-1). A scale factor of five was used in the
processing of each TM band. Since three bands were used in this case eight possible
types of changes were expected. For the rare instances where pixel values did not differ
between two dates, a default direction of “+” was used to ensure that all pixel was
assigned a direction. However, only a change of sector 8 was of interest because pixels
at this sector code represent the increase in BV in all bands 1, 2 and 3. The landslide
affected area result in an increase in a vector magnitude because they often caused

erosion or deposition exposing bright sand or coarser sediments. Table 4-5 shows the
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Table 4-4 Sector code definitions for change vector analysis processing using three
bands, and two bands. "+" indicates the increase in spectral value in 1993 (post disaster
scene) and "-" indicates the decrease in spectral value in 1993.

Using three bands 1, 2 and 3 Using two bands 3 and 4
Sectorcode | Band 1 | Band2 | Band 3 | Sector code | Band3 | Band 4
1 - - - 1 - -
2 - - + 2 - +
3 - + - 3 + -
4 - + + 4 + +

5 + - -

6 + - ¥

7 + + -

8 + +

Table 4-5 The minimum and maximum magnitudes in eight sector codes for change
vector analysis processing with TM bands 1, 2 and 3. Only sector code 8 shows
significant higher values, This was the sector of interest.

) Sector codes

7 o) 5 4 3 2 1
8 5 19 7 7 4 128

Minimum magnitude £ :
Maximum magnitude FRD65210

2266 1643 5205 2141 1992 1513 32921

Table 4-6 The minimum and maximum magnitudes in four seclor
codes for change vector analysis processing with TM bands 3 and 4.
Only sector 3 was of interest (see text for the explanation),
Sector code
2 1

71 234
18253 60015

=l

4

Minimum magnitude 407
Maximum magnitude 104042
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minimum and maximum magnitudes for different sector code images. For further
analysis only sector code 8 is considered.

if) Secondly, the spectral change vector of band 3 (blue) and band 4 (near
infrared) was applied. It was expected that areas where landslide had occurred would be
the one, which showed increase in band 3 and decrease in band 4. In this case also a
scale factor of five was used in the processing of both TM bands. Since two bands were
used in this case four possible types of changes were expected, For the rare instances
where pixel values did not differ between two dates, a defaull direction of “+” was used
to ensure that all pixels were assigned a direction. The sector code 3 (see Table 4-4},
which indicates the areas with an increase in band 3, and a decrease in band 4, in 1993,
was hypothesized to reveal landslides. The maximum magnitudes for different sector
codes indicate that sector code 1 (decrease in band 3 and 4 in 1993}, and sector code 4
(increase in band 3 and 4 in 1993) also have high values (see Tabie 4-6). However, the
pixels falling on those sector codes were not considered for further analysis for the

obvious reason that such cases can not be expected (0 occur in the areas of landslides,

Thresholding and accuracy assessment

In order to locate the areas undergone changes due to disturbance the threshold
values were adopied over the scaled images and the accuracy assessment was carried
out. The histograms of the change veclor analysis do not have normal distribution but
have the only one right side tail. The method for determining the optimal threshold is
the modification of the method for a nermally distributed histogram. Michalek ef ai.
(1993) determined the threshold by examining deep-water areas. The threshold value
preliminary determined in this study by examining the deepest pari of the water areas
(reservoir), did not perform well because it contained a large number of insignificant
change pixels. Hence, the threshold level was selectively modified to the upper
magnitudes, until it gave the highest accuracy, Accuracy assessments were carried out
using 1,468 no change pixel and 1,075 change pixels in the first case {which use bands
1, 2 and 3) to determine the landslide affected areas. In the second case which uses
bands 3 and 4, accuracy assessment was carried out using 1,468 no change pixels and

388 landslide pixels, with the expectation of obtaining landslides in the vegetative areas.
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4-1-3.5 Principal component analysis

Principal component analysis (PCA), or the Karhunen-Loeve (K-L)
transformation (Duvernoy and Leger, 1980), is a multivariate slatistical technique. The
data axes are rotated into principal axes, or components, that maximize data variance. In
this manner correlated data sets can be represented by a small number of axes, while
maintaining most of the variation of the original data. A detailed explanation of PCA for
the use of remotely sensed data can be found in Mather (1988) and Jensen (1996).

PCA in this study was based on bands 1, 2, and 3 merged dala set from the
images of 1990 (pre-disaster) and 1993 (post disaster). The basic premise for PCA with
merged data in change detection is that one or more of the new PCA bands contain
information that can be directly related to change (Byrne ef al,, 1980; Jensen, 1996;
Dobson et al., 1995). Muchoney and Haack (1994), for example, demonstrated that
multitemporal SPOT speciral information related to hardwood defoliation by gypsy
moths was confined 1o a single PCA band (15:).

“The 6 x 6 covariance matrix of the 6 dimensional merged remote sensing data
set to be transformed, was compuled. The eigenvalues and eigenvectors of the
covariance matrix were computed (Table 4-7). The first, second, and third principal
components account for 96.16, 2.81 and 0.87 percent of the variance, respectively.
Principal component images were computed from the eigenvectors much in the same
way as the tasseled cap transformation was derived from ils components, Analysis of
the eigenvector of the transformed data, and visual inspection of six images, indicated a
third component image best representing the areas affected by landslides. An arbitrary
value of 60 was added to produce a non-negative image, and further analysis was done

only with the image produced from the third principal compounent.

Thresholding and accuracy assessment

The threshold value that separates the pixels of change from those of no change
was determined by carrying out two steps as explained in the preceding sections
(section 4-1-3.1). Accuracy assessment was carried out using 1,468 no change pixels
and 1,075 change pixels. Since the areas affected by landslides corresponded with the
values less than the mean only the pixels falling on the left side tail of the histogram

(Figure 4-9) were considered for thresholding and accuracy assessment,
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Table 4-7 Eigenvectors and eigenvalues compuied from the covariance matrix for the
principal component analysis.

Year/Band Component P
1 4 3 6
1993 1 0.584 -0.565 -0.198 -0.135
2 0.251 0.009 0.452 0.797
3 0.329 0.400 -0.093 -0.336
1990 1 0.568 0.613 -0.088 0.062
2 0.245 -0.176 0,790 -0.440
3 0.324 -0.336 -0.340 0.191
Eigenvalues 1913.419 1.705 1.065 0.433
% Variance 96.16 0.09 0.05 0.02
% Cumulative 06.16 99.92 99,98 100.00
Variance

1
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Figure 4-9 Histogram of the 3rd principal component image.
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4-2 RESULTS
4-2-1 Spectral Image Differencing

Threshold value of the standard deviation x N to the mean, with the starting value
of N = 0.25 and the increment of 0.25 until N = 3.0, and the corresponding change
pixels are depicted in Table 4-8. The shaded portion is the range of the threshold in
which accuracy assessment was performed to determine the optimal threshold as
explained in the section 4-1-3.1. Figure 4-10 (A-D) show the change images depicting
change pixels by different bands at different threshold values.

Four change images had the optimal threshold at N = 1, and they have different
accuracies in detecting areas affected by landsliding. Both overall accuracy and Khat
were found highest at N = 1 (Table 4-8)., Among the four spectral images differencing
employed, band 2 has the highest accuracy with 87.5 percent and 74.2 percent overall
and Khat accuracies respectively, in differentiating between the areas affected from not
affected. Interms of the accuracies, band 2 image differencing was followed by band 1

and band 3 images differencing. Band 7 gave the lowest accuracy.

4-2-2 Vegetation Index Image Differencing

In this study vegetation indices were expected to reveal disturbances in the
vegetated areas by landsliding. The accuracy assessment was carried out using 1,468 no
change pixels and 388 landslide pixels. Table 4-9 shows the threshold values and the
accuracies at different thresholds, Figure 4-11(A-C) shows the change images,
depicting the change pixels by different vegetation indices at a different threshold,

The three vegetation index change images have different threshold and different
accuracies (Table 4-9). Both overall accuracy and Khat were comparatively low when
compared to the spectral image differencing. NDVI has the highest accuracy for
vegetation responses to landsliding with 84.8 percent and 52.7 percent overall and Khat

accuracies, respectively, at threshold N =1,25,

4-2-3 Tasseled Cap Brightness Image Differencing
Figure 4-12 shows the change images depicting the change pixels by different
tasseled cap brightness functions at different threshold. Threshold values and the

corresponding number of change pixels are shown on Table 4-10, The shaded portion is
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Table 4-8 Threshold values and change pixel corresponding to value of the standard
deviation x N (o the mean (N = 0.25-3.0) for bands 1, 2, 3, and 7 change images. The
shaded portion is the range of threshold depicting pixels affected by landsliding., The
accuracy assessment based on the overall accuracy and the Khat was performed to
decide the threshold from this range.

Threshold Band 1 Band 2 Band 3 Band 7
parameter
TV  Acc. Pixel |'TV  Ace. Pixel |TV  Acc. Pixels| TV  Acc. Pixel
>) % num- | (=) % num- | (>) % num-| (>) % num-
ber ber ber ber
OA Kh 0A Kh 0A Kh 0A Kh
Mean + (.25 st. dev | 120 308661 127 549211 128 41939 130 47730
Mean + 0,5 st. dev | 130 27635128 335711129 313571132 28218
Mﬂan + 0,75 st.dev | 131 . ,195598 129 2‘11182 131 195431 134 20794

Mecan + 2.5 st. dev
Mean + 2,75 st, dev
Mean + 3 st. dev

139
140
141

TV: Threshold value, Acc.: Accuracies, OA: Overall accuracy, Kh; Khat accuracy

Table 4-9 Threshold values, accuracies and pixel number corresponding to the different
values of the standard deviation x N to the mean for the three vegetation index change

images.

Threshold parameter

Difference Vegetation
index (Band 4 - Band 3)

Ratio vegelalion
index (Band 4 / Band 3)

NDVI

(Band 4 - Band 3/ Band 4 + Band 3)

Me:
Mean-2.5 st. dey
Mean-2.75 st. dev
Mean-3 st. dev

3 E

TV  Acc. Pixel TV Acc,  Pixel TV Ace,  Pixel
(<) %  number | (<) %  number| (<) %o number
0OA Kh 0OA Kh 0OA Kh
Mean-0.25 st. dev | 125 47618| 4.891 47425 1.973 51193
Mean-0.5 st, dev 123 31681| 4.807 33773 1.950

TV: Threshold value, Acc.: Accuracies, OA: Overall accuracy, Kh: Khat accuracy
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Figure 4-10 (A-D) The results of the spectral image differencing showing change
pixels at different threshold values using the standard deviation (St. Deviation) and the
mean. Highest accuracies were obtained at one standard deviation to the mean (N = 1).
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Figure 4-10 (continued).
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Figure 4-11 (A-C) The results of three vegetation index image differencing showing
change pixels at different threshold values using the standard deviation (St. Deviation)
and the mean.
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Figure 4-12 The result of the tasseled cap brightness image differencing showing

change pixels at different threshold values using the standard deviation (St. Deviation)
and the mean.

75



the range of the threshold in which the accuracy assessment was performed to determine
the optimal threshold.

The change image has optimal threshold at N = 1. Overall and Khat accuracies
are 78.7 percent and 54.1 percent, respectively. The accuracies are very low compared

to the change images produced from spectral image differencing (using bands 1, 2, 3).

4-2-4 Spectral Change Vector Analysis

Two spectral change vector analyses that used three bands (1, 2 and 3), and two
bands 3 and 4 were applied in this study., Threshold values and the corresponding
number of change pixels are shown on Table 4-11. The threshold values in this case are
selected by subjective judgement until a realistic amount of change was obtained in the
scene, The shaded portion is the range of the threshold in which the accuracy
assessment was performed to determine the optimal threshold. Figure 4-13 (A-B)
shows the change images by spectral change vector analysis.

The overall and Khat accuracies for the spectral change vector analysis that used
bands 1, 2, and 3 (sector code 8) which was expected to reveal the overall affected areas
(landslides and sediment deposition) are 88.3 percent and 75.4 percent. The overall and
Khat accuracies for the spectral change vector analysis that used bands 3 and 4 (sector
code 3), which was expected to reveal disturbances in the vegetated areas are 81.4
percent and 35.7 percent respectively. The former gave high accuracies than spectral
image differencing and tasseled cap transformation, The later however, gave lower

accuracies when compared to vegetation index image differencing.

4-2-5 Principal Component Analysis .

Threshold values and the corresponding accuracies and the number of change
pixels for the 3rd priﬁcipal component image are shown on Table 4-11, The shaded
portion is the range of the threshold in which the accuracy assessment was performed (o
determine the optimal threshold. Figure 4-14 is the 3rd principal component image
depicting areas affected by landslides.

The optimal threshold is found at N = 1 with the overall and Khat accuracies of
874 percent and 73.4 percent. This accuracies are very close to the accuracies of

spectral change vector analysis (bands 1, 2 and 3) and band 2 image differencing.
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Table 4-10 Threshold values, accuracies and pixel number
corresponding to the different values of the standard
deviation x N to the mean for tasseled cap brightness

function change image.

Threshold

Tasseled Cap (Brightness)

parameter
TV Accuracies Pixel number
>)
CA Khai
Mean+0,25st, dev | 154.2
Mean+{(.5 st. dev | 158.1

Mean+0.75 st. dev
B NETe x|

Me L ey

EYAIKLO:
189.3
Mean+2.75 st. dev | 193.2

Mean+3 st. dev 197.1

TV: Threshold value, Acc.: Accuracies, OA: Qverall accuracy,

Kh: Khat accuracy

Table" 4-11 Threshold values, accuracies and pixel number correspohding to different
subjectively selected threshold values for two spectral change vector analysis. The
results of principal component analysis is also listed.

Three bands 1,2 and 3 | Two bands 3 and 4 || Principal Component Analaysis (PC 3)
TV Accuracies Pixel | TV Accuracies Pixel Threshold TY Accuracies  Pixel
>) number| (>) numberg parameler =) number |
0A Khat 0A Khat QA  Khat
‘ 40771} Mean-0,25st, dey 58,89 43192

Mean-0.5 st, dev

57.58
56.27

27407
19190| |

3 Mean-Z.S st, dev

MMean-2.75 st dev
Mean-3 st, dev

45.78
44,47

‘TV: Threshold value, Acc.: Accuracies, OA: Overall accuracy, Kh: Khat accuracy
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Figure 4-13 (A-B) The results of the spectral change vector analysis showing change
pixels at different threshold values. The values were subjectively selected by trial and
error in order to find the optimal threshold value.
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Figure 4-14 The result of the principal component image analysis showing change pixels
at different threshold values. The third principal component image represented for the
areas affected by landslides. The change pixels shown are detected from the third principal
component image.
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4-2-6 Comparison of Different Methods in Differentiating Change vs. No Change

Among 11 change images generated using five different kinds of change
detection techniques, seven were expected to reveal the landslide affected areas
(landslides and sediment deposited areas), They include four spectral change images
{(bands 1, 2,3 and 7), one tasseled cap brightness change image, one spectral change
vector image (bands 1, 2 and 3: sector code 8), and one principal component image (3%
principal component ), Four change images, generated form three vegetation index
differencing and one spectral change vector analysis (bands 3 and 4), were used io
determine the vegetation responses to disturbances caused by landsliding,

Table 4-12 summarizes the accuracies for the different change detection
techniques at the optimal threshold. The spectral change vector analysis (using bands 1,
2 and 3) performed best to detect the overall affected areas with the overall and Khat
accuracies of 88.3 percent and 75.4 percent respectively, Band 2 (green) spectral image
differencing and principal component analysis were the next best with overall
accuracies of 87.5 percent and 87.4 percent, respectively, and Khat accuracies of 73.6
and 73.4, respectively. Band 7 (mid infrared) spectral image differencing and the
tasseled cap transformation (brightness) showed least accuracies.

The NDVI performed the best among the four algorithms that were specially
employed fo determine the vegetation responses due to landsliding, The overall and
Khat accuracies are 86.2 percent and 53.3 percent respectively. The accuracies of
difference vegetation index and ratio vegetation index are close to NDVI, However, as
expected before the analysis, the spectral change vector analysis using bands 3 and 4 did

not give better accuracies,

4-2-7 Detecting Different Kinds of Affected Areas Associated with Landsliding
Two change images produced using the change vector analysis and the NDVI,
which gave the highest accuracy in determining landslide affected areas or vegetation
responses to landsliding, respectively, are depicied in Figure 4-15 (A-B). These images
give the information regarding the affected areas associated with landsliding, In other
word the techniques determine whether or not the area has been affected by landsliding,
The pixels need to be classified when we need the information regarding the type of

change. For example, landslide affected areas consist of areas with landslides, debris
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Table 4-12 Comparison of the accuracies of different change detection methods at the
optimal threshold. Spectral change vector analysis using bands 1, 2, and 3 performed

best for detecting landslide affected areas (landslides/sediment deposition), NDVI
performed best to detect the vegetation responses to landsliding.

Change Producer's User's Change Producer's User's
detection Accuracy accuracy detection accuracy AccuUracy
method method
(emp[oyed for No |Change Change {employed for the Change Change
the identificalion Change identification of Changs
of Overall vegelation
affected areas) Lﬂ;ff:j;ﬁ;:;;scd
SID 72.6| 96.1 | 74.5 93.4 YD 59.3 6l.5
Band 1 Difference
SID 96,2 | 75.5 93.5 VIID 53.6 63.8
Band 2 Ratio ‘
SID 95.4 | 73.2 92.0 V1D 0| 52.81-88.4'(773.5
Band 3 NDVI | R e R
SID 96.0 | 65.0 92.2 SCVA 37.9 64.5
Band 7 Bands 3 and 4
(seclor code 3)
TCTID 95.4 | 56.0 89.9
Brightness
SCVA
Bands 1, 2,
and 3 (sector |-
code 8) | e IR o
PCA 96.9 | 74.4 8] 947
(PC3)

SID: Spectral image differencing, VIID: Vegetation index image differencing, TCTID:
tasseled cap transformation image differencing, SCVA: Spectral change vector analysis,

PCA: Principal component analysis, OA: Overall accuracy, Kh: Khat accuracy.
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Spectral change vector
analysis (sector code 8)

Landslides, Phedi
catchment

X

Kitini river boulder type
debris deposition area

. Change pixels at the optimal threshold value

Figure 4-15 (A-B) Change pixels at the optimal threshold value detected by two best
change detection methods. Spectral change vector (sector code 8) depicts the landslide
affected areas and NDVI depicts the vegetation responses to landsliding.
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flow deposition, and flooding. If we can differentiate the pixels of landslides to that of
sediment deposition areas, it would be of great value. In Figure 4-15(A) some of the
classes of the change areas have been mentioned from the fieldwork data (see Figure 2-
3 also). To classify all the change pixels into different classes, some classification
method needs to be applied. The classificatiqn of these pixels-however, is a difficult
task. ‘ |

In this study a byoad _claséi_ficatiorg _:s.ystlém- was 'applied.‘l.o cla,sSify ',cha‘nge pixels
into areas with landsliding or sediment deposition. 'Fof this purpoée a digital elevation
model derived from the Triangulation Irregular Network (TIN) using digitized contours
from a topographic map (see section 5-1-1) was used to produce a slope gradient map.
The two change images were then masked with the slope gradient map and change
pixels falling on a slope gradient less than 15° were classified as pixels associated with
sediment deposition, and the pixels falling on slope gradient greater than 15° were
classified as pixels associated with landsliding. It is generally accepted that a deposition
processes occurs on the slope less than 15° and it is also common to find landslide
phenomena only in the region of slope gradient greater than 15°, which was true in this
case, also as shown by the landslides measured in the field {see Figure 2-6). The two
change images produced using the spectral change vector analysis and the NDVI are
depicted in Figure 4-16 (A) and Figure 4-16 (B}, respectively.

Table 4-13 shows the similar numbers of pixels associated with landsliding in
both the change maps. About 40 percent of the pixels located at slope gradient greater
than 15° were common in both the change maps indicating a large number of pixels in
the two change maps depicting different kinds of change. Since, most of the areas with
slope gradient less than 15° in the study areas can be categorized as non vegetated areas,
NDVI image was not expected to depict all the changes in the areas with slope gradient

less than 15°% consequently these pixels were excluded.

4-2-7.1 Detection of landslides

The capacity of spectral change vector analysis (bands 1, 2 and 3), and NDVI in
detecting landslides was examined, because they gave the highest accuracy for detecling
landslide affected areas and vegetation responses to landsliding, respectively. Figure 4-

17 (A-B) shows the landslide distribution map masked with both the change image of
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Spectral change vector
analysis (sector code 8)

Change pixels in the Change pixels in the
slope gradient < 15° slope gradient > 15°

Figure 4-16 (A) Change areas depicted by spectral change vector analysis (sector code
8) by slope gradient.

NDVI

Figure 4-16 (B) Change areas depicted by NDVI. Black spots are the change pixels in
the slope gradient greater than 15° (see text for the illustration).
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Table 4-13 Number of pixels depicted as sediment deposition or landslides by two
change images. NDVIwas not expected to reveal changes in non vegetated areas, The
pixels that fall in the category of slope gradient < 15 are basically non vegetated area
hence, such pixels were discarded.

Spectral change vector NDVI
analysis {sector code 8)
Number of pixels associated 8777 -
with sediment deposition
Number of pixels associated 7493 7236
with landslides
| Number of pixels associated 2277 2277
with landslides and common
to both change images

Table 4-14 Modified error matrix generated for the spectral change vector analysis
(bands 1, 2 and 3; sector code 8), which produced highest accuracy among the change
detection methods employed. The matrix was generated to see the capability of the
algorithm to detect different types of changes as landslides and sediment deposition
areas,

Reflerence data

No Change Change Total
Deposition Landslides
Classified No Change 1400 83 145 1628
data
Change Deposition 37 556 23 616
Landslides 31 48 220 299
Total 1468 687 388 2543
Overall accuracy 0.856
Khat (.745
Producer's accuracy User's accuracy
No Change 0.954|No Change 0.860
Change Deposition 0.809|Change Deposition 0.903
Landslides 0.567 Landslides 0,736
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(A)

Spectral change vector
analysis (sector code 8)

. Pixels interpreted as landslides Landslides interpreted
from TM images analysis from aerial photographs

Figure 4-17 (A-B) Comparison of landslides interpreted from the multitemporal TM
data using spectral change vector and NDVI, and produced from the interpretation of
large scale aerial photographs.
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spectral change vector and the NDVI for pixels falling on a slope gradient greater than
15° Since the pixels on the change image of spectral change vector and NDVI, falling
on a slope gradient greater than 15°, also conlained pixels from the rivers, those pixels
in Figure 4-17 were excluded by masking that with the river layer produced in GIS. In
addition single isolated change pixels were excluded because a large number of them
were recognized as due to errors of rectification and registration,

The complete landslide distribution map was produced from large-scale aerial
photographs (1:20,000; discussed in section 5-1-1). Figure 4-17 shows a similar pattern
of distribution of landslides produced from the aerial photographs and both the spectral
change vector analysis and NDVI change images, which use the multitemporal Landsat
TM data, It indicates the high potential of mullitemporal Landsat TM data for the
identification of landslides. It is, however, impractical to expect exact spatial agreement
between these two maps. In this kind of analysis errors are introduced at various stages
of the anafysis. For example, they are introduced during the preparation of the landslide
distribution map from the aerial photographs (also see section 5-5-3), digitization of
landslides, transformation of landslide distribution map, and during the rectification of
the image from the topographic map. Though it was tried to minimize such errors by
taking a lot of precautions, the existence of error can not be ruled out, In addition,
landslides in the study area are small in size and 40 percent of them are of single pixel
size (30 m x 30 m) limiting the exact spatial agreement between the two maps.

However, it was necessary to quantitatively evaluate the potential of
multitemporal Landsat TM data (spectral change vector analysis) for the identification
of landslides as well as the sediment deposition area. For this purpose, instead of using
all the landslides from the landslide distribution map produced from the aerial
photographs, only large landslides (about 100 m wide) plotted from the aerial
photographs and also confirmed in the field through the GPS survey were included for
the accuracy assessment. The error matrix was generated (see Table 4-14), which
consisted of two classes in the change category and one class in the no change category.
The reference data used to generate the error matrix then consisted of 388 landslide
pixels, and 688 sediment deposited pixels as two classes of change categaries, and 1,468
pixels of no change category. The error matrix analysis is carried out here only for

change image produced from spectral change vector analysis because the landslide
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identification accuracy from NDVI taking into account only the landslide pixels is
already shown in Table 4-12 (for explanation see section 4-1-3,2), The pixels in the
change imagé produced from spectral change vector analysis were classified into
landslide pixel and sediment deposition pixel based on the pixel's location on the slope
gradient map as discussed in section 4-6-2.

Then the modified error matrix (see Table 4-14) shows the overall accuracy and
Khat accuracy of 85.6 percent and 74.5 percent, respectively, The accuracy is higher
for detecting the sediment deposition class than it is for detecting landslides. The
producer’s and user’s accuracies for sediment deposition class are 80,9 percent and 90.3
percent, The producer's and user’s accuracy for landslide class are 57 percent and 74
percent, respectively.

Though the accuracy for detecting landslide was comparatively lower compared
with sediment deposition, I judge it to be a very acceptable accuracy. If multitemporal
Landsat TM data can provide accuracy of this level it should be considered to have
great potential for detecting landslides, because such accuracy has a great value during
early assessment.

. Another issue was to determine whether or not such a map could be used for
the assessment of the landslide hazard. The mapping of landslide distribution is
essential in many landslide hazard assessment techniques for the evaluation of site
characteristics of existing landslides or land unit associated with landslides. Basically
two kinds of unit, a grid-cell unit or catchment/slope-section unit can be used for the
assessment of the landslide hazard. The selection of analysis unit in the hazard
assessment should be determined by the kinds of data and intended application of its
results. The grid cell unit has an advaniage over catchment/slope-section unit in
providing a detailed hazard map because the relationship between landslide and non-
landslide group can be evaluated at the location of the phenomena themselves. The
aggregation of data in unit causes a generalization of the input variables in the case of
catchment/slope—sectibn unit, which may result in a hazard map that is comparatively
generalized, Carrara et al, (1991) prefers the use of catchment/slope-section unit in the
landslide hazard assessment to minimize the error introduced due to inaccuracy in the
landslide distribution map. When the landslide bodies arc aggregated at catchment

/slope section level, the error is greatly reduced; for example in the case of Carrara et
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al., (1992) it decreases from 62 percent to 21 percent. When using a grid-cell unit, it
should be noted that it is very important to locate landslides correctly.

Since in this study the landslide distribution map produced from the analysis of
multitenporal data has comparatively low accuracies, such a map may have limited use
in the small grid-cell based hazard assessment. However, the hazard assessments,
which use the unit of the analysis as a catchment/slope-section section, may take
advantage of such map.

The possible application of the landslide distribution data produced from the
multitemporal satellite data in the landslide hazard assessment based on catchment unit
was evaluated. The procedure for creating such a catchment map in GIS using DEM is
described in Figure 4-18 and Figure 4-19.- The process includes the removal of sinks
(pits) from the DEM and the calculation of a drainage direction matrix, which is
followed by creation of an accumulated area matrix. In the accumulated area matrix
layer, each pixel réprcsents the number of pixels that drains into that pixel. A threshold
value is then set and a small catchment area is created, It is a sort of semi-automatic
process. In this manner, the Kulekhani watershed was divided into 637 catchment units.

. These 637 small cﬁtchment units were then divided into the landslide
catchment units and non-landslide catchment units by overlaying that with landslide
distribution map produced from the acrial pholographs. Catchment area consisting of
landslide(s) was classified as landslide catchment, and without landslide(s) as non-
landslide catchment. It shows 263 landslide calchment and 374 non-landslide
catchment. Figure 4-20 shows the landslide distribution map produced from the
spectral change vector analysis and NDVI using multitemporal Landsat TM data on the
top of landslide and non-landslide catchment maps. It shows that more than 80 percent
of the landslide calchment units consists of change pixels, i.e, landslides identified using
multitemporal Landsat TM data, However, in terms of the total number of pixels, only
about 60 percent of the pixels are located on the landslide catchments and 40 percent
fails on the non-landslide catchments. It indicates that these change pixels do not
contain only landslides but also changes due to other factors as well. In this case, a
large number of such pixels were found in the cultivated area, which may have gone
changes other than landsliding, The change pixels in the cultivated area basically were

presence or absence of crops in two dates. Classifying the change pixels as landslides
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Digital Elevation Model (DEM)

v

Removal of sinks (pits) from
the DEM

Calculation of the flow or
drainage direction matrix

Calculation of the
accumulated area matrix

Defining the channels as
pixels exceeding an accumulated
area threshold

Sink is a point or set of adjacent points
surrounded by neighbors that have
elevation

A flow or drainage direction matrix contains
a set of pointers from each grid-cell to one
of its neighbor in the direction of steepest slope

The matrix in each element represents sum
of elements that drain into that element

Delineation of sub-watersheds
through the selection of pour
points at each channel intersection

'

sub-watersheds raster
layer

Vectorization of 44— Editing and flinalization

Figure 4-18 Different steps in the processes of creating catchment units using the

DEM.
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Flow / Drainage
direction layer

Each of eight color

shows the direction
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Figure 4-19 Schematic illustration of different steps in the processes of creating
catchment units using the DEM.

91



Spectral change
vector analysis
(bands 1, 2, and 3:
sector code 8)

. : N
. Landslide catchment unit

(6] 3 km
. Non-landslide catchment unit SN |

Figure 4-20  Change pixels (white) identified as landslides from the analysis of
multitemporal Landsat TM data are shown on the top of landslide and non landslide
catchment units identificd from landslides interpreted (rom aerial photographs.
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was hence a more difficult task than detecting the change. Though most of the
landslides were included in the total change pixels, it was difficult to extract (classify)

only landslides from them.

4-3  DISCUSSIONS

The use of multitemporal Landsat TM accomplished very high accuracies
(overall accuracy of 88.3 percent and Khat 75,4) for the identification of areas affected
by landslides. The accuracies were greatly influenced when different bands and
different change detection methods were employed. The accuracies were high for the
detection of sediment deposition areas than for just landsliding phenomena. All the
sediment depositions occurred in the same type of land use/cover (alluvial fan or river
terraces) and their spatial sizes were larger, and this might be the reason for its higher
accuracy. On the other hand, landslides were located in all the types of land use/cover,
and the detection of changes due to landsliding in all kinds of land use/cover seem o be
complex to be detected by a single change detection method, In addition, small size of

the landslides may have affected the accuracy assessment.

4-3-1 Potential of Different Bands of TM Data for the Identification of Landslide
Affected Areas

Among the seven bands of TM data, three visible bands were found effective in
detecting arcas affected by landsliding. Though the band 7 also showed the similar
characteristics as visible bands, it did not perform well. Bands 4 and 5 showed mixed
responses to different kinds of changes associated with laridsliding depending on the
land use/cover type prior to landsliding. Among the four bands (band 1: blue, band 2:
green, band 3: red, and band 7: mid infrared) employed for the spectral image
differencing, band 2 gave the highest accuracy. The accuracies of bands 1 and 3 were
close to that of band 2 but the accuracy of band 7 was comparatively poor. It indicates
that though band 2 performed best in this case, all three visible bands have high
potential for detecting changes associated with landsliding, Miller et al, (1983) and
Patel ef al. (1985) had found higher reflectance for band 3 (red) for muddy water, which
was useful for the estimation of rice yield. Yamagata and Akiyama (1988) had adopted
the same hypothesis of band 3 to estimate the paddy damaged by flooding, They used
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multitemporal Landsat data in their analysis. However, they did not compare band 3
with band 1 and band 2. In this study, however, the deposited sediments were larger
than clay in particle size and mostly varied from sand to boulder and consequently it
showed that band 2 is better than band 3. Macleod and Congalton (1998) found the
results of band 1 and band 4 better when they employed four bands (band 1, band 2
band 3, and band 4) for the monitoring of eelgrass (flowering plant that is found in
shallow sea water) using multitemporal Landsat TM data. It indicates that depending on
the type of change we aim to detect, different bands may behave differently,

Band 2 performed best for the detection of landslide affected areas and bands 1
and 2 also showed higher accuracies. Though it is possible that the exactly same result
may not be encountered if it is applied to a different ecosystem area, affected by a
different intensity of disturbance, the result shoutd not be significantly different. Since
the research of this kind is rather limited, the results of this study will serve a guide for

using different bands of TM data for the analysis of landslide affected areas.

4-3-2 Evaluation of Change Detection Techniques

An analysis of the different change defection techniques indicates that different
methods of change detection produce different maps of areas affected by landslides.
The type of sediments and the type of the land cover prior to the disturbances influenced
the change detection techniques.

Among five change detection techniques employed, three of them (TM bands,
vegetation index, and tasseled cap transformation) were image differencing, in which an
image (enhanced or without enhanced) of one date was subtracted from the image of
another date. Image differencing is a relatively simple method to understand. Spectral
change vector and principal component analyses werc the other two techniques
employed. Spectral change vector analysis (using bands 1, 2 and 3) performed best to
detect the landslide affected areas with the overall and Khat accuracies of §8.3 percent
and 75.4 percent followed by band 2 image differencing and principal component
analysis, NDVI performed the best among the four algorithms that were especially
employed to determine the vegetation responses to landsliding.

Michalek et al. (1993) found spectral change vector analysis as an effective

technique to monitor coastal marine environments, though they did not quantitatively
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assess the accuracy. A study conducted by Michener and Houhoulis (1997) for the
detection of vegetation changes associated with flooding in forested ecosystem of
southwest Georgia, USA, showed NDVI image differencing as the most effective
technique for discriminating vegetation responses to flooding, followed by principal
component analysis. They had compared five different techniques of change detection,
Muchoney and Haack (1994) carried out a study on forest defoliation using
multitemporal SPOT (Haute resolution visible; HRV) XS data. They found the principal
component analysis and the image differencing as having potential for achieving
reliable mapping of defoliation, among the five different techniques employed for the
study. Yamagata and Akiyama (1988) reported good results of the principal component
analysis for flood damage analysis though they did not quantitatively evaluate the
method.

The results indicate that the change detection techniques should be selected
depending on the type of change we want to extract. Hencé, it is essential to explore and
compare a variety of change detection techniques for their applicability to a particular
problem. The results of this study show how the selection of change detection analysis
should be decided for similar studies o be carried out in the future, When a single
homogenous land use/cover experience the disturbances, it might be easy to perform the
change detection methods and compare them. When analysis of landslide affected areas
is carried out in a watershed, which consists of different land use/cover, the problem
becomes cdmplcx because of different responses of bands with respect to land
use/cover. It is possible that different bands or different techniques may be effective for
different types of change, or change in the different types of land use/cover. Some
authors have combined the best threshold images for different bands and compared that
to the reference data. For example, Macleod and Congalton (1998) combined threshold
change images of bands 1, 2, 3 and 4 to produce bands 1, 2, and 4 image; bands 1 and 4
image; and bands 1, 3, and 4 image. However, this kind of analysis again makes the
problem more complex and such analysis was avoided in this study.

Another critical part of all the detection techniques is the determination of
threshold value. The method of selection of threshold value applied in this study is the
best method. The accuracy assessment may be sometimes critical because it is often

based on the minimum samples because in practice there is always a compromise with
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the sampling size of reference data, In this study about 3,000 pixels were used as
reference data out of a total of about 140,000 pixels. This is quite sufficient for this
kind of analysis. Previous similar studies also used similar sample size, Hence, when
working with remotely sensed data ground truth is the most important aspect, The
reference data should be error free. This study first determined the reference data in
large-scale photographs, which were then plotied onto the topographic map using a
stereo zoom transferscope. The topographic map was then taken into the field and a
GPS survey was carried out for confirmation, Since the accuracy assessment is a
relative one, it is expected that any error introduced in the reference data would have
equal impact in the accuracy assessment of the techniques employed. |

Classification of the change pixels is another critical aspect, This study uses a
slope gradient map produced from the DEM for the classification of change pixels, The
landslide and sediment deposition pixels were classified according to their position in
the slope gradient map. The method is very practical in this kind of analysis, because
classifications of change pixels are often a difficult task. However, in many cases DEM
may not be available hindering such an efficient classification system. An analysis of
two. images independently for the classification purpose is not an impossible task,
However, the extraction of classes from a single image such as sediment deposition or

landslide is greatly limited depending on the background contrast,

4-3.3 Identification of Landslides from the Multitemporal Landsat TM Data

The multitemporal Landsat TM data proved to be very promising in the
detection of landslide affected areas, especially if the resulls are necessary for an early
assessment. The sediment deposition area was more correctly determined than was
possible for landslides. In the early assessment, this level of information is very
adequate. In 1993 disaster the roads to the Kulekhani watershed had been washed away
and for about a month one could reach there only on foot, The complete assessment of
the disaster was not available even after many months of the disaster. In Nepal, it is not
usual to have aerial photographs just after the disaster because of economic constrain,
It is mostly influenced by external funds from the donor agency. Since it is often a long
process, aerial photographs can not be taken immediately after an event, For example,

in this case aerial photographs were taken 8 months after the disaster. The availability of
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continuous images from satellite is hence very promising for the early assessment of the
disaster in this part of the world. The cloud influences this kind of satellite data, and
many times it is difficult to find cloud free data, However, the choice of many kinds of
data available at present (such as Landsat TM, SPOT, IRS) and many more satellite
plans of the future indicate that problems relaling to the unavailability of data will

| gradually diminish. The theory behind the detection would be the same irrespective of
which data is used, as long as the band has similar characteristics,

One of the important aspects of this study is the use of multitemporal data for
the extraction of landsliding. In previous studies (e.g., Aniya et al., 1985b; Sakai et al.,
1985; Rengers et al., 1992; Mantovani ef al,, 1996) a significant success in identifying
landslides could not be achieved because all those studies were based on the analysis of
a single image. In those studies, the background contrast and the spatial resolution of the
satellite data might have limited the identification. Landslfding is not a gradual process
such as land use change. Landslides occur due to some certain events such as heavy
rainfall, and this characteristic is advantageous for detection analysis. When data taken
prior-to and after such an event are analyzed, landslides will be detected with very high
confidence. The producer’s and user’s accuracy for landslide identification in this study
was 56.7 percent and 73.6 percent respectively. This accuracy should be considered to
be rational considering the different problems associated with accuracy assessment.
The landslides in the study area are small in size and 40 percent of them are of single
pixel size. When the size of the landslide is small like this it is often difficult to
evaluate the result precisely because of the errors that are introduced at various stages of
the analysis.

When the pixels identified as landslides by analyzing multitemporal Landsat
data were compared with the landslide and non-landslide catchment units, derived from
the DEM and landslides interpreted from aerial photographs, the agreement was
rcmérkably high. The landslide and non-landslide catchment units interpreted from
aerial photographs and multitemporal Landsat TM data agreed to 80 percent. It indicates
that the landslide distribution data extracted from the multitemporal Landsat TM data
can be used for the landslide hazard assessment processes, which use catchment area as
an analysis unit, It should be however kept in the mind that in terms of total number of

pixels, about 40 percent of the pixels were located on the non landslide catchments, It
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indicates that these change pixels do not contain only landslides (despite the fact that
many classification systems were applied) but changes due to other factors as well. In
this study, large number of such pixels were found in cultivated area, which have
undergone changes other than landsliding such as presence or absence of crops. This
kind of problem may be avoided if the pre and post disaster images can be found with a
relatively short time span of less than 1-2 months. In this case such images were not
available, With more satellite data to come in the future it is possible that such data
would be available.

The landslide identification from multitemporal Landsat T™M data proved to be
effective for the analysis based on the catchment units; however, it is not suitable for the
grid-cell based hazard assessment. For this reason, the methods of landslide hazard
assessment discussed in the next section use the landslide distribution map produced
from large scale aerial photographs. The grid cell unit approach was employed
considering the availability of substantial accurate landslide distribution map. The
analysis in the grid cell unit provides more detailed map. Different issues of using grid-
cell based landslide hazard assessment are also covered, The next section also discusses
about landslide hazard mapping and the evaluation of landslide hazard maps. The
methods described for landslide hazard assessment, mapping and evaluation of hazard
maps in the next section can be used in a similar manner, if the landslide hazard

agsessment is carried out based on the catchment unit,
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