

Crystal Bases, Path Models, and a Twining Character Formula for Demazure Modules

Daisuke SAGAKI

A dissertation submitted to the Doctoral Program in Mathematics, the University of Tsukuba in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Science

January 2002

告 垣 大 輔 氏

02304276

0 Introduction.

In [FRS] and [FSS], they introduced new character-like quantities corresponding to a graph automorphism of a Dynkin diagram, called twining characters, for certain Verma modules and integrable highest weight modules over a symmetrizable Kac-Moody algebra, and gave twining character formulas for them. Recently, the notion of twining characters has naturally been extended to various modules, and formulas for them has been given ([KN], [KK], [N1]–[N4]).

The purpose of this paper is to give a twining character formula for Demazure modules over a symmetrizable Kac-Moody algebra. Our formula is an extension of one of the main results in [KN], which describes the twining characters of Demazure modules over a finitedimensional semi-simple Lie algebra. While their proof is an algebro-geometric one, we give a combinatorial proof by using the theories of path models and crystal bases.

Let us explain our formula more precisely. Let $\mathfrak{g} = \mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be a symmetrizable Kac-Moody algebra over \mathbb{Q} associated to a generalized Cartan matrix $A = (a_{ij})_{i,j\in I}$ of finite size, where \mathfrak{h} is the Cartan subalgebra, \mathfrak{n}_+ the sum of positive root spaces, and $\mathfrak{n}_$ the sum of negative root spaces, and let $\omega : I \to I$ be a (Dynkin) diagram automorphism, that is, a bijection $\omega : I \to I$ satisfying $a_{\omega(i),\omega(j)} = a_{ij}$ for all $i, j \in I$. It is known that a diagram automorphism induces a Lie algebra automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$ that preserves the triangular decomposition of \mathfrak{g} . Then we define a linear automorphism $\omega^* \in \operatorname{GL}(\mathfrak{h}^*)$ by $(\omega^*(\lambda))(h) := \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*, h \in \mathfrak{h}$. We set $(\mathfrak{h}^*)^0 := \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\}$, and call its elements symmetric weights. We also set $\widetilde{W} := \{w \in W \mid w \, \omega^* = \omega^* w\}$.

Further we define a "folded" matrix \widehat{A} associated to ω , which is again a symmetrizable GCM if ω satisfies a certain condition, called the linking condition (we assume it throughout this paper). The Kac-Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}(\widehat{A})$ associated to \widehat{A} is called the orbit Lie algebra. We denote by $\widehat{\mathfrak{h}}$ the Cartan subalgebra of $\widehat{\mathfrak{g}}$ and by \widehat{W} the Weyl group of $\widehat{\mathfrak{g}}$. Then there exist a linear isomorphism $P^*_{\omega} : \widehat{\mathfrak{h}}^* \to (\mathfrak{h}^*)^0$ and a group isomorphism $\Theta : \widehat{W} \to \widetilde{W}$ such that $\Theta(\widehat{w}) = P^*_{\omega} \circ \widehat{w} \circ (P^*_{\omega})^{-1}$ for all $\widehat{w} \in \widehat{W}$.

Let λ be a dominant integral weight. Denote by $L(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} L(\lambda)_{\chi}$ the irreducible highest weight \mathfrak{g} -module of highest weight λ . Then, for $w \in W$, we define the Demazure module $L_w(\lambda)$ of lowest weight $w(\lambda)$ in $L(\lambda)$ by $L_w(\lambda) := U(\mathfrak{b})L(\lambda)_{w(\lambda)}$, where $U(\mathfrak{b})$ is the universal enveloping algebra of the Borel subalgebra $\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{n}_+$ of \mathfrak{g} . If λ is symmetric, then we have a (unique) linear automorphism $\tau_{\omega} : L(\lambda) \to L(\lambda)$ such that

$$\tau_{\omega}(xv) = \omega^{-1}(x)\tau_{\omega}(v) \text{ for all } x \in \mathfrak{g}, v \in L(\lambda)$$

and $\tau_{\omega}(u_{\lambda}) = u_{\lambda}$ with u_{λ} a (nonzero) highest weight vector of $L(\lambda)$. Then it is easily seen that the Demazure module $L_w(\lambda)$ with $w \in \widetilde{W}$ is τ_{ω} -stable. Here we define the twining character ch^{ω}($L_w(\lambda)$) of $L_w(\lambda)$ by:

$$\operatorname{ch}^{\omega}(L_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega}|_{L_w(\lambda)_{\chi}}) e(\chi).$$

Our main theorem is the following:

Theorem. Let λ be a symmetric dominant integral weight and $w \in \widetilde{W}$. Set $\widehat{\lambda} := (P^*_{\omega})^{-1}(\lambda)$ and $\widehat{w} := \Theta^{-1}(w)$. Then we have

$$\mathrm{ch}^{\omega}(L_w(\lambda)) = P_{\omega}^*(\mathrm{ch}\,\widehat{L}_{\widehat{w}}(\widehat{\lambda})),$$

where $\widehat{L}_{\widehat{w}}(\widehat{\lambda})$ is the Demazure module of lowest weight $\widehat{w}(\widehat{\lambda})$ in the irreducible highest weight module $\widehat{L}(\widehat{\lambda})$ of highest weight $\widehat{\lambda}$ over the orbit Lie algebra $\widehat{\mathfrak{g}}$.

The starting point of this work is the main result in [NS1]. Denote by $\mathbb{B}(\lambda)$ the set of Lakshmibai-Seshadri paths (L-S paths for short) of class λ , where L-S paths of class λ are, by definition, piecewise linear, continuous maps $\pi : [0,1] \to \mathfrak{h}^*$ parametrized by sequences of elements in $W\lambda$ and rational numbers with a certain condition, called the chain condition. In [Li1], Littelmann showed that there exists a subset $\mathbb{B}_w(\lambda)$ of $\mathbb{B}(\lambda)$ such that

$$\sum_{\pi \in \mathbb{B}_w(\lambda)} e(\pi(1)) = \operatorname{ch} L_w(\lambda).$$

For $\pi \in \mathbb{B}(\lambda)$, we define a path $\omega^*(\pi) : [0,1] \to \mathfrak{h}^*$ by $(\omega^*(\pi))(t) := \omega^*(\pi(t))$. If λ is symmetric and $w \in \widetilde{W}$, then $\mathbb{B}_w(\lambda)$ is ω^* -stable. We denote by $\mathbb{B}_w^0(\lambda)$ the set of all elements of $\mathbb{B}_w(\lambda)$ fixed by ω^* . Then we see from the main result of [NS1] that

$$\sum_{\pi \in \mathbb{B}^0_{\omega}(\lambda)} e(\pi(1)) = P^*_{\omega}(\operatorname{ch} \widehat{L}_{\widehat{w}}(\widehat{\lambda})).$$

In this paper, we prove that the left-hand side is, in fact, equal to $ch^{\omega}(L_w(\lambda))$.

In order to prove the equality $\operatorname{ch}^{\omega}(L_w(\lambda)) = \sum_{\pi \in \mathbb{B}^0_w(\lambda)} e(\pi(1))$, we introduce a "quantum version" of twining characters, called q-twining characters. Let $U_q(\mathfrak{g})$ be the quantum group associated to the Kac-Moody algebra \mathfrak{g} over the field $\mathbb{Q}(q)$ of rational functions in q, and $V(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} V(\lambda)_{\chi}$ the irreducible highest weight $U_q(\mathfrak{g})$ -module of highest weight λ . For $w \in W$, the quantum Demazure module $V_w(\lambda)$ is defined by $V_w(\lambda) := U_q^+(\mathfrak{g})V(\lambda)_{w(\lambda)}$, where $U_q^+(\mathfrak{g})$ is the "positive part" of $U_q(\mathfrak{g})$. A diagram automorphism ω induces a $\mathbb{Q}(q)$ -algebra automorphism ω_q of $U_q(\mathfrak{g})$. Assume that λ is symmetric. Then we get a $\mathbb{Q}(q)$ -linear automorphism τ_{ω_q} of $V(\lambda)$ that has the same properties as τ_{ω} in the Lie algebra case. Since $V_w(\lambda)$ is stable under τ_{ω_q} if $w \in \widetilde{W}$, we can define the q-twining character $\operatorname{ch}^{\omega}_q(V_w(\lambda))$ of $V_w(\lambda)$ by

$$\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda)) := \sum_{\chi \in (\mathfrak{h}^{*})^{0}} \operatorname{tr}(\tau_{\omega_{q}}|_{V_{w}(\lambda)_{\chi}}) e(\chi),$$

where the traces are naively elements of $\mathbb{Q}(q)$ (in fact, they are elements of $\mathbb{Q}[q, q^{-1}]$). We show that the specialization of the q-twining character $\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda))$ by q = 1 is equal to the (ordinary) twining character $\operatorname{ch}^{\omega}(L_{w}(\lambda))$, that is,

$$\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda))\Big|_{q=1} = \operatorname{ch}^{\omega}(L_{w}(\lambda)).$$

The advantage of considering a quantum version is the existence of a basis of $V_w(\lambda)$ compatible with τ_{ω_q} . Let $(\mathcal{L}(\lambda), \mathcal{B}(\lambda))$ be the (lower) crystal base of $V(\lambda)$. In [Kas3], Kashiwara showed that, for each $w \in W$, there exists a subset $\mathcal{B}_w(\lambda)$ of $\mathcal{B}(\lambda)$ such that

$$V_w(\lambda) := \bigoplus_{b \in \mathcal{B}_w(\lambda)} \mathbb{Q}(q) G_\lambda(b),$$

where $G_{\lambda}(b)$ denotes the (lower) global base introduced in [Kas2]. We prove that τ_{ω_q} stabilizes the basis $\{G_{\lambda}(b) \mid b \in \mathcal{B}_w(\lambda)\}$ of $V_w(\lambda)$.

By combining these facts and the equivalence theorem between path models $\mathbb{B}(\lambda)$ and crystal bases $\mathcal{B}(\lambda)$, which was proved by Kashiwara [Kas5] *et al.*, we can obtain the desired equality above, and hence the our main theorem.

This paper is organized as follows. In §1 we review some facts about Kac-Moody algebras, diagram automorphisms, orbit Lie algebras, quantum groups, crystal bases, and path models. There we also define an algebra automorphism of the quantum group $U_q(\mathfrak{g})$ induced from a diagram automorphism. In §2, we recall the definition of the twining characters of $L(\lambda)$ and $L_w(\lambda)$, and then introduce the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$. Furthermore, we show that the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$ are qanalogues of the twining characters of $L(\lambda)$ and $L_w(\lambda)$, respectively. In §3 we give a proof of our main theorem by calculating the q-twining character of $V_w(\lambda)$.

Acknowledgements. I express my sincere thanks to Professor Satoshi Naito, who lead me to the theories of path models and twining characters. This paper could not be written without his guidance.

1 Preliminaries.

1.1 Kac-Moody Algebras and Diagram Automorphisms. In this subsection, we review some basic facts about Kac-Moody algebras from [Kac] and [MP], and about diagram automorphisms from [FRS] and [FSS].

Let $A = (a_{ij})_{i,j\in I}$ be a symmetrizable generalized Cartan matrix (GCM for short) indexed by a finite set I. Then there exists a diagonal matrix $D = \text{diag}(\varepsilon_i)_{i\in I}$ with $\varepsilon_i \in \mathbb{Q}_{>0}$ such that $D^{-1}A$ is a symmetric matrix. Let $\omega : I \to I$ be a diagram automorphism of order N, that is, a bijection $\omega : I \to I$ of order N such that $a_{\omega(i),\omega(j)} = a_{ij}$ for all $i, j \in I$. Remark 1. Set

$$D' = \operatorname{diag}(\varepsilon'_i)_{i \in I} := \operatorname{diag}\left(\frac{1}{\sum_{k=0}^{N-1} \varepsilon_{\omega^k(i)}^{-1}}\right)_{i \in I}$$

Then we see that $\varepsilon'_{\omega(i)} = \varepsilon'_i$ and $(D')^{-1}A$ is a symmetric matrix. Hence, by replacing D with D' above if necessary, we may (and will henceforth) assume that $\varepsilon_{\omega(i)} = \varepsilon_i$ (see also [N1, §3.1]).

We take a realization $(\mathfrak{h}, \Pi, \Pi^{\vee})$ of the GCM $A = (a_{ij})_{i,j\in I}$ over \mathbb{Q} and linear automorphisms $\omega : \mathfrak{h} \to \mathfrak{h}$ and $\omega^* : \mathfrak{h}^* \to \mathfrak{h}^*$ as follows (cf. [Kac, Exercises 1.15 and 1.16]). Let \mathfrak{h}' be an *n*-dimensional vector space over \mathbb{Q} with $\Pi^{\vee} := \{\alpha_i^{\vee}\}_{i\in I}$ a basis. We define a \mathbb{Q} -linear automorphism $\omega' : \mathfrak{h}' \to \mathfrak{h}'$ by $\omega'(\alpha_i^{\vee}) = \alpha_{\omega(i)}^{\vee}$, and $\omega'' : (\mathfrak{h}')^* \to (\mathfrak{h}')^*$ by $(\omega''(\lambda))(h) := \lambda((\omega')^{-1}(h))$ for $\lambda \in (\mathfrak{h}')^*$ and $h \in \mathfrak{h}'$. We also define $\varphi : \mathfrak{h}' \to (\mathfrak{h}')^*$ by $(\varphi(\alpha_i^{\vee}))(\alpha_j^{\vee}) = a_{ij}$. It can be readily seen that $\omega'' \circ \varphi = \varphi \circ \omega'$. This means that Im φ is ω'' -stable, and hence we can take a complementary subspace \mathfrak{h}'' of Im φ in $(\mathfrak{h}')^*$ that is also ω'' -stable. Now set $\mathfrak{h} := \mathfrak{h}' \oplus \mathfrak{h}''$, and $\Pi := \{\alpha_i\}_{i\in I}$, where $\alpha_i \in \mathfrak{h}^*$ is defined by

$$\alpha_i \left(\sum_{j \in I} c_j \alpha_j^{\vee} + h'' \right) := \sum_{j \in I} c_j (\varphi(\alpha_j^{\vee})) (\alpha_i^{\vee}) + h''(\alpha_i^{\vee}) \quad \text{for} \quad h'' \in \mathfrak{h}''.$$
(1.1)

Then we see that Π is a linearly independent subset of \mathfrak{h}^* . Furthermore, since $\dim_{\mathbb{Q}} \mathfrak{h}'' = #I - \dim_{\mathbb{Q}} \operatorname{Im} \varphi = #I - \operatorname{rank} A$, we have $\dim_{\mathbb{Q}} \mathfrak{h} = 2#I - \operatorname{rank} A$. Hence $(\mathfrak{h}, \Pi, \Pi^{\vee})$ is a (minimal) realization of the GCM A. We define a \mathbb{Q} -linear automorphism $\omega : \mathfrak{h} \to \mathfrak{h}$ by $\omega(h'+h'') := \omega'(h') + \omega''(h'')$ for $h' \in \mathfrak{h}'$ and $h'' \in \mathfrak{h}''$, and the transposed map $\omega^* : \mathfrak{h}^* \to \mathfrak{h}^*$ by $(\omega^*(\lambda))(h) = \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*$ and $h \in \mathfrak{h}$. Then we can check, by using (1.1), that $\omega^*(\alpha_i) = \alpha_{\omega^{-1}(i)}$ for each $i \in I$.

Here, as in [Kac, §2.1], we define the (standard) nondegenerate symmetric bilinear form (\cdot, \cdot) on \mathfrak{h} associated to the decomposition $\mathfrak{h} = \mathfrak{h}' \oplus \mathfrak{h}''$ above. We set

$$\begin{cases} (\alpha_i^{\lor}, h) := \alpha_i(h)\varepsilon_i & \text{for } i \in I, h \in \mathfrak{h}, \\ (h, h') := 0 & \text{for } h, h' \in \mathfrak{h}''. \end{cases}$$

Then it follows from the construction above and Remark 1 that $(\omega(h), \omega(h')) = (h, h')$ for all $h, h' \in \mathfrak{h}$. We denote also by (\cdot, \cdot) the nondegenerate symmetric bilinear form on \mathfrak{h}^* induced from the bilinear form on \mathfrak{h} . Then $(\omega^*(\lambda), \omega^*(\lambda')) = (\lambda, \lambda')$ for all $\lambda, \lambda' \in \mathfrak{h}^*$.

We set

$$(\mathfrak{h}^*)^0 := \{ \lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda \}, \qquad \mathfrak{h}^0 := \{ h \in \mathfrak{h} \mid \omega(h) = h \}.$$
(1.2)

Elements of $(\mathfrak{h}^*)^0$ are called symmetric weights. Note that $(\mathfrak{h}^*)^0$ can be identified with $(\mathfrak{h}^0)^*$ in a natural way.

Remark 2. Let ρ be a Weyl vector, i.e., an element of \mathfrak{h}^* such that $\rho(\alpha_i^{\vee}) = 1$ for all $i \in I$. Then, by replacing ρ with $(1/N) \sum_{k=0}^{N-1} (\omega^*)^k(\rho)$ if necessary, we may (and will henceforth) assume that a Weyl vector ρ is a symmetric weight.

Let $\mathfrak{g} = \mathfrak{g}(A)$ be the Kac-Moody algebra over \mathbb{Q} associated to the GCM A with \mathfrak{h} the Cartan subalgebra, $\Pi = \{\alpha_i\}_{i \in I}$ the set of simple roots, and $\Pi^{\vee} = \{\alpha_i^{\vee}\}_{i \in I}$ the set of simple coroots. Denote by $\{x_i, y_i \mid i \in I\}$ the Chevalley generators, where x_i (resp. y_i) spans the root space of \mathfrak{g} corresponding to α_i (resp. $-\alpha_i$). The Weyl group W of \mathfrak{g} is defined by $W := \langle r_i \mid i \in I \rangle$, where r_i is the simple reflection with respect to α_i . The following lemma is obvious from the definitions of Kac-Moody algebras and the linear map $\omega : \mathfrak{h} \to \mathfrak{h}$ above (see also [FSS, §3.2]).

Lemma 1.1. The Q-linear map $\omega : \mathfrak{h} \to \mathfrak{h}$ above can be extended to a Lie algebra automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$ of order N such that $\omega(x_i) = x_{\omega(i)}$ and $\omega(y_i) = y_{\omega(i)}$.

Let λ be a dominant integral weight. Denote by $L(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} L(\lambda)_{\chi}$ the irreducible highest weight \mathfrak{g} -module of highest weight λ , where $L(\lambda)_{\chi}$ is the χ -weight space of $L(\lambda)$. We set $\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{n}_+$, where \mathfrak{n}_+ is the sum of positive root spaces of \mathfrak{g} . For $w \in W$, the Demazure module $L_w(\lambda) \subset L(\lambda)$ of lowest weight $w(\lambda)$ is defined by $L_w(\lambda) := U(\mathfrak{b})L(\lambda)_{w(\lambda)}$, where $U(\mathfrak{b})$ is the universal enveloping algebra of \mathfrak{b} . In addition, for each $i \in I$, we define the Demazure operator D_i by

$$D_i(e(\lambda)) := \frac{e(\lambda + \rho) - e(r_i(\lambda + \rho))}{1 - e(-\alpha_i)} e(-\rho) \quad \text{for} \quad \lambda \in \mathfrak{h}^*.$$
(1.3)

By [Kas3], [Ku], and [M], we know the following character formula for Demazure modules. **Theorem 1.2.** Let λ be a dominant integral weight and $w \in W$. Assume that $w = r_{i_1}r_{i_2}\cdots r_{i_k}$ is a reduced expression of w. Then we have

$$\operatorname{ch} L_w(\lambda) = D_{i_1} \circ D_{i_2} \circ \dots \circ D_{i_k}(e(\lambda)).$$
(1.4)

Remark 3. The Demazure operators $\{D_i\}_{i \in I}$ satisfy the braid relations (see [D]). Hence the right-hand side of (1.4) above does not depend on the choice of a reduced expression of w.

1.2 Orbit Lie Algebras. In this subsection, we review the notion of orbit Lie algebras. For details, see [FRS] and [FSS].

We set

$$c_{ij} := \sum_{k=0}^{N_j - 1} a_{i,\omega^k(j)} \text{ for } i, j \in I \text{ and } c_i := c_{ii} \text{ for } i \in I,$$
(1.5)

where N_i is the number of elements of the ω -orbit of $i \in I$ in I. From now on, we assume that a diagram automorphism ω satisfies

$$c_i = 1 \quad \text{or} \quad 2 \quad \text{for each} \quad i \in I.$$
 (1.6)

This condition is called the linking condition. Here we choose a complete set \widehat{I} of representatives of the ω -orbits in I, and define a matrix $\widehat{A} = (\widehat{a}_{ij})_{i \ j \in \widehat{I}}$ by

$$\widehat{A} = \left(\widehat{a}_{ij}\right)_{i,j\in\widehat{I}} := \left(2c_{ij}/c_j\right)_{i,j\in\widehat{I}}.$$
(1.7)

Proposition 1.3 ([FSS, §2.2]). The matrix \widehat{A} is a symmetrizable GCM.

The Kac-Moody algebra $\widehat{\mathfrak{g}} := \mathfrak{g}(\widehat{A})$ over \mathbb{Q} associated to the GCM \widehat{A} is called the orbit Lie algebra (associated to the diagram automorphism ω). Denote by $\widehat{\mathfrak{h}}$ the Cartan subalgebra of $\widehat{\mathfrak{g}}$, and by $\widehat{\Pi} = \{\widehat{\alpha}_i\}_{i\in\widehat{I}}$ and $\widehat{\Pi}^{\vee} = \{\widehat{\alpha}_i^{\vee}\}_{i\in\widehat{I}}$ the set of simple roots and simple coroots of $\widehat{\mathfrak{g}}$, respectively.

As in [FRS, §2], we have a \mathbb{Q} -linear isomorphism $P_{\omega} : \mathfrak{h}^0 \to \widehat{\mathfrak{h}}$ such that

$$\begin{cases} P_{\omega} \left(\frac{1}{N_i} \sum_{k=0}^{N_i - 1} \alpha_{\omega^k(i)}^{\vee} \right) = \widehat{\alpha}_i^{\vee} & \text{for each } i \in \widehat{I}, \\ (P_{\omega}(h), P_{\omega}(h')) = (h, h') & \text{for all } h, h' \in \mathfrak{h}^0, \end{cases}$$

where we denote also by (\cdot, \cdot) the (standard) nondegenerate symmetric bilinear form on $\widehat{\mathfrak{h}}$. Let $P^*_{\omega} : \widehat{\mathfrak{h}}^* \to (\mathfrak{h}^0)^* \cong (\mathfrak{h}^*)^0$ be the transposed map of P_{ω} defined by

$$(P_{\omega}^{*}(\widehat{\lambda}))(h) := \widehat{\lambda}(P_{\omega}(h)) \quad \text{for} \quad \widehat{\lambda} \in \widehat{\mathfrak{h}}^{*}, \ h \in \mathfrak{h}^{0}.$$

$$(1.8)$$

Proposition 1.4 ([FRS, Proposition 3.3]). Set $\widetilde{W} := \{w \in W \mid w \, \omega^* = \omega^* w\}$. Then there exists a group isomorphism $\Theta : \widehat{W} \to \widetilde{W}$ such that $\Theta(\widehat{w}) = P^*_{\omega} \circ \widehat{w} \circ (P^*_{\omega})^{-1}$ for each $\widehat{w} \in \widehat{W}$.

1.3 Quantum Groups. From now on, we take the bilinear form (\cdot, \cdot) in such a way that $(\alpha_i, \alpha_i) \in \mathbb{Z}_{>0}$ for all $i \in I$. Let $P \subset \mathfrak{h}^*$ be an ω^* -stable integral weight lattice such that $\alpha_i \in P$ for all $i \in I$, and set $P_+ := \{\lambda \in P \mid \lambda(\alpha_i^{\vee}) \in \mathbb{Z}_{\geq 0} \text{ for all } i \in I\}$. Notice that the dual lattice $P^{\vee} := \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z})$ is stable under ω . The quantum group (or quantized universal enveloping algebra) $U_q(\mathfrak{g})$ associated to \mathfrak{g} is, by definition, the algebra generated by the symbols X_i, Y_i and $q^h (h \in P^{\vee})$ over the field $\mathbb{Q}(q)$ of rational functions in q with the following defining relations:

$$\begin{cases} q^{0} = 1, \ q^{h_{1}}q^{h_{2}} = q^{h_{1}+h_{2}} & \text{for } h_{1}, \ h_{2} \in P^{\vee}, \\ q^{h}X_{i}q^{-h} = q^{\alpha_{i}(h)}X_{i}, \ q^{h}Y_{i}q^{-h} = q^{-\alpha_{i}(h)}Y_{i} & \text{for } i \in I, \ h \in P^{\vee}, \\ [X_{i}, Y_{i}] = \delta_{ij}\frac{t_{i} - t_{i}^{-1}}{q_{i} - q_{i}^{-1}} & \text{for } i \in I, \\ \sum_{k=0}^{1-a_{ij}} (-1)^{k}X_{i}^{(k)}X_{j}X_{i}^{(1-a_{ij}-k)} = 0 & \text{for } i, j \in I \text{ with } i \neq j, \end{cases}$$
(1.9)

Here we have used the following notation:

$$q_i = q^{(\alpha_i, \alpha_i)}, \quad t_i = q^{(\alpha_i, \alpha_i)\alpha_i^{\vee}},$$

$$[n]_{i} = \frac{q_{i}^{n} - q_{i}^{-n}}{q_{i} - q_{i}^{-1}}, \quad [n]_{i}! = \prod_{k=1}^{n} [k]_{i}, \text{ and } X_{i}^{(n)} = \frac{X_{i}^{n}}{[n]_{i}!}, \quad Y_{i}^{(n)} = \frac{Y_{i}^{n}}{[n]_{i}!}.$$

Lemma 1.5. There exists a unique $\mathbb{Q}(q)$ -algebra automorphism ω_q of $U_q(\mathfrak{g})$ such that $\omega_q(X_i) = X_{\omega(i)}, \ \omega_q(Y_i) = Y_{\omega(i)}, \ and \ \omega_q(q^h) = q^{\omega(h)}.$

Proof. We need only show that the images of the generators by ω_q also satisfy the defining relations (1.9). However it can be easily checked by using the equalities $q_{\omega(i)} = q_i$, $[n]_{\omega(i)} = [n]_i$, and $t_{\omega(i)} = t_i$.

Let $\lambda \in P_+$. Denote by $V(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} V(\lambda)_{\chi}$ the irreducible highest weight $U_q(\mathfrak{g})$ module of highest weight λ , where $V(\lambda)_{\chi}$ is the χ -weight space of $V(\lambda)$. It is known (cf. [Kas1, (1.2.7)]) that

$$V(\lambda) \cong U_q^-(\mathfrak{g}) \left/ \left(\sum_{i \in I} U_q^-(\mathfrak{g}) Y_i^{1+\lambda(\alpha_i^{\vee})} \right),$$
(1.10)

where $U_q^-(\mathfrak{g})$ is the $\mathbb{Q}(q)$ -subalgebra of $U_q(\mathfrak{g})$ generated by $\{Y_i\}_{i\in I}$. For each $w \in W$, we define the quantum Demazure module $V_w(\lambda)$ by $V_w(\lambda) := U_q^+(\mathfrak{g})V(\lambda)_{w(\lambda)}$, where $U_q^+(\mathfrak{g})$ is the $\mathbb{Q}(q)$ -subalgebra of $U_q(\mathfrak{g})$ generated by $\{X_i\}_{i\in I}$.

1.4 Crystal Bases and Global Bases. In this subsection, we review the notions of (lower) crystal bases and (lower) global bases. For details, see [Ja] and [Kas1]–[Kas3].

First let us recall the definition of the Kashiwara operators E_i , F_i on $V(\lambda)$. It is known that each element $u \in V(\lambda)_{\chi}$ can be uniquely written as $u = \sum_{k\geq 0} Y_i^{(k)} u_k$, where $u_k \in (\ker X_i) \cap V(\lambda)_{\chi+k\alpha_i}$. We define the $\mathbb{Q}(q)$ -linear operators E_i , F_i on $V(\lambda)$ by

$$E_{i}u := \sum_{k \ge 0} Y_{i}^{(k-1)}u_{k}, \qquad F_{i}u := \sum_{k \ge 0} Y_{i}^{(k+1)}u_{k}.$$
(1.11)

Denote by A_0 the subring of $\mathbb{Q}(q)$ consisting of the rational functions in q regular at q = 0, and by $\mathcal{L}_0(\lambda)$ the A_0 -submodule of $V(\lambda)$ generated by all elements of the form $F_{i_1}F_{i_2}\cdots F_{i_k}u_{\lambda}$, where u_{λ} is a (nonzero) highest weight vector of $V(\lambda)$. Let $\mathcal{B}(\lambda) \subset$ $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ be the set of nonzero images of $F_{i_1}F_{i_2}\cdots F_{i_k}u_{\lambda}$ by the canonical map -: $\mathcal{L}_0(\lambda) \to \mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$. Then it is known from [Kas1, Theorem 2] that $(\mathcal{L}_0(\lambda), \mathcal{B}(\lambda))$ is a (lower) crystal base of $V(\lambda)$, i.e.,

- (1) $V(\lambda) = \mathbb{Q}(q) \otimes_{A_0} \mathcal{L}_0(\lambda),$
- (2) $\mathcal{L}_0(\lambda) = \bigoplus_{\chi \in \mathfrak{h}^*} \mathcal{L}_0(\lambda)_{\chi}$, where $\mathcal{L}_0(\lambda)_{\chi} = \mathcal{L}_0(\lambda) \cap V(\lambda)_{\chi}$,
- (3) $E_i \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda)$ and $F_i \mathcal{L}_0(\lambda) \subset \mathcal{L}_0(\lambda)$,

- (4) $\mathcal{B}(\lambda)$ is a basis of the Q-vector space $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$,
- (5) $E_i \mathcal{B}(\lambda) \subset \mathcal{B}(\lambda) \cup \{0\}$ and $F_i \mathcal{B}(\lambda) \subset \mathcal{B}(\lambda) \cup \{0\}$,
- (6) $\mathcal{B}(\lambda) = \bigcup_{\chi \in \mathfrak{h}^*} \mathcal{B}(\lambda)_{\chi}$ (disjoint union), where $\mathcal{B}(\lambda)_{\chi} = \mathcal{B}(\lambda) \cap (\mathcal{L}_0(\lambda)_{\chi}/q\mathcal{L}_0(\lambda)_{\chi})$,
- (7) For $b_1, b_2 \in \mathcal{B}(\lambda), b_1 = F_i b_2$ if and only if $b_2 = E_i b_1$.

Note that, by (3), we have the operators on $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ induced from E_i , F_i , which are also denoted by E_i , F_i (cf. (5), (7)).

Next we recall the notion of (lower) global bases. Set $V_{\mathbb{Q}}(\lambda) := U_q^{\mathbb{Q}}(\mathfrak{g})u_{\lambda} \subset V(\lambda)$, where $U_q^{\mathbb{Q}}(\mathfrak{g})$ is the $\mathbb{Q}[q, q^{-1}]$ -subalgebra of $U_q(\mathfrak{g})$ generated by all $X_i^{(n)}, Y_i^{(n)}, q^h$, and

$$\begin{cases} q^h \\ n \end{cases} := \prod_{k=1}^n \frac{q^{1-k}q^h - q^{k-1}q^{-h}}{q^k - q^{-k}}$$

for $i \in I$, $n \in \mathbb{Z}_{\geq 0}$, $h \in P^*$. We define a Q-algebra automorphism $\psi: U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ by

$$\begin{cases} \psi(X_i) := X_i, \ \psi(Y_i) := Y_i & \text{for } i \in I, \\ \psi(q) := q^{-1}, \ \psi(q^h) := q^{-h} & \text{for } h \in P^*. \end{cases}$$
(1.12)

By virtue of (1.10), we have a Q-linear automorphism ψ of $V(\lambda)$ defined by $\psi(xu_{\lambda}) := \psi(x)u_{\lambda}$ for $x \in U_q^-(\mathfrak{g})$. Let $\mathcal{L}_{\infty}(\lambda)$ be the image of $\mathcal{L}_0(\lambda)$ by ψ . Then it is known (see, for example, [Kas2]) that the restriction of the canonical map - to $E(\lambda) := V_Q(\lambda) \cap \mathcal{L}_0(\lambda) \cap \mathcal{L}_\infty(\lambda)$ is an isomorphism from $E(\lambda)$ to $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ as Q-vector spaces. We denote by G_{λ} the inverse of this isomorphism. Then we have

$$V(\lambda) = \bigoplus_{b \in \mathcal{B}(\lambda)} \mathbb{Q}(q) G_{\lambda}(b).$$
(1.13)

Moreover we have the following.

Theorem 1.6 ([Kas3, Proposition 3.2.3]). Let $\lambda \in P_+$ and $w \in W$. Then there exists a subset $\mathcal{B}_w(\lambda)$ of $\mathcal{B}(\lambda)$ such that

$$V_w(\lambda) = \bigoplus_{b \in \mathcal{B}_w(\lambda)} \mathbb{Q}(q) G_\lambda(b).$$
(1.14)

1.5 Path Models. Let $\lambda \in P_+$. For $\mu, \nu \in W\lambda$, we write $\mu \geq \nu$ if there exist a sequence $\mu = \lambda_0, \lambda_1, \ldots, \lambda_s = \nu$ of elements in $W\lambda$ and a sequence β_1, \ldots, β_s of positive real roots such that $\lambda_k = r_{\beta_k}(\lambda_{k-1})$ and $\lambda_{k-1}(\beta_k^{\vee}) < 0$ for $k = 1, 2, \ldots, s$, where for a positive real root β , we denote by r_{β} the reflection with respect to β , and by β^{\vee} the dual root of β . Then we define dist (μ, ν) to be the maximal length s among all possible such sequences.

Remark 4. Assume that $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$. It immediately follows that $\mu \geq \nu$ if and only if $\omega^*(\mu) \geq \omega^*(\nu)$. Moreover, we have $\operatorname{dist}(\omega^*(\mu), \omega^*(\nu)) = \operatorname{dist}(\mu, \nu)$ when $\mu \geq \nu$.

Let $\lambda \in P_+$, μ , $\nu \in W\lambda$ with $\mu \geq \nu$, and 0 < a < 1 a rational number. An *a*-chain for (μ, ν) is, by definition, a sequence $\mu = \lambda_0 > \lambda_1 > \cdots > \lambda_r = \nu$ of elements in $W\lambda$ such that $\operatorname{dist}(\lambda_i, \lambda_{i-1}) = 1$ and $\lambda_i = r_{\beta_i}(\lambda_{i-1})$ for some positive real root β_i , and such that $a\lambda_{i-1}(\beta_i^{\vee}) \in \mathbb{Z}$ for all $i = 1, 2, \ldots, r$.

Here let us consider a pair $\pi = (\underline{\nu}; \underline{a})$ of a sequence $\underline{\nu}: \nu_1 > \nu_2 > \cdots > \nu_s$ of elements in $W\lambda$ and a sequence $\underline{a}: 0 = a_0 < a_1 < \cdots < a_s = 1$ of rational numbers such that for each $i = 1, 2, \ldots, s - 1$, there exists an a_i -chain for (ν_i, ν_{i+1}) . Then we associate to $\pi = (\underline{\nu}; \underline{a})$ the following path $\pi: [0, 1] \to \mathfrak{h}^*$:

$$\pi(t) := \sum_{i=1}^{j-1} (a_i - a_{i-1})\nu_i + (t - a_{j-1})\nu_j \quad \text{for} \ a_{j-1} \le t \le a_j.$$
(1.15)

Such a path is called a Lakshmibai-Seshadri path (L-S path for short) of class λ . Denote by $\mathbb{B}(\lambda)$ the set of L-S paths of class λ .

Let us recall the raising and lowering root operators (cf. [Li1]–[Li4]). For convenience, we introduce an extra element θ that is not a path. For $\pi \in \mathbb{B}(\lambda)$ and $i \in I$, we set

$$h_i^{\pi}(t) := (\pi(t))(\alpha_i^{\vee}), \qquad m_i^{\pi} := \min\{h_i^{\pi}(t) \mid t \in [0,1]\}.$$
(1.16)

First we define the raising root operator e_i with respect to the simple root α_i . We define $e_i\theta := \theta$, and $e_i\pi := \theta$ for $\pi \in \mathbb{B}(\lambda)$ with $m_i^{\pi} > -1$. If $m_i^{\pi} \leq -1$, then we can take the following points:

$$t_{1} := \min\{t \in [0, 1] \mid h_{i}^{\pi}(t) = m_{i}^{\pi}\},\$$

$$t_{0} := \max\{t' \in [0, t_{1}] \mid h_{i}^{\pi}(t) \ge m_{i}^{\pi} + 1 \text{ for all } t \in [0, t']\}.$$

(1.17)

We set

$$(e_{i}\pi)(t) := \begin{cases} \pi(t) & \text{if } 0 \leq t \leq t_{0}, \\ \pi(t) - (h_{i}^{\pi}(t) - m_{i}^{\pi} - 1)\alpha_{i} & \text{if } t_{0} \leq t \leq t_{1}, \\ \pi(t) + \alpha_{i} & \text{if } t_{1} \leq t \leq 1. \end{cases}$$
(1.18)

The lowering root operator f_i is defined in a similar fashion. We define $f_i\theta := \theta$, and $f_i\pi := \theta$ for $\pi \in \mathbb{B}(\lambda)$ with $h_i^{\pi}(1) - m_i^{\pi} < 1$. If $h_i^{\pi}(1) - m_i^{\pi} \ge 1$, then we can take the following points:

$$t_{0} := \max\{t \in [0, 1] \mid h_{i}^{\pi}(t) = m_{i}^{\pi}\},\$$

$$t_{1} := \min\{t' \in [t_{0}, 1] \mid h_{i}^{\pi}(t) \ge m_{i}^{\pi} + 1 \text{ for all } t \in [t', 1]\}.$$

(1.19)

We set

$$(f_i \pi)(t) := \begin{cases} \pi(t) & \text{if } 0 \le t \le t_0, \\ \pi(t) - (h_i^{\pi}(t) - m_i^{\pi})\alpha_i & \text{if } t_0 \le t \le t_1, \\ \pi(t) - \alpha_i & \text{if } t_1 \le t \le 1. \end{cases}$$
(1.20)

Then we know the following.

Theorem 1.7 ([Li1] and [Li2]). Let $\pi \in \mathbb{B}(\lambda)$. If $e_i\pi \neq \theta$ (resp. $f_i\pi \neq \theta$), then $e_i\pi \in \mathbb{B}(\lambda)$ (resp. $f_i\pi \in \mathbb{B}(\lambda)$). Hence the set $\mathbb{B}(\lambda) \cup \{\theta\}$ is stable under the action of the root operators. Moreover, every element $\pi \in \mathbb{B}(\lambda)$ is of the form $\pi = f_{i_1}f_{i_2}\cdots f_{i_k}\pi_{\lambda}$ for some $i_1, i_2, \ldots, i_k \in I$, where $\pi_{\lambda} := (\lambda; 0, 1) = t\lambda$ is the only element of $\mathbb{B}(\lambda)$ such that $e_i\pi_{\lambda} = \theta$ for all $i \in I$. Furthermore, we have

$$\sum_{\pi \in \mathbb{B}(\lambda)} e(\pi(1)) = \operatorname{ch} L(\lambda), \qquad \sum_{\pi \in \mathbb{B}_w(\lambda)} e(\pi(1)) = \operatorname{ch} L_w(\lambda), \qquad (1.21)$$

where $\mathbb{B}_w(\lambda) := \{ (\nu_1, \ldots, \nu_s; \underline{a}) \in \mathbb{B}(\lambda) \mid \nu_1 \leq w(\lambda) \}$ for each $w \in W$.

It is known from [Kas5] *et al.* that $\mathbb{B}(\lambda)$ has a natural crystal structure isomorphic to $\mathcal{B}(\lambda)$. Namely, we have the following theorem (see [La2] for the second assertion).

Theorem 1.8. There exists a unique bijection $\Phi : \mathcal{B}(\lambda) \xrightarrow{\sim} \mathbb{B}(\lambda)$ such that

$$\Phi(F_{i_1}F_{i_2}\cdots F_{i_k}\overline{u}_{\lambda}) = f_{i_1}f_{i_2}\cdots f_{i_k}\pi_{\lambda}.$$
(1.22)

Moreover, $\Phi(\mathcal{B}_w(\lambda)) = \mathbb{B}_w(\lambda)$ for each $w \in W$.

At the end of this subsection, we recall the main result of [NS1]. Let $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$. For $\pi \in \mathbb{B}(\lambda)$, we define a path $\omega^*(\pi) : [0,1] \to \mathfrak{h}^*$ by $(\omega^*(\pi))(t) := \omega^*(\pi(t))$. Then we deduce that $\mathbb{B}(\lambda)$ and $\mathbb{B}_w(\lambda)$ with $w \in \widetilde{W}$ are ω^* -stable (cf. Remark 4 and [NS1, Lemma 3.1.1]). Denote by $\mathbb{B}^0(\lambda)$ the set of L-S paths that are fixed by ω^* , and set $\mathbb{B}^0_w(\lambda) := \mathbb{B}_w(\lambda) \cap \mathbb{B}^0(\lambda)$ for each $w \in \widetilde{W}$.

Theorem 1.9 ([NS1, Theorem 3.2.4]). Let $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$, and $w \in \widetilde{W}$. Set $\widehat{\lambda} := (P_{\omega}^*)^{-1}(\lambda)$ and $\widehat{w} := \Theta^{-1}(w)$. Then we have

$$\mathbb{B}^{0}(\lambda) = P^{*}_{\omega}(\widehat{\mathbb{B}}(\widehat{\lambda})), \qquad \mathbb{B}^{0}_{w}(\lambda) = P^{*}_{\omega}(\widehat{\mathbb{B}}_{\widehat{w}}(\widehat{\lambda})), \qquad (1.23)$$

where we denote by $\widehat{\mathbb{B}}(\widehat{\lambda})$ the set of all L-S paths of class $\widehat{\lambda}$ for the orbit Lie algebra $\widehat{\mathfrak{g}}$, and set $\widehat{\mathbb{B}}_{\widehat{w}}(\widehat{\lambda}) := \{(\widehat{\nu}_1, \ldots, \widehat{\nu}_s; \underline{a}) \in \widehat{\mathbb{B}}(\widehat{\lambda}) \mid \widehat{\nu}_1 \preceq \widehat{w}(\widehat{\lambda})\}$ with \preceq the relative Bruhat order on $\widehat{W} \widehat{\lambda}$. Here, for $\widehat{\pi} \in \widehat{\mathbb{B}}(\widehat{\lambda})$, we define a path $P^*_{\omega}(\widehat{\pi}) : [0,1] \to (\mathfrak{h}^*)^0$ by $(P^*_{\omega}(\widehat{\pi}))(t) := P^*_{\omega}(\widehat{\pi}(t))$.

2 Twining Characters and *q*-twining Characters.

2.1 The Twining Characters. From now on, we always assume that $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$ and $w \in \widetilde{W}$. First we consider the linear automorphism $\omega^{-1} \otimes \mathrm{id}$ of the Verma module $M(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{Q}(\lambda)$ of highest weight λ over \mathfrak{g} , where $\mathbb{Q}(\lambda)$ is the one-dimensional \mathfrak{b} -module on which $h \in \mathfrak{h}$ acts by the scalar $\lambda(h)$ and \mathfrak{n}_+ acts trivially. Since this map stabilizes the (unique) maximal proper \mathfrak{g} -submodule $N(\lambda)$ of $M(\lambda)$, we obtain an induced Q-linear automorphism $\tau_{\omega} : L(\lambda) \to L(\lambda)$, where $L(\lambda) = M(\lambda)/N(\lambda)$. It is easily seen that τ_{ω} has the following properties:

$$\tau_{\omega}(xv) = \omega^{-1}(x)\tau_{\omega}(v) \text{ for } x \in \mathfrak{g}, v \in L(\lambda)$$

and $\tau_{\omega}(u_{\lambda}) = u_{\lambda}$, where u_{λ} is a (nonzero) highest weight vector of $L(\lambda)$.

Remark 5. From [N1, Lemma 4.1] (or [NS2, Lemma 2.2.3]), we know that τ_{ω} is a unique endomorphism of $L(\lambda)$ with the properties above.

The twining character $ch^{\omega}(L(\lambda))$ of $L(\lambda)$ is defined to be the formal sum

$$\operatorname{ch}^{\omega}(L(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega}|_{L(\lambda)_{\chi}}) e(\chi).$$
(2.1)

Since $\tau_{\omega}(L(\lambda)_{\chi}) = L(\lambda)_{\omega^*(\chi)}$ for all $\chi \in \mathfrak{h}^*$ and $\dim L(\lambda)_{w(\lambda)} = 1$ for all $w \in W$, we see that the Demazure module $L_w(\lambda)$ is τ_{ω} -stable for all $w \in \widetilde{W}$. Hence we can define the twining character $\operatorname{ch}^{\omega}(L_w(\lambda))$ of $L_w(\lambda)$ by

$$\operatorname{ch}^{\omega}(L_w(\lambda)) := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{tr}(\tau_{\omega}|_{L_w(\lambda)_{\chi}}) e(\chi).$$
(2.2)

2.2 The q-twining Characters. In this subsection, we introduce the q-twining characters of $V(\lambda)$ and $V_w(\lambda)$, which are, in fact, q-analogues of ch^{ω}($L(\lambda)$) and ch^{ω}($L_w(\lambda)$), respectively (see Proposition 2.1 below).

By (1.10), we have a $\mathbb{Q}(q)$ -linear automorphism $\tau_{\omega_q} : V(\lambda) \to V(\lambda)$ induced from $\omega_q^{-1} : U_q^-(\mathfrak{g}) \to U_q^-(\mathfrak{g})$. As in the usual Lie algebra case in §2.1, τ_{ω_q} has the following properties:

$$\tau_{\omega_q}(xv) = \omega_q^{-1}(x)\tau_{\omega_q}(v) \quad \text{for} \ x \in U_q(\mathfrak{g}), \ v \in V(\lambda)$$

and $\tau_{\omega_q}(u_{\lambda}) = u_{\lambda}$, where u_{λ} is a (nonzero) highest weight vector of $V(\lambda)$.

Remark 6. In a similar way to the proof of [N1, Lemma 4.1], we can show that τ_{ω_q} is a unique endomorphism of $V(\lambda)$ with the properties above.

The q-twining character $ch_a^{\omega}(V(\lambda))$ of $V(\lambda)$ is defined to be the formal sum

$$\operatorname{ch}_{q}^{\omega}(V(\lambda)) := \sum_{\chi \in (\mathfrak{h}^{*})^{0}} \operatorname{tr}(\tau_{\omega_{q}}|_{V(\lambda)_{\chi}}) e(\chi).$$
(2.3)

We easily see that the quantum Demazure module $V_w(\lambda)$ is τ_{ω_q} -stable for every $w \in \widetilde{W}$. Hence we can define the q-twining character $\operatorname{ch}_q^{\omega}(V_w(\lambda))$ of $V_w(\lambda)$ by

$$\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda)) := \sum_{\chi \in (\mathfrak{h}^{*})^{0}} \operatorname{tr}\left(\tau_{\omega_{q}}|_{V_{w}(\lambda)_{\chi}}\right) e(\chi).$$
(2.4)

Here let us recall some facts from [Ja, §§5.12–5.15]. Let $V(\lambda)_{\mathbb{Q}}$ (resp. $V(\lambda)_{\chi,\mathbb{Q}}$) be the $\mathbb{Q}[q, q^{-1}]$ -submodule of $V(\lambda)$ generated by all elements of the form $Y_{i_1}Y_{i_2}\cdots Y_{i_k}u_{\lambda}$ (resp. with $\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_k} = \lambda - \chi$). It is clear that all $V(\lambda)_{\chi,\mathbb{Q}}$ are finitely generated, torsion free $\mathbb{Q}[q, q^{-1}]$ -modules. Therefore they are free $\mathbb{Q}[q, q^{-1}]$ -modules of finite rank because $\mathbb{Q}[q, q^{-1}]$ is a principal ideal domain. We also know that the natural map $\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} \to V(\lambda)$ (given by $a \otimes v \to av$) is a $\mathbb{Q}(q)$ -linear isomorphism.

Now we consider \mathbb{Q} as a $\mathbb{Q}[q, q^{-1}]$ -module by the evaluation at q = 1. Set $V := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}}$ and $V_{\chi} := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\chi,\mathbb{Q}}$. It follows from [Ja, Lemma 5.12] that $V(\lambda)_{\mathbb{Q}}$ is stable under the actions of X_i , Y_i , and $(q^h - q^{-h})/(q - q^{-1})$ for $i \in I$, $h \in P^{\vee}$. Thus we obtain endomorphisms x_i , y_i , and h of V defined by

 $x_i := 1 \otimes X_i, \quad y_i := 1 \otimes Y_i, \quad \text{and} \quad h := 1 \otimes (q^h - q^{-h})/(q - q^{-1}),$

respectively. From [Ja, Lemmas 5.13 and 5.14], we know that the endomorphisms x_i , y_i , and h of V satisfy the Serre relations, and hence that these endomorphisms make V into a g-module. Moreover, $V \cong L(\lambda)$ as g-modules, and the image of V_{χ} by this g-module isomorphism is $L(\lambda)_{\chi}$ for all $\chi \in \mathfrak{h}^*$. Taking these facts into account, we show the following proposition.

Proposition 2.1. Let $\chi \in (\mathfrak{h}^*)^0$ and $w \in \widetilde{W}$. Then $\operatorname{tr}(\tau_{\omega_q}|_{V(\lambda)_{\chi}})$ and $\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_{\chi}})$ are elements of $\mathbb{Q}[q, q^{-1}]$. Moreover, we have

$$\operatorname{tr}\left(\tau_{\omega_{q}}|_{V(\lambda)_{\chi}}\right)\Big|_{q=1} = \operatorname{tr}\left(\tau_{\omega}|_{L(\lambda)_{\chi}}\right), \qquad \operatorname{tr}\left(\tau_{\omega_{q}}|_{V_{w}(\lambda)_{\chi}}\right)\Big|_{q=1} = \operatorname{tr}\left(\tau_{\omega}|_{L_{w}(\lambda)_{\chi}}\right), \qquad (2.5)$$

and hence

$$\operatorname{ch}_{q}^{\omega}(V(\lambda))\Big|_{q=1} = \operatorname{ch}^{\omega}(L(\lambda)), \qquad \operatorname{ch}_{q}^{\omega}(V_{w}(\lambda))\Big|_{q=1} = \operatorname{ch}^{\omega}(L_{w}(\lambda)).$$
(2.6)

Proof. It can be easily checked that $V(\lambda)_{\mathbb{Q}}$ is τ_{ω_q} -stable, and the following diagram commutes:

$$\begin{array}{cccc}
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} & \xrightarrow{\sim} & V(\lambda) \\
\mathbb{Q}(\tau_{\omega_{q}|_{V(\lambda)_{\mathbb{Q}}}}) & & & \downarrow^{\tau_{\omega_{q}}} \\
\mathbb{Q}(q) \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}} & \xrightarrow{\sim} & V(\lambda).
\end{array}$$

Since $V(\lambda)_{\chi,\mathbb{Q}}$ is a free $\mathbb{Q}[q, q^{-1}]$ -module, we can define the trace of $\tau_{\omega_q}|_{V(\lambda)_{\chi,\mathbb{Q}}}$ for each $\chi \in (\mathfrak{h}^*)^0$. Note that a basis of $V(\lambda)_{\chi,\mathbb{Q}}$ over $\mathbb{Q}[q, q^{-1}]$ is also a basis of $V(\lambda)_{\chi}$ over $\mathbb{Q}(q)$. We obtain from the commutative diagram above that

$$\operatorname{tr}\left(\tau_{\omega_{q}}|_{V(\lambda)_{\chi}}\right) = \operatorname{tr}\left(\tau_{\omega_{q}}|_{V(\lambda)_{\chi,\mathbb{Q}}}\right) \in \mathbb{Q}[q, q^{-1}] \quad \text{for all } \chi \in (\mathfrak{h}^{*})^{0}.$$

$$(2.7)$$

Now let $w \in \widetilde{W}$, and take $u_{w(\lambda)} \in V(\lambda)_{w(\lambda),\mathbb{Q}} \setminus \{0\}$. Here we remark that the rank of the free $\mathbb{Q}[q, q^{-1}]$ -module $V(\lambda)_{w(\lambda),\mathbb{Q}}$ is one. We define $V_w(\lambda)_{\mathbb{Q}}$ to be the $\mathbb{Q}[q, q^{-1}]$ -submodule of $V(\lambda)$ generated by the elements of the form $X_{i_1}X_{i_2}\cdots X_{i_k}u_{w(\lambda)}$. It is clear that $V_w(\lambda)_{\mathbb{Q}}$ is

 τ_{ω_q} -stable. Since $V(\lambda)_{\mathbb{Q}}$ is stable under the action of X_i , we see that $V_w(\lambda)_{\mathbb{Q}}$ is a $\mathbb{Q}[q, q^{-1}]$ submodule of $V(\lambda)_{\mathbb{Q}}$. We set $V_w(\lambda)_{\chi,\mathbb{Q}} := V_w(\lambda)_{\mathbb{Q}} \cap V(\lambda)_{\chi,\mathbb{Q}}$. Then we immediately obtain
the following commutative diagram:

Hence, in the same way as above, we have

$$\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_{\chi}}) = \operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_{\chi,\mathbb{Q}}}) \in \mathbb{Q}[q, q^{-1}] \text{ for all } \chi \in (\mathfrak{h}^*)^0,$$

thereby completing the proof of the first assertion.

Next we show the equalities (2.5). Note that the Q-linear automorphism $\tau'_{\omega} := 1 \otimes (\tau_{\omega_q}|_{V(\lambda)_{\mathbb{Q}}})$ of $V := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V(\lambda)_{\mathbb{Q}}$ satisfies $\tau'_{\omega}(xv) = \omega^{-1}(x)\tau'_{\omega}(v)$ for $x \in \mathfrak{g}, v \in V$, and $\tau'_{\omega}(1 \otimes u_{\lambda}) = 1 \otimes u_{\lambda}$. Hence it follows from Remark 5 that the following diagram commutes:

Remark that, for all $\chi \in (\mathfrak{h}^*)^0$,

$$\operatorname{tr}(\tau_{\omega}|_{L(\lambda)_{\chi}}) = \operatorname{tr}(\tau'_{\omega}|_{V_{\chi}}) = 1 \otimes_{\mathbb{Q}[q,q^{-1}]} \operatorname{tr}(\tau_{\omega_{q}}|_{V(\lambda)_{\chi,\mathbb{Q}}}) = \operatorname{tr}(\tau_{\omega_{q}}|_{V(\lambda)_{\chi,\mathbb{Q}}})\Big|_{q=1},$$
(2.8)

since we regard \mathbb{Q} as a $\mathbb{Q}[q, q^{-1}]$ -module by the evaluation at q = 1. Combining (2.8) with (2.7), we obtain

$$\operatorname{tr}(\tau_{\omega}|_{L(\lambda)_{\chi}}) \stackrel{(2.8)}{=} \operatorname{tr}(\tau_{\omega_{q}}|_{V(\lambda)_{\chi},\mathbb{Q}}) \Big|_{q=1} \stackrel{(2.7)}{=} \operatorname{tr}(\tau_{\omega_{q}}|_{V(\lambda)_{\chi}}) \Big|_{q=1} \quad \text{for all } \chi \in (\mathfrak{h}^{*})^{0},$$

which proves the first equality of (2.5). By considering $V_w := \mathbb{Q} \otimes_{\mathbb{Q}[q,q^{-1}]} V_w(\lambda)_{\mathbb{Q}}$ for $w \in \widetilde{W}$, we also obtain

$$\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_{\chi}})\Big|_{q=1} = \operatorname{tr}(\tau_{\omega}|_{L_w(\lambda)_{\chi}}) \quad \text{for all } \chi \in (\mathfrak{h}^*)^0$$

in the same way. This completes the proof of Proposition 2.1.

3 Twining Character Formula for Demazure Modules.

The main result of this paper is the following.

Theorem 3.1. Let $\lambda \in P_+ \cap (\mathfrak{h}^*)^0$ and $w \in \widetilde{W}$. Set $\widehat{\lambda} := (P_{\omega}^*)^{-1}(\lambda)$ and $\widehat{w} := \Theta^{-1}(w)$. Then we have

$$ch^{\omega}(L_w(\lambda)) = P^*_{\omega}(ch\,\widehat{L}_{\widehat{w}}(\widehat{\lambda})), \tag{3.1}$$

where $\widehat{L}_{\widehat{w}}(\widehat{\lambda})$ is the Demazure module of lowest weight $\widehat{w}(\widehat{\lambda})$ in the irreducible highest weight module $\widehat{L}(\widehat{\lambda})$ of highest weight $\widehat{\lambda}$ over the orbit Lie algebra \widehat{g} .

We need some lemmas in order to prove this theorem.

Lemma 3.2. For each $i \in I$, we have $\tau_{\omega_q} \circ E_i = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}$ and $\tau_{\omega_q} \circ F_i = F_{\omega^{-1}(i)} \circ \tau_{\omega_q}$.

Proof. We show only $\tau_{\omega_q} \circ E_i = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}$ since the proof of $\tau_{\omega_q} \circ F_i = F_{\omega^{-1}(i)} \circ \tau_{\omega_q}$ is similar. Let $u = \sum_{k\geq 0} Y_i^{(k)} u_k \in V(\lambda)$, where $u_k \in (\ker X_i) \cap V(\lambda)_{\chi+k\alpha_i}$. Since $\omega_q^{-1}(Y_i^{(k)}) = Y_{\omega^{-1}(i)}^{(k)}$, we have

$$\tau_{\omega_q} \circ E_i(u) = \sum_{k \ge 0} Y_{\omega^{-1}(i)}^{(k-1)} \tau_{\omega_q}(u_k).$$

On the other hand, $\tau_{\omega_q}(u) = \sum_{k\geq 0} Y_{\omega^{-1}(i)}^{(k)} \tau_{\omega_q}(u_k) \in V(\lambda)_{\omega^*(\chi)}$. Here we note that $\tau_{\omega_q}(u_k) \in (\ker X_{\omega^{-1}(i)}) \cap V(\lambda)_{\omega^*(\chi)+k\alpha_{\omega^{-1}(i)}}$. Hence, by the uniqueness of the expression of $\tau_{\omega_q}(u)$, we have

$$E_{\omega^{-1}(i)} \circ \tau_{\omega_q}(u) = \sum_{k \ge 0} Y_{\omega^{-1}(i)}^{(k-1)} \tau_{\omega_q}(u_k).$$

Therefore we obtain $\tau_{\omega_q} \circ E_i(u) = E_{\omega^{-1}(i)} \circ \tau_{\omega_q}(u)$ for all $u \in V(\lambda)$, thereby completing the proof.

This lemma implies that $\mathcal{L}_0(\lambda)$ is τ_{ω_q} -stable. Hence we have the Q-linear automorphism $\overline{\tau}_{\omega_q}$ of $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$ induced from τ_{ω_q} . Then, by the definition of $\overline{\tau}_{\omega_q}$ and Lemma 3.2, we can easily check that the set $\mathcal{B}(\lambda)$ is $\overline{\tau}_{\omega_q}$ -stable. Moreover, by Theorem 1.8, we have the following commutative diagram:

Here we have used the fact that $\omega^* \circ e_i = e_{\omega^{-1}(i)} \circ \omega^*$ and $\omega^* \circ f_i = f_{\omega^{-1}(i)} \circ \omega^*$ (see [NS1, Lemma 3.1.1]). The next lemma immediately follows from the commutative diagram (3.2) and Theorem 1.8, since $\mathbb{B}_w(\lambda)$ is ω^* -stable for all $w \in \widetilde{W}$.

Lemma 3.3. Let $w \in \widetilde{W}$. Then $\mathcal{B}_w(\lambda)$ is stable under $\overline{\tau}_{\omega_q}$. Hence we obtain the following commutative diagram:

Because $\psi \circ \tau_{\omega_q} = \tau_{\omega_q} \circ \psi$, we see that $\mathcal{L}_{\infty}(\lambda)$ is also τ_{ω_q} -stable. Since $V_{\mathbb{Q}}(\lambda)$ is obviously τ_{ω_q} -stable, we deduce that $E(\lambda)$ is τ_{ω_q} -stable.

Lemma 3.4. $\tau_{\omega_q} \circ G_{\lambda} = G_{\lambda} \circ \overline{\tau}_{\omega_q}$.

Proof. Remark that $\{G_{\lambda}(b) \mid b \in \mathcal{B}(\lambda)\}$ is a basis of the Q-vector space $E(\lambda)$. Hence, for $b \in \mathcal{B}(\lambda)$, we have $\tau_{\omega_q}(G_{\lambda}(b)) = \sum_{b' \in \mathcal{B}(\lambda)} c_{b'} G_{\lambda}(b')$ for some $c_{b'} \in \mathbb{Q}$ since $E(\lambda)$ is τ_{ω_q} stable. Then we obtain $\overline{\tau}_{\omega_q}(b) = \sum_{b' \in \mathcal{B}(\lambda)} c_{b'} b'$ in $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$. Put $b'' := \overline{\tau}_{\omega_q}(b) \in \mathcal{B}(\lambda)$. Because $\mathcal{B}(\lambda)$ is a basis of the Q-vector space $\mathcal{L}_0(\lambda)/q\mathcal{L}_0(\lambda)$, we see that $c_{b''} = 1$ and $c_{b'} = 0$ for all $b' \in \mathcal{B}(\lambda), b' \neq b''$. Hence we obtain $\tau_{\omega_q}(G_{\lambda}(b)) = G_{\lambda}(b'') = G_{\lambda}(\overline{\tau}_{\omega_q}(b))$, as desired.

Proof of Theorem 3.1. By combining Lemmas 3.3 and 3.4, we see that the set $\{G_{\lambda}(b) \mid b \in \mathcal{B}_{w}(\lambda) \cap \mathcal{B}(\lambda)_{\chi}\}$ is $\tau_{\omega_{q}}$ -stable. Because $\{G_{\lambda}(b) \mid b \in \mathcal{B}_{w}(\lambda)\}$ is a basis of $V_{w}(\lambda)_{\chi}$ over $\mathbb{Q}(q)$ (see (1.14)), we obtain

$$\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_{\chi}}) = \# \{ G_{\lambda}(b) \mid \tau_{\omega_q}(G_{\lambda}(b)) = G_{\lambda}(b), \ b \in \mathcal{B}_w(\lambda) \cap \mathcal{B}(\lambda)_{\chi} \}$$

for $\chi \in (\mathfrak{h}^*)^0$ (note that if an endomorphism f on a finite-dimensional vector space V stabilizes a basis of V, then the trace of f on V is equal to the number of basis elements fixed by f). By Lemma 3.4 again, we get

$$\operatorname{tr}(\tau_{\omega_q}|_{V_w(\lambda)_{\chi}}) = \# \big\{ b \in \mathcal{B}_w(\lambda) \cap \mathcal{B}(\lambda)_{\chi} \mid \overline{\tau}_{\omega_q}(b) = b \big\},$$

and hence

$$\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda)) = \sum_{b \in \mathcal{B}_{w}^{0}(\lambda)} e(\operatorname{wt}(b)), \qquad (3.4)$$

where wt(b) := χ if $b \in \mathcal{B}(\lambda)_{\chi}$, and $\mathcal{B}^0_w(\lambda)$ is the set of elements of $\mathcal{B}_w(\lambda)$ fixed by $\overline{\tau}_{\omega_q}$. The commutative diagram (3.3) implies that

$$\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda)) \stackrel{(3.4)}{=} \sum_{b \in \mathcal{B}_{w}^{0}(\lambda)} e(\operatorname{wt}(b)) \stackrel{(3.3)}{=} \sum_{\pi \in \mathbb{B}_{w}^{0}(\lambda)} e(\pi(1)).$$

We see from Theorems 1.7 and 1.9 that the right-hand side of the above equality coincides with $P^*_{\omega}(\operatorname{ch} \widehat{L}_{\widehat{w}}(\widehat{\lambda}))$, where $\widehat{\lambda} := (P^*_{\omega})^{-1}(\lambda)$ and $\widehat{w} := \Theta^{-1}(w)$. Therefore we obtain

$$\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda)) = P_{\omega}^{*}(\operatorname{ch}\widehat{L}_{\widehat{w}}(\widehat{\lambda})).$$

Notice that the right-hand side is independent of q. Hence we find that $\operatorname{ch}_{q}^{\omega}(V_{w}(\lambda))\Big|_{q=1} = P_{\omega}^{*}(\operatorname{ch} \widehat{L}_{\widehat{w}}(\widehat{\lambda}))$. Combining this with (2.6), we finally arrive at the conclusion that

$$\operatorname{ch}^{\omega}(L_w(\lambda)) = P^*_{\omega}(\operatorname{ch}\widehat{L}_{\widehat{w}}(\widehat{\lambda})).$$

Thus we have proved Theorem 3.1.

Remark 7. By replacing $V_w(\lambda)$ by $V(\lambda)$ and $L_w(\lambda)$ by $L(\lambda)$ in the arguments above, we can give another proof of the twining character formula for the integrable highest weight module $L(\lambda)$, which is the main result of [FSS] ([FRS]).

References.

- [D] M. Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. 98 (1974), 163–172.
- [FRS] J. Fuchs, U. Ray, and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), 518–540.
- [FSS] J. Fuchs, B. Schellekens, and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, *Comm. Math. Phys.* **180** (1996), 39–97.
- [Ja] J. C. Jantzen, "Lectures on Quantum Groups", Graduate Studies in Mathematics Vol. 6, Amer. Math. Soc., Providence, 1996.
- [Jo] A. Joseph, "Quantum Groups and Their Primitive Ideals", Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 29, Springer-Verlag, Berlin, 1995.
- [Kac] V. G. Kac, "Infinite Dimensional Lie Algebras", 3rd Edition, Cambridge University Press, Cambridge, UK, 1990.
- [KN] M. Kaneda and S. Naito, A twining character formula for Demazure modules, preprint.
- [KK] S.-J. Kang and J.-H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, *Proc. London Math. Soc.* **81** (2000), 675–724.
- [Kas1] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.
- [Kas2] M. Kashiwara, Global crystal bases of quantum groups, *Duke Math. J.* **69** (1993), 455–485.
- [Kas3] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), 839–858.
- [Kas4] M. Kashiwara, On crystal bases, in "Representations of Groups" (B. N. Allison and G. H. Cliff, Eds.), CMS Conf. Proc. Vol. 16, pp. 155–197, Amer. Math. Soc., Providence, 1995.
- [Kas5] M. Kashiwara, Similarity of crystal bases, in "Lie Algebras and Their Representations" (S.-J. Kang et al., Eds.), Contemp. Math. Vol. 194, pp. 177–186, Amer. Math. Soc., Providence, 1996.
- [Ku] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, *Invent. Math.* 89 (1987), 395–423.
- [La1] V. Lakshmibai, Bases for quantum Demazure modules II, in "Algebraic Groups and Their Generalizations: Quantum and Infinite-dimensional Methods" (W. J. Haboush and B. J. Parshall, Eds.), Proc. Sympos. Pure Math. Vol. 56(2), pp. 149–168, Amer. Math. Soc., Providence, 1994.
- [La2] V. Lakshmibai, Bases for quantum Demazure modules, in "Representations of Groups" (B. N. Allison and G. H. Cliff, Eds.), CMS Conf. Proc. Vol. 16, pp. 199–216, Amer. Math. Soc., Providence, 1995.
- [Li1] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329–346.
- [Li2] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. 142 (1995), 499–525.
- [Li3] P. Littelmann, Characters of representations and paths in $\mathfrak{h}_{\mathbb{R}}^*$, in "Representation Theory and Automorphic Forms" (T. N. Bailey and A. W. Knapp, Eds.), Proc. Sympos. Pure Math. Vol. 61, pp. 29–49, Amer. Math. Soc., Providence, 1997.

- [Li4] P. Littelmann, The path model, the quantum Frobenius map and standard monomial theory, in "Algebraic Groups and Their Representations" (R. W. Carter and J. Saxl, Eds.), NATO Adv. Sci. Inst. Ser. C Vol. 517, pp. 175–212, Kluwer Acad. Publ., Dordrecht, 1998.
- [Lu] G. Lusztig, "Introduction to Quantum Groups", Progr. Math. Vol. 110, Birkhäuser, Boston, 1993.
- [M] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159–160 (1988).
- [MP] R. V. Moody and A. Pianzola, "Lie Algebras with Triangular Decompositions", Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience, New York, 1995.
- [N1] S. Naito, Twining character formula of Kac-Wakimoto type for affine Lie algebras, preprint.
- [N2] S. Naito, Twining characters and Kostant's homology formula, preprint.
- [N3] S. Naito, Twining characters, Kostant's homology formula, and the Bernstein-Gelfand-Gelfand resolution, to appear in *J. Math. Kyoto Univ.*.
- [N4] S. Naito, Twining character formula of Borel-Weil-Bott type, preprint.
- [NS1] S. Naito and D. Sagaki, Lakshmibai-Seshadri paths fixed by a diagram automorphism, J. Algebra 245 (2001), 395–412.
- [NS2] S. Naito and D. Sagaki, Certain modules with twining maps and decomposition rules of Littelmann type, to appear in *Comm. Algebra*.

17