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O Introduction. 

In [FRS] and [FSS] , they introduced new character-like quantities corresponding to a 

graph automorphism of a Dynkin diagram, called twining characters, for certain Verma 

modules and integrable highest weight modules over a symmetrizable Kac-Moody algebra, 

and gave twining character formulas for them. Recently, the notion of twining characters 

has naturally been extended to various modules, and formulas for them has been given 

([KN], [KK], [Nl]-[N4]). 

The purpose of this paper is to give a twining character formula for Demazure modules 

over a symmetrizable Kac-Moody algebra. Our formula is an extension of one of the main 

results in [KN] , which describes the twining characters of Demazure modules over a flnite-

dimensional semi-simple Lie algebra. While their proof is an algebro-geometric one, we 

give a combinatorial proof by using the theories of path models and crystal bases. 

Let us explain our formula more precisely. Let g = g(A) = n_ O ~ (Dn+ be a symmetriz-

able Kac-Moody algebra over ~) associated to a generalized Cartan matrix A = (aij)i,jel 

of flnite size, where ~ is the Cartan subalgebra, n+ the sum of positive root spaces, and n_ 

the sum of negative root spaces, and let u) : I -~ I be a (Dynkin) diagram automorphism, 

that is, a bijection cL) : I => I satisfying aa)(i),cv(j) = aij for all i, j e I. It is known that 

a diagram automorphism induces a Lie algebra automorphism c() ~ Aut(g) that preserves 

the triangular decomposition of g. Then we define a linear automorphism u)' ~ GL(~*) 

by (cu*(A))(h) := A(c4)(h)) for A e ~', h C b. We set (~')o := {A ~ ~* I ~)*(A) = A and 
}
,
 

call its elements symmetnc werghts We also set W { ･ } := w~Wlw~) =~)*w . 
Further we define a "folded" matrix A associated to c(), which is again a symmetriz-

able GCM if u) satisfies a certain condition, called the linking condition (we assume it 

throughout this paper). The Kac-Moody algebra ~ = g(A) associated to A is called the 

orbit Lie algebra. We denote by ~ the Cartan subalgebra of ~ and by W the Weyl group 

of ~. Then there exist a linear isomorphism P~)' : ~' ~> (~')o and a group isomorphism 

O : W ~> W such that O((~) = P~)' o (~ o (Pcv*)~1 for all ~ e W. 

Let A be a dominant integral weight. Denote by L(A) = ~xe~' L(A)x the irreducible 

highest weight g-module of highest weight A. Then, for w e W, we deflne the Demazure 

module Lw(A) of lowest weight w(A) in L(A) by Lw(A) := U(b)L(A)w(A)' where U(b) is the 

universal enveloping algebra of the Borel subalgebra b := ~ ~ n+ Of g. If A is symmetric, 

then we have a (unique) Iinear automorphism Ta) : L(A) -~ L(A) such that 

7; (xv) = cv~1(x)Tcv(v) for all x e g, v ~ L(A) 

and Tu)(uA) = uA with uA a (nonzero) highest weight vector of L(A). Then it is easily seen 

that the Demazure module Lw(A) with w e W is Ta)~stable. Here we define the twining 
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character ch"(Lw(A)) of L~(A) by: 

~
 

ch~) (LW (A) ) := tr(T~ IL~(A)x) e(X) ' 

xe(O')o 

Our main theorem is the following: 

Theorem . Let A be a symmetric dominant integral weight aud w e W. Set A := 

(P"')1(A) aud (~ := e-1(w). Then we have 

cha)(Lw(A)) = P"' (ch L~(A)) , 

where L{D(A) is the Demazure module of lowest weight ~(A) in the irreducible highest 

weight module L(A) of highest weight A over the orbit Lie algebra ~. 

The starting point of this work is the main result in [NSl]. Denote by ~~(A) the set 

of Lakshmibai-Seshadri paths (L-S paths for short) of class A, where L-S paths of class 

A are, by deflnition, piecewise linear, continuous maps 7T : [O, I] -> ~' parametrized by 

sequences of elements in WA and rational numbers with a certain condition, called the 

chain condition. In [Lil], LittelmeLnn showed that there exists a subset I:~w(A) of l:~(A) 

such that 

~ e(7T(1))=chL~(A). 
*el~;~ (A) 

For 7T ~ l~(A), we deifne a path cu'(7r) : [O, I] -> ~' by (~)'(7T))(t) := cu'(7T(t)). If A 

is symmetric and w e W, then I~~(A) is ce;'-stable. We denote by l~~(A) the set of all 

elements of I~~(A) fixed by ~)'. Then we see from the main result of [NSl] that 

~ e(7T(1))=P"'(chL~(~)). 

*el~~ (A) 

In this paper, we prove that the left-hand side is, in fact, equal to cha) (L~(A)). 

In order to prove the equality cha) (L~(A)) = ~ e(7r(1)), we introduce a "quan-
~eE}~ (A) 

tum version" of twining characters, called q-twining characters. Let Uq (g) be the quantum 

group associated to the Kac-Moody algebra g over the field ~](q) of rational functions in q, 

and V(A) = ~xeb' V(A)x the irreducible highest weight Uq (g)-module of highest weight A. 

For w ~ W, the quantum Demazure module V~(A) is deflned by V~(A) := Uq+(g)V(A)~(A), 

where Uq+(g) is the "positive part" of Uq(g). A diagram automorphism cL) induces a 

~)(q)-algebra automorphism c()q Of Uq(g). Assume that A is symmetric. Then we get a 

~!(q)-linea;r automorphism Ta)q Of V(A) that has the same properties as Ta) in the Lie alge-

bra case. Since Vw (A) is stable under Ta)q if w e W, we can deflne the q-twining character 

ch~(V~(A)) of Vw(A) by 

ch~(Vw(A)):= ~ ( ) tr T~)qlv*(A)x e(X), 

xe(~')o 
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where the traces are naively elements of ~)(q) (in fact, they are elements of ~[q, q~1]). We 

show that the specialization of the q-twining character ch~ (Vw(A)) by q = I is equal to 

the (ordinary) twining character chcv (Lw(A)), that is, 

ch~(Vw(A)) = cheu(Lw (A)) . 
q=1 

The advantage of considering a quantum version is the existence of a basis of Vw(A) 

compatible with Tu)q' Let (L(A),~(A)) be the (lower) crystal base of V(A). In [Kas3], 

Kashiwara showed that for each w ~ W there exlsts a subset ~w(A) of ~(A) such that 

: (~ ~(q)GA(b) Vw(A) = 
be~*(A) 

where GA (b) denotes the (lower) global base introduced in [Kas2]. We prove that Tcvq 

{
 

stabilizes the basis } GA(b) I b C ~w(A) ofVw(A). 

By combining these facts and the equivalence theorem between path models IB;(A) and 

crystal bases ~(A), which was proved by Kashiwara [Kas5] et al., we can obtain the desired 

equality above, and hence the our main theorem. 

This paper is organized as follows. In S1 we review some facts about Kac-Moody 

algebras, diagram automorphisms, orbit Lie algebras, quantum groups, crystal bases, and 

path models. There we also deflne an algebra automorphism of the quantum group Uq(g) 

induced from a diagram automorphism. In S2, we recall the deflnition of the twining 

characters of L(A) and Lw(A), and then introduce the qtwining characters of V(A) and 

Vw(A). Furthermore, we show that the q-twining characters of V(A) and Vw(A) are q-

analogues of the twining characters of L(A) and Lw (A), respectively. In S3 we give a proof 

of our main theorem by calculating the q-twining character of Vw (A). 

Acknowledgements. I express my sincere thanks to Professor Satoshi Naito, who lead 

me to the theories of path models and twining characters. This paper could not be written 

without his guidance. 

1 Preliminaries. 

1.1 Kac-Moody Algebras and Diagram Automorphisms. In this subsection, 
we review some basic facts about Kac-Moody algebras from [Kac] and [MP], and about 

diagram automorphisms from [FI~S] and [FSS] . 

Let A = (aij)i,j~EI be a symmetrizable generalized Cartan matrix (GCM for short) 

indexed by a finite set I. Then there exists a diagonal matrix D = diag(ci)iel with ci e 

~)>0 such that D-1A is a symmetric matrix. Let ce) : I ~> I be a diagram automorphism 

of order N, that is, a bijection cu : I ~> I of order N such that a~)(i),eu(j) = aij for all 

i, j ~ I. 
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Remark 1. Set 
l
 D/ = diag(e;)iel := diag 
N~1 c~1 ~k=0 a)k(i) iel 

Then we see that Cev(i) = c; and (D/)-1A is a symmetric matrix. Hence, by replacing D 

with D/ above if necessary, we may (and will henceforth) assume that eev(i) = ci (see also 

[N1, S3.1]). 

We take a realization (O, n, Hv) of the GCM A = (aij)i'jel over ~) and linear auto-

morphisms cL) : ~ ･~> ~ and cv* : ~' ~' b' as follows (cf. [Kac, Exercises 1.15 and 1.16]). 

Let b' be an n-dimensional vector space over ~! with Hv := {oi~}iel a basis. We deflne 

a ~ linear automorphism ~f : ~/ ~> ~/ by cLf(c~~) = oicv(i) and c(y/ (~/)' _> (~/)* by 

(c4f/(A))(h) A((cLf) 1(h)) for A ~ (~/)' and h ~ ~/. We also deflne ~) : ~/ _~ (b/)' by 

(~)(oiy))(c~y) a~3 It can be readily seen that ~f/ o fP ~) o ~) This means that Im ~) Is 

~f!_stable, and hence we can take a complementary subspace ~// of Im ~) m (b/)' that Is 

also ~f/ stable Now set ~ b ~ ~// and H {c~~}~el where c~i e ~' is deflned by 

ce cjc~f + hl/ '_ cj(fP(c~f))(c~~) + h//(oi~) for h// e b// (1.1) 

jel jel 
l! Then we see that H is a linearly independent subset of ~'. Furthermore, since dim~ ~ = 

#1 - dim~!} ImfP = #1 - rank A, we have dim~ ~ = 2#1 - rank A. Hence (b, II, Hv) is a 

(minimal) realization of the GCM A. We define a ~-linear automorphism u) : ~ -~ ~ by 

c()(h/+h//) := ccy(h/)+cLf/(h//) for h/ e b/ and h// ~E O//, and the transposed map ~)' : ~' -> ~' 

by (u)'(A))(h) = A(~)(h)) for A ~ b* and h ~ ~. Then we can check by usmg (1 1) that 

~)*(oii) = c~eJ~1(i) for each i e I. 

Here, as in [Kac, S2.1], we deflne the (standard) nondegenerate symmetric bilinear 

form (' , ') on b associated to the decomposition ~ = ~/ (1) ~n above. We set 

(c~~,h) :=cei(h)ci for i ~ I, h e ~, 

ll (h h/) := O for h, h/ e ~ . 

Then it follows from the construction above and Remark I that (~)(h), cL)(h/)) = (h, h!) for 

all h, h/ ~ O. We denote also by (' , ') the nondegenerate symmetric bilinear form on b' 

induced from the bilinear form on ~. Then (cu (A) c()'(A/)) (A A ) for all A A ~ ~ 

We set 

(b')o := {A e ~' I ~)'(A) = A}, ~o := {h e ~ I ~)(h) = h}. (1.2) 

Elements of (b')o are called symmetric weights. Note that (b')o can be identified with 

(Oo)' in a natural way 
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Remark 2. Let p be a Weyl vector, i.e., an element of ~' such that p(oi~) = I for all i ~ I. 

Then, by replacing p with (1/N) ~~-ol(c()*)k (p) if necessary, we may (and will henceforth) 

assume that a Weyl vector p is a symmetric weight. 

Let g = g(A) be the Kac-Moody algebra over ~! associated to the GCM A with ~ 

the Cartan subalgebra, H = {c~i}i~l the set of simple roots, and Hv = {oi~}iel the set 

}
 

{
 

of simple coroots. Denote by xi, yi I i ~ I the Chevalley generators, where xi (resp. 

yi) spans the root space of g corresponding to c~i (resp. -c~i). The Weyl group W of g 

is defined by W := (ri i e I), where ri is the simple reflection with respect to c~i. The 

following lemma is obvious from the definitions of Kac-Moody algebras and the linear 

map ~) : ~ -~ ~ above (see also [FSS, S3.2]). 

Lemma 1.1. The ~)-linear map ~) : ~ -> ~ above can be exteuded to a Lie algebra 

automorphism cL) (E Aut(g) of order N such that c()(xi) = xa)(i) aud ~)(yi) = yu)(i) ' 

Let A be a dominant integral weight. Denote by L(A) = ~xeO' L(A)x the irreducible 

highest weight g-module of highest weight A, where L(A)x is the X-weight space of L(A). 

We set b := ~ ~ n+, where n+ Is the sum of positive root spaces of g. For w ~ W, the De-

mazure module Lw(A) C L(A) of lowest weight w(A) is defined by Lw(A) := U(b)L(A)w(A)' 

where U(b) is the universal enveloping algebra of b. In addition, for each i ~ I, we define 

the Demazure operator Di by 

D (e(A)) := e(A+p) - e(ri(A+p))e(-p) for A ~ ~ (1.3) 
1 - e(-oii) 

By [Kas3], [Ku] , and [M] , we know the following character formula for Demazure modules. 

Theorem 1.2. Let A be a dominant integral weight and w ~ W. Assume that w = 

rilri2 ' ' ' rih is a reduced expression of w. Then we have 

chLw(A) = Dil o Di2 o ' ' ' o D~k (e(A)) (1.4) 

Remark 3. The Demazure operators {Di}icl satisfy the braid relations (see [D]). Hence 

the right-hand side of (1.4) above does not depend on the choice of a reduced expression 

of w. 

1.2 Orbit Lie Algebras. In this subsection, we review the notion of orbit Lie alge-

bras. For details, see [FRS] and [FSS] . 

We set 
Nj-1 

c":= ~ ･, -~3 az euk(3) for i, j e I and i := (1.5) c C~~ for i ~ I, 

k=0 
where Ni is the number of elements of the ~)-orbit of i ~ I in I. From now on) we assume 

that a diagram automorphism c() satisfies 

ci = I or 2 for each z e I (1.6) 
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This condition is called the linking condition. Here we choose a complete set I of repre-

sentatives of the ~)-orbits in I, and deflne a matrix A = (~ij)i,jef by 

(~ ~ : (2c,j /c3 ) i, 3 ~ET' ( I . 7) A = ~aij)i,jeT = 

Proposition 1.3 ([FSS, S2.2]). The matrix A is a symmetrizable GCM. 

The Kac-Moody algebra ~ := g(A) over ~) associated to the GCM A is called the 

orbit Lie algebra (associated to the diagram automorphism ~)). Denote by ~ the Cartan 

subalgebra of ~, and by H = {ai}i~r and Hv = {~~}ieT the set of simple roots and simple 

coroots of ~, respectively. 

As in [FRS, S2] , we have a ~!-linear isomorphism P. : ~o ~> ~ such that 

Ni-1 
/¥v oi~k(i) := fOr each i ~ I' cei 

Ns 
ko 

(P~(h), P~(h/)) = (h,h/) for all h, h/ ~ ~o, 

where we denote also by (' , ') the (standard) nondegenerate symmetric bilinear form on 

~. Let Pcv' : b' ~ (~o)' ~; (b')o be the transposed map of Pu) defined by 

(Pa)'(A))(h) := A(Pu)(h)) for A e ~', h ~ ~ (1.8) 

}
 

Proposition 1.4 ([FRS, Proposition 3.3]). Set W := {w e W I w~)' = ~)'w . Then 

there exists a group isomorphism e : W -> W such that e(~) = Pa)' o (~ o (P"')-1 for 

each (~ C W. 

1.3 Quantum Groups. From now on, we take the bilinear form (' , ') in such a way 

that (c~i, c~i) ~ ~>0 for all i ~ I. Let P C ~' be an u)*-stable integral weight lattice such 

that oii e p for all i e I, and set P+ := {A ~ P I A(oi~) e ~~o for all i e I}. Notice that 

the dual lattice Pv := Hom~(P, ~) is stable under ~). The quantum group (or quantized 

universal enveloping algebra) Uq (g) associated to g is, by deflnition, the algebra generated 

by the symbols Xi , Yz and qh (h ~ Pv) over the field ~(q) of rational functions in q with 

the following defining relations: 

1 hh qo = i, q lq 2 = qhl+h2 for hl h2 e pv 

qhXq~h = qai(h)Xi, qhYiq~ = ~ q cei(h)Y for z e I h ~E Pv h
 

ti - ti 
[Xi, Y~] = 6ij _1 for i e I, 

qi - qi 
1 -ai j 

~ (-1) X X3X!1 ai3 k) O for i, j ~E I with i ~ j, k !k) . . - '- = 

h=0 
1 -ai j 

( 1)hY(k)Y3Y~(1 a.3-k) = O for i, j e I with i ~ j. ~-
h=0 
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Here we have used the following notation: 

qi = q(~i'"i), t q(~ ~ )a 

[n]i = [k]., and X(n) = Yi(n) = qi - qrl ' [n]i! = H ･ , [n]i!' [n]i! 
k=1 

Lemma 1.5. There exists a waique ~](q)-algebra automorphism ~)q Of Uq(9) such that 

cL)q(Xi) = X.(i), c()q(Yi) = Y.(i), aud a)q(qh) = qa)(h). 

Proof. We need only show that the images of the generators by ~)q also satisfy the deflning 

relations (1.9). However it can be easily checked by using the equalities qa)(i) = qi, [n]~(i) = 

Let A ~ p+' Denote by V(A) = ~xe~' V(A)x the irreducible highest weight Uq(g)-

module of highest weight A, where V(A)x Is the X-weight space of V(A). It is known (cf. 

[Kasl, (1.2.7)]) that 

/ ( 1+A(a~) 
)
,
 

V(A) ~: U,(g) / ~~iel Uq-(g)Y" (1,lO) 

where Uq-(g) is the ~~(q)-subalgebra of Uq(g) generated by {Yi}iel' For each w ~ W, we 

deflne the quantum Demazure module V~(A) by V~(A) := Uq+(g)V(A)~(A) , where Uq+(g) is 

the ~)(q)-subalgebra of U: (g) generated by {X,},~EI 

1.4 Crystal Bases and Global Bases. In this subsection, we review the notions of 

(lower) crystal bases and (lower) global bases. For details, see [Ja] and [Kasl]-[Kas3]. 

First let us recall the deflnition of the Kashiwara operators Ei, Fi On V(A). It is 

known that each element u e V(A)x can be uniquely written as u = ~k>0 Y"(k)uk, where 

uk e (kerXi) n V(A)x+kai' We deflne the ~(q)-linear operators Ei, Fi On V(A) by 

Eiu = Y"(k~1)uk, = Yi(k+1)uk. (1.11) Fiu 

Denote by Ao the subring of ~(q) consisting of the rational functions in q regular 

at q = O, and by L0(A) the Ao-submodule of V(A) generated by all elements of the 

form F,1F,2 F, uA where uA Is a (nonzero) highest werght vector of V(A). Let ~(A) C 

L0(A)/qL0(A) be the set of nonzero images of FilFi2 ' ' ' FikuA by the canonical map ~ : 

L0(A) ~> L0(A)/qL0(A). Then it is known from [Kasl, Theorem 2] that (L0(A), B(A)) is 

a (lower) crystal base of V(A), i.e., 

(1) V(A) = ~(q) ~)Ao L0(A), 

(2) L0(A) = ~xeO' L:o(A)x' where L0(A)x = L0(A) n V(A)x' 

(3) EiL0(A) C L0(A) and FiL0(A) C L0(A), 
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(4) ~(A) is a basis of the ~)-vector space L0(A)/qL0(A), 

(5) Ei~(A) C ~(A) U {O} and Fi~(A) C B(A) U {O}, 

(6) ~~(A) = Uxe~'B(A)x (disjoint union), where ~(A)x = B(A) n (L0(A)x/qL0(A)x)' 

(7) For bl' b2 e J~(A), bl = Fib2 if and only if b2 = Eibl' 

Note that, by (3), we have the operators on L0(A)/qL0(A) induced from Ei, Fi, which are 

also denoted by Ei, Fi (cf. (5), (7)). 

Next we recall the notion of (lower) global bases. Set V~!(A) := Uq~)(g)uA C V(A), 

where Uq~(9) is the ~][q, q~1]_subalgebra of Uq(g) generated by all X(n) , Yt(n), qh and 

n 1-k h k-1 -h qh q q -q q { = H qk - q~k }
 
n 
k=1 

for i ~ I, n ~ ~~0, h e p*. We deflne a ~)-algebra automorphism ip : Uq(g) ~> Uq(9) by 

op(X) Xt' ip(Yi) := Yi for i e I (1.12) 
ap(q) := q~1, ip(qh) :=q~h for h e p'. 

By virtue of (1.10), we have a ~-linear automorphism op of V(A) deflned by ip(xuA) := 

ip(x)uA for x e Uq-(~). Let Loo(A) be the image of L0(A) by op. Then it is known (see, for 

example, [Kas2]) that the restriction of the canonical map ~ to E(A) := V~~)(A) n L0(A) n 

Loo(~A) .is an isomorphism from E(A) to L0(A)/qL0(A) as ~!-vector spaces. We denote by 

GA the inverse of this isomorphism. Then we have 

V(A) = ~ ~](q)GA(b) (1.13) 
beB(A) 

Moreover we have the following. 

Theorem 1.6 ([Kas3, Proposition 3.2.3]). Let A ~ p+ and w ~ W. Then there exists a 

subset Bw(A) of ~(A) such that 

= ~ ~(q)GA(b) 
be~~ (A) 

1.5 Path Models. Let A ~ p+' For /h,1/ e WA, we write /1 > v if there exist a 

As = v of elements in WA and a sequence pl' ' ' " sequence p; = Ao, A1' ' ' " ps Of positive 

real roots such that Ak = rpk(Ah_1) and Ak_1(pX) < O for k = l, 2, . . . , s, where for a 

positive real root p, we denote by rp the reflection with respect to p, and by pv the dual 

root of p. Then we define dist(/h, v) to be the maximal length s among all possible such 

sequences. 

Remark 4. Assume that A ~ P+ n (b')o. It immediately follows that /1 > b/ if and only if 

~)*(/1) ~ ~)*(1/)' Moreover, we have dist(cu*(11), c()'(v)) = dist(u, v) when kt ~ v. 
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Let A ~ p+, /1, l/ ~ WA with /h ~ v, and O < a < I a rational number. An a-chain for 

(pt, l/) is, by definition, a sequence fh = Ao > A1 > . . . > Ar = l/ Of elements in WA such 

that dist(Ai, Ai_1) = I and Ai = rpi(Ai_1) for some positive real root pi, and such that 

aAi_1(piv) e ~ for all i = 1, 2, . . . , r. 

Here let us consider a pair 7r = (~~ ; ~) of a sequence ki : vl > v2 > . . . > v. of elements 

in WA and a sequence ~L : O = ao < al < . . . < a* = I of rational numbers such that 

s - 1, there exists an ai-chain for (b/i, l/i+1)' Then we associate to for each i = 1, 2, . . . , 

7T = (1~ ; ~L) the following path'7T : [O, I] -> ~': 

j-1 
7r(t) := ~(ai - ai_1)1/ + (t a3 1)1/3 for a3 1 < t < a (1.15) 

i=1 

Such a path is called a Lakshmibai-Seshadri path (L-S path for short) of class A. Denote 

by I~(A) the set of L-S paths of class A. 

Let us recall the raising and lowering root operators (cf. [Lil]-[Li4]). For convenience, 

we introduce an extra element O that is not a path. For 7T e I~(A) and i ~ I, we set 

h~(t) := (7T(t))(oi~), m { (1.16) }
 

~ := min h~(t) j t e [O, I] . 

First we deflne the raising root operator ei With respect to the simple root c~i. We deflne 

eiO := O, and ei7T := O for 7r ~ I~(A) with m~ > -1. If m~ ~ -1, then we can take the 

following points: 

1 :=min t ~ [0,1] I ~ = 

{
 

to := max t/ c [O,tl] I h~(t) ~ m~ + I for all t ~ [O,t!]}. 

We set 

7r(t) if O ~ t ~ to, 
(e 7r)(t) := 7r(t) - (h~(t) -m - (1.18) ~ 1)cei if to ~ t ~ tl' 

7r(t) + cei if tl ~ t ~ 1. 
The lowering root operator ~ is defined in a similar fashion. We deflne fiO := O, and 

fs7r := O for 7r e ~~;(A) with h~(1) - m~ < 1. If h~(1) - m~ ~ 1, then we can take the 

following points: 

{
 

to := max t ~ [O, I] I h~(t) = m~}, 

for all t ~ [t/, I]}. tl := min t/ ~ [to, I] I h~(t) ~ m~ + 1 

We set 
if O < t ~ to, 

(f7r)(t) := 7r(t) - (hT(t) - mT)c~i if to ~ t ~ tl' (1.20) 

7r(t) - c~i if tl ~ t ~ 1. 
Then we know the following. 
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Theorem 1.7 ([Lil] and [Li2]). Let 7r ~ IB;(A). If ei7T ~ O (resp. ft7T ~ O), then 

ei7r e I~(A) (resp. fi7T ~ I~(A)). Hence the set I~(A) U {e} is stable under the action of the 

root operators. Moreover, every element 7r e I~(A) is of the form 7T = filfi2 ' ' ' fih7TA for 

some il, z2, ' ' ' , ik e I, where 7rA := (A ; O, 1) = tA is the only element of ~(A) such that 

ei7TA = O for all i e I. Furthermore, we have 

~ e(7r(1)) chL(A) e(7r(1)) = chLw(A), (1.21) 

*~E~;(A) *~EI~~ (A) 
where I~W(A) {(1/1' ' ' " l/' ; gi) ~ IB}(A) I l/1 ~ w(A)} for each w ~ W. 

It is known from [Kas5] et al. that I~(A) has a natural crystal structure isomorphic to 

~(A). Namely, we have the following theorem (see [La2] for the second assertion). 

Theorem 1.8. There exists a unique bzjection ~ : ~(A) ~> I~(A) such that 

~)(F.1F.2 F,kuA) f.I fi2 ' ' ' fih7TA' (1.22) 

Moreover, ~>(B~(~)) = I~~(A) for each w ~ W. 

At the end of this subsection, we recall the main result of [NSl]. Let A C P+n(b')o. For 

7r ~ ll~(A), we define a path ~)'(7T) : [O, I] -~ ~' by (a)'(7r))(t) := cv'(7r(t)). Then we deduce 

that I~(A) and IB;~(A) with w ~ W are cv'-stable (cf. Remark 4 and [NS1, Lemma 3.1.1]). 

Denote by l:~o(A) the set of L-S paths that are fixed by ~)', and set I~~(A) := IB;~(A) nl~o(A) 

for each w c W. 

Theorem 1.9 ([NS1, Theorem 3.2.4]). Let A C P+ n (b')o aud w ~ W Set A 

(Peu')~1(A) and ~ := e-1(w). Therb we have 

l:~o(A) = P"' (~~(A)) , I~~ (A) P~' (lB;~(A)) (1.23) 

where we denote by I~(A) the set of all L-S paths of class A for the orbit Lie al9ebra ~, 

aud set ~i~(~) := {(1/"I' ' ' " l/"' ; ~) ~ ~(~) I v'~'1 ~; (~(~)} with ~ the relative Bruhat order 

on WA. Here, for ~ ~ I~(A), we define a path P"'(;~) : [O, I] -> (~')o by (Pa)'(~))(t) := 

Pa)' (~(t) ) . 

2 Twining Characters and q=twining Characters. 

2.1 The Twining Characters. From now on, we always assume that A ~ p+ n (b')o 

and w ~ W. First we consider the linear automorphism u)~1 R id of the Verma module 

M(A) := U(g) RU(b) ~](A) of highest weight A over g, where ~)(A) is the one-dimensional 

b-module on which h ~ ~ acts by the scalar A(h) and n+ acts trivially. Since this map 

stabilizes the (unique) maximal proper g-submodule N(A) of M(A), we obtain an induced 

l O 



~ linear automorphism Tcv : L(A) ~> L(A), where L(A) = M(A)/N(A). It is easily seen 

that Ta) has the following properties: 

Ta)(xv) =cv~1(x)Tcv(v) for x e g v ~ L(A) 

and Tcv(uA) = uA, where uA is a (nonzero) highest weight vector of L(A). 

Remarh 5. From [Nl, Lemma 4.1] (or [NS2, Lemma 2.2.3]), we know that Tcv is a unique 

endomorphism of L(A) with the properties above. 

The twining character cha) (L(A)) of L(A) is defined to be the formal sum 

~ tr(Ta)lL(A) )e(X) 

xe(~')o 

Since T~)(L(A)x) = L(A)a)'(x) for all X e b and dimL(A)w(A) = I for all w e W, we see 

that the Demazure module Lw(A) is T~)~stable for all w e W. Hence we can define the 

twining character ch~)(Lw (A)) of Lw(A) by 

~ tr(qicvlL~(A) )e(X) 

x~(~')o 

2.2 The qtwining Characters. In this subsection, we introduce the q-twining cha;r-

acters of V(A) and Vw(A), which are, in fact, q-analogues of cha)(L(A)) and cha)(Lw(A)), 

respectively (see Proposition 2.1 below). 

By (1.10), we have a (Q(q)-linear aLutomorphism Ta)q : V(A) -> V(A) induced from 

c(),1 : Uq-(g) -~ Uq-(g). As m the usual Lle algebra case m S2 1, Ta' has the followmg 

properties: 

Ta) (xv) cc) (x)Ta) (v) for x e Uq(g),veV(A) 

and T~)q (uA) = uA, where uA is a (nonzero) highest weight vector of V(A). 

Remark 6. In a similar way to the proof of [N1, Lemma 4.1], we can show that Ta)q is a 

unique endomorphism of V(A) with the properties above. 

The q-twining character ch~(V(A)) of V(A) is defined to be the formal sum 

~] tr(T~)qlv(A) )e(X) 

xe(~')o 

We easily see that the quantum Demazure module Vw (A) is Tu)q~stable for every w e W. 

Hence we can define the q-twining character ch~(Vw (A)) of Vw(A) by 

~ tr(Ta)qlT/; (A) )e(X) 

x~(~')o 

Here let us recall some facts from [Ja, SS5.12-5.15]. Let V(A)~} (resp. V(A)x,~) be 

the ~)[q, q~1]_submodule of V(A) generated by all elements of the form YtlYi2 ' ' ' YthuA 
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(resp. with ceil + cei2 + ' ' ' + c~ik = A - X)' It is clear that all V(A)x,~ are flnitely 

generated, torsion free ~[q, q~1]_modules. Therefore they are free ~][q, q~1]_modules of 

flnite rank because (~[q, q~1] is a principal ideal domain. We also know that the natural 

map ~](q) ~)~[q,q-l] V(A)~I -~ V(A) (given by a ~) v ~ av) is a ~(q)-linear isomorphism. 

Now we consider ~! as a ~)[q, q~1]_module by the evaluation at q = 1. Set V := 

~] R~}[q,q-l] V(A)~ and Vx := ~! R~}[q,q-l] V(A)x.~' It follows from [Ja, Lemma 5.12] that 

V(A)(~) is stable under the actions of Xi, Y~' and (qh - q~h)/(q - q~1) for i e I, h e pv. 

Thus we obtam endomorphisms xa' y~, and h of V defined by 

xi := I ~) Xi, yi := I ~) Y~' and h I R (qh - q~h)/(q - q1), 

respectively. From [Ja, Lemmas 5.13 and 5.14] , we know that the endomorphisms xi, 

yi, and h of V satisfy the Serre relations, and hence that these endomorphisms make 

V into a g-module. Moreover, V ~! L(A) as g-modules, and the image of Vx by this 

g-module isomorphism is L(A)x for all X e b'. Taking these facts into account, we show 

the following proposition. 

Proposition 2.1. Let X e (~')o aud w e W. Then tr(Ta)qlv(A)x) and tr(Ta)qlv~(A)x) are 

elements of ~![q, q~1]. Moreover, we have 

tr Tu)qlv(A) = tr(TeJIL(A) , , (2.5) ( x x) ( ) = tr(TCvlL (A) ) )
 

tr T~)qlv~(A)x 

aud hence 

ch~(V(A)) = chu)(L(A)), ch~(Vw(A)) q=1 cha)(Lw(A)). (2.6) 
q=1 

Proof. It can be easily checked that V(A)~! is Tevq~stable, and the following diagram com 

mutes: 
, -1] V(A)~ ---> V(A) ~}(q) R~][q q 

!
 

! T~q 
1R(T~qlv(A)~~) 

~](q) R~[q,q-1] V(A)~ ---~> V(A). 

Since V(A)x,~~} is a free ~![q, q~1]_module, we can define the trace of Ta)q lv(A)x'~!] for each 

X ~ (~*)o. Note that a basis of V(A)x,~) over ~)[q, q~1] is also a basis of V(A)x OVer ~](q). 

We obtain from the commutative diagram above that 

tr(Tevqlv(A)x) = tr(Tcvqlv(A)x'~!}) ~ ~}[q, q~1] for all X ~ (~*)o (2.7) 

Now let w ~ W, and take uw(A) e V(A)w(A),~] ¥ {O}. Here we remark that the rank of the 

free ~[q, q~1]_module V(A)w(A)'~} is one. We deflne Vw(A)~) to be the ~![q, q~1]_submodule of 

V(A) generated by the elements of the form XilXi2 ' ' ' Xikuw(A)' It is clear that Vw(A)(~ is 
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Ta)q~stable. Since V(A)~! is stable under the action of Xi, we see that Vw(A)~~) is a Q[q, q~1] 

submodule of V(A)~. We set Vw(A)x,~~} := V~(A)~ n V(A)x,~' Then we immediately obtain 

the following commutative diagram: 

~)(q) R~[q,q-1] VW(A)Q --H> V~(A) 

~) I !T~q 1R('~qlv*(A) ) 

~(q) R~~![q,q-l] V~(A)~ --> Vw(A). 

Hence, in the same way as above, we have 

( ) ( ) e ~][q, q J for all X ~ (b')o tr Ta)qlv~(A) = x tr Ta)qlv~(A)x'~2 

thereby completing the proof of the first assertion. 

Next we show the equalities (2.5). Note that the ~!-linear automorphism T/~ := I ~) 

(T~qlv(A)~l]) of V := ~) R~[q,q-1] V(A)~ satisfies Ta)(xv) u) (x)T.(v) for x e g, v e V, 

and Tla)(1 R uA) = I ~) uA. Hence it follows from Remark 5 that the following diagram 

commutes: 
V = ~! ~)~[q,q-l] V(A)~ --~' L(A) 

!
 

!
T
~
 

7~=1R(*~q lv(A)~) 

V = ~) ~)~)[q,q-1] V(A)~) -'-> L(A). 

Remark that, for all X e (~')o 

tr(T.lL(A)x) = tr(T"Ilvx) = ( ) ~ ( ) ' (2.8) 1 RQ[q,q1] tr T~qlv(A)x'~!! ~ tr T.q lv(A)x'~ q=1 

since we regard ~ as a (~[q, q~1]_module by the evaluation at q = l. Combining (2.8) with 

(2.7), we obtain 

( (2.8) for all X ~ (b')o (2 7) tr (Ta)q lv(A)x) 
tr T~lL(A)x) ( = tr T~qlv(A)x'~~) ~~ 

q= I q=1 which proves the first equality of (2.5). By considering V~ := ~ ~)~[q,q-1] VW(A)Q for 

w ~ W, we also obtain 

tr T.qjv~(A)x) = for all X ~ (~')o (
 

tr (Ta) I L~ (A) x ) 

q= 1 

in the same way. This completes the proof of Proposition 2.1. [] 

3 TWining Character Formula for Demazure Modules. 

The main result of this psLPer is the following. 

Theorem 3.1. Let A ~ P+ n (O')o aud w ~ W. Set A := (Pa)')~1(A) and ~) := e-1(w). 

Then we have 

ch~)(Lw(A)) = P~'(ch L~~(A)), (3.1) 
where LiD(A) is the Demazure module of lowest weight (~(A) in the irreducible highest 

weight module L(A) of highest weight A over the orbit Lie algebra ~. 
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We need some lemmas m order to prove this theorem. 

Lemma 3.2. For each i e I) we have Tcv OE Ecv (s) OTa) audTu) OF Fa) (c) OTeu 

Proof. We show only Ta)q O Ei = E~)~1(i) O Ta)q Since the proof of Ta)q O Fi = Fa)~1(i) O Tcvq is 

similar. Let u = ~h>0 Y~(k)uk ~ V(A), where uh ~ (kerXi)nV(A)x+kai' Since cv,1(Yi(k)) = 

Y(k) we have 
a)~1 (i) ' 

(k 1) ~
 

T~)q o Ei(u) = Ya)~'(i)Ta~q (uk). 

k>0 

On the other hand, Ta) (u) ~k>0 Ya)(k) (~)Tcv (u ) e V(A)cv'(x)' Here we note that Tcvq(uk) e 

(ker Xa)~1(i) ) n V(A)a)'(x)+ka ' Hence by the uniqueness of the expression of Tcv (u), we 

h ave 

(k 1) ~
 

E~)~1(i) oTcvq(u) = Y ~ 71 (u ~ ~)~1(i) a)q~ k)' 

k>0 

Therefore we obtain Tcvq O Ei(u) = Ecv~1(i) O Tu)q(u) for all u e V(A), thereby completing 

the proof. 
[
l
 

This lemma implies that L0(A) is Tcvq~stable. Hence we have the ~)-linear automorphism 

T~a)q Of L0(A)/qL0(A) induced from Ta)q' Then, by the definition of T-a)q and Lemma 3.2, we 

can easily check that the set J~(A) is Ta)q~stable. Moreover, by Theorem 1.8, we have the 

following commutative diagram: 

~(A) JL> I~(A) 

cv 

Je(A) T~ I~(A). 

Here we have used the fact that ~)* o ei = ea)~1(i) o ~)* and cu* o fs = fa)~1(i) o ~)* (see [NS1, 

Lemma 3. 1.1]) . The next lemma immediately follows from the commutative diagram (3.2) 

and Theorem 1.8, since JE;u'(A) is ~)*-stable for all w ~ W. 

Lemma 3.3. Let w e W. Then ~w(A) is stable uuder T~a)q' Hence we obta~n thefollowzn9 

commutative diagram: 
~w(A) JL~ l:~w(A) 

u) 

~w(A) ~' ~~w(A). 

Because opOTu)q = Teuq Orp, we see that L00(A) is also Tu)q~stable. Since V(~}(A) is obviously 

Tu)q~stable) we deduce that E(A) is Ta)q~stable. 

Lemma 3.4. Tcvq O G G o Tcv 

l 4 



~
 

Proof. Remark that {GA(b) I b e ~(A)} is a basis of the ~)-vector space E(A). Hence, 

for b e 13(A), we have T.q(GA(b)) = ~b'c~(A) Cb' GA(b/) for some cb' e ~) since E(A) is Ta)q~ 

stable. Then we obtain Ta)q(b) = ~b'e~(A) Cb' b/ in L0(A)/qL0(A). Put b// := ;f.q(b) e ~(A). 

Because ~(A) is a basis of the ~)-vector space L0(A)/qL0(A), we see that cb" = I and 

cb' = O for all b/ e ~(A), bl ~ b//. Hence we obtain T.q(GA(b)) = GA(bn) = GA(;fa)q(b)), as 

Proof of Theorem 3.1. By combining Lemmas 3.3 and 3.4, we see that the set {GA(b) l 

b e ~~(A) n B(A)x} is Ta)q~stable. Because {GA(b) I b ~ ~~(A)} is a basis of V~(A)x OVer 

~)(q) (see (1.14)), we obtain 

tr(Ta)qlv~(A)x) = #{GA(b) I Tcvq(GA(b)) = GA(b), b e ~~(A) n ~(A)x} 

for X ~ (b')o (note that if an endomorphism f on a finite-dimensional vector space V 

stabilizes a basis of V, then the trace of f on V is equal to the number of basis elements 

fixed by f). By Lemma 3.4 again, we get 

tr(Ta~qlv~(A)x) = #{b ~ ~~(A) n B(A)x I T.q(b) = b}, 

and hence 

~ e(wt(b)) 

beB~(A) 

where wt(b) := X if b e 13(A)x' and 13~(A) is the set of elements of ~~(A) fixed by T.q. 

The commutative diagram (3.3) implies that 

ch~(Vw(A)) (3iL:4) e(wt(b)) (3~:3) ~; ~ e(7r(1)) 
be~a (A) *e~B~ (A) 

We see from Theorems I .7 and I .9 that the right-hand side of the above equality coincides 

with P"'(chL{~(A)), where A := (P~) (A) and ~~ := e-1(w). Therefore we obtam 

ch~(V~(A)) = Pa" (ch Li~(A)). 

Notice that the right-hand side is independent of q. Hence we find that ch~ (Vw(A)) = 
q= 1 

P"' (ch Li~(A)). Combining this with (2.6), we finally arrive at the conclusion that 

cha)(Lw(A)) = Pa)' (ch L~~(A)). 

Thus we have proved Theorem 3.1. [] 
Remark 7. By replacing V~(A) by V(A) and Lw(A) by L(A) in the arguments above, we 

can give another proof of the twining character formula for the integrable highest weight 

module L(A), which is the main result of [FSS] ([FRS]). 
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