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0 Introduction.

In [FRS] and [FSS], they introduced new character-like quantities corresponding to a
graph automorphism of a Dynkin diagram, called twining characters, for certain Verma,
modules and integrable highest weight modules over a symmetrizable Kac-Moody algebra,
and gave twining character formulas for them. Recently, the notion of twining characters
has naturally been extended to various modules, and formulas for them has been given
(IKN], [KK], [N1-[N4)).

The purpose of this paper is to give a twining character formula for Demazure modules
over a symmetrizable Kac-Moody algebra. Our formula is an extension of one of the main
results in [KN], which describes the twining characters of Demazure modules over a finite-
dimensional semi-simple Lie algebra. While their proof is an algebro-geometric one, we
give a combinatorial proof by using the theories of path models and crystal bases.

Let us explain our formula more precisely. Let g = g(A) = n_@®hdn, be a symmetriz-
able Kac-Moody algebra over Q associated to a generalized Cartan matrix A = (aij)i jer
of finite size, where f is the Cartan subalgebra, n, the sum of positive root spaces, and n_
the sum of negative root spaces, and let w : I — I be a (Dynkin) diagram automorphism,
that is, a bijection w : I — I satisfying a.),w(;) = a4y for all 4, j € I. It is known that
a diagram automorphism induces a Lie algebra automorphism w € Aut(g) that preserves
the triangular decomposition of g. Then we define a linear automorphism w* € GL(h*)
by (w*(A))(h) == Aw(h)) for X € h*, h € h. We set (h*)° := {X € h* | w*(A) = A}, and
call its elements symmetric weights. We also set W= {w eW|ww* = w*w}.

Further we define a “folded” matrix A associated to w, which is again a symmetriz-
able GCM if w satisfies a certain condition, called the linking condition (we assume it
throughout this paper). The Kac-Moody algebra g = g(A\) associated to A is called the
orbit Lie algebra. We denote by ’h\ the Cartan subalgebra of g and by W the Weyl group
of g. Then there exist a linear isomorphism P?* : a* — (h*)° and a group isomorphism
©: W — W such that O(w) = P*owo (P*)~! for all @ € w.

Let A be a dominant integral weight. Denote by L(A) = @, ¢y L(A)x the irreducible
highest weight g-module of highest weight A. Then, for w € W, we define the Demazure
module L, () of lowest weight w(\) in L(A) by Ly, (A) := U(b)L(A)w(r), where U(b) is the
universal enveloping algebra of the Borel subalgebra b :=§ @& n, of g. If A is symmetric,

then we have a (unique) linear automorphism 7, : L(A) — L(\) such that
7o(zv) = w(z)7,(v) for allx € g, v € L(\)

and 7,(ux) = uy with uy a (nonzero) highest weight vector of L(\). Then it is easily seen
that the Demazure module Ly, ()\) with w € W is 7,-stable. Here we define the twining



character ch”(Ly, (X)) of Ly (A) by:

ch*(L Z tr Tw

x€(h*)0

Luw(A (X)-

Our main theorem is the following:

Theorem. Let A be a symmetric dominant integral weight and w € W. Set X :=
(PX)71(A\) and w = ©1(w). Then we have

ch®(Ly(N) = Pi(ch La(N)),

where Lg (X) is the Demazure module of lowest weight '&5(/)\\) in the irreducible highest

weight module L( ) of highest weight X over the orbit Lie algebra g.

The starting point of this work is the main result in [NS1]. Denote by B()) the set
of Lakshmibai-Seshadri paths (L-S paths for short) of class A, where L-S paths of class
A are, by definition, piecewise linear, continuous maps 7 : [0,1] — h* parametrized by
sequences of elements in W and rational numbers with a certain condition, called the
chain condition. In [Lil], Littelmann showed that there exists a subset B, (\) of B(\)
such that

> e(m(1)) = ch Ly(N),

wEB (A)
For m € B()), we deifne a path w*(7) : [0,1] — b* by (w*(7))(t) = w*(7(t)). If A
is symmetric and w € W, then B,()) is w*-stable. We denote by B2 ()) the set of all
elements of B,,(\) fixed by w*. Then we see from the main result of [NS1] that
S e(n(1)) = Pifch Za().
7€BY, (\)

In this paper, we prove that the left-hand side is, in fact, equal to ch” (L, (A)).

In order to prove the equality ch”(Lw(A)) = 3 cpo 5 (m(1)), we introduce a “quan-
tum version” of twining characters, called g-twining characters. Let U,(g) be the quantum
group associated to the Kac-Moody algebra g over the field Q(q) of rational functions in g,
and V(A) = @, ¢;- V(A)y the irreducible highest weight U, (g)-module of highest weight A.
For w € W, the quantum Demazure module V,,(}) is defined by Vi, (A) := U (9)V (A)w(n),
where UJ(g) is the “positive part” of U,(g). A diagram automorphism w induces a
Q(q)-algebra automorphism w, of U,(g). Assume that A is symmetric. Then we get a
Q(g)-linear automorphism 7, of V(A) that has the same properties as 7, in the Lie alge-
bra case. Since V,,(}) is stable under 7,,, if w € W, we can define the g-twining character

chy (Vi(X)) of Viy(X) by
e (Vu(N) = > t0(Tug v ) X)),

x€(h*)0
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where the traces are naively elements of Q(q) (in fact, they are elements of Q[g, ¢7']). We
show that the specialization of the g-twining character chy (V,(A)) by ¢ = 1 is equal to
the (ordinary) twining character ch®(L,()\)), that is,

B V()] = (L)

The advantage of considering a quantum version is the existence of a basis of V,,(\)
compatible with 7,,. Let (L£(X),B(\)) be the (lower) crystal base of V(A). In [Kas3|,
Kashiwara showed that, for each w € W, there exists a subset B, () of B(\) such that

beBuw(N)

where G5(b) denotes the (lower) global base introduced in [Kas2]. We prove that 7,
stabilizes the basis {GA(b) | b € By(A)} of Viy(A).

By combining these facts and the equivalence theorem between path models B(A) and
crystal bases B()\), which was proved by Kashiwara [Kasb] et al., we can obtain the desired

equality above, and hence the our main theorem.

This paper is organized as follows. In §1 we review some facts about Kac-Moody
algebras, diagram automorphisms, orbit Lie algebras, quantum groups, crystal bases, and
path models. There we also define an algebra automorphism of the quantum group U,(g)
induced from a diagram automorphism. In §2, we recall the definition of the twining
characters of L()) and L, (\), and then introduce the g-twining characters of V(\) and
Vw(A). Furthermore, we show that the g-twining characters of V(A) and V,,()\) are g-
analogues of the twining characters of L(A) and L,,()\), respectively. In §3 we give a proof

of our main theorem by calculating the g-twining character of V,,()\).

Acknowledgements. I express my sincere thanks to Professor Satoshi Naito, who lead
me to the theories of path models and twining characters. This paper could not be written

without his guidance.

1 Preliminaries.

1.1 Kac-Moody Algebras and Diagram Automorphisms. In this subsection,
we review some basic facts about Kac-Moody algebras from [Kac] and [MP], and about
diagram automorphisms from [FRS] and [FSS].

Let A = (a4j)ijer be a symmetrizable generalized Cartan matrix (GCM for short)
indexed by a finite set I. Then there exists a diagonal matrix D = diag(e;);er with €; €
Qo such that D7'A is a symmetric matrix. Let w: I — I be a diagram automorphism
of order NN, that is, a bijection w : I — I of order N such that a,, ;) = ai; for all

i jel.



Remark 1. Set
. ) 1
D' = diag(e})ier := diag (W) )
k=0 “whk(i) / jer
Then we see that 5;@) = ¢/ and (D')7'A is a symmetric matrix. Hence, by replacing D

with D' above if necessary, we may (and will henceforth) assume that e, = €; (see also
[N1, §3.1]).

We take a realization (f, II,II) of the GCM A = (ay;)ijer over Q and linear auto-
morphisms w : h — h and w* : h* — h* as follows (cf. [Kac, Exercises 1.15 and 1.16]).
Let i’ be an n-dimensional vector space over Q with IV := {«} };cs a basis. We define
a Q-linear automorphism ' : ' — h’ by w'(a)) = O‘x(z‘)’ and W’ : (h')* — (h')* by
(W' N)(R) == A((")"1(h)) for X € (h)* and h € §'. We also define ¢ : ' — (h’)* by
(p(ay))(af) = aij. Tt can be readily seen that w" o ¢ = @ o w'. This means that Im ¢ is
w'-stable, and hence we can take a complementary subspace h” of Im ¢ in (h’)* that is

also w”-stable. Now set h := b’ @ h”, and II := {a; }icr, where a; € h* is defined by

Sy +1) = Selplaal) + (@) for Wy (1)

jel jel

Then we see that II is a linearly independent subset of h*. Furthermore, since dimg h” =
#I — dimgIm ¢ = #I — rank A, we have dimg h = 2#1 — rank A. Hence (h,II,I1V) is a
(minimal) realization of the GCM A. We define a Q-linear automorphism w : h — § by
w(h'+h") = w'(W)+w"(h") for b’ € i and h” € ", and the transposed map w* : h* — h*
by (w*(A))(h) = Aw(h)) for A € b* and h € h. Then we can check, by using (1.1), that
w*(a) = ay-1(; for each i € I.

Here, as in [Kac, §2.1], we define the (standard) nondegenerate symmetric bilinear

form (-,-) on h associated to the decomposition h = h’ @ h” above. We set
(o, h) = ay(h)e; for €1, heDb,
(h,h'):=0 for h, h' € b".

Then it follows from the construction above and Remark 1 that (w(h),w(h')) = (h, k') for

all h, A’ € h. We denote also by (-,-) the nondegenerate symmetric bilinear form on h*

induced from the bilinear form on f. Then (w*(A),w*(N)) = (A, X) for all A, X € h*.
We set

(5% :={xep" |w'(A) =}, 0% = {h € b |w(h)=h}. (1.2)

Elements of (h*)° are called symmetric weights. Note that (h*)° can be identified with

(h9)* in a natural way.



Remark 2. Let p be a Weyl vector, i.e., an element of h* such that p(e;) = 1 for alli € I.
Then, by replacing p with (1/N) 2;’01 (w*)*(p) if necessary, we may (and will henceforth)

assume that a Weyl vector p is a symmetric weight.

Let g = g(A) be the Kac-Moody algebra over QQ associated to the GCM A with h
the Cartan subalgebra, II = {«;}ics the set of simple roots, and IV = {ay }ier the set
of simple coroots. Denote by {azi, yi liel } the Chevalley generators, where z; (resp.
y;) spans the root space of g corresponding to «; (resp. —a;). The Weyl group W of g
is defined by W := (r; | i € I), where 7; is the simple reflection with respect to «;. The
following lemma is obvious from the definitions of Kac-Moody algebras and the linear
map w : ) — b above (see also [FSS, §3.2]).

Lemma 1.1. The Q-linear map w : h — b above can be extended to a Lie algebra

automorphism w € Aut(g) of order N such that w(z;) = Tu,6) and W(Y;) = Yu()-

Let A be a dominant integral weight. Denote by L(\) = @, ¢y~ L(A)y the irreducible
highest weight g-module of highest weight X\, where L()\), is the x-weight space of L(\).
We set b := b ®ny, where ny is the sum of positive root spaces of g. For w € W, the De-
mazure module Ly, (A) C L(\) of lowest weight w(A) is defined by Ly, (A) := U(b) L(A)w(r),
where U(b) is the universal enveloping algebra of b. In addition, for each i € I, we define
the Demazure operator D; by
_e(A+p) —e(ri(A +p))

1 —e(—ay)

Di(e(N)) : e(—p) for A Ey h*. (1.3)

By [Kas3], [Ku], and [M], we know the following character formula for Demazure modules.

Theorem 1.2. Let A be a dominant integral weight and w € W. Assume that w =

TiyTiy - Tiy 1S @ Teduced expression of w. Then we have
ch Ly,(A\) = Dy, 0 Dy 0 -+- 0 Dy, (e(N)). (1.4)

Remark 3. The Demazure operators {D;}cs satisfy the braid relations (see [D]). Hence
the right-hand side of (1.4) above does not depend on the choice of a reduced expression

of w.

1.2 Orbit Lie Algebras. In this subsection, we review the notion of orbit Lie alge-
bras. For details, see [FRS] and [FSS].

We set
N;—1

Cij = Z a; by for i, 7€l and c¢:=c¢y for i€, (1.5)
k=0
where NNV, is the number of elements of the w-orbit of 2 € I in I. From now on, we assume

that a diagram automorphism w satisfies

c;=1 or 2 foreach i€l (1.6)
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This condition is called the linking condition. Here we choose a complete set T of repre-

sentatives of the w-orbits in I, and define a matrix A = (@i5); je7 DY

A = (811)7 16[ (261'.7/6.7)1 ]E] (1'7)
Proposition 1.3 ([FSS, §2.2]). The matriz A is a symmetrizable GCM.

The Kac-Moody algebra g := g(g) over (Q associated to the GCM A is called the
orbit Lie algebra (a,ssociated to the diagram automorphism w). Denote by /b\ the Cartan
subalgebra of §, and by II = {@i},c7 and v = {@}' },c7 the set of simple roots and simple

coroots of g, respectively.
As in [FRS, §2], we have a QQ-linear isomorphism P, : h® — b such that

Ni—1
1 & ~
P, (N: Z Ozxk(i)> =a; foreach i€,
k=0
(P,(h), P,(R")) = (h,h) forall h, b €h°,

where we denote also by (-,-) the (standard) nondegenerate symmetric bilinear form on
6. Let P! : f)\* — (h")* = (h*)° be the transposed map of P, defined by

(BE(N)(h) := X(Ps(h)) for X eb* hep’ (1.8)
Proposition 1.4 ([FRS, Proposition 3.3]). Set W := {weW | ww =ww}. Then
there eists a group isomorphism © : W — W such that O(W) = Prowo (P! for
each B € W.

1.3 Quantum Groups. From now on, we take the bilinear form (-,-) in such a way
that (q;, ;) € Zso for all s € I. Let P C h* be an w*-stable integral weight lattice such
that o; € P for all i € I, and set Py := {A € P | A(a}) € Zxo for all ¢ € I'}. Notice that
the dual lattice PV := Homgz(P,Z) is stable under w. The quantum group (or quantized
universal enveloping algebra) U, (g) associated to g is, by definition, the algebra generated
by the symbols X;, ¥; and ¢ (h € PV) over the field Q(q) of rational functions in ¢ with

the following defining relations:
rqo — 1’ thqhz — qh1+h2 for hl; h2 e PV,
¢"Xiqg ™" = q"‘"(h)X‘ "Yiqgh = q~MWY; for i€ I, he PY,

-1
X, Y] = 6,2 t_l for i€ 1,
< 1—as; ' ‘ (19)
S0P XX =0 for 4, j € T with i # j,
k=0
1—a;;

(—1)'“Yi(lc YY(1 %5k — 0 for 1, j € I with i # j.

\ k=0



Here we have used the following notation:

(]z —_— q(az)az) ‘f — q(az:az) ay

) H)

4 —q" - w _ Xi' ym_ Y
n)i = —, [nli!= | [k}, and X;" = , Y=
e 11 T

Lemma 1.5. There exists a unique Q(q)-algebra automorphism w, of U,(g) such that
wa(Xi) = Koy, wg(Ys) = Yoq), and w,(gh) = ¢*®.

Proof. We need only show that the images of the generators by w, also satisfy the defining
relations (1.9). However it can be easily checked by using the equalities gy = ¢i, [?]wi) =
[n]s, and tu@) = t;. O

Let A € P;. Denote by V(A) = €D, ¢y« V(N)x the irreducible highest weight Uq(g)-
module of highest weight A\, where V()\), is the x-weight space of V()). It is known (cf.
[Kasl, (1.2.7)]) that

V2 U, (6) [ (i Us (@YD), (1.10)

where U, (g) is the Q(g)-subalgebra of U,(g) generated by {Yi}ic;. For each w € W, we
define the quantum Demazure module V,,(A) by Vi (A) := U, (9)V (A)w(n), where U (g) is
the Q(¢)-subalgebra of U,(g) generated by {X;}icr.

1.4 Crystal Bases and Global Bases. In this subsection, we review the notions of
(lower) crystal bases and (lower) global bases. For details, see [Ja] and [Kasl]-[Kas3].

First let us recall the definition of the Kashiwara operators E;, F; on V(X). It is
known that each element u € V'()), can be uniquely written as u =), Y;(k)uk, where
u € (ker X;) NV (X)ytka,- We define the Q(g)-linear operators E;, F; oan()\) by

Eu = ZY;(k_l)uk, Fu = ZYi(’H’l)uk. (1.11)

k>0 k>0

Denote by Ay the subring of Q(q) consisting of the rational functions in ¢ regular
at ¢ = 0, and by Lo(A\) the Ag-submodule of V(\) generated by all elements of the
form Fj, Fi, - - F; uy, where u) is a (nonzero) highest weight vector of V/(\). Let B(\) C
Lo(X)/qLo(X) be the set of nonzero images of Fj, Fy, - - Fj, u) by the canonical map ~
Lo(A) — Lo(N)/gLo(N). Then it is known from [Kasl, Theorem 2] that (Lo(N), B(N)) is
a (lower) crystal base of V()\), i.e.,

(1) V(A) = Q(g) ®4, Lo(),
(2) Lo(A) = D, cp- Lo(N)y, Where Lo(A)y = Lo(A) NV (A)y,
(3) EiLo(N) C Lo(N) and FyLo(N) € Lo(N),



(4) B(A) is a basis of the Q-vector space Lo(\)/qLo(N),

(5) BB € B U {0} and FBO) € BO) U {0},

(6) B(X) = Uyep«B(A)y (disjoint union), where B(A), = B(X) N (Lo(A)y/aLo(N)y),
(7) For by, by € B(X), by = F;bs if and only if by = E;b;.

Note that, by (3), we have the operators on L4(\)/gLo(A) induced from E;, F;, which are
also denoted by E;, F; (cf. (5), (7)).

Next we recall the notion of (lower) global bases. Set Vp(\) := UQ(g)u,\ c V(A),
where U2(g) is the Q[g, ¢']-subalgebra of U,(g) generated by all Xi(”), Y(”), q", and

{qh} _ ﬁ ql——kqh . qk—lq—h
n Pl qk _ q—k:

for i € I, n € Zxo, h € P*. We define a Q-algebra automorphism ¢ : Uy(g) — U,(g) by

Xi = Xz‘, Y; =}/7, for 4 [,
{w( ) b(Y) € 12

¥(g):=q", p(¢") =q™" for he P
By virtue of (1.10), we have a Q-linear automorphism v of V() defined by 9 (zu,) =
P(z)uy for z € Uy (g). Let Loo(A) be the image of Lo(A) by 4. Then it is known (see, for
example, [Kas2]) that the restriction of the canonical map ~ to E(X) := Vgp(A) N Lo(A) N
Loo(A) is an isomorphism from E(X) to Lo(X)/qLo(N) as Q-vector spaces. We denote by

GG the inverse of this isomorphism. Then we have

= P Q)GA). (1.13)

beB(X)

Moreover we have the following.

Theorem 1.6 ([Kas3, Proposition 3.2.3]). Let A € Py and w € W. Then there exists a
subset By(A) of B(X) such that

Vo) = P Qa)GA). (1.14)

beBuy (N)
1.5 Path Models. Let A € P,. For u,v € WA, we write p > v if there exist a
sequence (L = Ag, A1, ..., As = v of elements in W A and a sequence [y, ..., [ of positive
real roots such that A\, = rg, (M_1) and M\ 1(BY) < 0 for k = 1,2, ..., s, where for a
positive real root 3, we denote by rg the reflection with respect to 3, and by 3 the dual
root of . Then we define dist(u, ) to be the maximal length s among all possible such .

sequences.

Remark 4. Assume that A € P, N (§*)°. It immediately follows that u > v if and only if
w*(u) > w*(v). Moreover, we have dist(w*(u), w*(v)) = dist(u, v) when p > v.
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Let A€ Py, p, v € WA with > v, and 0 < a < 1 a rational number. An a-chain for
(u,v) is, by definition, a sequence p = Ag > A\ > --+ > A, = v of elements in W\ such
that dist(A\;, Ai—1) = 1 and \; = rg,(Ai—1) for some positive real root G;, and such that
adi—1(BY) €Zfor alli=1,2, ..., r

Here let us consider a pair 7 = (v; a) of a sequence v : vy > 15 > -+ > v, of elements
in WA and a sequence a : 0 = a9 < a1 < --- < ag = 1 of rational numbers such that
for each ¢ =1, 2, ..., s — 1, there exists an a;-chain for (4, v;11). Then we associate to
7 = (v; a) the following path 7 : [0,1] — bh*:

[ay

Jj-
7(t) ==Y (ai —ai—1)vi + (t —aj_1)y; for a;—1 <t <aj. (1.15)
1

Such a path is called a Lakshmibai-Seshadri path (L-S path for short) of class A\. Denote
by B(\) the set of L-S paths of class .
Let us recall the raising and lowering root operators (cf. [Lil]-[Li4]). For convenience,

we introduce an extra element 6 that is not a path. For 7 € B(\) and ¢ € I, we set
hi(t) = (r(®))()),  mf :=min{h7(t) |t € [0,1]}. (1.16)

First we define the raising root operator e; with respect to the simple root ;. We define
e;f) := 0, and e;m := 0 for 7 € B(\) with m] > —1. If mI < —1, then we can take the
following points:

t1 :=min{t € [0,1] | AT (t) = mT},

to := max{t' € [0,¢1] | f(t) >my +1forall t € [0,t]}. (117)
We set
(t) if 0<t <t
(em)(t) == < w(t) — (AT (t) —mF — Doy if to <t <ty (1.18)
() + if t <t<1.

The lowering root operator f; is defined in a similar fashion. We define f;6 := 0, and
fim =0 for m € B(X\) with AT (1) — m] < 1. If A (1) — m] > 1, then we can take the
following points:

to := max{t € [0,1] | AT (¢) = m },

t1:= min{t' € [to, 1] | AT (t) > mI + 1 for all ¢t € [/, 1]}. (149)
We set
7(t) if 0<t< ¢,
(fim)(t) == q m(t) = (RF(t) = m)ous if to <t <1y, (1.20)
7(t) — oy if 4 <t<l1.

Then we know the following.



Theorem 1.7 ([Lil] and [Li2]). Let m € B(\). If e # 6 (resp. fim # 6), then
e;m € B(X) (resp. fim € B(X)). Hence the set B(\)U{0} is stable under the action of the
root operators. Moreover, every element © € B(\) is of the form w = fi fi, -+ fi,mr for
some i1, Gz, ..., ix € I, where my 1= (X; 0,1) =t is the only element of B(\) such that

e;myx =0 for all i € I. Furthermore, we have

> e(w(1)) = ch L(N), > e(m(1)) = ch Ly (), (1.21)

TEB(A) wEBw ()
where By(X) = {(11,...,vs; a) € B(A) | 11 S w(X)} for eachw € W.

It is known from [Kasb] et al. that B(A) has a natural crystal structure isomorphic to

B()A). Namely, we have the following theorem (see [La2] for the second assertion).

Theorem 1.8. There exists a unique bijection ® : B(\) = B()\) such that
O(Fy, By - Fylin) = firfiy -+ - fiyma- (1.22)
Moreover, ®(B,(\)) = By, (X) for each w € W.

At the end of this subsection, we recall the main result of [NS1]. Let A € P,N(h*)°. For
m € B(\), we define a path w*(7) : [0,1] — b* by (w*(7))(¢) := w*(7(t)). Then we deduce
that B()\) and B, (\) with w € W are w*-stable (cf. Remark 4 and [NS1, Lemma 3.1.1]).
Denote by B°(A) the set of L-S paths that are fixed by w*, and set B, (X) := B, (A\)NB°(A)
for each w € W.

Theorem 1.9 ([NS1, Theorem 3.2.4]). Let A\ € P, N (§*)°, and w € W. Set X =
(PH7YA) and @ := O w). Then we have

B°()\) = P (B(N), BN = P:(Ba(N), (1.23)

where we denote by @(3\\) the set of all L-S paths of class h) for the orbit Lie algebra g,
and set Bg(\) := ={(v,...,Vs;a) € IEB( )| = w()\)} with < the relative Bruhat order
on WA Here, for w € ]B%()\), we define a path P*(7) : [0,1] — (*)° by (P*(7))(¢t) :=
E5(7(t))-

2 Twining Characters and ¢-twining Characters.

2.1 The Twining Characters. From now on, we always assume that A € Py N(h*)°
and w € W. First we consider the linear automorphism w™! ® id of the Verma module
M(X) == U(g) Qup) Q(A) of highest weight A over g, where Q(\) is the one-dimensional
b-module on which h € § acts by the scalar A(h) and n, acts trivially. Since this map
stabilizes the (unique) maximal proper g-submodule N()) of M()), we obtain an induced
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Q-linear automorphism 7, : L(A) — L(\), where L(\) = M(X)/N()). It is easily seen

that 7, has the following properties:
To(2v) = w H(z)7u(v) for z € g, v e L))

and 7,(uy) = uy, where u, is a (nonzero) highest weight vector of L()).

Remark 5. From [N1, Lemma 4.1] (or [NS2, Lemma 2.2.3]), we know that 7, is a unique
endomorphism of L(\) with the properties above.

The twining character ch®(L()\)) of L()) is defined to be the formal sum

(L) = 3 (o, )e0o) (2.)
x€(h*)°
Since 7,(L(A)y) = L(A)wr(y) for all x € h* and dim L(A)yn) = 1 for all w € W, we see
that the Demazure module L, (\) is 7,-stable for all w € W. Hence we can define the
twining character ch®(L,(\)) of L,(A) by

ch”(Ly(N)) := Z t1 (7| o), ) €()- (2.2)

x€(h*)°

. 2.2 The g-twining Characters. In this subsection, we introduce the ¢-twining char-
acters of V() and V,,(\), which are, in fact, g-analogues of ch”(L()\)) and ch* (L, (A)),
respectively (see Proposition 2.1 below).

By (1.10), we have a Q(g)-linear automorphism 7,,, : V(A) — V(\) induced from
w;' U7 (g) — Uy (g). As in the usual Lie algebra case in §2.1, 7, has the following
properties: '

Tug (20) = w; ' ()70, (v)  for z € Uy(g), v e V(A)

and 7, (ux) = uy, where u, is a (nonzero) highest weight vector of V().

Remark 6. In a similar way to the proof of [N1, Lemma 4.1], we can show that 7, is a

unique endomorphism of V(\) with the properties above.
The g-twining character ch,/(V())) of V(}) is defined to be the formal sum
chy (V(A)) = Z tr (7w, vy, ) €(X)- (2.3)
x€(h*)°

We easily see that the quantum Demazure module V,,()) is 7, -stable for every w € w.
Hence we can define the g-twining character ch,'(Vi,(A)) of Vi,(A) by

chy(Viw(N)) = Z b (7uy [ Vi (1)) €(X)- (2.4)

X€(H*)°
Here let us recall some facts from [Ja, §§5.12-5.15]. Let V(A)g (resp. V(M)y,0) be
the Q[q, ¢~ '|-submodule of V(\) generated by all elements of the form Y, Y, ---Y; u\
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(resp. with oy, + @i, + -+ + s, = A — x). It is clear that all V()), o are finitely
generated, torsion free Q[q, ¢~ ']-modules. Therefore they are free Q[g, ¢ ']-modules of
finite rank because Q[g, ¢7!] is a principal ideal domain. We also know that the natural
map Q(q) ®gjge-y V(Ao — V(A) (given by a ® v — av) is a Q(g)-linear isomorphism.

Now we consider Q as a Q[g, ¢ ']-module by the evaluation at ¢ = 1. Set V :=
Q ®gige-y V(N and Vy == Q Qgjg,q-1 V(A)x0- It follows from [Ja, Lemma 5.12] that
V(X)g is stable under the actions of X;, ¥;, and (¢" — ¢™?)/(¢ — ¢~ ') fori € I, h € PV.
Thus we obtain endomorphisms x;, y;, and h of V defined by

2;:=10X;, v:=10Y, and h:=11("—q¢"/(¢g—q™),

respectively. From [Ja, Lemmas 5.13 and 5.14], we know that the endomorphisms z;,
yi, and h of V satisfy the Serre relations, and hence that these endomorphisms make
V into a g-module. Moreover, V = L()\) as g-modules, and the image of V, by this
g-module isomorphism is L(A), for all x € h*. Taking these facts into account, we show

the following proposition.

Proposition 2.1. Let x € (h*)° and w € W. Then tr (T, lvin, ) and tr(7u,lvao,) are

elements of Qlq,q7Y]. Moreover, we have

1= tr(Tw|Lw(/\)x)7 ‘ (25)

(Tuglvons) | = (mulzony),  tr(Tulvon) |

and hence

chg (V(}))

= ch*(L())), ch;”(Vw()\))‘ = ch*(Ly (). (2.6)

q=1 g=1

Proof. 1t can be easily checked that V(\)q is 7,,-stable, and the following diagram com-

mutes:

Q(g) ®Qg,q-1] V(Mo —— V(A
1®(qu|V(>\)@)l \[T‘“q
Q(g) ®glgq-y V(No —— V(N).
Since V(A)y 0 is a free Q[q, ¢*]-module, we can define the trace of Twg V() fOr each

x € (h*)°. Note that a basis of V(\), o over Q[g, ¢ '] is also a basis of V(A), over Q(q).

We obtain from the commutative diagram above that

tr(qulv()\)X) = tl’(quIV(,\)X@) € Qlg, q‘l] for all x € (b*)o (2.7)

Now let w € W, and take Uy € V(N)woy,o \ {0} Here we remark that the rank of the
free Q[g, ¢~ 'J-module V(X))o is one. We define V,,(A)g to be the Q[g, ¢ ']-submodule of
V(X) generated by the elements of the form X; Xi, - - - Xj, uy(n). It is clear that V,,(N)g is
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Tu,-stable. Since V(X)q is stable under the action of X;, we see that Vi, (\)q is a Q[g, ¢7']-
submodule of V/(A)g. We set Viy(M)y0 := Vi (A)oNV (A)y0. Then we immediately obtain
the following commutative diagram:
Q) ®gjgq-y VoMo —— Vw(})
1®(qu1vw(,\)@)l lmq
Q(9) ®qigg-y VoMo —— V().

Hence, in the same way as above, we have

tr(qule()‘)x) = tr(qu’Vw()\)x,qu) € (@[Qa q_l] for all x € (b*)oy

thereby completing the proof of the first assertion.

Next we show the equalities (2.5). Note that the Q-linear automorphism 7/, := 1 ®
(Twglving) of V i= Q Qgigq-y V(Ao satisfies 7/,(zv) = wH(z)7,(v) for z € g, v € V,
and 7/(1 ® uy) = 1 ® uy. Hence it follows from Remark 5 that the following diagram

commutes: N
V =Q®quqyV(Ne — L)

Tj,:1®(mq|V(,\)@)l l'r‘”
V =Q®ggqy V(Ng —— L(}).
Remark that, for all x € (h*)?,

, (2.8)

tr(T‘”!L(A)X) = tl'(Tu,1|Vx) =1 ®Q[(L‘I—1] tr(qu!V(’\)x,@) = tr(qu IV(A)XYQ) q=1

since we regard Q as a Q[g, ¢~ !-module by the evaluation at ¢ = 1. Combining (2.8) with
(2.7), we obtain

2.8)

tI‘(’TwIL()\)X) (28 tr(qu|V(,\)x)@) for all x € (h*)°,

(2.7 :
1 = tr (qu ’V()\)x>

which proves the first equality of (2.5). By considering Vi := Q ®g[gq-1 Viw(A)g for

w e W, we also obtain

(T v | _ = tr(ulzu,) - for all x € (57)°

in the same way. This completes the proof of Proposition 2.1. u

3 Twining Character Formula for Demazure Modules.

The main result of this paper is the following.

Theorem 3.1. Let A € P N (§*)° and w € W. Set A := (P*)"Y(A) and @ = ©~'(w).
Then we have

Chw(Lw()‘)) = Pc:)k (Ch Eﬂ‘)(/)‘\))a (3'1)

where Z@(X) is the Demazure module of lowest weight @(X) in the irreducible highest
weight module Z(/):) of highest weight X over the orbit Lie algebra g.
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We need some lemmas in order to prove this theorem.
Lemma 3.2. For each i € I, we have 7, 0 B = E 1307, and 7, 0 Fy = F ;13 07y, .

Proof. We show only 7, o E; = E,-14) o T, since the proof of 7, o Fi = F,,-1(;y 0 7, is
similar. Let u = Zkzo Yi(k)uk € V(X), where uy € (ker X;)NV(A)y4kq,- Since wq“l(Y.(k)) =

1
Twq E Y qu Uk )-

k>0

Yuflf)l (i We have

On the other hand, 7,,(u) = > 5, Y, “1(1)7% (ur) € V(Mwr(y). Here we note that 7, (ur) €
(ker Xop-1()) NV (Nwr () +kar -1 5y ,- Hence, by the uniqueness of the expression of Tu, (W), We

have

Ew—l(,;) e} qu(u) = ZY(IEI(ll qu(uk).
k>0

Therefore we obtain 7, o E;(u) = Fy-1(3 © Ty, (u) for all u € V(X), thereby completing
the proof. O

This lemma implies that Lo(A) is 7, -stable. Hence we have the Q-linear automorphism
Tuw, of Lo(X)/qLo(N) induced from 7,,. Then, by the definition of 7,,, and Lemma 3.2, we
can easily check that the set B(\) is 7,,-stable. Moreover, by Theorem 1.8, we have the

following commutative diagram:

B\ —2— B()\)

| [ (3.2)

B(\) —— B(A).

Here we have used the fact that w* o e; = e,-1(; ow™ and w* o fi = f,-1¢;) ow™ (see [NSI,
Lemma 3.1.1]). The next lemma immediately follows from the commutative diagram (3.2)
and Theorem 1.8, since B,,(\) is w*-stable for all w € w.

Lemma 3.3. Let w € W. Then By () is stable under 7,,,. Hence we obtain the following

commutative diagram:
@

By(A) —— By(N)

?wa lw* (3.3)

Bw(A) % By (A).

Because Yo7, = 7,01, we see that L () is also 7, -stable. Since V() is obviously
Tw,-Stable, we deduce that E()) is 7,,,-stable.

Lemma 3.4. 7, 0o G\ = G) 0Ty,
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Proof. Remark that {G(b) | b € B(\)} is a basis of the Q-vector space E()). Hence,
for b € B(X), we have 7, (GA(b)) = Dy epn) cr GA(V) for some ¢y € Q since E(N) is Ty,
stable. Then we obtain Ty, (b) = D 4y cw U’ in Lo(A)/¢Lo(A). Put b” :=7,, (b) € B(A).
Because B()) is a basis of the Q-vector space Lo(A)/qLo()), we see that ¢v = 1 and
cy = 0 for all ¥ € B(\), V/ # b". Hence we obtain 7,,,(Gx(b)) = GA(V') = G\(Tw, (b)), as
desired. O

Proof of Theorem 3.1. By combining Lemmas 3.3 and 3.4, we see that the set {G,\(b) ]
b € By(\) NB(\)y} is 7,,-stable. Because {G5(b) | b € B,(\)} is a basis of V,,(A)y over
Q(q) (see (1.14)), we obtain

60 (T [vur)) = #{GAD) | 7y (GA(B)) = Ga(D), b € Bu(X) N B(A)x}

for x € (h*)° (note that if an endomorphism f on a finite-dimensional vector space V
stabilizes a basis of V, then the trace of f on V' is equal to the number of basis elements

fixed by f). By Lemma 3.4 again, we get

b7 (T [vax) = #{b € Bu(A) N B(A)y | 7, (b) = b},

and hence

ch(Vu(N) = D> e(wt(b)), (3.4)

beBg,(X)
where wt(b) := x if b € B(\)y, and BY()) is the set of elements of By()) fixed by 7, .

The commutative diagram (3.3) implies that

w (3.4) (3.3)
ch?(Vu(N) =" D e(wt(d)) = Y e(n(1)).
beBY,(A) mweB], (A)
We see from Theorems 1.7 and 1.9 that the right-hand side of the above equality coincides
with P*(ch L()\)), where X := (P*)"1()\) and @ := ©~(w). Therefore we obtain

~

ch?(Viy(N) = Px(ch Lo(N)).

w

Notice that the right-hand side is independent of q. Hence we find that chg (V,,(A)) =

P?*(ch L(X)). Combining this with (2.6), we finally arrive at the conclusion that

~

ch®(Ly(A)) = P*(ch Ls(N)).

Thus we have proved Theorem 3.1. O

Remark 7. By replacing V,,(A) by V(A\) and Ly (A) by L()\) in the arguments above, we
can give another proof of the twining character formula for the integrable highest weight
module L(A), which is the main result of [FSS] ([FRS]).
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