Chapter 4

Theories

4.1 New Theory on the X-ray Energy Response of

Semiconductor Detectors

We have recently proposed a generalized theory on the output signals of
semiconductor X-ray detectors [8,9,43]. In this section, the exact theoretical
treatment and the cxtension of the above theory to the signal analyses of
commonly utilized multichannel detectors are discussed so as to clarify the
proposed physics essentials.

The theory predicts the enhancement of the output signals due to X-ray-
produced charges in a field-free substrate region behind the depletion layer of a
detector, while the signals predicted by the conventional theory [7] originate
from the depletion layer alone. The essential point of our theory is the inclusion
of such three-dimensional diffusion effects of X-ray-produced charges on the
total signals. The importance of these X-ray-response studies is highlighted by
the comparison of the significant difference in T, deduced from the conventional
theory and from our formula. The problem becomes much complicated when a
multichannel semiconductor-detector array fabricated on one silicon wafer is
employed for the purpose of X-ray tomographic reconstructions {2,4,44-46]. In
this case, the three-dimensionally diffusing charges from the field-free substrate
of an X-ray injected channel to the neighboring channels behave as “channel
crosstalk’.

At first, the characteristic physics principles of the effect of the three-
dimensional thermal diffusion of X-ray-produced charges in a semiconductor
field-free-substrate region are formulated. The three-dimensional diffusion

equation for a charge flux ¢ created in a substrate by X rays is described as
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where the minority-carrier diffusion length L is written as L’=D7; D and T are a
diffusion coefficient and the lifetime of the charge, respectively. The Einstein
relation provides the equation of D=p kT/e; here, u,, &k, T, and e are the
mobility of the charge, the Boltzmann constant, a detector temperature in K,
and the electronic charge, respectively. For minority carriers (electrons) in p-
type silicon, g, is around 1300-1500 cm® V' ¢! at 300 K with an impurity
doping of 10"-10" cm™[47,48]. These values lead to the constant D of 34-39
cm’s'. The value of L is then estimated to be 75 pm with 7 of 1.7-1.4 us [49-51].
If the characteristic time of temporal variation in X-ray radiation from plasmas
is sufficiently longer than 7, and intense X-ray signals are observed in a current
(pile-up) mode, then a quasi-steady state for the charge-diffusion process is
treated, as seen in Eq. (4-1). The source charge s is created by incident X rays at
a depth of d from the front surface of the field-free substrate. The distance from
the source location P in Fig. 4-1 to the bottom surface of the depletion layer is

denoted as r. A flow density of the charge J(#) from P along r is defined as

Ne_pd_ s (1 _r 2
J(r}=-D o T (LJr-.l)exp( L)’ 4-2)
where
E
s(d)= Io[;)up exp(—ppd). (4-3)

Here, I, is the X-ray intensity with an energy E at the front surface of the

substrate; & stands for the energy required to create an electron-hole pair. The
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values of {4 and p denote the silicon mass-absorption coefficient and the mass
density, respectively.

The total amount of the three-dimensionally diffusing minority carriers
from the production point P (Fig. 4-1) to the depletion-layer surface contributes
to a signal, and is described as the integral of div J for the substrate volume; this

integral is rewritten by the surface integral | J dS surrounding the substrate. We
then integrate over z from O to the thickness of the substrate dg;, to scan the

source point P in the substrate along the X-ray path in the z direction (Fig. 4-1),
Furthermore, the effect of the external bias circuit is described by a factor 2

multiplication to the “pure” diffusion effect. Thus, the amount of the averall

diffusion charges F .., is totally described as

E L !
N ~exp| -| up+— . 4-4
FJ‘ncw [D £ :up ‘UPL +1 {l GXP|: (lu'p+ L]dmb]} ( )

The totally collected charges Fiotal created in both a depletion layer and a

field-free substrate for a single-channel detector are thus described as

E
F;oral =1 pias exp(_-'u’ dcadp dead ddemf ) exp ('—u eh.'cp elec'de.'ec )(;)
upl )
X [1 - Bxp(—n"'l’deppdapddep) + m (4 5)

. ‘
X {l - exp[m(up + -Z)dmb }}exp(_u.‘!eppdepddep )] .

Here, Iplas is the X-ray intensity from plasmas. The subscripts dead, elec, and

dep denote the dead layer, the electrode, and the depletion layer, respectively.
The theoretical analysis of the three-dimensional charge diffusion effect is

investigated for a multichannel semiconductor-detector signals using our
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thermal diffusion model. The diffusing-charge output profile for a multichannel
semiconductor-detector array is calculated (Fig. 4-2).

Figure 4-2(a) illustrates a schematic view of a multichannel semiconductor
X-ray-detector array along with an illustration of diffusing charges from a
point located in the field-free substrate, where the incident X rays are absorbed.
X rays are injected at x=y=0,

The incident X rays are assumed to be absorbed at the point P. Charges s
produced by X-ray absorption at P diffuse in every direction according to the
three-dimensional diffusion equation. Charges created in the range of a
diffusion length L from the depletion layer reach the bottom surface of the
depletion layer [i.e., the upper surface of the field-free substrate].

In Fig. 4-1, charges diffusing from P to an area dS with a radius of y and a

width of dy is defined as dQgif(y). Here, dQgif(y) is described as

dQ,,(y) = 2myJ (r)dy

s (r "z (4-6)
*W(z“)“'{‘z);‘fy-

The integral for dQdir over z from O to the thickness of the substrate dg,,,

gives the total charge flux to an area dS, since the source charges are distributed
along the X-ray path in the z direction. Then the signal profile obtained from

the field-free substrate is rewritten for a unit area along the y directions; this

normalized value ¢ (y) is described as

I E '1+“'r2ub 1 3
a0V =2 E o] L L oxp - - up =57 (4-7)

47 g ry

Multichannel detector array with each channel size of x,  and y [Fig. 4-

2(a)] is widely employed for X-ray tomography diagnostics. In the case of
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XderrL, we integrate over x from xde/2 to —xder/2 to take account of the
diffusing-char ge distribution in the x direction; here, xder is the total width of
the detector. Consequently, for the configuration of Fig. 4-2(a), an output-

signal profile from the multichannel-detector array for unit-intensity X rays is

written as

o) = [0 o By P L2 )

A==y 2 471' 8

X exp(—’—l; — pup.frt— (»* + xz))dr‘ - dx.

(4-8)

Here, we define the distance r as r2=x2+y2+z2,

The curves in Fig. 4-2(b) show the calculated diffusion signals Jsx(y) using
our three-dimensional diffusion theory.

In addition, the summation of this diffusing-signal profile over the finite

X-ray beam width in the y direction produces the total diffusion signals Fg(y)

for each detector channel labeled at the location of y.

Yo Ygul? .5+|Jmn| +x +d11u 1
F;f (y) — ‘[l ZI J’ L JT\J ] L] - + 1
"l)’mi ll X=Xy f2 47: E J"“b’mu' +x2 fa L

(4-9)

X exp[—%— pp\/rz - (y +[ Yy D2 + xz]]dr vdx-dy,,,.

Here, the width of the incident X-ray beam ygoy is written as Ysou=Ysoul~Ysou2s
vsoul and ysou2 are the locations of both edges of the rectangular X-ray beam.

Equation (4-9) provides a more convenient formula for experiments using a

finite-sized X-ray beam.
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4.2 Thermal Barrier Potentials

The thermal barrier potential provides a thermal isolation between the
clectrons in the central cell and those in the plug cell. The thermal barrier
potential not only reduces the heating power of electrons in the plug region but
also enables the jon-confining potential to form with less density at the plug than
in a conventional tandem mirror. The thermal barrier potential results from a
pressure gradient between the central cell and the barrier cell, and then would

comply with a Boltzmann law. Then, thermal barrier potential ¢ is described as

engmﬁq, (4-10)

n,

where 7, is the temperature of the thermal electrons passing through the
thermal barrier potentials including central cell, n, and r, are the electron
density of the central cell and barrier cell.

The direct participation in potential depression is, however, the density of
thermal electrons. The total electron density in the barrier cell is equal to the
ion density in the barrier cell at the hydrogen plasma for the charge neutrality
condition. Therefore, the accumulation of magnetically trapped hot electrons
(density n,,) in the barrier midplane is available to enhance the thermal barrier

depth. Then, the Eq. (4-10) becomes

e%=am[”°]. (4-11)

Ry, — iy,

This formula indicates the enhancement of ¢ clearly.

The above formula is assumed the full Maxwellian distribution for the
thermal electrons. This assumption is not valid for the trapped thermal electrons

in the barrier region, since distribution function of such electrons deform under
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the strong wave fields. In this case, Katanuma [52] suggests a modified

Boltzmann law, which is described as

b, =T.In (ELJ (___.___] (4-12)
T, o\ T

where (7,/T)) is fitting parameter dominantly determined by the rf field

ef

strength and n,,,, is the density of barrier inner mirror throat.

b
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4.3 Pastukhov’s Theory

A problem of calculating the rate of end loss of particle from mirror
system 1s one of calculating the rate of diffusion of electrons in velocity space
from the trapped-particle regions of velocity space to loss boundaries [29].

The problem can be addressed by use of the Fokker-Planck equation:

Bf) kY, 1 g, ||4m,qiq}
| =25 - « |11y 4,
[ o1 Jc g’[ v, [f' oy, J 2 dudv, (fr ov,dv, s "

£,(v) =f L{(v') iv - v’lclv’

_my

j,v v' (4-13)
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a3k (i v
22722 | e’

where the functions, g, and h,, are usually called Rosenbluth potentials and
subscripts ¢ and T denote field particle and test particle, respectively.
Pastukhov’s theory [53-56] is approximate analytical solutions of the

Fokker-Planck equation. Assumptions to derive the solutions is as follows:

(1) The distribution function of trapped electron is Maxwellian except for
the region, v > v, (v, is electron thermal velocity).

(2) Rosenbluth potentials can be linearized using the expansion of high
velocity limit (for electrons).

(3) Low velocity sources is assumed for sustaining steady state operation.

(4) Loss rate is small enough to neglect the term of time variation in the
Fokker-Planck equation compared to the scattering term near the loss

boundary.
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(5) The boundary condition of f=0 and the maximum of confining potential
occurs at mirror throats.

(6) Fictitious "negative source” is assumed to establish approximately the
condition f=0 at the loss boundary.

(7) Large mitror ratio is assumed.

(8) The time of particle scattering into the loss cone exceeds the transit time
along the trap.

(9) The square well approximation is adopted.

Assumptions of (1)-(4) are satisfied on our experiment. An assumption of
(5) is different in our configuration. This situation could cause the deviation of
factor. Assumptions of (6)-(8) are required to solve the bounce averaged
Fokker-Planck equation. A square well approximation is adopted in our
calculation because the electrostatic potential profile along axis is unknown.

The solution of the distribution function,

2
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is shown in Fig. 4-3. The contour plot shows that deeply trapped electrons form
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isotropic Maxwellian. Also fictitious "negative source” is
Q(x, ) =—gexp(=x*)8(1 = 17 )8(x ~ ), (4-15)
where 8 1s step function. The particle and energy loss rates are determined by

integrating the "negative" source function over appropriately weighted phase

volume elements (x2dxdp or x4dxdp). The particle loss rate is expressed in

Tedn 4 T, 1 ep )
R gbG(Rz)eXp( J[m) (4-16)

A+17/x)"*+1
(1+1/x)"* -1

Gx)=(1+1/x)"? lr{
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2 X

Also the energy loss rate is expressed in

3d(nT) 1 37, |dn
2 dt I(T,/ep) 2eq)dt

- ep L __,3T) 4z, T, __fg_!m__
B 1(1';/e¢) 2ep ’ru,\f_G(Rz)eqﬁ i R

Note that the main contribution to the loss of electrons from the trap is

4-17)

made by the region directly adjacent to the vertex of the hyperboloid.

Converting the loss rates to confinement times provides a convenient
performance benchmark for tandem mirror operaticn. These conversions are
normally based on a modification of left hand side of Eq. (4-16) and Eq. (4-17)
replaced by -n/1p and 3nT/271g, respectively.

Particle confinement time is expressed in
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Also energy confinement time is

Some problems stated as follows,

{4-18)

(4-19)

(i) The real loss boundaty is more complicated than the theory. The

maximum of the confining potentials are not located at mirror throat.

(See Fig. 4-4(c))

(if) The passing particles is existed in real sitvation.

(iti) There is a possibility for electron in tandem mirror that finding the

loss rates in a magnetic field is not approximatable by a single square

well.

Answers are as follows.

(i) Pastukhov distribution function of R=1.23 shown in Fig. 4-5 agrees well

with real loss boundary unexpectedly.

(ii) Passing particle is the warm electron in our case. Amount of the

electron is known to be small. Hence, the electron can not cause

additional large amount of collision induced axial losses.

(iii) Special case of the double square well, two square wells in series, is

described in Ref [54]. The particle loss rate and energy loss rate are

approximately reduced by factor. This cause no significant deviation.



4.4 Strong ECH Theory

The plug potential is created with fundamental ECH near the 1 T layer on
the outer slope of the end-mirror magnetic field. Then plug electrons feel the

axial force F,

pee?® B (4-20)

where 4 is the magnetic moment. The plug electrons are push out of there since
their magnetic moment increase by perpendicular heating by the plug ECH. As a
result, an axial potential distribution is formed, if ion density is invariable, so as
to keep the axial force being equal to zero for the charge neutrality condition.

In the strong ECH case [57], Cohen derives the expression for the potentiat
difference ¢

barrier cell when ECH is strong enough to dominate over collisions for all

»» between the plug and barrier regions of a tandem mirror thermal
electrons expect passing electrons which traverse the entire system. In this
theory, it is assumed that passing electrons have much shorter transit time in the
barrier cell than collisions by ECH; thus, their distribution function is the
appropriate potion of a Maxwellian f, with temperature 7,, and density n,.
Electron velocity space at the plug is shown in Fig. 4-6; passing electrons
correspond to region I in Fig. 4-6. Furthermore, ECH at the plug is assumed to
dominate for the electrostatically trapped electrons which do not reach the
resonant heating zone near the barrier (region III), but heating at the barrier
dominates for the particles in region II. Distribution functions under the strong
ECH limit condition are constant along ECH characteristics. Then the
characteristics for region I is ellipses concentric in the plug velocity space. In
the absence of explicit sources and sinks, weak residual diffusion across
characteristics (for example, due to collisional scattering) ensures that in region

[I1, distribution is constant with a value set by continuity at the boundary with
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region I and II.
The relation between the electrostatically trapped plug density n, and the
“thermal” barrier density n, is given by integrating distribution function in

region IIT and solving for ¢,,. One obtains

23
- 3 _pRy—1n,
¢I‘L‘ - T:ﬂ" Zn Tiexp{¢b/[nr(1?mb - l)]} L] (4'21)
where R, and R,, are the ratio of the magnetic field at the plug to the barrier

and that at the mirror throat to the barrier. Substituting the magnetic field

strength in GAMMA 10, ¢,=¢,+¢, and », =n,exp(—¢,/T,) with r_ the central
cell density, the Eq. (4-21) is transformed

2
0. = Er[0.665’—2"—exp[1. 19 i—'ﬂ — 4, (4-22)

[ ec

where n

. can be interpreted as the total plug electron density n,, since the

densities of magnetically trapped and passing electrons at the plug are smaller
than n,. The characterized semiconductor ion detector is utilized for the

observations of end-loss ions in the GAMMA 10 tandem mirror.
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