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Abstract

In this thesis, we show some results on quotient s-images of metric
spaces.

Firstly we prove that if a Hausdorff space Y is a quotient s-image
of a metric space, then Y has a point-countable base if and only if Y
contains no closed copy of S, and no S,. This gives a positive answer
to a question of Y. Tanaka [35].

Then we prove that if a regular 7} space Y has a point-countable
closed k-network B which is closed for finite intersections, then there
is a metric space M and a continuous onto map f: M -+ ¥ such that

f is a compact-covering s-map.

Secondly we prove the following theorem.

Let ¥ have a point-countable closed k-network. If each metric closed
subset of Y is locally compact, then Y has a point-countable countably
compact k-network.

Then we construct the following example to explain “countably com-
pact "in the theorem above can not be strengthened to “compact ”. It
also gives a negative answer to Question 37 of B of Problem Section in
[15].

There is a regular T} countably compact space ¥ such that ¥ has
a point-countable closed A-network and every first countable closed
subspace of ¥ is compact, but ¥ has no any point-countable compact

k-network.



Thirdly we study the products of sequential spaces and prove the

following theorem:

Let Y bea quotient s-image of a metric space. If S, x Y is sequential,
then there exists & subcollection P, of P such that |Py| < b and UP,

is a neighborhood of y for eachy € Y.

Recall b = min{|B| : B is an unbounded subset of “w} in [6]. Here
a subset of “w is called unbounded if it is unbounded in < “w, <>.

Then we have the following corollary:

Let regular 73 space ¥ be a quotient s-image of a metric space. If

S X Y is a sequential space, then Y is a locally k-space.

Finally we introduce a definition of weak neighborhoods and prove
some basic properties of weak neighborhoods. Then using the results
above, we construct a Hausdorft space Y such that Y is a quotient
s-image of a metric space and is not any compact-covering gquotient s-
image of any metric space. It gives a negative answer to the 25 year-old

Michael-Nagami’s Problem.
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1. INTRODUCTION

We assume all maps are continuous and onto.

Quotient s-images of metric spaces have been interesting topics for
long years. E. Michael in [25] characterized quotient images of sep-
arable metric spaces as k-spaces with countable k-networks and gave
many important properties. A.V.Arhangelskii in [2] called it a very

interesting result and raised the following problem.

Problem 2.1. How does one characterize, in intrinsic, quotient

s-images of metric spaces?

T. Hoshina [13] firstly characterized quotient s-images of metric
spaces. Recall that an onto map f: X — ¥ isan s-map if f1(y)
has a countable base for each y € Y and a compact-covering if every
compact K C Y is the image of some compact (' C X. Then the

following problem was raised in E. Michael and K. Nagami [20].

Problem. If a Hausdorff space ¥ is a quotient s-image of a
metric space, must Y also be a compact-covering quotient s-image of

a (possibly different) metric space?

Also the question was mentioned in M. E. Rudin [28] and studied
in [16, 17, 18, 19] and so on. An interesting theorem concerning the
question was given in G. Gruenhage, E. Michael and Y. Tanaka [9,
Theorem 6.1]. Tt was proved that the answer to the question is “yes” if
“compact-covering” is weakened to “sequence-covering”. Here we call

f a sequence-covering if every convergent sequence (including its limit
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point) is the image of some compact set C C X. E. Michael [22] posed
the question again, analyzed the origin of the question and supplied
references about the question.

It was asked in (9, Question 10.1] that suppese Y is a quotient
s-image of a metric space, does Y have a point-countable closed k-
network? Here a cover P of Y is a k-network for Y if, whenever K C U
with K compact and U open in Y, then K € UF ¢ U for some fi-
nite 7 C P. Z. Yun found out a succinct counterexample in [36] and
L. Foged constructed a strong counterexample in [7] to the question
10.1. The two counterexamples above enable us to consider Michael-
Nagami’s question from another angle. Professor Takao HOSHINA
told me that “It is possible that there is a counterexample to Michael-
Nagami’s Problem.” in a seminar of himself in June, 1995. Following
this idea, we in [4] proved several propositions concerning weak neigh-
borhoods and constructed the following counterexample which gave a

negative answer to Michael-Nagami’s Problem.

There is a Hausdorff space Y such that ¥ is a quotient s-image of 2
metric space and is no compact-covering quotient s-image of any metric

space.

Before answering Michael-Nagami's Problem, we in 4] proved the
following theorem which gave a positive answer to a question of

Y. Tanaka [35].

Let Hausdorff space Y be a quotient s-image of a metric space. Then
Y has a point-countable base if and only if ¥ contains no closed copy

of S, and no Ss.



After A. V. Arkhangelskii's paper 2], Maps as an important object
is studied. G. Gruenhage, E. Michael and Y. Tanaka in [9] deeply dis-
cussed quotient maps and also showed relations between k-networks
and quotient s-images of metric spaces. Also we in [5] used maps as
a tool to study the relations among closed k-networks, countably com-
pact k-networks and compact k-networks, also to study the following
question which was raised by S. Lin [15] and was arranged as Question

37 of B of Problem Section in (27]:

Question 37. Suppose a space X has a point-countable closed
k-network. Is X a space with a point-countable compact k-network if

every first countable closed subspace of X is locally compact?

Recall that if C is a k-network for ¥V, then C is a closed (compact)
k-network if each C' € C is closed {(compact) in Y.

Firstly we proved the following theorem in [5}.

If a regular T) space Y has a point-countable closed k-network B
which is closed for finite intersections, then there is a metric space M
and a continuous onto map f : M — Y such that f is a compact-

covering s-map. Then we in [5] proved the following theorem.

Let ¥ have a point-countable closed k-network. If each metric closed
subset of ¥ is locally compact, then ¥ has a point-countable countably

compact k-network.

Then we in [5] constructed the following example to explain “count-

ably compact "in the theorem above was strengthened to “compact
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"was Impossible. It also gave a negative answer to Question 37 of B of
Problem Section in {15].

There is a regular 7 countably compact space ¥ such that ¥ has

a point-countable closed k-network and every first countable closed

subspace of Y is compact, but ¥ has no any point-countable compact

k-network.

At the same time, the products quotient s-images of metric spaces is
studied. Tt is well known that there are many interesting results about
products of k-spaces. One of them is well known Cohen-Michael's The-
orem which proved that for a regular 7} space X, X x Y is a k-space
for each k-space Y iff X is locally compact in [24]. Y. Tanaka, assum-
ing the Continuum Hypothesis (CH), gave a characterization for the
products of two closed images of metric spaces to be k-spaces in (32
and {34]. G. Gruenhage [10] showed that Y.Tanaka's the characteriza-
tion above for the products of two closed images of metric spaces to be
k-spaces is independent of the usual axioms of set theory.

We in [5] showd some results of the products of quotient s-images of

metric spaces with b = ¥,. Firstly we proved the following theorem:

Let ¥ be a quotient s-image of a metric space. If S, xY is sequential,
then there exists a subcollection P, of P such that [Py} < b and UP,

is a neighborhood of y for each y € Y.

Recall b = min{|B| : B is an unbounded subset of “w} in [6]. Here
a subset of “w is called unbounded if it is unbounded in < “w, <>.

Then we had the following corollary:
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Let regular T} space ¥ be a quotient s-image of a metric space. If

Sw % Y is a sequential space, then Y is a locally k.-space.
Finally we raised the following question.

Question. s it possible to find a counterexample to Michael-

Nagami’s question among regular T} spaces ( or parecompact spaces)?
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2. THEOREMS ON QUOTIENT s5-IMAGES OF METRIC SPACES

For a cardinal number @, let the sequential fan S, be the quotient
space obtained from the topological sum of & convergent sequences by
identifying all the limit points to a single point.

Y. Tanaka [35] raised a question about quotient s-images of metric
spaces. We positively answer the question in the following Theorem
2.1 and use it in Section 5. 5.Li has the same result in [14]. But we can
see the relation between a metric space and its quotient s-image from
our proof. This proof was announced in October, 1994 in a seminar.

Recall a canonical example S;. That is,

Sy = (N x N)UN U {0},
where N is the set of all positive integers, with each point of N x N an
isolated point. A basis of neighborhoods of n € N consists of all sets
of the form {n} U {(m,n): mo < m}. U is a neighborhood of 0 if and
only if 0 € U/ and U is a neighborhood of all but finitely many n &€ N.
Sy is also called the Arens’ space.
Recall that a space Y is Frechét iff whenever B C Y and y € Cly(B),

there is a convergent sequence S € B such that & — 3.

Theorem 2.1. Let Hausdorff space Y be a quotieni s-image of o met-
ric space. Then Y has a point-countable base if and only if Y contains

no closed copy of S, and none of Ss.

Proof.  Let M be a metric space and f : M — Y be a sequence-
covering quotient s-map by Theorem 6.1 in [9]. Let B = U,B, be a

g-locally finite base of AM.
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Suppose that ¥ is not Frechét.

Following the proof of Proposition 7.3 of [8], we can choose a subset
Vi={y'} U {yn: n € omega} U {ypm : n,m € w}

of Y such that:

(a). For each n € w, there is an open neighborhood G, of yy in ¥
such that

GnNGr=§¢ ifand only if  y, # ton
(b}. y, converges to y' and y,, converges to y, for each n € w.
(¢). There is no sequence in
D = {ypm :n,mEw}

which converges to v/

We may prove that for the v € Y/, there is an open set O of M
such that Oy contains f~}y') and O, f (D) = 0.

In fact, for each z € f~Yy/), there is an

Owzy €0, ={0€B:z2ec0} ={0,:ne€ N}
satisfying Ongy N f71(D) = 0.

Otherwise, there is an 1z € f~'{(3/) satisfying O, N f~YD) 5 0 for
ecach 0, € O,. Pick an z, € O, N f D) for each n € w. Then
{zn:n € w} converges to z and z € F1(y). So {f(tn) new}C D
and {f(z,) : n € w} converges to f(z) = ¢'. This is a contradiction to
(c}).

Let

O1= | H{Oun sz € F 1Y)}
Then Oy contains f~1(y') and O, N f~H{D) = 0.
Let
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So={yn :new}
Then Sy U {y'} is compact. For each y ¢ Sy U {t/}, we take an open
neighborhood U of i and an open neighborhood Uy of Sy U {3} satis-
fying U N Up = @. Then there is a g € “w satisfying
Up={yi:7 2 9(H)} C Uy
by (b). If z € f~HU), then there is an Onyy € O, such that Ony

meets only fnitely many f~!(y;;)'s for cach i € w by

FH U =U{fF Huy) -5 2 9(8)} € F~HUy)

and
U N FHU) = 0.
Let
Bi={BeB:BnfYy)# 0and BCO}.
Let
B,={BeB:z¢€ Band B C Ou}
for cach

z € M- (fHy) U fH(S0)).
Note that On,y € O, meets only finitely many f~!'(y;) for each i € w.
Let
By = H{Bs iz e M~ {(fHy Ui Sh}
Let
By={BcB:Bn fYSy) #0and B C f~}{G;) for some G},
where G; is given in {a). Let
B = By U By U B

Then B’ is a o-locally finite base of M also. Let
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B"={BeB :BnNfHNY)#0}
Since f~1(Y”) is separable, then B” is countable. Let
B'o=B"NBy={B,:ne N}.
Let
By=10, Xo= f"1SoU{y'})
aﬁd
X = [7HS U {yn}) — F7Hf (Ujey, Bi)) for each n > 1,

where S, = {yn; 1 § < w}. Then y, € f(X,) and S, is eventually in
f{X,) by the definition of B,..

Define

Yo = Uncw /X))
If we prove that AN Y, is closed in A for each
A€ f(B)={f(B): BB},

then Yy is a closed subset of ¥ by Lemma 1.7 of [9]. To see this, let
A= f(B)} with B € B’. Then the following three cases arise:

Case 1. If B € By and B f~1(D) # 0, then B € B"y and B = B;.
So

f(B)N f(X,) =0forn > 1.
But
F(B) MYy C Ung F(XR)

Then f(B;) N (U, f(X)) is closed in f(B;) by U, f(X,) being
closed in Y. So f(B;) NY; is closed in f{B;).

Case 2. If B € By, then f(B) C G, for some ;. Theny, € f{B)MYy
by

BN fH(So) # 0.
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So f{B)N Yy is closed in f(B).
Case 3. If B € By, then B € 07 and BN f~(D) = . Then
y e f(B)NYy = fBIN (S U{v'}).
So f(B)MYyis closed in f(B).

Hence Yp is closed in Y. Since Y is a sequential space, Y; is a
sequential space. So Yp is a closed copy of S,. This is a contradiction.
Therefore ¥ must be Frechét.

If ¥ is a Frechét space and Y contains no closed copy of S, then YV
is strongly Frechét by 16(b) of [31]. (E. Michael [21] called it countably
bi-sequential). Hence f: M — Y is a countably bi-quotient s-map by
Theorem 4.4 of {29]. Finally we prove that f: M — Y is a bi-quotient
s-map. Then ¥ has a point-countable base.

To see it, let O be an open cover of f~(y}. Since f~'(y) is separable,
there is a countable subcollection O’ = {O;, 0, . ...} of O which covers
F7'(y). Hence there is an n such that y € Int(U,, f(O:)) by f: M —
Y being a countably bi-quotient map. Then f : M — Y is a bi-quotient

s-map. ]

Recall that “Y is determined by P”, or “P determines Y7, U CY
is open (closed) in Y if and only if I/ N P is relatively open (relatively
closed) in P for each P & P. This terminology is used by {9]. Recall
that a space ¥ is sequential, if it is determined by the cover consisting

of all compact metric subsets of Y.

Proposition 2.2. Let regular Ty space Y be a gquotient s-image of a
metric space and S, X Y be a sequential space. If a closed subspace 3 of

Y contains no closed copy of S., and no Sa, then B is locally compact.
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Proof. Let B be the closed subspace. Then B is regular and first
countable by Theorem 2.1. Suppose B is not locally compact. Then
S. % B is not sequential by Lemma 3 and Lemma 4 of [10]. It is a

contradiction. ]

Proposition 2.3. Let M be o metric space and f: M — Y be a
continuous mep. If each metric closed subspace of reqular T, space Y

is locally compact, then for each point-countable base B of M, there is

a base B’ C B such that f(B) is countably compact for each B € B’.

Proof. Let B be a point-countable base of M. Let
Blz)={BeB:zeB}={B,:new}CB.
Then:
L Mo f(Br) = {f(z)}.
2. There is a B, € B(z) such that f(B,) is countably compact.
Indeed. Let y = f(x). Suppose ﬂign@ is not countably compact
for each n € w.

If f{B;) is not countably compact, then there is a discrete closed

subset

Dy = {yym :m € w} C f(By)
such that |D;] = Ry and y is not in D,. Take an open neighborhood
O, of yin ¥ such that O, N, = @ since ¥ is a regular T} space. Then
f~YO,) is open in M withz € f~4(0,). So there is a B, € B(z) with
r€ By, C S O1)and 1 < my.

Then Ni<n, f{B;} is not countably compact by supposition. So there is

a discrete closed subset
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Dy = {tm : m € W} C Nicn, F(B:)
by
| Ni<ny (B 2 Vg
such that
| Dyl =Wy, DyNDy =10
and y is not in L.
Then, by induction, there is an n; € w with n; < n;.1 and a discrete

closed subset

Di = {4im 1 m € W} C Ny, f(By)
for each 1 < w such that yis not in [);,
|Dil =N and D;n Dy =0 (i 7).
Let
Yy = (UnewDn) U {y}-

Then we can prove that Y is a closed metric subspace of ¥ and is not
locally compact. It is a contradiction. Hence ﬂignm is countably
cornpact for some n € w.

Since B(z) is a neighborhoods base of = in M, then there is a B, €
B{z) with

B C MicnBi.
Since
fNignBi) C Nicaf (Bi),

then

f(Bm} - f(miSnBi)
is countably compact. Let

B(z) = {BeB(z): BC Bn}
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and

B =U{B*z):z€ X}.

Then B' is a base of M such that f(B) is countably compact for each
BepB. O

Recall that a cover F = {B, :n € F} of Y is called irreducible, if
U{B, :n € Fy} # Y for each proper subset Fy of F.

Theorem 2.4. Let reqular T space Y have a point-countable closed
k-network B which ts closed for finite intersections. Then there is a
metric space M and a continuous onto map f: M — Y such that f is

& compact-covering s-map.

Proof. Let B be a point-countable closed k-network of ¥ such that
B is closed for finite intersections. Given B the discrete topology, the

countable product Il,~o83 is a metric space. Pick

2 =(B) and 2= (B!)

T

from Il,.0B. Let
d*(z',z") = 1/n,
where
n=min{i: Bl # B}, 2/ = (B{) and z"=(B])}.
Then d* is a metric of ,-oB8. Let M C 1,08 be all {B,,) such
that there is a ¥ € Y with Mus0f3, = {y} and every neighborhood

of y contains some B,. Let f : M - Y such that f{(B,)) = y if

NasoBn = {y} for each (B,) € M. We may show that [ is an onto
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continuous s-map just as the proof of Theorem 6.1 of [9]. Let

Co ={C CM: foreachi <nand B; € B,
C=({B1} x {B}x .. x {Bp} x js.B)YN M}

for each 1 > 0. Let

C = Up>oCr-
Then C is a o-discrete base of M. In the following proof, we show that
f: M — Y is a compact-covering map.

Let K be a compact subset of Y. Then K is a metric subset of ¥ by
Theorem 3.3 in [9]. If K is a finite subset of ¥, then there is a finite
subset C of M with f(C) = K. So we assume that X is infinite in
the following proof. Let F be a finite subcollection of B which is an

irreducible cover of K, and let

Flyy={Fe F:yeF}

Claim 2.5. If y € K and O is an open neighborhood of y in Y, then
there is a finite subcollection F of B which is an irreducible cover of K

such that UF{y) C O.

Proof. Case 1. yis an isolated point of K. Let O, be an open subset
of O with O; N K = {y}. Then there is an Fy € B with y € Iy C Oy.
Because the open set Y — {y} contains the compact set K — O, there

is a finite F' € B which is an irreducible cover of K — O) such that
K—-0, CcUF cY —{y}.
Let
F=F U{R}.

Then F is an irreducible finite cover of K such that
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Fly) = { K}
Case 2. Pick a cluster point y of K. Let d be a metric of K. Let
Un =1y € K:dlyy) <1/n}
for each n > 0 with Upgey € ON K. Then there is a finite subcollection
F1 of B such that

Un(o) CuUF cCO.
Let

.Flz{Fz?,STL}

We may assume that 7, is an irreducible finite cover of Upy.

Firstly we prove that there is an #; C F, and an U, such that
for each F; € F; and each Uy, U(F; — {F;}) can not contain Uy, and
Ungjy CUF; C O.

Indeed: I for each i < n, U(F, — {F;}) can not contain any
Um (m € w), then pick an
Tim € U — U(T1 — {Fi}) C Uno
for each m > n(0). Let
Si = {zim : M€ w}.
Then 5; converges to y and
SiN(U(F —{F}) =0
Since
Si C Ungoy C UF
and

Sin (WA —{£}) =0,
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then S; ¢ F} for each F; € Fy. Let
Fly) = Fi.
If there is an i(1) < n and an Uy, with
Ungy € U(FL — {Fiy })-
Let
Fo=F —{F}-
Suppose that for each j < n, there isan i(5) < n and an
Uniyy € U(F; — {Fin})
here
F = Fim1—{Fig-n}
Then we have
Y € Unin) = Nigalngyy CU(FL = {Fy, -, Fign }) =0
since we only arrange {F1y,..., F,} into {Fjqy, ..., Fymy} again. It is a
contradiction. So there is a 7 < n such that for each F; € F; and each

Up, U(F; — {F;}) can not contain U}, and

Un(j} - U}_j C O.

Secondly, let F(y) = F;. Then S; C F;, S N{U(F(y) — {F})) = 0

and S; C Uy )41 for each F; € Fly).

Indeed: Pick an
Tim € Upn — U(F; — {F}) C Uiy
for each m > n(y) +1. Let
Sy = {Tum: me w}

Then 5; converges to i and
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SN (U(F; = {F}) = 0.
Since
Si € Uiy CUF;
and
SN (U(F; —{FD) =0,

then S; C F; for each F; € F;. Let

Then
S: C By S0 (U(Fy)—{F}) =9
and S; C Uy for each Fy € Fly).

Now we construct the F.

Indeed:  Because the open set ¥ — Upgj41 contains the compact
set K — Upy;y, there is a finite ' C B which is an irreducible cover of
K - U,y such that

K —Upjy CUF' CY — Ungjper
50
K C{K — Unyy) W TUngy € U(F U F ().

Then there is an irreducible finite cover F of K such that

FaFly)ur.

Suppose there is an

F,e Fly)-F.

Then
FCFU(Fy) - {F})

Since
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Si € Fy N Uy and UF C Y — Upggyya,

then
S; 1 (UF') = 0.
Notice
SinU(Fly) - {F}]=0.
So

S;N(UF) = 4.
Then F is not a cover of K. It is a contradiction. So
Fly) C F.
Since y € S;  F;, theny € F; for each F; € F(y). If y is not in £,
then U, — F; is an open neighborhood of 3 in K for each n > 0 since

F; € B is closed. So
Fie Fly)=F; ifandonlyif y€F

as the definition before Claim 2.5. W

Claim 2.6. [{F C B : F is an irreducible finite cover of K }| = Ro.

Proof.  A. Migcenko [26] proved that if B is a point-countable cover
of K, then there are at most countably many finite subcoliections of 5
which are irreducible covers of K.

Because K is infinite, there is a cluster point y € K. Let d be a
metric of K. Let

Up={y' € K :d(y,y) < 1/n}
for each n > 0. Let O, be an open set of ¥ with K N0, = U, for

each n > 0. Then there is a finite subcollection F,, of B which is
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an irreducible cover of K such that UF,(y) < O, by Claim 2.5 for
each n > 0. So there must be af least infinitely countably many finite

subcollections of B which are irreducible covers of K. (]

Let (F,) enumerates the all finite subcollections of B which are ir-
reducible covers of K. Then II,.oF, is a compact subset of IT,.o5.

Let

D= (Hn>0-7:n) nM.
Claim 2.7. f(D) = K,

Proof. Pick an x = (B,) € D. Suppose f(z) is not in K. Then
Y — K is an open neighborhood of f(z). So there is & B, in (B,) with
f(z) € Bn, C Y — K by the definition of the subspace M. Assume
B, € Fu. Then F, —{B,}is still a cover of K. It is a contradiction.

Pick a ¥ € K. Then for each n > 0, there is a Bl € F,, with y € By,
Let z = {B’). Then x € [I,,50F, andy € N,B,,. Pick an open set
0 C Y with y € O. Then, by Claim 2.5, there is an irreducible finite
cover F of K such that UF(y) C O. Since (F,) enumerates the all
finite subcollections of B which are irreducible covers of K, then there
isan F, = F. So B isin F. Then B, € F(y) by y € B;. Then

B, CUF(y)CO.
This implies z € M and f(z) =y € f(D). a

Claim 2.8. D is a compact subset of llasoFn.

Proof Pick an z = (B,) € D. Pick an open ball
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Oz, 1/n) = ({B1} x {Ba} x ... x {Bp} x ;5. B) N M.
Then there is an z, € D NO(x,1/n) for each n > 0. Notice
Tn = (B1,Ba, ... Bn, By .y, By, )
since T, € O(z, 1/n).
So sequence S = {z, = (B%} : n > 0} C D converges to z = (By,).
Then we may assume, without loss of generality, that
By =B, fornzm.
Then B, € F, for each F, in (F,} since z, € D. So f(Zni) € f(Br)
for each 7 > 0. Since f(S) = {f(z,) : n> 0} C K and K is compact
metric, then there is a subsequence S’ C S such that f(S5') converges
to some y € K. Since B, is closed in Y, then y € B, for each n > 0.
So ¥ € Np»oBn. Let O C Y be an open set with ¥y € O. Then, by

Claim 2.5, there is an irreducible finite cover F of K such that
UF(y) C O.

Since (F,) enumerates the all finite subcollections of B which are irre-
ducible covers of K, then there is an F, = F. So B, € F, = F. Then
B, € F(y) since y € B,,. Then

y€ B, CUF(y) CO.
This implies
z=(B,)eD.

So D is a closed subset of compact metric set Ilas0%n. ]

Proof. proof of Theorem 2.4. {continued )
If K is an infinite compact subset of Y, then there must be countably

infinitely many finite subcollections of B which are irreducible covers
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of K by Claim 2.6. If () enumerates the all finite subcotlections of
B which are irreducible covers of K, then D = ([lnoFn) N M is a
compact subset of M by Claim 2.8. Then f(D) = K by Claim 2.7. So

f: M — Y is a compact-covering map. O
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3. COMPACT-COVERING $-IMAGES AND COMPACT k-NETWORKS

Theorem 3.1. Let reqular Ty space Y have a point-countable closed
k-network. If each metric closed subset of Y 1is locally compact, then Y

has a point-countable countebly compact k-network.

Proof. Let B be a point-countable closed k-network. Let B; be the
collection of all finite intersections of . Then B, is a point-countable
closed k-network which is closed for finite intersections. So we may
assume that ¥ has a point-countable closed k-network B which is closed

for finite intersections.
Let

M CII,soB
be the metric space,

C =Un>oCa
be the o-discrete base of M and f : M — Y be the onto continuous
compact-covering s-map as the Theorem 2.4 above. Then there is a
subcollection €' C € such that C' is a base of M and f{C) is countably
compact for each C € C' by Proposition 2.3. If

C={Bi}x {By} x ... x {Bp} x j5 . B)NM €,

then f(C) = Mi<nBi is closed. So f(C) = ﬁC’_) is countably compact.
Then {f(C) : C € C'} is a point-countable collection of countably
compact subsets of Y. We have proved that f: M — Y is a compact-
covering map by Theorem 2.4. Then {f(C) : C € C'} is a point-
countable countably compact k-network since C’ is a base of M. Notice

that B is closed for finite intersections. Then
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f(C) =NicnBi€ B
for each C € C'. Then there is a countably compact k-network
B ={f(C):CeC'}
which is a subcollection of B. Then Y has a point-countable countably

compact k-network. O

We would like to give a proposition about Question 37.

Proposition 3.2. Let Y be a vegular T space. Then the following are
equivalent.

1. Every metric closed subspace of Y is locally countably compact.

2. Ewery first countable closed subspace of Y is locally countably
compact.

8. Every metric closed subspace of Y is locally compact.

4. Every first countable closed subspace of ¥ is locelly compact.

Proof. 1= 2.

Suppose that there is a first countable closed subset B of ¥ which is
not locally countably compact. Then there is a point y € B such that
y has no any countably compact neighborhood. Let

B=0,00;20,20:20;D ...
such that
O={0,:neN}
is an open decreasing neighborhoods base of y in B. Then each 0, is
not countably compact.
If O, is not countably compact, then there is a discrete closed subset

D1={y1m:m6N}C@T
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such that | D] = ¥g and ¥ is not in D;. Take an open neighborheod
On1) of y in B such that Onqy N D1 = Dsince Y is a regular T} space.
Then 1 < n(1). Then, by supposition, Oy is not countably compact.

So there is a discrete closed subset

Dy = {y2m :m € N} C Oy
such that
|Da} = Ro, Do Dy =0
and y is not in D;. Then, by inductior, there is an n(i) € N with
n(i — 1) < n(i) and a discrete closed subset
D; = {yim :m € N} C Ongy
for each 2 € N such that
|D;| =No, DiNND; =0 (i #j)
and % is not in D;. Let
Y= (UneNDn) U {y}
Then we can prove that Y is a closed metric subspace of ¥~ and is
not locally countably compact. It is a contradiction. Hence each first
countable closed subset B of Y is locally countably compact.
2=1
Every metric space is a first countable space. If every first countable
closed subspace of Y is locally countably compact, then every metric
closed subspace of ¥ is locally countably compact.
3o land 4 2.

Each compact subset is countably compact and each countably comn-

pact metric subset is compact. O
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Proposition 3.3. Let reqular T space Y have a point-countable closed
k-network. If each first countable closed subset of Y is locally compact
and each countably compact subset is compact, then Y has a point-

countable compact k-network.

Proof. By Theorem 3.1 and Propoesition 3.2, Y has a point-
countable countably compact k-network. Since each countably com-
pact subset is compact, then ¥ has a point-countable compact k-

network. O

In the following, we give an example which explains “countably com-
pact "in Theorem 3.1 can not be strengthened to “compact "and the
condition “each countably compact subset is compact "in Proposition
3.3 can not be omitted. It also give a negative answer to Question 37

of B of Problem Section in {15].

Example 3.4. There is a reqular Ty countably compact space Y such
that Y has a point-countable closed k-network and every first countable
closed subspace of Y is compact, but Y has no any point-countable

compact k-network.
Claim 3.5. To construct a reqular T\ space Y.

Recall Example 9.1 in [9]. There is an infinite, completely regular
countably compact space X, all of whose compact subsets are finite.
Also X has a point-countable closed k-network.

Then X is uncountable since each countable completely regular count-

ably compact space is cornpact. Then {{z} : z € X} is a compact
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point-countable k-network since all compact subsets of the space X
are finite. Let (X,,7,) be a copy of the X above and P, be the com-

pact point-countable k-network of (X,,7,) for each n € w. Let
X+ = {00} Ulneu Xn-
Here
X ={z:ze X}
with discrete topology and
{Un= {00} Ulis, X 10 Ew}
be a neighborhoods base of point co in X*. Let 7* denote the defined

topology above of X*. Then (X*,7*) is a metric space.
Let

Z = (EnewXﬂ)@X*'
Let ¢ : Z — Y be the obvious map. That is
f({z,@}) ={r} and f(oo)=o00.
Let O C Y be an open set if and only if f7'(O0) is open in Z. Then g

is a continuous quotient s-map and Y is a regular 77 space.
Claim 3.6. Y is a countably compact space.

Since
glXn 1 X — Xa
is a homeomorphic map, then X, is countably compact for each n € w.
Let
P ={g(U,) : n €w}.

Notice that
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We prove that each
9{Un) € P
is countably compact.

Pick a g(U,) € P'. Let A C g(U,) is a countably infinite set.

Case 1. If there is an n € w such that A C U<, X, then there is an
i <n such that A N X; is countably infinite. So A has a cluster point
in X; since X; is countably compact.

Case 2. If there are countably infinitely many X;’s such that AN X;
is not empty in Y, then there are countably infinitely many X;’s such
that g71(4) N X! is not empty in Z. Then there is a convergence
sequence S C g~1(A) such that S converges to oo in Z. So there is a
convergence sequence g{S) < A such that ¢{.S) converges to co in Y.

So ¢(U,) is countably compact for each n € w.
Claim 3.7. Y has o point-countable countably compact closed k-network.

Since
glXn : Xn — X,

is a homeomorphic map and P, is a point-countable compact k-network
of (X,, Tp), then also P, is a point-countable compact k-network of
g(X,) = X, for each n € w. Notice that g is a quotient map. Then
g(U,) is closed open since g~4(g(Uy,)) is closed open for each n € w. So
P’ is also a closed open neighborhoods base of cc in Y.

Let P = P' Ul . P We may prove that P is a point-countable

new
countably compact closed k-network of Y.
In fact.

A. P is a point-countable countably compact closed collection.
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B. P is a k-network.

Let K C O CY with K compact and O open in Y.

Case 1. If cois not in K, then there is an open set g(U,) with
oo € g(Uy) and g{U,) N K =10. So thereis an n € w with K C Uic, Xi.
Then K is a finite subset of ¥. Notice that g|X, : Xp, — Xn s a
homeomorphic map and P, is a point-countable compact k-network of

(X, Tp) for each n € w. Then thereis a finite subcollection
FClUicn P
with
KCUFcCO
Case 2. oo € K. Take a g(U,) with
oc € g(Un) C O.
Then
K — g(Un) C Yica X

is finite. So there is a finite subcollection

FClUicn P

with

K — g(U,) C UF C (Uin X3) NO.
Let
F = {gU)}UF.

Then
FCP

and

KcUF cCO.
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Clajm 3.8. Fach first countable closed subspace of Y is locally com-

pact.

We prove only that each closed metric subspace of Y is locally
compact by Proposition 3.1 Take a metric closed subspace B of Y.

Then B is countably compact in Y. So B is compact.
Claim 3.9. Y has neo any point-countable compact k-network.

Suppose that C is a point-countable compact k-network. Let
C{oo) ={Cel:x0eC}={C,:necuw}

by C point-countable. Then C;, N X, is finite for each m,n € w. So
UC(oo) is & countable subset of Y. Pick an z, € X, — UC(00) since Xy,
is uncountable for each n € w. Let

S={z,:n€uw}
Then SU{oo} is compact. So there is a finite subcollection F C C (o0)
and an ' € w with

{2, :n>n'} CUF CUC(c0)

It is a contradiction to

SN (UC(oco)) =0

So Y has no any point-countable compact k-network.



4. PRODUCTS OF QUOTIENT s-IMAGES OF METRIC SPACES

For two functions f and ¢ from w to w, we define f < g iff the set
{n €w: f(n) > g(n)} is finite.

Recall b = min{|B| : B is an unbounded subset of “w} in [6]. Here
a subset of “w is called unbounded if it is unbounded in < “w, <>.

Recall that Y has countable tightness , t(Y) < w, if, whenever z € A
in X, then x € C for some countable C < A. Sequential spaces and
hereditarily separable spaces have countable tightness.

For an infinite cardinal number «, a space is a k,-space , if it is
determined by a cover C of compact subsets with |C| < . A space YV
is locally k., if each point ¥ € Y has a neighborhood whose closure
is a k.-space. E. Michael [23] considered the concept of k,-space. He
pointed out that each product of two k,-spaces is a k,-space. So is
each product of two locally k,-spaces.

We can generalize Lemma 5 of [3] into the following theorem. It
seems to be useful when discussing the relation between S, x ¥ and
another axioms. Let M be a metric space, B be a o-locally finite base

of M and f: M — Y be aquotient s-map. Let

P = f(B)={f(B): BB}

such that f(B) ts compact for each B € B by Proposition 2.3. Then
P is point-countable and determines Y by Theorem 6.1 of [9]. So

tHY) € w.
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Theorem 4.1. Let regular T\ space Y be a quotient s-image of a met-
ric space. If S, x Y is sequential, then there exists a subcollection P,

of P such that |P,| < b and UP, is a neighborhood of y for eachy € Y.

Proof. Suppose that there exists a point g, of ¥ such that if
we take any subcollection P’ of P with |P’] < b, then UP' is not a
neighborhood of yo.

A. Let Ny be a Moore-Smith net such that Ny converges to ¥, ¥ is
not in Ny and |No| = Ro by ¢(¥) € w. Let

Po={Pe€P:PNN #0}.
Then |Py| < ¥y since P is point-countable. Let @ < b. Assume that
we have defined a Moore-Smith net Nj for each § < a such that:

(1) Ng converges to 4,

(2) yo is not in Ng,

(3) Ny is countable and

(4) Ps={P € P: PN N;z# B} is countable.

Then U(Ug<oP3) is not a neighborhood of y, since

| Up<a Pal <R~ |of <b.
So we can take a Moore-Smith net N, satisfying the (1)-(4) above and
No NV (Ugeq Ng) = 0.
Let
Py={P &P PNN, #0}
Then P, is countable by P point-countable. Thus, by mduction, there
exists a collection
N={N,:a<b}

such that:
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{a) N, converges to yo, %o is not in N, and N, is countable for each

N, € N and
(b} P meets only one N, for each £ &P.

B. Let
No={Za1,Za2s - Tans - F = {1 200y My -}
for « < b. Let
B={fy:a <b}
be an unbounded subset of “w by the definition of b. Let
Ha = Upneo({1n, 2nr - falm)a} X {la 200y Ra}} C S0 XY
for each f, € B. Let
H = yep, Ha
Here S, = {14,2x,-- ..} is a convergent sequence of S,.

a. HN(S, x P) is closed in S, x P for each S, € S and each P € P.
In fact. P meets only one NV, by (b) of A for each P € P. Then

(S x PYNH = (8, x P)N H,

= {(Se x Py (| J{Ls, 200, fulidi} X {lers 200y}

i<n
has only finitely many points. So (S, x P) N H is closed in (S, x P).
If S, x Y is sequential, then S, x Y is determined by
{Sp % P:Sp €S and PeP}.

So H isclosed in S, x Y.
b. Hisnot closedin S, x Y.
We prove

(oo,y0) € CI(H) - H.
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Here “00” denotes the nonisolated point in S,. Given an f € “w, let

Up={oc}U{n, :n> f(m).
Let U be a neighborhood of point 3y in Y. Then N, NI 3 @ for each
N, € N. Then there exists an

n{a)e € Ny NU.
Let
g(a) =n{a).
Then g € ®w. Since f € “w and B is unbounded in “w, there exists a

function f,, € B such that

A={new: foln) > f(n)}

is infinite. Because of
g{ao} = n(cw),

there exists an n' € A with n’ > n(ap). Then
(fao(nl)n’:n(a{))ao) € {1n')2n’= ceey fao(nr)n’}
X {1a0,2ao,...,n(ao)ao,... b} C Hoy CH

On the other hand, the n' € A gives
fao (') > f(0):

So
fuo(®)w € {0 2 J(m)} € Uj
and
n(a)ag € N NV CU.
Then

(fao(nf)n’: n(aﬁ)ao) € (Uf X U)
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So
(fao(nf)n”n(ao)&o) € (Uf X U) nHao C (Uf X U) NH.

Then H is not closed. This contradicts (a) of B. O

This technique of the proof of Theorem 4.1 is due to G. Gruenhage
[10].

Remark 4.2, Assume b =1¥;. Let
U={U,:y e Y}

here U, is a closed neighborhood of y in ¥ which is the unijon of count-
ably many compact metric subsets of ¥ by Theorem 4.1. Then Y is
determined by {{. In fact. Let O C Y. If ONU, is open in U, for each
U, € U, then ON Inty(U,) is open in Inty(U,). So

O =U{0Ninty(U,) 1y € O}
is open in Y. This implies that Y is determined by
U = (Inty (U,) 1y € Y},
So Y is determined by U/ since
Inty (U,) C U,
Notice that S, x Y is determined by
{Sux U, yeY}

So S, XY is a sequential subspace if and only if S, x Uy is a sequential
space for each U, € Y. Then we can assume, without loss of generality
under b = ¥, that Y is the union of countably many compact metric

subsets of V.
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Corollary 4.3. Let regular Ty space Y be o quotient s-image of a met-

ric space. If S, x Y is a sequential space, then Y is a locally k.-space.

Proof. Letd< b <candY = Ugeo o by Theorem 4.1 and Remark
4.2. Here K, is a compact metric subset of ¥ for each & < 0. Then
cardinality of ¥ is at most ¢. If Y is a quotient s-image of a metric space
and S, x Y is a sequential space, then there is a collectionn P such that
P determines Y, P is a point-countable collection and P is a compact
metric set for each P € P by Proposition 2.3 and Theorem 6.1 of [9].
Because cardinality of ¥ is ¢ and P is a point-countable collection,
cardinality of P is at most ¢. So P' = {F: P € P} determines ¥ and
cardinality of P’ is at most ¢. This implies that ¥ is a locally k-space.

]

Question 4.4. Let regular Ty space Y be a quotient s-image of a met-
ric space and S, X Y be a sequential space. Has Y a point-countable

compact k-network (even if we assume the continuum hypothesis)?

Remark 4.5. According to A. V. Arkhangel'skil [2], a cover C of Y'is
called a k-system if C is compact for each C € C and B C Y is closed
in Y whenever B N C is closed in C for each C € C.

If Y is a k-space and C is a compact k-network, then C is also a
k-system by the definition of k-network. Notice that Remark 4.2 and
Theorem 4.3, We may assume the space Y in Question 4.4 has a k-

network C such that |C| = ¢ ( [C] = R if we assume the Continuum

Hypothesis).



5. WEAK NEIGHBORHOODS AND QUOTIENT MAPS

A. V. Arhangebskii [2] introduced definitions of collections of weak
neighborhoods. 1t is more convenient to use the form of F. Siwiec [30]

and Z. Gao [12] as follows.

Definition 5.1. For a topological space Y and a pointy in'Y, a col-
lection W, of subsets of Y is called o collection of weak neighborhoods
of y, if the following are satisfied:

(1) Each member of W, contains y.

(2) For any two members W\ and Wy of W, there is a Wy in W,
such that W3 Cc W NWs.

(3) A subset U of X is open iff for every pointy i U there exists a
W in W, such that W C U,

For the above condition (3), we have equivalent condition (3)” as
follows:

(3) A subset B of X is closed iff for every point © ¢ B there exists
a W in W, such that BNW = 0.

Definition 5.2. For a topological space Y and a point y n Y, a subset
H of Y is called o weak neighborhood of y in Y, if there s a collection

W, of weak neighborhoods of y inY and a W, € W, such that W, C H.

Firstly we confirm some straightforward results derived from the

definitions.

Proposition 5.3. Let Y bea topological space. Then:
1. Every neighborhood of y 15 0 weak neighborhood of y in Y.
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2. O C Y is open if and only if for each y € O, there is a weak
neighborhood Wy, of y in Y with W, C O.

Proof. Let
0, =1{0:0isopenin Y and y € O}.
Then O, is a collection of weak neighborhoods of ¥ in ¥ by Definition
5.1. So every neighborhood of ¥ is a weak neighborhood of y in ¥ by
Definition 5.2. So O C Y is open if and only if for each ¥ € O, there
is a weak neighborhood Wy, of 4 in Y with W, C O by the condition 3
in Definition 5.1. !

Proposition 5.4. Let Y be a sequential Hausdorff space and y be a
point of Y. Then W, is a weak neighborhood of y in Y if and only if
for each compact metric subset ( or convergent sequence containing the
limit point y) K of Y with y € K, W, contains o neighborhood of y in
K { or Wy, contains K eventually).

Proof. “only if’. Suppose that there is a compact metric subset K
of Y and a weak neighborhood W; which can not contain any neighbor-
hood of 5 in K. Then there is a sequence S C K such that 5 converges
toy and SNW, = 0.

Pick an open set O with y € O. Then 0 — S is not open.

On the other hand, we pick an 2 € O — §. If £ # y, then thereisan
open set Oy C O ~ § with z € Oy. So there is a weak neighborhood
W, with W, € O;. When z = y, let W, be the coilection of weak
neighborhoods of y such that there is a W, € W, and Wy, C W, by
Definition 5.2. Since O is an open set with y € O, there is a V), € W,
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such that ¥, C 0. Then there is a weak neighborhood V] € W, such

that

V/ CV,nW,CV,nW,CO-5.

So O — S is open by Proposition 5.3. It is a contradiction.

“if”. Let W, be a collection of subsets of ¥ such that each member of
W, contains a neighborhood of ¢ in K for each compact metric subset
K of Y with y € K. We can check that W, is a collection of weak
neighborhoods of y. In fact:

1. Each member of W, contains y.

2. Pick two members W; and W, from W,. Let K be a compact
metric subset of ¥ with y € K. Then both W, and W, contain neigh-
borhoods of i in K. Then W; N W, contains a neighborhood of ¥ in
K. SoWinW,eW,.

3. “if’. Suppose that A C Y isnot openin Y. Then there is a point
y and a sequence S such that S converges to y and (SU {y}} N A s
not open in SU{y}. So y € A. Then S is eventually in IV for each
W e W, SoWn Aisnotopen in W. Then W — A#0. “only if”. If
A C Y is open, then for each y € A, A is an open neighborhood of ¥ in
Y. So A is a weak neighborhood of ¥ with x € A C A by Proposition
5.3.

So W, is a collection of weak neighborhoods by Definition 5.1. Then
each member of W, is a weak neighborhood of y in ¥ by Definition
5.2. (W]
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Corollary 5.5. Let Y be a sequential Hausdorff space. Then W isa
weak neighborhood of y in'Y iff whenever B C Y withy € Cly(B—{y}),
y € Cly((Cly(B) — {y}) nW).

Proof. Let B C Y with y€ Cly(B — {y}). Then Cly(B) — {y}is
not closed in Y. So there is a converging sequence S U {3} such that
(SU{yh N(Clr(B) - {y})

is not closed in S U {y'}. Let
51 =8N (Cly(B) —{y}).
Then \S; converges to y' & Cly(B) — {y}. But
y' € Cly(S1) C Cly(B).
Then 3 = v. Since each weak neighborhood W of i contains a neigh-
borhood of ¥ in S U {y} by Proposition 5.4,
y € Cly((Cly(B) — {y}) nW).

If W is not a weak neighborhood of y in Y, then there is a sequence
S such that S converges to y and SNW = @ by Proposition 5.4. Then
y € Cly(S — {y}).

But

y & Cly ((Cly(8) — {y}) NW).

O

Recall that a k-sequence (By) in a space Y ( due to E. Michael [21]

) is a decreasing sequence {B, : n € N} of subsets of ¥ such that
the set NJ2 | B, = C is compact and each neighborhood of C contains
some B,. In particular, when the compact set C is a singleton {y}, we

denote the k-sequence (B,) by (B,) | v.
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Corollary 5.6. LetY be a sequential Hausdorff space. If(B,) | v isa
k-sequence and W is o weak neighborhood of y inY, then W contasns

some Bh.

Proof.  Suppose that there is a weak neighborhood W of y and

a k-sequence (B,) | y such that B, — W # Q for each n € w. Let
Yn € Bp — W for each n € w. Then {y, : n € w} converges to y. So
{yn : n € w} is eventually in W by Proposition 5.4. It is a contradiction.
B

Proposition 5.7. Let Y be a sequential Hausdorff space, M be an
arbitrary metric space and f . M — Y be an arbitrary quotient map. If
U is a neighborhood of f~y) in M, then f(U7) is a weak neighborhood
ofyinY foreachy €Y.

Proof. Suppose that there is a sequence S such that 5 converges to
y and SN f{U) = @ by Proposition 5.4. Let
Z = fHSU{y}.
Then flz: Z — S U {y} is a quotient map. So there is a sequence
S1 C f~YS) such that S} converges to z and z € f~'(y).
Because U is a neighborhood of f~!(y) in M, we may assume that
S; ¢ U/. This implies that

b#f(S1)Cc KU)NS.

It is a contradiction. ad



6. MICHAEL-NAGAMI’S PROBLEM.

We construct a Hausdorff space ¥ such that ¥ is a quotient s-image
of a metric space and is no compact-covering quotient s-image of any
metric space.

Let N denote the set of all positive integers and i, j, {, m and n be
members of N. Let

[a b)={r:7r is a real number with a <r <t}

and

Ax B={{(a,h)  a€ Aand b B}
Let Q be rational numbers in [0 1] and Ry UR; = [0 1]~ @ such that
RyNRy=10and Ri{i=1,2) is c-dense in [0 1]. Let

My = (Ry x {1, 1/2, 1/3, . 1)U {{R, U Ry) x {0})
be a subspace of [0 1] x [0 1]. Let
S, ={r}x {1, 1/2, 1/3,...}
converge to {r,0) for each r € Ry. Then
My =3 {S, u{(r,0)} :r € Ry}

is locally compact metric. Let

My =5{[0 1] x {1/n} :n e N}
Then Mj is locally compact metric. Let

M= M, P M P Ms.

Then M is metric. Let B = U,B, be a o-locally finite base of M such
that:

1. If B € B, then B C M, for some [ € {1,2,3}.

2. If B C M,, then B C S, U {(r,0)} for some r € Ra.
3. If B C M3, then B C [0 1] x {1/n} for somen € N.
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Let g: M — Y be the obvious map (g(z) = z for each r € M ) and
P=gB)={g(B): B¢ B}.
Let U C Y be open in Y if and only if U N P is relatively open in P
for each p € P. Let
T ={0: 0N P is relatively open in P for every p & P},

(i.e., Y is determined by a cover {M,, My, M3}.) Then g is a two to

one quotient map and (Y, 7) is a sequential space.
Claim 6.1. (Y, T) is Hausdorff but not reqular.

Proof. Pick y1 = (r,0) and yo = (r2,0) in (R U Ry} x {0} such

that ry < ry. Let
01 = U{[07r3) x {I/n}:ne NYU({[0rs) N (B U Re}) x {0})

and

02 = U{(rs 1)) x {1/n} :n& NYU(((rs 1) 0 (R U B)) x (0).
Here 73 = (ry+13)/2. Then O; and O, are disjoint open neighborhoods
of y; and 1, in Y respectively. So ¥ Is Hausdorff.

Let

Q= {g.:n € N}
and
Vi = U{{g: i< n}x {1/n}:ne N}

Then Y, is a discrete closed subset Y.

To see it, pick a P € P. If P C My U My, then PN Y, = 0. If
P C Ms, then PNY) is finite. So PNY; isclosed in P for each P & P.

Y, is discrete closed since Y is determined by P (also see footnote 2 of

page 303 in [9]).



Let
O=Y-Y,.
Then O is open. Let
y€ (RiURy) x {0} CO.
Suppose that B is a closed neighborhood of y in Y such that B ¢ O.

Then there is an open set O, with y € O, C B. Then 0, N M, is an

open neighborhood of ¢ in M;. So there is an open ball

Bly)={y € My:d(yy) < 1/n}
of M with

y € Bly) C O, N M.
Because M, is dense in Y7, there is an m € N and a [r| 73] such that
Uism([r1 72} x {1/i}) C Cly (B(y)}.

Take a convergent sequence

S ={gm:n€NCQn[r 7
such that $ converges to 7 (y = (r, 0} ). Then

(gin, 1/4(n)) € Cly{B(y)) N1
for each i(n) > m. We have
Cly(By)nY, #8 and Cly(B(y)) C BCO.

It is a contradiction. So Y is not regular. a

Claim 6.2. M, U S, is a metric subspace of ¥ for each (r,0)=y ¢
R2 X {O}

Proof. Given an r € Ry, then let

y = (r,0)
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and

M, = M, (S, U {(r,0)})
B {(Rufr}) x {i/n} ine N} c M.

Let
aM, =g
and
T ={0ON(MUS,):0eT}
1. g, is a two to one continuous onto map from M, to M, U S;.
In fact, ¢ is a two to one continuous onto map.
2. (M1 US,,T)) is a sequential subspace of (Y, 7).
To see it, let B C M, U S, be not closed in M; US;.
If there is a,
y' € Clanus, (B) — B
with 3/ # (r, 0), then there is an open neighborhood Oy of ¢/ in M US,
such that Clpgus, (Oy) is metric in M, U S;. Because of
¥ € Clus, (Oy N B),
there is a sequence S of B which converges to 3'. So BN(SU {¥'}) is
not closed in S U {y'}.
If
(Cly(B) - B)N(M1US,) = {(r,0)} = {y},
then there is a sequence S C Cly(B) — {y} which converges to y by
(Y, T) being sequential. Because g : M — Y is a two to one quotient

map,

g7 y) < ML (S, U {(r, 0)})
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and
My @(S- U{(r,0)})
is open in M, M{U S, is a weak neighborhood of y = (r,0) in Y by
Proposition 5.7. Then § is eventually in M; U S, by Proposition 5.4,

So S is eventually in
(Cly(B) = {¥}) n (M1 US,) = Chyus. (B) — {y}-
Since
Clwus.(B) = B = (Cly(B) — B) 0 (MU S;) = {y},
S is eventually in
Claus.(B) — {y} = B.
Then B N (S U {y}) is ot closed in S {y}. This implies that (M, U
Sy, 71) is sequential.
3. gr: M, — M, US, is a sequence-covering map. So it is a quotient
map.
To see it, let S € M, U S, converge toy = (r,0). If
Sc M or ScC&,
then it is simple. If
ISOMi=]5NS5=w,
then
S=(SnM)HU(SNS;).
So there are two compact sets C; € M, and C; C S, U{(r,0)} in M
such that
¢{(C1) = (Sn M) U{y}

and

g:(Ca} = (SN S )V {y}.
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4. M7 U S, is regular.

[n fact. Let y' € M, U S,. We notice that M, is a metric subspace
of Y.

Ify # (r,0), then there is an open metric subset O, of M US, such
that ¥’ € Oy and Clpyus,. (Oy) is metric in M, U S,
If ¥ = {r,0) =y, then whenever open set O C M, US, with y € O,

there is an open set O; of M; such that
y€ 0 CClp, (O) CON M.
Let
Spp={{r,1/n):(r,1/n) € S, and n > [}.

Because S, is eventually in O, we have S,; U Cly, (O1) € O for some
leN. Let

M= (M US) ~ (U{(BiU{r}) x {l/n} :n=12 . 1})
We may assume Oy C M;. Then
Claus.(01) = Clag(Oy)
= Cly(0y) N M,
C Cly(0) N (M US)
C (Cly(O1) N M) U(Cl(O1) N Srit)
C Cly (01U S, CO.

Let
B = (I‘VI]_ U Sr) - CJMIUS,_(Ol).

Suppose
Yy € ClMluSr(B)-

Because



Cl_:wlusr(B) - {y}
is not closed in M, U S, there is a sequence
S € Clyus, (B) — {u}
which converges to ¢ by 2 of Claim 6.2, Let
S={y,:n€ w}
a. If for each n € w, there is an i(n) > n with yiny € Sr, then we

may assurme
SNS. =0 and ST M,.

Because y € Oy and Oy is open in M), S is eventually in O,. If arbitrary
S, ¢ M, converges to y, € S, then S, s eventually in Q. On the
other hand, if
yo €S and SMS =0,
then vy, ¢ S, U {y}. Because S, U {y} is compact and M, U S, is
Hausdorff, there are two open sets Uy and {f; of My U Sy such that
U Nty =10,
Yy €Uy My and S.U{y} C Us.

Because of

Yn € Clagus, (B)N Uy,
there is a sequence

S, cUnBCU CM
such that S, converges to y, by U, being metric. Because of

UNB=UnNn{MUS)~Claus.(01)),

we have

(UnSn) N0y = 4.



It is a contradicsion.
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b. If there is an [ such that y, € S, foreach n > [, then we may

assume
S={ym neEw} CS
So there is a clopen metric set
Up= (RiU {r}) x {1/i(n)}
for each gy € Sp. Since
Up N{{(MUS:) = Clagyus, (O1))

is an open neighborhood of ¥y, in M, U S, there is a sequence

S, C Uy N({(MUS} = Cligus, (O1})
such that S, € M; and S, converges to . Then

(UnSo) © My and  (UnSn) N0y =0
On the other hand, we have

y € Clanus, (UnSa).
If Oc M, US, isopen with y € O, then
(U,S,) MO # 0.

Let O be open in M, US, with O, = 0N M;. Then

O 0 {(UpSh) = (O N M) N (UnSa)

=0 N (M, N(UyS) = ON{US5.) # 0.

It is a contradiction.
So y ¢ Clar,us. (B) and MU S, is regular.

5. M, U S, contains no closed copy of S, and none of Sa.



Because g, '(y) is compact and M; U S, is regular, M, US, contains

no closed copy of Sy, by Theorem 1.7 of [33]. Suppose that M, U S,

contains a copy of Sy. Let
(UnS,)US" U {y}
be the copy. Ther y = (r, 0) and
(Un(Sp = Sr)) U S U {y}
is a copy of Sy also. On the other hand, let
M =UDU;D ..

be a countable base of neighborhoods of v in M;. Then, in M, 5;,

there is a decreasing open sets sequence
MuUuS, =02 032 ...
such that O, N M; = U, for each n > 0. Since

Yy CIMMSr(Un(S:z - Sf‘))w

then
Op N (U S — S )} # 0.
So
(On = Se) N {Un(Sy, = 5:)) # 9.
Because of
0, — Sp = On N My = U,
we have

Un N (Un(S:: - S’r)) # @

for each n > 0. Pick a

In € Un N (Un(S;;, o Sr))

for each m > 0. Then the sequence



S={z,:ne€ N} QUs(S, - 5)
converges to y. It is a contradiction.
So M US, has a point-countable base by Theorem 2.1. Because
M, U S, is a Ng-space, My U S, is a metric space by Theorem 11.4 of

(11]. 0

Claim 6.3. Y is no compact-covering quotient s-image of any metric

space.

Proof. Let X be an arbitrary metric space and B = U, B, be a o-
focally finite base of X. Suppose that f is a compact-covering quotient
s-map from the space X to the space (Y,7) and

P = {f(B):B € B}
Then P is point-countable and (¥, 7} is determined by cover P (see
also [9, footnote 21). Let
Bi={BecB:Bnf((r0)0Ilor some r € Ry}
and
B,={Be€B: f(B)C M;US, for somer & Ry}.
Since we have proved that ¢ : M — Y is a two to one quotient map
and for
y=(r,0) (r € Ra),
97 () € MLEB(S- U{(r0)}),
then M, US, is a weak neighborhood of 3 in Y by Proposition 5.7. Let

B € Bj such that

BN f~H(r,0)) # 0.



If
r € BN f~Y(r,0))
and
B=U>U; > ..
is a neighborhoods base of z in X, then (f(U5)) | f(z) is a k-sequence.
So there is an n such that f(U,) € M, U S, by Corollary 5.6. Then

(B — B}) U B} is a g-locally finite base of X also. So we may assume

that, without loss of generality, if
BeB and BNOfY(r0))#06
for some r € Ry, then
By C M;U S,
All B in the following proof refer to the o-locally finite base and
P ={f(B):B e B}

(Continued after Subclaim 6.4. )

Subclaim 6.4, Given an arbitrary r € Ry and y = (r,0), let
S, ={y = (r1/l) andl € N},
Ply)={PeP:y=(r,0)€P and |PNS| =w}={P:n€N}
and Fr, = {P, € P'(y) : i < n} for each n € w. Then there is o finite
Fo C P'(y) such that for eachl > n, U{P € F, : y € P} contwns a
neighborhood Uy of v in M, U S;.

Proof. Suppose that for each
Fo={PePy) :i<n}

there is an [ > n such that



U{PeF, y € P}
can not contain any neighborhood of 3 in M, U 5,. Let {0,:ne¢ N}
be a decreasing open countable base of neighborhoods of yin MU S,
such that y, € O, for each n € N,
Let
Fi={Pi} CP'{y)
Then there is an {; > 1 such that y, € P and P can not contain any
neighborhood of 3, in Oy. Let §; converge to v, such that
S, NP =0 and S U {y} C O,
Assume that S, U {y..} have been defined such that
Ly > laey,
Sy N(U{PeF, iy, € P})=10
and
Sn U{y, } C On.
Let
Fort = {P1, Py, ., Pan} CP(y).
Then there is an fopq > I, such that U{P € Fri1 1Yy, € P} can not
contain any neighborhood of ., in M, U S, Let
F'={P € Fn1: Yo, € P}
Then we can define S, such that S, converges to y;,, .,
Spat Ul } COpt and  Spn 1 (UF) =0
Let
S =y, :n € N}
and

Ey = (UnSa)US U {y}.
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Since f is a compact-covering map and £z is & compact subset of Y,
then there is a compact subset C of X with f(C) = Ea. For each
yi; € B, pick an
zi € F i)

Let

S = {z;; 1 j € N}
for each i € N. Then, for each i € N, there is a subsequence

8! = {zym :n € N}
of S which converges to some z; € f™ () NC since

fFUsiu{m ne
is cornpact and

st S ufunC

is infinite. Let

5" = {r;ci € N}
Then there is a subsequence

S = {aipn) N E N}
of $ which converges to some zy € f~'(y) N C since

FHsuyhnc
is compact and

srcfisufyne

is infinite. Let {0 : n € N} be a decreasing open neighborhoods base

of zo in C. Then we may assume, without loss of generality,

iy U{zim } C On

iln
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for each n € N (Otherwise we may take infinite subsequences of S’ and
S (i € NJ). Let

K = (UsSjy) U 8" U{xo}
Then K is compact. Pick a B € B with zy € B. Then there is an ny
with O, < B. So

f(Sigmy U {zsgmy }) € F(B)
for each m > ng by
Simy U {zigmy} € O, C Oy,

Notice that f(57,,,) is an infinite subsequence of Siyy. Then Sipmy N

i{rr)

f{B) is infinite for each m > np. On the other hand, since O, C B for
each n > ng, then SN f(B) is infinite. So f(B) = Py € P'(y) for some

n'. Then, for each ¢ > n’,
Sin(U{Pe Fpiy,€P}) =0
since
Sn(HPeF iy, ePhH)=0
and
Fu C F

Then, whenever i{m) > m > ng +n’, Sipny N f(B) Is infinite. But
Simy N Py = @ since Py € Fy C Fym. It is a contradiction to
#(B) = Pu. 0

Proof. proof of Claim 6.3. (continued )
Let

Ply) = {Pylr P, '":Pyn(y)}
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be a finite collection which satisfies Subclaim 6.4 for each y = (r,0) €
Ry x {0}. Let

P = U{P(y):y =(r,0) € Ra x {0}}.
Then P’ C P is point-countable. We can prove that P’ satisfies the
following condition .

«. If y and y are distinct points of Ry x {0}, then
Ply)NP(y) =0
Here y = {r,0), ' = (+',0) and 7 # r".
In fact, if there is a P € P(y) NP(y’), then
[PNS|=|PNS: =N
and
PC(MUSIN(MUSy)=MU(S NS =M.
It is & contradiction to
MiN(S.US.)=0.
Let
P = {UP(y): y = (1, 0) € Ry x {0}}.
Then P” is point-countable and uncountable by the condition . Let

Q= {IntMluSr(UP(y)) cy=(n 0) € Ry x {0}}

If
y#Y,
then
Intprus, (WP NS =0
by

UP(y) C M UGS,
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Then S, is eventually in Inty,us, (UP(y)) by Subclaim 6.4. So
Intanus, (VPY)) # Intagus, (UP().

Then O is point-countable and uncountable. Because of Subclaim 6.4,
there is an n € N such that whenever { > n, UP(y) countains an open
neighborhood of (r,1/1} in M, U S, for each y = (r, 0} € Ry x {0}, So

Imtanus (WP(y)) — (S U {y}) # 0.
Then

Ity us, (Intanus, (WP ) — (S U {y})) #0.
This implies
O, = Intarus. (Intyus, (UPW)) — 50) # 0
and Oy is open in MU S,. Let
Uy = M, N0y

Then U, is openin M. Let

U ={Uy 1y = (1,0) € By x {0}}.
Then U is a collection of point-countable open sets of M, by U, C
JP(y) for each y = (1,0} € Hy X {0}. Because M, is separable metric,
U is countable.

On the other hand, we notice that:

My D Inty,us, (UP(y) — (Se U {u})
= Intyus, (Intanus, (UPE)) = (5 U 1)
= In'tfwlusr(IntMluSr(UP(’y)) - 5)
—0,=M N0, =U,

Then
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{0y 1y = (r,0) € Ry x {0}}
is countable. So there is an uncountable subset A C Ry such that

whenever we pick r # v/ in A,

Int s, (UP(Y)) — (S- U {y})
= Intyus, (UP()) — (Se U {y}) # 0.

Then O is not point-countable. It is a contradiction. This irplies

Claim 6.3. 0

Question 6.5. [s it possible to find a counterezample to Michael-Nagarni’s

question among regular T, spaces ( or paracompact spaces )?
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