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Abstract

We investigate convergence conditions for a special class of order dependent mappings
which is well known to work for the zero dimcusional and quantum mechanical (quartic)
anharmonic oscillators. We estimate large order behavior of the resummed series directly
and determine under what conditions the serics converge or diverge. From the comparison
of the present results with the previously established sufficient conditions by other authors,
we clarify the origin ol the each condition and of the differences between the results. To
examine a controversial problem, we investgate the 0-dimensional model in view of the

realization of the coefficients of the strong coupling expansion.
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Chapter 1

Introduction

Perturbation theory is one of the most widely used methods to calculate physical quantities
in quantum systems. However, validity of pert urbation theory has been yet along standing
problem since the theory wasestablished. I general, framework of a physical theory is
constructed, at least in the beginning, at the cost of mathematical rigor. However, a
criticism on the validity of perturbation theory already appeared for a realistic physical
problem only a few years after perturbation theory in quantum mechanics [1] had been
established in 1926. For the Stark effect in lHydrogen atom, Oppenheimer claimed, in
1928 [2], that because an electron in the atomic orbit could escape outside the potential
barrier due to the quantum tunnelling, the system could not possess any stationary states
and thus the eigenstates calculated by perturbation theory [1,3] do not describe the
correct, effect of the external field. In addition to this kind of stability problems, question
on convergence of formal power series in perturbation theory has been one of the main
mathematical subjects on perturbation theory for linear operators [4,5]. First important
results on the convergence was established by Rellich in 1930’s [6]. Among the results, the
following is directly connected with what the Rayleigh-Schrodinger perturbation theory

anticipated [4].



Let T{g) be a bounded selfadjoint operaior in a Hilbert space H, depending on

a real parameter g as a convergent powr series,
T(g) = T 4 gTU] + gQTM 4.

Suppose that the unperturbed operator 11 has an isolated cigenvalues X with a
finite multiplicity m. Then, T(g) has exactly m eigenvalues X ;(g) (j = 1 ~m)
in the neighborhood of A for sufficiently small |g|, and these cigenvalues can

be expanded into convergent series,
M@ = A+l 2Py =1~m).

The associated eigenvectors |;) of Tly) can also be chosen as convergent

series,
loi(@) = o™ + gl Pl 4+, (G =1~m),

satisfiying the orthonormality conditions

{pilg)lerlg)) = &,

and where the {n,og-ol) form an orthonornial family of eigenvectors of T for the

eigenvalue A.

As a simple example, let us consider spin-states represented by finite-dimensional her-
mitian matrices such as Pauli matrices. In this case, perturbation series for spin-states
and corresponding eigenvalues have non-zero convergent radius, as far as any matrix el-
ements of the total Hamiltonian are expressed by regular functions near the origin in
the expansion parameter. However, operators in quantum theory, which are defined in
infinite dimensional Hilbert space, are unbounded in general. In fact, the appearance of

unbounded operators in quantum theory is casily expected by the following [7}].



Let P and Q be operators in a Hilbert space B and have an invariant subspace

D inH. If P and @ satisfy canonical commutation relation

L.l =1
in D, then either P or @ must be unbounded.

For the general case including unbounded operators, the notion of analytic families of
operators plays a central role for analyticity of the eigenvalues. Here we omit the rigor-
ous definitions for the analytic families of operators but only exhibit a crucial resultant

property from the analytic family, which is known as Kato-Rellich theorem [4, 5].

Let T(g) be an analytic family and Ey be o nondegencrate discrete eigenvalue
of T(go). Then, for g near go, there is exactly one isolated nondegenerate

eigenvalue E(g) of T'(g), and E(g) is un andlytic function of g near ge.

Therefore, once an operator T(g) under consideration is known to be an analytic family,
above theorem assures the existence of a nondegencrate discrete eigenvalue near that of
the free operator T(0) and perturbation series for this eigenvalue in powers of ¢ have
non-zero convergence radius. One of the useful criteria for 7'(¢) to be an analytic family,

especially in the analyses of perturbation series in quantum theory, is the following [4,5];

Let Hy be a closed operator with nowe mply resolvent sel.  Define H(g) =
Ho+gV on D(H,)ND(V). Then, H{g) is an analytic family (of type A) near
g =0 ¢f and only if;

(i) D(V) D D(Hy).

(1) For some a and b and for all o € D(Hy),

IVl < ali o]l + blf .



That is, if V is Hy-bounded, there exists a unique eigenvalue E(g) of H{(g) analytic near
¢ =0 and hence the perturbation series in powers of g for F2(g) have non-zero convergence
radius. If an operator is an analytic family, perturbation is said to be regular.

On the other hand, a conjecture that perturbation series might be divergent arose by
making use of purely physical intuition. In 1952, Dyson considered the vacuum stability
in quantum electrodynamics under the analytic continuation on electric charge e-plane [8].
In the world e? < 0 where like charges attract. the vacuum would be unstable under decay
into electron-positron pairs and therefore certain singularity exists at ¢? = 0, which means
the zero radius of convergence. Nowadays, this kind of consideration, which is sometimes
called the sign-change argument, is known not to be true in general and sorne counter
examples have been also proposed [9-12]. However, after this siriking conjecture, pertuzr-
bation serics indeed diverge had been shown by Jaffe in 1965 for two-demensional boson
field theories with polynomial self-interactious [13]. In 1968, Bender and Wu investigated
the analytic structure of the energy eigenvalues of quantum mechanical anharmonic os-
cillator (AHO) by WKB analysis [14] and found that the origin g = 0 is really singular
(and surprisingly not an isolated singularity). They also calculated the perturbation co-
efficients for the ground state energy up to 75th order and explicitly showed a strongly
divergent behavior [15]. Then, Simon rigorously proved [9] that most of the conjectures
made by Bender and Wu [14,15] are correct. One of the most powerful tools established
in these studies to investigate large order beliavior of perturbation series is the following,

which (Eq.{1.1) or (1.2)) we will hereafter call the Bender- Wu relation [16,17];

Suppose S(g) be a function obeying,

(i) analytic in {gi0 < |g| < R;|argg| < 7} and continuous in the closure of

this region,

(i) S(g) has 352, clPig? as asymptotic series for g | 0.



One then finds,
dpp?™ DiscS(—p™") + 8, (1.1)
with
15, < Caer,
where C is a constant and
DiscS(—p~") = 131101[5(—;5“‘ +ie) = S(—p" —ie)].
Especially, if R = oo, that is, S(g) is unalytic in the cut plane,

—1}yrtl peo
PR (_)__/ dpp” ' DiscS(—p ™). (1.2)
2y Jo

With these relations, one can obtain large order behavior by calculating asymptotic be-
havior for g T 0 of some nonperturbative quantity related to quontum tunnelling. This
method was widely applied to variants of AHO {16-19,21], to the Stark effect [20,21] and
so on, and clarified the general feature of factorial divergence of the perturbation series.
I+ also turned out that, in addition to the AHO, many examples of interest in quanturn
physics, such as the Zeeman and Stark effect in hydrogen atom, don’t fit into the scheme
of regular perturbation theory mentioned earlier. Therefore, the analyses ol the nature of
perturbation series, e.g., asymptoticity, large order behavior and so on, have been done for
each specific model Hamiltonian ofien without abstract operator theories. For references,
see Ref. [22].

The analyses of analytic structure and large order behavior provide another important
direction on research, that is, summability ol the perturbation series. The research of
this direction is based on the belief that onc can well define the sum of these divergent
perturbation series as in the case of conditionally convergent series. Indeed, with the aid

of the knowledge obtained by the analyses on the quartic AHO, two methods are proved
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to be summable for the perturbation series for the quartic AHQ; Padé approximation [23]
in 1969, and Borel summation [24]in 1970. ‘I hese methods had been already employed to
calculate physical quantities [25] and some sulficient conditions for uniquely defining the
sum have been established; Stieltjes theorem for convergence and Carleman’s condition
for uniquness in Padé [25], Watson-Nevanlinna theorem for Borel summability [26]. Once
one knows that one of the sufficient conditions is satisfied for the problem concerned,
the resummation provides a more reliable tool for calculating physical quantities than
any nonperturbative methods; the latter ones are often known to work quite well for a
specific problem but one cannot rigorously judge, in general, their validity, correctness and
limitation of applicability in both qualitative and quantitative aspects. Of course, to get
the information on the summability for each case is itself non-trivial problems, but apart
from this kind of difficulty the two methods above have their common disadvantages;
since the methods are essentially the summation at the neighborhood of the origin on
the complex expansion-parameter (coupling constant) plane, they are only valid for weak
coupling regime, or provide so slowly convergent approximants in strong coupling regime
that one must calculaie hundreds of the perturbative coefficients to achieve satisfactory
results.

In 1990’s, there have appeared several papers which prove the convergence of the new
resummation methods for some specific problems [27-33]. The methods are called the ¢
expansion (DE)! and order dependent mappings (ODM). As far as we know, these meth-
ods were explored to obtain accurate results for the eigenvalues of quantum mechanical
(quartic) AHO around the end of 1970’s by scveral authors [25,34]. One of the significant
features is that, in spite of simplicity of the method, it provides quite accurate results for

wide range of the coupling constant even at the lowest order perturbation calculation.

!There are many equivallent methods to the DE bud have different names such as variational pertur-

bation, renormalized perturbation, optimized perturhation and so on.

-1



However, the DE methods have sufficient rcasons that they do not look like niore than
an art. One of the reason will be too wide arbitrariness that the method possesses. In
terms of the DE, one will choose a solvable frec Hamiltonian with artificial parameters such
that this describes the full Hamiltonian under consideration as close as possible. However,
there is no criterion that can judge the closeness of two Hamiltonians. In addition to the
arbitrariness of the selection of a free Hamiltontan, there is another freedom in the method,
that is, the way to fix parameters introduced artificially. Since there is no definite principle
such as a variational principle in the DE, some plausible criterions such as the fastest
apparent convergence (FAC) [35,36] and the principle of minimal sensitivity (PMS) [37]
are often employed to determine the values of the artificial parameters introduced (see
also, Appendix A). Hence, it will be inevitable to arise such a criticism that there may
always exist a set of particular Hamiltonian and specific values of parameters that can
lead us to obtaln accurate approximations cven at the lowest perturbation calculation.
Therefore, the lack of guiding principles to delete the arbitrariness has been one of the
crucial defects of the DE. Indeed, few examples are known to succeed as greatly as the
{quartic) AHO although the method has been widely applied to various models. For
recent teferences, see, e.g., Ref, [38,39].

The ODM, first proposed by Seznec and Zinn-Justin [35] in 1979, on the other hand,
provided the mechanism of why the DE for AHO in 0-dimension and in gquantum me-
chanics succeed. Actually, they first began with the DE and constructed the ODM as a
generalization of the DE by detecting the fact that the essence of the DE consists in the
change of the expansion variable via a certain transformation. In view of the ODM, the
selection of a free Hamiltonian in the DE corresponds to the choice of a transformation
from a original expansion variable to a new one, and the success of the method is found to
rely on the compatibility of the mapping and the analytic property of a quantity concerned

as a function of the expansion parameter. Although their analyses were not rigorous, their
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conjectures are almost supported by the recent convergence proofs [27,31-33].

Another important consequence of the convergence proofs is about the choice of the
artificial parameters. In the analyses of Ref. [35] and [27,28], the authors rely on a specific
criterion (the FAC in the former and the PMS in the latters). However, it was eventually
recognized in Ref. [29,30] and [32,33] that the essential point for the convergence is not
on a special condition for determining the parameters but on the order dependence of the
parameters adjusted. One can see in Ref. [32.33] that the convergence can be achieved
in a certain region of the parameter space while a condition like the FAC and the PMS
picks up only finite points for the criterion on the choice of the parameters. It was also
argued that the FAC criterion (with the largest module) leads us to just the boundary of
the convergence region [32] and the both of the solutions of the FAC and the PMS would
be in the convergence region as far as the region exists [33]. These features are preferable
in both theoretical and practical points of view. Theoretically, if the method would prefer
a specific condition strongly depending on a physical quantity and a model Hamiltonian
concerned, the method might lose its universality in applications and would be nothing
more than parameter fitting. Practically, it becomes more difficult and cumbersome to
caleulate a condition and solutions of the condition increases in number, as the order
of the perturbation increases. The above features of the method suggest the following
strategy; for the lower order calculations (at most 3rd order) one would invoke either
the FAC or the PMS condition; for the larser order, one might only assume the order
dependence with an initial condition suggested by the calculated lower order results and
need not solve optimization conditions any more.

In this way, the series of the convergence proofs have compensated the defects of the
method to great extent. However, one would like to know about general convergence
conditions independent of specific models or quantities rather than a convergence proof

itself for each special case. In this regard, (iuida et al. [33] have established sufficient

Y



conditions for convergence of a special class of ODM (which we will call type AHO, see

chapter 2). The main result is stated as follows.

Theorem 1. Let a function S(g) be given such thai,

(I) S{g) is analytic in the complex g-plane cut along the negative axis, con-
tinwous on the lwo edges of the cul aund behaves as S(g) ~ g° for|g| — o

in the cut plane.
(IT) S{g) has 372, Plg? as asymptotic series for g |0,
(ITIL) The discontinuity of S(g) along the cut behaves as
, e e a
DiscS(—g) ~ 2iSpg™ exp (_q_lﬁ) forg L O, (1.3)
with Sp a constant, a > 0 and 0 < b < 2.

Then, the sequence {S™M{(pa)ty with S™(py), constructed by the ODM of

type AHO with restriction
T<a<2, (1.4)
converges to S(g) as N - oo, uniformly in each compuct subset of the region

1
‘SRgU’a

=0, (1.5)
if the positive parameler p is scaled as
pn o~ p N (1.6)
with
b< vy <a, (L.7)

where py is independent of q.
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This theorem is indeed preferable in that it does not invoke any specific models but only
needs some information about the analytic properties in the cut plane of a function under
consideration. The establishment of a general theorem on summability like the above
indicates that the QDM stands not only as one of the useful technique for calculations
but also as one of the summation methods comparable with Padé approximation and
Borel summation. But the applicability of the above theorem is rather restricted. One of
the reason of the limitations comes from the upper bound 2 for «, Eq.(1.4). Fulfillment of
the condition requires b < «, which results in the restriction on b, that is, b < 2. On the
other hand, under the assumptions (I)-(III) above, large order behavior of perturbation

series reads
M|~ (BN, (1.8)

with the aid of the Bender-Wu relation Eq.(1.2). Therefore, the restriction b < 2 means
that the theorem above can be applied only il the series grow strictly slower than (2n)!.
Thus, one cannot judge if the ODM of type AHO can correctly sum perturbation series
of, e.g., sextic AHO (b=2). So, if the restriction o < 2 is not only a sufficient but also
a necessary condition, it should be said that the validity of the ODM, at least of type
AHQ, is too restrictive,

In this thesis, motivated by the above considerations, we carefully investigate the con-
vergence conditions, especially with concentration on the a-dependence. For this purpose,
we take a completely different approach from that in Ref. [33]. In the latter, the sufficient
conditions have been obtained by the use of an integral representation and its estimate.
In this thesis, we directly investigate the resummed series and examine whether the se-
ries converges or diverges in a certain condition. Although the convergence of the scries
does not always mean the convergence to the true answer, this approach can clarify the

structure of the resummed series and the mechanism of the convergence or the divergence
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more apparently than the one based on an integral representation. Furthermore, from
the examination of both the convergence and the divergence, we can establish the neces-
sary and sufficient conditions for the convergence, which play complementary roles to the
sufficient conditions for the convergence to the true answer.

The rest of the thesis is organized as follows. We first summarize the method of ODM
in chapter 2. Not only the direct resummed series expressions but also some integral
representations which were employed for convergence proofs are exhibited both for general
case and for the type AHO. The relation belween the representations is clarified. The
analyses on the resummed series are made in chapter 3, which constitutes the main part
of the thesis. In chapter 4, the analyses in chapter 3 are reexamined in the case where
a convergent strong coupling expansion exists. To confirm our analyses, illustrations on
zero-dimensional models for which analytic controll is almost available are performed in
chapter 5. In chapter 6, we mention the §-expansion method of mass-renormalized type
and disscuss the validity and limitations of it in view of the ODM of type AHO. Discussion
and summary is given in chapter 7. In appendix A, the optimization conditions are
surnmarized. In appendix B, the result of Rel. [33] for the boundary of the convergence

region v = b is represented.



Chapter 2

Order dependent mappings

The order dependent mapping method [35,40.41] is based on a change of the expansion
parameter. One starts from a conventional perturbation series in powers of a variable g

for a physical quantity S(§)
S5 =3 Mg, 2.1)
p=0

where and hereafter the symbol tilde is employed if we would like to stress that a quantity
in an expression must be scaled to be dimensionless. Otherwise, whether a quantity is
dimensionless or not is not so important or frivial.

One then transforms the expansion variable ¢ to a new variable A by a conformal

transformation
g= pF{}), {2.2)
where p is an adjustable positive real paramcter and £'(A) satisfies
F(A)y~X for A—0. (2.3)
One then expand in \ aside from a suitable function f(A}),

S(0) = SV Y. PEI(pN, (2.4)

s=U

13



where PP(p) are s-th order polynomials in p, as far as f(A)} is regular at the origin
A = 0 and the condition Eq.(2.3) is satisfied. Indeed, this can be shown as follows. The

procedure above immediately reads

$(o) = £ f: f-ff‘?pp%});. (25)

Applying the Cauchy’s integral formula, one gets

. e 2 dw F(w)y
S{p) = f()‘)z}‘szc[’)]ﬂp - %ws_“l'(lf%t—u—)—’ (2.6)

s=0  p=0
where the integration countour Cj encloses tlie origin such that any other singularities
involving in F(w) and 1/ f(w) are outside the countour. Then, if f(A) is regular at the
origin and the condition Eq.(2.3) is satisfied, the pole at w = 0 of the integrand is of order
s+ 1 — p and thus the summation with respect to p terminates up to p = 5. As a result,

PFl(p) becomes s-th order polynomial given by

dw  Flw)

PR = S el LACOiSS 2.7
(p) pz_%p @ i () (2.7)
E} S$—p p
= > prc? | 47 Flw) : (28)
o (s — p)tdw =P w? f{w) |, _,

The N-th order approximation S™ in ODMI is obtained by truncating the power series

in A of Eq.(2.4) at the order NV and the parameter p is fixed order by order

$™(px) = fAn) 2 PP (pr A (29)

520
Note that for a given g, the value of A becomes also order dependent through Eq.(2.2)
in accordance with the order dependence of p, see Eq.(3.8). The essential and difficult
problems in ODM are the choice of the mapping F()A) and prefactor f(X) which should
be compatible with the analytic structure of S(g). For the quartic AHO in 0-dimension

and in quantum mechanics, it was proved [33] that the choice

F(A) = (1?)\/\)_‘; T(A) = (lej\)—(, (2.10)

11



with suitable choice of the indicies a{> 1) and & can lead to convergent sequence SIN)(py)
to the exact answers. In the case of the above choice Eq.(2.10), which we may hereafter

call type AHO, N-th order approximation can be calculated directly and is expressed as

$1(p)

i

1 > [ pNﬁp (a’p - 0)7‘ T
Aoy 2 Z« HpA) Z A (2.11)

- ey P e (212)

(s —p)!
where (a), is the Pochhammer symbol for stifled factorial

e + n).

] (2.13)

(a)n =

If S(g) satisfies the analyticity condition of (1) and (II}, the Bender-Wu relation Eq.(1.2)

can be substituted and one obtains

o l al 5 [_U E
§M(p) = T Z/‘\ [C[oz 5!)
+z (—ay———-ﬁ—z/ d,u( w)~DiseS(—p) (2.14)
(s—p)! Jo 2m ' '

This expression can be also obtained with recourse to the Cauchy’s integral formula.
Under the analyticity conditions of (I) and (11}, the following once-subtracted dispersion

relation holds [9]

- _ {9 dg’ DiscS(y |
5(9) = c[O]+gf_ f";'z'_—"_g,(g,f‘ai (2.15)
) / o g_ 2.16
P4 1)1305 )l T g (2.16)

One then substitutes the transformation Eq.(2.2) in the variable ¢ in the integrand and

applies the Cauchy’s integral formula, yielding

1 s -y __PE(A)
F(A) ﬂﬁjo ’mDIS Sl )1+upF()\)]

N [C[O} S f G i)

= Co 2mi wstt

56 = FO)

dw fg w)

+/ ""—“DLSCS Z jgcg St

(2.17)




where

Oy L e
flw)’ falw) Flw) 1+ ppFlw)’

and the integration contour Cy encloses the origin and not any singurarities of fi(w) and

(2.18)

fi{w) =

f2(w). The N-th approximation is given by terminating the power series in A at the N-th

order in Eq.(2.17),

dw fi(w)
[jV _ s | 0] g

S g)\ [ oy 2y wstl

dw f(w)
—D S{=p — : :
+.[ fseS(=p) Co 2w witt (2.19)
For the ODM of type AHO, one obtains
-~ 1 Y du (1 —w)?
SN SR S T D (¢) B Skl e
() {1 - )\)" SZD [C o 270w Fl

L pl—wy
_D S j£ 1 . 2.20
+] 15C ) Co WF (17 _ w)a - ﬂp'w} ( )

1 dew 1 — (M w)N+?
[0] ekt AT i Y S TR
(1~ /\)a [‘ e )
) . A YR ! - o
+] —DlscS mdﬂl (A w) -pw(l w)
¢y 271 w—Ai (1 -w)*+ ppw

Co 27]'?,

l L (2.21)

This integral representation is the ODM version of the equation, which Guida et al.
analysed as the starting point the convergem'.o of the § expansion for the eigenvalues of
quartic AHO (@ = 3/2, ¢ = 1/2, see chapter 6) in Ref. [32]. If one further expands
the integrand of the second term in powers of p and formally interchanges the order of

integration and summation, the series terminates at finite order and finally one obtains

1 N dw (1 —w)”

§$N(p) = BT SN lciol f%o Y e

s=0 Ty 2T

duw (1 —w)’ =P
E - p—i _m,_ 97
* p fo 2m 4 l)!SCb( " )ﬁ 2mi wHl } -

Calculus of residues yields

dw (1 —w)7 1 A5

Pt — o—ap
Co 271 wiFEP (s —p)dws—r

_ (@ =)y (2.23)

|- — »
( w) w=0 (3"“}))1

then the expression Eq.(2.12) can be obtained again.

16



Chapter 3

Analyses of convergence conditions

In this chapter, we analyze the structure of the sequence {S™l{pn)}n constructed by the
ODM of type AHO Eq.(2.12). To investigate the convergence of a sequence {Sy}, it is

sometimes convenient to study in terms of the series,

N
Sy = Z (n-

n=i)

So, the quantity to be estimated here is the following,

av = SM(pn) = Sy _y), (3.1)
If the arguments of the two terms in the right are the same, this quantity is simply
obtained by Eq.{2.12) as

N Hap — )Ny
§: _—-—P. 3.2
lw/\ ZC TNt f (32)

ay =

It turns out that the effect of the difference on the arguments is so small that Eq.(3.2)
with p = py well approximates Eq.(3.1), as we will see below. If SN pa_y) is subtracted
from and added to ay and one applies mean value theorem (under the assumption that

pn 1s monotone with respect to V), ay reads

an = S[N](pN) _ giN](pN_1)+ S[N](J,,‘\,_i)_ S[Ngl](pN_l)

8 .
= {pn — pN-l)-a—ps[N](mea) + SMipy_y) — SV ) (0<8 <1).(3.3)

17



The each term of the r.h.s. of Eq.(3.3) can be caleulated as

9 Ao\ i
2 ol — hali = M
2o = (F) s

N N
—~1 )‘ )\1 iC{p] (O{p e O-)N*IH*I }?\ (3.4)

=7 L4 (a— 1Al = Ay 2= (N —p)!

N N ‘
Yy mlop ol (3.5)

S[N](p) - S[N--l](p) = (l . /\in (N . p)| 3
| .

where Fq.(2.2) with (2.10) has been used. Therefore, one gets

_ )\Nl (o) \&P — T)IN—p (ap 0)&,
WOT )y Z (N —p)! T P

— N
PN T PN AN -0 Ofp 0' N-p+l p .
- e —g 3.6
pn_g L+ (a—1DAn_g(l — ,\N Z= ST Phi-gs (3.6)

which involves only one summation symbol in each term.

Next, we assume the order dependence ol py for large N. If py is scaled as
pn ~p N7 (7> 0, py>0), (3.7)

where p; is a positive real constant independent of N and g, the corresponding order

dependence of A follows, from Eq.(2.2) with (2.10), as

I/a
Ay ~ 1 — (ﬂ) N (3.8)
g

By the use of Eqs.(3.7) and (3.8), one can estimate the leading behavior of the prefactors

outside the summation symbols in Eq.(3.6);

py —pN-1 1 (1-1/N)"
PN-6 (1—8/N)—

o
[1 - (ﬂ) N gL jl
g

[1+ o), (3.10)

-—%[H()(N*l)}, (3.9)

AN_§
1 -+ (Of - 1)/\]\7_6

1/ox
o1 E,l_) Novle o
o g

Rl— 2|

18



B

—(i)wh’”/“ 1+ O(NT! 3.11
=1 [1roN), (311)

L [(m Y gy
= o) Kg) o }

/o a5 —v/a
—_ .'?l /o 1 - .ﬁ —2vfex
( p ) N ( N) + O(N )

1/(}‘
- (fi) Nlmr.v’a + O(N"W")’
g

In A%__g ~ N

hence,

1,"0'.
AN—j ~ exp [— (ﬂ) Nl‘"”“} : (3.12)

g

where 8 above denotes either # or 1. From these results above, the estimate for ay now

g o fo p 1/e
ay o~ (_) N exp _(ml_) N1-v/e
1 g

X Z plN ;) [(QP — )Ny — %N_l(ap — O)N-pt1]- (3.13)

reads to

Furthermore, since

f\f _
(ap— o)y = =N Yap = 0)N-pr1

~ a—1 yo ,m1) P
o ] — S — A, + =N - - A, = —,
(-1 2+ By ap-owy M=

the summation in Eq.(3.13) can be approximated as

N c[”}(plN"’V)P

>

[(ap —0)N-p— gN“‘(aP - 0)N—p+1}

p=0 (NMP)'
07 a—1 ) N ol Ar- (ap — )Ny
~{l—=— A Plp N7 )P 0 <@ <N).
( o e Be) L N TR (@<
Then, one yields
1/ .
ay ~ Const. x go"aNcW/“ exp {M (&) NI x PNl (3.14)
4
where
N 0
PN — 3 i N plor— ol (3.15)
p=0 (‘F?V _'P)'
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and ‘Const.’ above and hereafter denotes a quantity independent of N and ¢. Note that
PIM is independent of g. Therefore, one can judge the convergence of the sequence 5y,
in the region

1 .

If v < «, the exponential term in Eq.(3.14) tends to 0 faster than any linite power of N
in the region Eq.(3.16). Hence, for v < @, the sequence Y- a,, is convergent in the region
Eq.(3.16) if PIM hehaves at most as a finite power of N for large V. On the other hand,
if ¥ > o, the exponential term in Eq.(3.14) tends to (or equals) 1 for any complex value
of g. Hence, for v > a, the sequence §_ a,, diverges for any complex ¢ unless PW tends
to 0 faster than N~"/* at worst.

Next, let us look at a-dependence of ax. Apart fromn the exponential term in Eq.(3.14),
the only essential dependence on o consists in the Pochhammer symbol in the summand.
So, to clarify the a-dependence, we would like to represent asymptotic behavior of the

summand by the proper use of the Stirling formula.

(a) For p < N, the factorial term in the summand behaves as

(p—)wy 1 P(N+(a=lp-o) ~ yere-t .

(N —p)! - [Nap —0) [(N-p+1) Diap—o) "

(b) For j¢| = |[p - NJA| < N; 1 < A~ O(1},
(ap—0O)N-p r (~—+——"1 /‘;"IN 4+ (a—1)g — o*)
(N —p)! T (%J\' + ag — cr) T (-A;—IN — g+ 1)
~ Const. x N'lBl(G)N/ABz(a)q; (3.18)
with

(et A=\ (ot A- N ﬂ(a+f1-"1-)”(a+A—l -

Bl(a)_( o ) ( A—1 ) Bile) = « A—1 ) '
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(c) Forg=N—-p <N,

(ap = )n-p _ _L_F(aN —{o—1)g- a) _A{aN)
(N - p)! ¢ TlaN —ag—o0) g

(3.19)

From the analyses above, one can see that strong dependence on « for large N would
arise from lower p of the sumnmand, (a).
Let us come back to estimate the PV The assumption (I11) tempts us to decompose

the discontinuity of S(g) as,
DiscS(—p 1) = 2iSpuexp (Aa,ul"b) + D{p), (3.20)
where

D{(p) ~ pexp (_aul/b) x O™ 1) for p — Oy

Then, the application of the Bender-Wu relation q.(1.2) reads ol = c[fJj + cg)] with
Sph Ly?
Rk (ﬂ_b) [(bp + be), (3.21)
Ta’e a
oo ‘
o [ o, -
A

where
!c[;]t = ‘c[lp]\ x O(p™') for large p.

That is, ¢; denotes the leading asymptotic pait of the perturbation coefficients while ¢,

denotes the remaining moderate part. Thus. the contribution of cg”] for large p need not

be considered or, alternatively, c[zp] can be assumed to be bounded, that is to say,

sup lc[gp}’ = (") < oo. (3.23)
P

and hence one obtains PV = ‘PIEN] | PEN] with

P~ Const X%(,_ﬂ_l,\-ﬂ)p[,(b + 4oy (27O
= A PR )t

N N b 9
= Const. X (W%Nw’) Zl{‘l (WF—N") (3.24)
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where
J, = T(bN +bc—bg}(aN — 0o — ®q)qs (3.25)
and

N
P S ey
2 ;:% 5 (m ) (V= p)!

N [N-4]

= (N G (aN — 0 — ag), (E> : (3.26)

To facilitate the estimate of these quantities. we approximate the factorial terms with

more tractable functions. First, we write

i o k .
e — TNg o v ‘
(N — o — ag), = (aN) ;Llo (l N Aq + aN) : (3.27)

The following inequality holds by considering quadrature by parts,

w11 /(aN) 1 o k
dzl | e / , .28
/ x nm<ﬁ§)aN n(‘a N AQ+alfV) < g drlnz, (3.28)

zo—1/{aN)
with

a—1
ﬁlli[" d

— — A, - — 3.29
alN o T anN ( )

g — 1 - Aq -
Then, one can obtain the following approximations,
R a k
— Y In{l—— A +—
N Z ( aN o aN

—1 —
N[u‘* Aq]ln(l——aaIAQ)—(lqu)ln(l_Aq)ﬁq, (3.30)

(83

or

ol a k a -1 N -(e=1)e
] — = = Ay 4 == ~ (1~_ A) — A )oNTae=9(3 31
1}30( ().’N q + QN) o q (1 AQ) € (3 )

- ~(a-1)g
N (1_“ 1Aq) (1—A,). (3.32)

o
Thus, combining Eqs.(3.27) and Eq.(3.32} reads

a—1

(¥

R
(aN — o — ag), ~ (aN)’ (1 _ /_\q) (1 — A, ). (3.33)

22



The similar procedure for I'(bN + be —~ bq) reads
(BN + be — bg) ~ D(ON + he)(BN)TH(1— A,)7*7. (3.34)
Substituting Fqs.(3.33) and (3.34) into Eq.(3.25), one obtains

N N q
IV t.x I (_BLI\‘—’*)E I (o i 335
P Const. x ['(bN + be) = ;20 A\ N ) (3.35)

where [, is a moderate part in the change ol ¢,
-1 —lo—1)y
I, ~ (1 - LA ) (1 A=, (3.36)

Alternatively, more rough estimate with more tractable form can be obtained as follows.
Since 1 4+ z < ¢ for arbitrary z % 0, an upper bound for the right hand side of Eq.(3.30)
is yielded as,

AJa  a=1,, Dy
1 — A at Y«
_a-— 1 q

= (3.37)

rhs. < (1-4y)

On the other hand, the use of the inequality 1 +x > e/ 42} for any # > —1 gives an

lower bound for the right hand side of Eq.(3.30);

O’"*‘l _{a—lA At
e > (1= S ) T = (- A=A =

q
= (3.38)

Thus, combining the resultant Eqs.(3.37) and (3.38) reads to the following estimate;

exp ( ) I_] (l — e — A - a—f;\f_) < exp (—%——1%{") (3.39)

Similarly, for T(bNV + bc — bg) one obtains

I'(BN + be— bg)(bN 17 &
, 3.40
1< (6N + be) <explby (3.40)
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Finally, the estimate for J, becomes by Egs.(3.39) and (3.40)

J(bN )b 1N :
—ag —agq? /N < q < (b41/a—1)* /N < (b+1/a—1)g
€= I'(bN + be)(aN ) ¢ ¢ ’
from which one yields a rough approximation

J,(bN )
L{bN + be)(aN )¢

' 1
= 949, (—a <O, <bt - l) .
[83
In this case, one obtains instead of Eq.(3.35).
PN Const. x TN + 1) (=2 N 34
) onst. X ['(bN + bc) - > A

with

From the above, one sees

A Nity=h

Zetll - Const. % — < Const. x NP

A,

Thus, if 4 > b,

N N-1 N

S A, ~lAxl £ X 1Al < (AN D N

q=0 g=0 p=1
1 — N-NbO-b)

= jAN]| VO e,

1 — N—l-tb)

that is to say,

~lAn] % [1+ O(N=0-M)].

N
oA
g=0

(3.41)

(3.42)

(3.43)

(3.44)

Therefore, if ¥ > b, the contribution to Pl[N} is domimated by the summand with ¢ = N

and from Eq.(3.24), one obtains

P~ ——(“;,)N ~ N7
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As has been mentioned earlier below Eq.(3.16), the convergence can be achieved if PN
behaves at most as a finite power of N for large N, as far as v < «. Thus, the contribution
from P is convergent if b < v < e

On the other hand, if v < b, each term in the summand Eq.(3.44) can be comparable
with each other. So, if one further approximates Eq.(3.26) by neglecting the ¢-dependence
of ®,, say, @, — 0 and notes the relation

Nz .
E'“ = EZQ(,\' -+ 1,2’), (347)
g=0 1*

where Q(a,z) is the normalized imcomplete gamma function defined by

I'
Qla, 2) = (a z) - / dte™t, (3.48)
(a)
the estimate for Pl[N] eventually becomes
PV~ Const. x N*~1/2 exp (=B, NH74) gY NN (N 4 L, =B N ) | (3.49)

with

B =50 B ="—. (3.50)

From Eq.(3.49), one immediately knows that if ¥ < 4, the dominant behavior is N7
and thus strongly divergent.

In the case of v = b, Eq.(3.49) becomes
PI[N] ~ Const. x N*7'2Q(N +1. —BQN)GXP[UH By — BQ)N]- (3.51)

For the careful treatment of Q(a, z) with @ ~ O(z) large in the case, we must invoke
the uniform asymptotic expansion Eq.(5.25). which is also valid for larga] < ™ and

|arg z/a| < 27 [46], see chapter 5. The resultant convergence condition is

b b @
o (m p1+ bln ;) < a“bf . (3.52)
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Therefore, the convergence depends on py if 7 = b. The situation is similar to that of the
result in Ref. [32,33], see Appendix B. However, our result involves a parameter ©@ whose
precise estimate is difficult in our approach, and thus the precise bound for p; cannot be
obtained here.

The estimate of PQ[NJ can be made by the same way. From the assumption Eq.(3.23)

and the bounds Eq.(3.39) one obtains

N g
|P2[N]‘ g Cg(plN_’Y)N Z h ("‘”a@_):“\ l+'¥) , (a <& G); < O:) . (3.53)

As has been seen in the analysis of Pl[N} for o > b, the dominant contiribution of the right

hand side of the above comes from the summand with ¢ = N for 4 > 0. Thus, one yields

‘sz| ~ IC[QD]I —-M(ﬁ;!)‘\" ~ N7 (3.54)

which assures convergent contribution to ay under v < a.

Summarizing the results in this chapter. the sequence SWlpy) constructed by the
ODM of type AHO is convergent in the region Eq.(3.16) (but not assures the covergence
to the frue answer) under the assumption (Ij-(II1) in Theorem 1and v < o if and only if

either of the following condition is satisfied;
(A) v>b
(B) v = b and py lies in the region like Eq.(3.52).

If one compares the result with those of Theorem 1, one immediately finds that the
condition on ~ is completely the same (see, Ka.(1.7)) while the restriction on « like Eq.
(1.4) in Theorem 1 does not appear here. The situation is completely the same in the
case of v = b, see Appendix B. Therefore, in view of mere convergence of the resumrmed
series, the restriction on a only comes from 0 < b < a, at least in the region Eq.(3.16). In
the next section, we consider the convergence outside the region Eq.(3.16) in connection

with the existence of a strong coupling expansion.
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Chapter 4

Strong coupling expansions

In Ref. {33], Guida et al. proved that the convergence region in g-plane can be extended
to wider region than Eq.(3.16) if there exists a strong coupling expansion for S(g) with

non-zero convergence radius. The result is stated as follows.

Theorem 2. Let S(g) be given whick satisfies (I)-(IlT) in Theorem 1 and more-

over:

(IV) 5(g) possesses a large g expansion

S(g)=4¢° i dW(g=T) (4.1)

p=0

which converges for |g| > go and there crists a positive integer k such that
br < k < 27 (4.2)

Then, the sequence {S™M(pn )l g} with S (pn), constructed by the ODM
of type AHO with o = k/7 and o0 = g, converges to S(g)/g* as N — o0,
uniformly in each compact subset of the region (including g = 00

1 1

] -1
?R—-#mcos (O
Fo

(8

7 7) >0 (4.3)
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for any choice of scaling Eq.(1.7) of the positive parameter py = p1/NT with

g independent of g.

In this chapter, we consider the above theorem from a viewpoint of the present analysis.
This might reveal further insight into the structure of ODM and perturbation series itself.
Needless to say, the present result does not contradict with the above theorem since it
states about convergence or divergence only in the region Eq.(3.16) and not at all outside
the region Eq.(3.16). One of the significant points is that, in the expression of the behavior
of ay, g-dependence exists only in the prefactor outside the summation symbol. (Note
that p is independent of g.) If we consider the scaled quantity S(g)/g° and SW(p)/g°

and choose ¢ = ag, the g-dependence of the hehavior of ay only exists in the exponential

exp [w (%) . .-vlﬂfa} . (4.4)

From this fact, one can easily construct sufficient conditions for convergence of the series

term,

S a, outside the region Eq.(3.16), as follows:

(i) Convergence on the whole Riemann surface of ¢ can be achieved if the large order

behavior of PIM in Eq.(3.14) is like,
P~ AN g > L (4.5)

Note that in this case, the condition 4 < a is not necessary at all. On the other
hand, if Ag depends on a, the condition Ag > 1 may lead to the restriction on «v. If

this is the case, the convergence conditions involve a certain restriction on o in the

whole Riemann surface of ¢ including the region Eq.(3.16).

(ii) Convergence in a region like Eq.(4.3) can be achieved if the large order behavior of

PWlin Eq.(3.14) is like,
PN AN A > (1.6)
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oo o N
~ oxp (—Azpy N)~ (14 Agl) T Az >0 (4.7)
In this case, the convergence region for - < a becomes,

1
R

.gUa+A2>u (4.8)

Contrary to the case (i) above, a-dependence of Ay (or A;) does not immediately
lead to a restriction on the convergence conditions. If Ay <0 for some o, Eq.(4.8)

only shows narrower convergence region than £q.{3.16).

The resulting region Eq.{4.3} in Theorem 2 therefore means that if there exists a strong
coupling expansion like Eq.(4.1) with convergence radius g5, P decreases like or faster

than Eq.(4.7) at large N with

1 =1
Ay =~ <os (ﬂ ﬂ') . (4.9)

Note that A, in this case does depend on a and the condition A; > 0 leads to o < 2,
which is the same as the restriction in the necessary conditions of Theorem 1 and 2.
However, as has been just stated in (ii) above, the violation of @ < 2 only results in
Narrower convergence reglom.

Now, let us come back to the analysis in chapter 3 and remember that contributions
from large p in the sum to PN decreases rapidly for the convergent case v > b. Then,
it is apparent that one needs to have much informations on the lower order perturbation
coefficients if one would like to obtain an estimate like Fqgs.(4.5) and {4.7). On the
contrary, one only needs to show that the leading behavior of PI¥ is at most finite power
of N ( and indeed it is the case for v > b) and does not need to know the decreasing
behavior from the leading term like Egs. (1.5) and (4.7}, it one does not consider the
convergence outside the region £q.(3.16). The importance of lower order perturbation
coefficients rather than higher order ones is also expected if one observes that Fq.(4.3)

does not depend on the parameter b which is related to the large order behavior.
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The above disscussion thus indicates a strong connection between existence of a strong
coupling expansion and lower order behavior of perturbation coeflicients. It scems a bit
strange, if one is reminded of, for instance, the fact that the existence of a strong coupling
expansion in the quantwm mechanical AO can be proved by the only use of Kato-Rellich
theorern and Symanzik’s scaling relation [9). On the other haud. the Bender-Wu relation
£q.(1.2) tells us that the perturbation coeflicients are uniquely determined under the
conditions (I) and (1) if we know the function 5{g) on the cut completely.  The full
knowledge of a function on the cut means, in principle, that we also know the function
on the whole Riemann surface by the uniqueness of analytic continnation and thus the
existence of a convergent strong coupling expansion. The Bender-Wu relation also tells us
that contribution from larger negative g becomes more important il one considers lower
order coeflicients. T'hrefore, the knowledge of lower order hehavior of perturbation series
for a function S{g) is strongly connected with the knowledge ol analyticity of the function
for large ¢ region.

The connection mentioned above is further confirmed by the fact that the stroug
coupling expansion can be represented solelv by the original divergent perturbation co-
efficients.  Although it was shown that representations can be obtained not only by
ODM [33,42] but also by the other methods [+3,44], the procedure by ODM seeis
simplest among them. Especially, the procedure in Ref. [33] with the choice stated m
Theorem 2 with k = 1 is quite simple and here we follow it. Let start with a resuimmed

expression Eq.(2.11) with a = 1/7 and 0 = /7,

SN = S Bl (n AP VZI (pf7 = s/7)e ) (4.10)
’ N {i o /\)(;/T p=0 oY ge=() T'[ - .
One then substitutes an order dependence for A of the form
Ay~ |- %‘i (on ~ pn) (4.11)
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to obtain

r

5N N— . " AT
M (oy) = (_(L) Y g, E:P (p/7 —‘x/r),. 3 (:!(_“{l;;1 (fl) . (1.12)
! r— 0!

ox /) p=o r=0 - f=0) g

Noting that the upper value of the summmation with respect to £ can [ormally extend to,

say, infinity, one can arrange the above as

$ON {7 ¢N =t Nopof
I 4 A -] o, , ! - ok
S (ox) = (“’L) Z(@“) SUE SELF D D e T (R E
=0 o

i
ebdt] r=0 r

The summation with respect to » is summed up to

N—p-—i
St (P/T - \:/7‘);-% - (,()/T s ("/T)N""P'H o
f'):;) rl a {pfm — /T +IUN — p— H (4.14)

and one gets the following expression

N ¢ N—¢

i . — 1) (pf 7~ </TIn oy o

SWgy) = ¢ e | 5 el S (S 4.15
(on) =4 110(9 } P2 ¢ T T AW - p o IS . (415)

and hence the representations for the coelficients of the strong coupling expansiol are

dY = Lim (=) Nij e /7 = o TNy o (1.16)
N I = (pfr - (N =p gt

with a proper order dependence of gn. I Fi. (4.16) is correct, one can also calculate t he

convergence radius g5 of the strong coupling expansion in principle, for instance,

| — 1
— = lim ]d{i]l s
Yo t—oo
. _ 1/t
— lim lill’l E,:;Q.t. I\Z—:t (.[P] (P/T - C/T)N_p.H DP"”‘.’HT ("i 17)
oo Ve ] S/t DN —p - B

p=Q
Therefore, for two physical quantities given. if the large order hehavior of the pertu-
bation coefficients for these quantities are the same, one may say that il there exists a
convergent strong coupling expansion or not is determined by the behavior of the lower

order coefficients.



Chapter 5

Tllustrations on zero-dimensional

models

Aunalyses on a model, of which the analytic structires could be well understood, enable
us to gel deeper understandings on validity of restrmmnation methods. Fven i a stmple
quantum mechanical model with one degree of Trcedom, however, structure ol the Ricrnann
surface. on which the analytic continuation of the eigenvalues are defined, is known to
have quite complicated structure [9]. Therefore, a O-dimensional model ( siraple integral

with expansion parameters ) is often employed. Let us consider the 0-dirmensional AHO,

Zg) = [ da exp (w.tf'”) — g,r”") (M o= 2,34, ). (5.1)

o

One can calculate the conventional perturbation coeflicients explicitly,

Z(([) = LL——T—)—(}{P / (-l‘f] (‘X[)(AAU“JHLWI')

p=0 p' R

(| N -
- > (--~-)-[ (,1-’1[) b ) 9", (5.2)

] ! ‘ 2

that is,

A_l'!’K ] )
U GV (v013) (5.3)
i 2

~ (-~—1)P1‘((M 1)-;)) for large p. {5H.4)
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The analvticity conditions (1) and (1) is fullilled with ¢ = —1/2M1 aud hence, large order
behavior Eq.(5.4) is equivallent to the asymptotic behavior of DiscZ(g) for small negative

¢ Eq.{L.3) with

b= M. (5.

]
a
=

On the other hand, one can also calenlate the coeflicients of the strong couping CXpansion
explicitely,

o R B D TP o e -
Ay) = 9 WMZ("]T)“ (o) f dy exp{—y* Ny

t=10) -0
Y M{_i)rl‘ (_"_ ml__) —iary? -
g ;; TSR (-(f ) : (5.6)

that is,

~1) f l
i E_'_p(ﬂ _m)
‘ RS TAEYT

1Y .
~ (=1) for large /. (5.8)

P((1 - 1/3)1)

The large order behavier Fiq.(5.8) shows that the convergence radius of the strong coupling
expansion Iiq.(5.6) is oo for any M and thus F.{5.6) represents the exact Z(g) for any
g # 0. Therefore, one can investigate the comergence of the ODM for Z(g) with recourse
Lo the construction of the strong coupling expansion via the ODM in chapter 1. Lel us
substitute the coefficients 1q.(5.3), ¢ = —1/2M and a = L7 = M into Eq.(4.15),

N

7Mpn) = g~l/21\ffz(gm1/5w)t
t=0

(~1)! Not(qyF [‘(‘\' + (M — L)p+ 3/2) n(-f}'fp‘i~h’2+t?/M
¢! <ot (Mp+1/2 -i—t)(:\"—p—t)!"w

p==0

(5.9)

Now, the N-th approximation d(pn) for d! reads to, by the use of the Fuler integral
representation,
”F\,}fpﬂ/ﬂt)/m

ml)t N--t (__l)p
fon) = :
*on) ! Z‘pl(f\"—pwt)! Mp+ 1[f2 +t

- N{(M - L)p+1/2
] dse 7V HM =L
0

p=0
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! e N A1y 0%
- (_:WLL/ dse ™t J;:#I [ ’ f‘l'ﬂp(f”z-‘+l/2-+f)/.lfml.
¢k TN 0t M
Nl (epat-ty

_ 2 Joe g YA 1ot /201 S T S .
Ay o Jo o ,?-_@ PN~ p 1)

Applving the binomial theorem,

(1) s et [ VA O
o) = AT T [U ISR TRy /U dppl UL () M l)
/241

(—1) [‘ Nt il A Y
R S lse ¥ s wniM gy SN
RN VR

where B,(p.q) denotes the incoruplete beta [netion. Using the reflection tormula,

B.{pq) = Blpg) -~ (g0

one finally obtains.

— ) { | .
@)= St (57 a3p) e (5.10)

with

— { 0 [ /2 { .
( ) [ dse NN i (\ F+1, l-l—r*"m)().n)

Cherefore, convergence of the ODM can be proved for Z(g) on the whole Riemann surface

if one can choose oy such that Ry (pxy) vanishes as N — oo,

For the prool, we first divide Ry{oy) as fiy = [1’5\];) -+ lﬂg\%) with,

)y N ﬁm,g:_ll_f__w
fy'{on) = MU(N — 1)

(M) ;

gy 1/2 -+ 1

xf dae=s NN g [N = U /, L(5.12)
u N M

(~1)"

6(2} AL == i e N
fa'len) MUN — 1)
s Nomth {1201/ M + .
x /[;;yl”:”dﬁ;{, (1 W/ fj’ M1 (J\ — 1+ 1, ———*“——'"";1/[ ) . (o. [.}}
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: St
{1) estimate of HE\:)
o 1 . . . . . .
For .[fk}._ the argument of the incomplete beta function in the integrand ranges
bounded regton

0< 1 — g_\-HM"l < L.

So. for the estimate, we can nwvoke the wniform asymptotic expansion of the iu-
complete beta function B, (p, q) for large p, uniformly valid for both r € [0.1] and

g > 0 [45]. The resulting tornuis

o (- a)d i B3, (ﬁ(.r'))

3
P P 4

B.(p.q) ~ Blp. )Qg, ala)p) + , (5.14)

where Q(a, ) is defined by Eq.(3.48) and afe) is defined by the following impheit

relation
e = pln(l =) = ale) ~ ploole) {0 F gl +p) —p p= qfp. (H.15)

a{x) ranges [rom oo to 0 as x ranges {rom 0 to 1. T'or more details of the expansion
Eq.(5.14), see Rel. [45]. With the aid of the expansion Fiq.(5.11), we have, for

p = N —t+ 1 large and with ¢ = {(1/2 +)/M,

Lot | N
lffg\t}{-ﬁJA")! ~  Const. x mjﬂ § ([s(;""s”*”“l_[J’(I),(,')Q(([,(y(l — o™ )'[J)
I QT-II(MH)
= Const. x 'i:“(““““‘('v(];)“f)‘(")((].(i'[)) ¥ dse T (0 < a < 00)

pty 0

= Const. x ['(¢q,ap)F (p +- q,g;,l/(Mfl)) .

Since the normalized incomplete gamma function P(e, z) defined by

(e, z) | = ,
Pla,z) = =2 ”‘”“f lie™H! 5.1¢
(a,2) I'{a) ['{a) Jo e (5-16)

is bounded by 1 for any 0 < z < 00, one finally gels

b2 f

1[{%}(9,\:)1 < Const. x I’ ( ,Q*N) -0 (N — o0), (5.17)

irrespective of M and 7.
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{2) estimate of R
For .Hf\‘%), the argument of the incomplete beta function i the integrand takes any

oy s < 0. In this case, the following series representation [47]

2P =) S — g T\
( ) by (=) ( ) \ (5.18)
P =0 (l + P)n ] —u

| —

B.p.q) =

which is convergent for Jo/(1 — @)} < L, Lo, @ < 1/2 adequate!. Then, with

-1

N

R on) = S el
A MU (p 4+ 1)

oo . o B f‘:‘_\ 1 . (f) ¥ "
b dse S gPTo el — )0t ( ”' ( ) A5 19
]Q;“”'”” ( ) ”l:‘n (L+p), \1—ux (5:19]

Since the series i the integrand is uniformly convergent, we can safely interchange

the order of integration and summation. Alter the interchange, applying the mean

value theorem on the each term reads,

2) —1) S g) ,
I p—— (0,)"
Y M (p+ 1) Z;U (I +pl.
* /“-1,'(':‘»:w1" d"’]f’y‘_-s‘c“rw{wI*EP(I - -"?)U—i (‘()H < 1)
N ’
(_l)t.ﬂu P - - o .
TN Lse ~ 5Pt )Pt Ao targe g
MED(p 4 1) Syttt dse 8 ( r) or lavge p
N /(M 1))

(—1)HPHTghy _
- — (M (p+g—1)+ 1, oy
MO (p+1) (Artp = 1)+ Loy
Finally, substituting px ~ gt N77 and applying the Stirling formula yields,
, Netbg U (N — M(t—qg+ 1)+
B (on)] = 2 ( M )
: Mit! (N -+ 2)
<Q(MN = M{t—q+1)+ Loy

: e A L e _ YIS TALA
Const,. x N7 Mitemet)re (91(:1 Maq ”)

K N1 (MN, Iy N0, (5.

UPhis series is nothing but one of the analytic continuation of the hypergeometrie function outside

unit circle j2| = L.

3G
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with

R, = o V-0

So. let us estitnate the normalized mconiplete gamma function in k. (5.20).

(i) 1> y/(M =1 =1-2¢
In this case, the lollowing series representation (171 1s adequate;

(.4“-'1_.,H el "

Qa,zy =1~ —l—(—a-]" :] iui—)—’—! ~ |- ()((:/a}“). {h.21)

For Bq.(5.20), zfa ~ N 7% and henee the behavior of h’f\%) I8

i |
[a)
I
—

!RE\%)(Q;\’]. ~ N Votn) N (M= {h.2:

that is, divergent,

(i) L < y/(M—1) =148
In this case, it is sufficient to use the boundedness of the incornplete gamna

ratio. The behavior of I?.S\f} 18,

i[{%]{g’v” o NI MY g (N 00, (5.2

wt
I
=
=

that is, convergent to zero.
() v =M ~ |
(n this case, since a ~ Oz}, neither the expansion b, (5.21) nor the well-

known asymptotic expansion [47]

.,r.'.m-lr 0 R R —al
CJ(({.?,Z) - F4 I\((J‘J Z ( l) (‘/L (L)n (,‘)24)

n=0 -~

is inadequate, So, we invoke the wriform asymptotic expansion of the incorm-
plete gamma function for large a, nniformly valid for z > 0 [46]. The resulting
form is

e 2

Gla,z) ~ écrfc (r}\/——> Nz Z Gl TI (5.25)

k=0
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defined by

where erfe(z) is the coruplementary ervor function
e -
/ dle™

e

erfe( =)

o
~1
=

—
bt |

/\ = ‘:‘
{

and 3 is defined by
[ AT =T
= (A =1) 22—,
n= ) (A —1}?
50, . the leading

For more details of the expansion q.(5.25), see Ref. [46]. Thuas

M < :
) s'\;'l“) , (b2

)

4

behavior of !t’(j\%) reads
. . e Y 3 N .
iR.(\%)(Qs\’)I ~ Const. x N7 (i’zf‘l Mt '”) erfe

e

with
A e,
:’\’[

Since the behavior of erfe(z) is critical at z = 0, the estimate shoutd be done

separately as;

& oo < HMY !

(a) B(/M >
[n this case, 5 > 0 and the argument of the error function tends Lo infinity

as N — oc. By the well-known asymptotic expansion for the compleren-

1

¢
~dm

erfe(z) ~
\’/EZ ezl

we obtain
erfe ( ﬂ"?ﬂ\"”) o N2 M N2
v/ 5 :

and thus

tary crvor function [47]
S /2

AI

'R(,)(QN)l ~ Const. x N17/2 (QH' IM"’»’I_Mangﬂ)

BB

(5.30)



Therefore, the condition that h’@ tends 10 0 becomes
o MMM AP AR (5.31)

which is always satistlied {or any Ay > M > 2.
by R/M=1 & o =1/M""!

[n this case, erfc(0) = | and thus for M > 2,
. , . N
‘HE\%)(Q:\")L ~ Clonst, x V772 (('17‘” .4'\’!) = (0 (N - ). (5.32)

(¢) RiyjM <1 & o> 1/;1_[.\1-_1
In this case, 4 < 0 and the argiiment of the error function tends Lo negative

infinity as N — oo, By the reflection formula

erfe(— 1) =2 — erle{z)

and the asymptotics Fq.(5.29). one obtains
LR%)(Q_,V)} ~ Const. x N7* (Qlcl"”” .e'\/‘[‘”) . (5.33)

Therelore, [?55) tends to 0 as N — oo {for any ¢ and thus any ) il and
only if

¢ M1

Note that since M < ™=V for any M > |, the set of gy satislying

()M—l

e Py <
MM=1 TR M

18 not empty.

Surmnmarizing the above results, the remainder Ry which is given by Fq.(5.01) tends to

zero for any ¢ if and only if the either of the following conditions are satisfied;
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(A v > M—1=0h

(BYy+=M-l=band g < oV P owith the wpper bound

Ut y AM—1
0y = YL (5.35)

As has been mentioned earlier, these conditions are equivalent to the conditions {or the
convergenee of the ODM ol type AHO for the O-dintensional AHIO Eq.(5.1). Note that
the condition 5 < a = M does not appear and thus the conjecture made in (1) of chapter
4 for the case where the convergence in the whole g-plane can be achieved is confirmed.
The restriction on a, or equivallently on 4. like (1.4} does not also appear in this
casce,

For the comparison, we also checked the initial value py suggested by the first order
optimization conditions. With a = M, o = a = ~1/2 and A = 1(1/2)

1/2). the first order FAC condition B (ALG) gives,

AC ;
PG l ALY (5.36)
UM 12y

and the first order PMS condition Eq.{A.T) gives,

s 3 ey
R RS .
” T ;/‘) (5.37)

I Table 5.1, round numbers of of®, pil""\('j and pPMS for M = 2,3.4,5 are explicitly shown.
The results almost confirrn the assertion in Ref. 32} that the FAC ceiterion leads us to

the boundary of the convergence region, Indeed, for any M,

s —-M o 1

[FAC Alp1f2
~ M ) AEE 1 - NN R
& «)\f( i ‘ [ 120M +1/2) *

I B2 4 'E:Mw-l
< (5) () T

a2 1.01409 x 0%,

and thus the optimal values by the first order FAC criterion will e a bit Jess than the

upper bound Eq.(3.35) for any M in this case.
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M 2 3 4 H

o™ | 067957 0.27367  0.078459  0.017471

PIAC 1066667 0.26667  0.076190  0.016931

PP 0.40000 0.11429 0.025397  0.0HG 18

Table 5.1: Round values for the upper bound oy® and p obtained by the optitization

conditions lor zero-dimensional AHO with anbarmonicity M.



Chapter 6

The § expansion and its limitations

The idea of the 8 expansion [25,34] is based on the arbitrariness in a way of splitting a
Hamiltonian or Lagrangian into a [vee part and a perturbative part. In the & expansion,
we take a free part, which constitutes the basis of the perturbation, such ihat this free
part involves artificial parameters, Then, one regards the remainder ternas a pertur-
bative part and carries out the conventional perturbation caleulation on the parameter-
dependent basis. The above procedure can he formally written as [ollows. One first

defines a Hamiltonian of the form

H(S) = (1= 8)I1,{0)+ 811(g) (6.1)

o) + & [H{g) ~ Ha(82)], (6.2)

where f{(g) is the original Hamiltonian concerned, and Hy(12) is a Hamiltonian which is
regarded as a {ree part and depends on artilicial parameters Q. One then performs the

perturbation expansion for a physical quantity S(g) in powers of & on the basis of Ho(2),

Sslg) = > d"lg; 08", (6.3)



The N-th order approximation in the & expansion is obtained by truncating the series at
the N-th order in 8. setling ¢ = 1 and adjusting the parameters §t order by ovder.
N
S x) = Y d¥ g 0y, (6.4)
pti
Note that Si(¢) is independent of the artificial parameters Qatd = Lsince, at this point,
H:(Q) reduces to the otiginal Hamiltonian //{g). On the other hand, any truncations
of the series L. (6.3) causes 2-dependence of the truncated quantity even at & ==
Therefore, one can suitably adjust the values of €2 order by order. This is the eruicial point
ol the § expansion. Needless to say, the essential and difticult problers in the & expansion
consist in the choice of Ho{2). For quartic ALTO in O-dimension and quantum mechanics,
it has been proved that the convergence of the sequence Fq {64} to the exact answer can
be achicved witl a proper order dependence i oue employs the harmonic oscillator with
trial frequency 2 as a free Hamiltonian £1,{82) [32] (see, g (6.7). Convergence property
of this type of the & expansion {mass-renormalized perturbation) can be casily examined
from the fact that the § expansion with the above choice s realized as a special case of
the ODM of type ATO [33,35), as we will see below. Suppose we have a following AHO

Hawiltonian (density) i [ dimensions,

| g oy .
2y waq}z + _(‘);{ﬂ”_}ww’ (M = 2,34, ). (6.5)

Hig) =

),
Then, the conventional perturbation expansion in g for a quantity S{g) which has mass-
dimension & takes, [rom dimensional analysis. the form
i #
=z led [ . S/ — 6.6
5(g) = w" L (,.,wmwl}u) : (6.6)
p=0

The § expansion for Fq.(6.5) with the assigiiment

He(S2) =

15 sﬁ 8 [2 Lty S 3’*‘"’] (6.7)

M
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corresponds to substitutions in Bq.(6.6)

u’,‘l 0 1/2
w — 4 (i 40 S)lh-—) = wr(l — A (6.8}
g — 0 (6.9)
with
\] "
oo - = (e Y (G.10)

followed by the expansion in &, truncating the series at the order N in powers of & and

setting ¢ = 1 at the end. Bventually, one obtains

N, Nep {Mp - (M~ 1)Dpf2 — xf2
S(p) = (wv)" L ('['"]pp Z ( " )” A (G.11)
gr=0) =i ‘
with
2 (6.12)

r= /\(u’,“)‘ﬂ:\'I D
Coomparison of Eq.(6.11) to BEq.(2.11) and Fq.(6.12) to Bq.(2:2) with (2.10) shows that
the 6 expansion 15q.(6.7) is realized as a special case of the ODM ol type AHO with

< M-—-DD
[ -,:’ oy = Af[ g___{wml)u{..
2 9

L

(6.1:3)

I this way, oue can construct a particular QDM starting from a DI [35]. Now, let us

first consider the 0-dimensional case,

e E 2 LY "
Zlg) = ./;c-u da exp («-gw"".:rz - (2}1”!;1:“!) . (6.14)
In this case, b = M — 1 see, chapter 5 ), » = —l and hence
: W (6.15)
g = —-=, =M, L
2

Therefore, a necessary condition for convergence b < o is satistied for any anharmonicity

Min D = 0 and a sullicient condition o < 2 requires M < 2. Note that the resulting
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choices Fq.(6.153) are just the ones stated in Theorem 2 with & = 1. The analyses in these
choices have been already shown in chapter 5.

Next. let us consider the quantum mechanical case (17 = 1)

L Loy o ) 200 v
I = ..,h:j—(}m:l-:a- 4 'IEL.L,- £ (L‘[)l.l . (()lh)
For cigenvalues Flg). # = | and hence,
| M4+ i
o = 5. v = **“:é“—-. (().ll')

The large order behavior of the perturbation coefficiets is known as [16]
e (D ((M - Dt 1/2) (6.18)
for the n-th level and thus

b= M- L (6.19)

As is well known [9], there exist strong coupling expansions for the quantum mechanical
AHOs with ¢ = /(M +1) and 7 = 2/( M + ). Henee, the vesulling choices P (617) are
also exactly the ones stated in Theorerm 2 with k= 1 as in the case of 1 = 0 and thus
look preferable at first sight. However, the crucial difference of the quantum mechanical
case from the O-dimensional case is that a necessary condition for convergenee b < a now
teads to M < 3. That is 10 say, convergence is possible only for the quartic ATO and
the sextic AHO (M = 3) is on the boundary. A sulficient condition o < 2 also requires
M < 3. Therefore, the & expansion Iq.(6.7) can achieve convergence only for quartic
AHO (and for sextic AlIO for any chance}in quantum mechanics,

Finally, let us come back to consider the ficld theorelical case. A difTiculty is 1mmedi-
ately expected from the fact that for D 2 2. one always has o < 1 for any anharmonicity

M from Eq.(6.13). On the other hand, the [uifiltment of a necessary condition b < o < |



indicales that the large order behavior of perturbation coetlicients naust: grow slower than

factorial.
N <N for farge N, (6.20)

at least. under the analsticity conditions {[) and (11). However, as far as | know, such a
slow divergent behavior las not yet observed inany quantun systems and otherwise the
series would be convergent.

[n addition to the above fact, it should be noted that property of the conformal
mapping of Fq.(2.2) with (2.10) for & < { i quite dilferent from that for a = . To the
latter case, positive real axis in ¢ plane is mapped into bounded interval [0.1) in A plane
while. in the formar case, the inverse image ol Fe.(2.2) for positive real axisin g plane is
no longer bounded. For this reason, one cannot expect moderale property ol asyviptotic
series in A, especially for large g, in the case ol o £ 1. Note also thal sinee this hounded
nature of the mapping for ¢ > € is fully taken into account in the prool of convergeuce
in Ref. [33], Theorem | and 2 cannot apply i the case of o < 1L

In the case where ¢ has mass-dimension 0. that is, the theory Eq.(6.5) 1s renormalizable
but not super renormalizable (c.g., M = 3 {or D=3, M = 2lor D) = 1), the mapping
Eq.{6.12) becomes trivial and thus the & expansion may at most reguralize some singular
behavior al ¢ = oc. So, the naive application of the é expansion to a Just renormalizable
model may be of the least henetit,

Of course, validity of the above considerations is questionable sinee the theory in D=2
needs renormalization and the above inspections are only based on the bare quantities w
and ¢g. However, there scems no active reasoning that the & expansion really improve the

¥
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Chapter 7

Discussion and summary

In this thesis, we investigated the convergence conditions for the ODM ol type AHO in
completely different way from those by other authors [27 33]. In chapter 3, we analyzed
the resmnmed series directly under the same assumptious (D-(H) of Theorem 1 and
restrict the consideration in the region Be{3.16) and the choice 4 < e (ranember that
these two are strongly connected with cach ot her). Under these assumptions we obtained
the neccessary and suflicient conditions for the convergence of the resunumed series, (A)
and (B) of chapter 3. Since the sullicient conditions for the convergence to the frue answer
consist of {A), (B) and the restriction Fq.f1.1), oue can condude that the neccessary
and sullicicnt conditions for the convergence to the frue answer lies between the two
conditions: (A}, (B) and the restriction ouw a between 0 < b < o and max{l, b} <o <2
The appearance of @ € 2 has an enough reason il we analyze the convergence by the

analvtic propertics. The region Fq.(3.16) is cquivailent to

= (7.1)

larg gl <

Then, under the assumptions (1)-(1L1), one canr only use the analyticity in the cut plane and
hence may say about the convergence only in the cut plane, which means rom Fq.(7.1)

o < 2. The present analyses in chapter 3 assure that if the analyticity region is known
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to be wider. the convergence to the {rue avswer in the region Eq.(3.16) with a > 2 is
possible,

In chapter 4, we considered the case where the function under consideration is known
to have a specific analyticity region in addition to the cut plane, that is, the case where the
function possesses a convergent strong coupling expansion, i connection with Theorem
2 of Ref. [33]1. By investigating the structure of the resummed series, there are two
cases where wider convergence region than Fe(3.16) s possible, {i) and (i1) in chapter 4.
The former corresponds to the case where the convergence radius of the strong coupling
expansion is infinity, or equivalently, the function nuder consideration is analyvtic in the
whole Riemaun surface except the origin, I this case, it was argued that the condition
~ < a would not be necessary and the restriction on e (if there exists) immediately affects
not only the convergence in the region Fq.i316) but also that in the whole Riemann
surface. Therclore, if the restriction a <2 exists i the region Fq.(3.16), the restriction is
also valid in the whole Riemann surface. On the contrary, as has been just stated above,
the analyticity in the higher Riciann sheets bas a possibility to surmount the restriction
o > 2

To examine the possibility, we investigated in chapter 5 the O-dimensional AHO as
an extrerne example which is analytic in the whole Riemann surface except the origin
and where analytic study is almost available. We analyzed these models in a compleiely
different way from that in chapter 3; realization of the coeflicients of the strong coupling
expansion. The conclusions are that both the condition v < « and the restriction on e is
indeed not necessary and therefore the possibility mentioned above is confinned at least
in one example.

If one comes back to the case {ii) of chapter 4, one finds that theve still exists a
reason which prevents one from surmounting the restriction o < 2. The case (11) would

correspond to the situation where a strong coupling expansion exists but the convergence

4.“{



radius is finife. In this case. there is a possibility where one of the singularitics, say,
¢ = go lies in the sector © < |arg gol < ® + ¢ Tor any ¢ > 0. 11 this s the case, o > 2 may
be itupossible in view of analvticity consideration.

In conclusion, we find that under the assumption (I)-(1) of Theorem 1, the conver-
gence conditions such as v > b, 5 < o and the region Fq.(3.16) are consequence of the
structure of the resummed series while the vestriction mn{{,0} < o« < 2 comes from
purcly analytic properties of the quantity concerned. Therefore, although it is possible to
achieve the convergence in the case of b2 20 as is the sextic AHO in guantum mechan-
ics, more wformation on the analyticity region in the higher Rientann sheets or on the

discontinuity on the cut is needed to establish the convergence to the frue answer.
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Appendix A

The optimization conditions

In this appendix, we summarize and show the cosed forms for the two optinnzation
couditions. say., the fastest apparent convergence (FAC) and the principle of minimal

sensitivity (PMS}. The FAC condition is
sy~ sy =0 & PV =0 (A1)

The spirit of the FAC is as follows. Since the series expansion in powers of A s also
asymptotic by the property g, {2.3), the dominant contribution comes from the last term
in the truncated series in general. Therelore. the order by order applications of the FAC
condition will render the dominant divergent hehavior supressed in all orders caleulated
[35]. One of the advantages over the PMS is facility of the calaulation. Representations
for the PAC condition can be easily obtained by any representations for S o pINL iR
chapter 2. For example, one obtains from Eq.(2.9) with (2.7},

N tw ' {w)
N el e aw s A2
L g ey (A-2)

pe=x0
On the other hand, the PMS condition is

ast™i( p)

o= 0 . A . 3 .
ap ( )



The spirit of the PMS5 is casy to understand intuitively. Since the original Hamiltonian
does not involve any adjustable parameters and hence any physical quantities do not
depend on them, the quantities calculated by the method should also be independent of
them. Representations for the PMS condition are also obtained using the same results in

chapter 2. From the most abstract forma 19q.0 2.9}, the PMS condition reads

N . |
e, ]"( /\l ’{ﬁi ({[ )‘[ ]! 5 s |
éiﬂml(”*dﬁ () + ] A% =0, (AA)

where the prime denotes the derivative with respect to each argurment. 1 one substitutes

Eq.(2.7) into the above, one vields

b [LTA) {7(A) 8 dio Fla)?
Ay Lalg e ey Ny
2L ’[~ VGRS L (A5)

s=0 p=0 (O

From the general representations Fas.(A.2) and {A.5}, one can obtain the closed forms
for type AHO, which have been also veprersented in Rel. 330 Using the Fq.(2.10) for
F(A) and f{A), and noting that the integral in Eqs.(A.2) and Eq.(A.5) in the case of type

AHO is just the same as Fq.(2.23), one innnediately obtains for the FAC,
N
S oglap o, .
e = (), Al
L (N ! f (AL6)

p=i)

For the PM5, the square bracket in Bg.(AD) reads

A .s}

l -
O —p T = ——-——A—{({.p—n-}— s—=p) = (s—p)A '},

and thus Fq.(A5) is equivallent (o

Z/\ Z ] (}]J 9 PH p Z AT lszl j)] (YP )SI )i':fpm 0.

s=0 p=0 p=0

Arranging the above sum, one finally gets,

N
_[p} (GP o U')},\' —ptl - 0 A ~
pZ:;J(, W-———~—(N T y , (A7)

which has a strong resemblance to the FAC [ {A6) in the form. Of course, the results
Eq.(A.6) and Eq.(A.7) can be obtained dircetly from Eq. (2.12) as have been demon-
strated in Ref. [33]. As has just be seen above. the final expression of the PMS condition

a2



of tvpe AHO does not isvolve the summation symbol with respeci to s and hence does
not depend on g, This point was first pointed out by Janke and Kleinert for the special
case a = 3/2 and o = |/2 [48]. Under what conditions on the choice £'(A) and f{A) the

sate phenomenon occurs will be an wteresting problent.



Appendix B

The convergence condition at the

boundary

Here we only represent the result of Refl [33] for the boundary of the convergence region
v = b As will be scen below, the precise extimate for the upper bound of g, involves

quite complicated analyses.

Theorern 3. Theorem | and Theoram 2 hold if (maintaining the other respec-

tive hypothescs) we scale the paramelor p, instead of By (1.7) as

Ay = f)].\'rib, (“ l)

that s, v = b, and

€1 b ;
0 < pi < () , (B.2)

.

where w, is a solution of the following «quation,

@(J\,-,(u,,)}-u.) =0 (B.3)

with
L+ A/t .
DA, u) =In A + HL_;:WBL__ (B.4)

-

Sk



and M\(u) is a saddle point of © defined by

J
-(j)}\—(b(/\*(u). 1) = 0. (B.5)

Pl )



Bibliography

4y
2]
3]

1]

. Sehrédinger. Anu. Physik 80 (1926) 137,
J. Oppeubceimer, Phys. Rev. 31 (1928) 66,
P. S, Epstein, Phys. Rev. 28 (1926G) 695,

T. Kato, Perturbalion Theory for Linecar Operalors nd. ed. (Springer-Verlag, Berlin,

1980,

M. Reed and B. Simon, Methods of wodern mathemnatical physics 1V (Academic

Press, New York, 1978).

F. Rellich, Math. Aun. 1183 (1937) 600. G19; 116 (1939) 555; 117 {1940) 356; 118

(1942} 162,

A, Aral, Hilbert Space and Quantunr Mechanics (Kyoritsu, Tokyo, 1997) (in

Japanese).

F.J. Dyson, Phys. Rev. 85 (1952) 631

B, Simon, Ann. Phys. 58 (1970) 76.

. W. llerbst and B. Simon, Phys. Lett. B78 (1978) 304,

K. Bhattacharyya and S. P. Bhattacharyva, Chem. Phys. Lett. 76 {1980) 117; 80

(1981) 604,



12
13
14
15

(16]

17)
13
19
20]
21

[22]

[23]
[24]

[25]

[26]

[27]

J Killingbeck, Chem. Phys. Lett. 80 (193t) 601.

A. Jaffe, Commun. Math. Phys. 1 (1965) 127,

C. M. Bender and T. F. Wu, Phys. Rev. Lett. 21 (1968) 406,

C. M. Bender and T. T. Wu, Phys. Rev. 184 (1969) 1231,

C. M. Bender and T. 'T. Wu, Phys. Rev. Lett. 27 (1971) 461; Phys. Rev. DT (1973)
1620.

T. Banks, C. M. Bender and T. T. Wu. Phys. Rev. D8 (1973} 3346.

T. Banks and C. M. Bender, J. Math. Phys. 13 (1972) 1320.
T. Banks and C. M. Bender, Phys. Rev. D8 (1973) 3366.

I. W. Herbst and B. Simon, Phys. Rev. Lett. 41 (1978} 67.
E. Harrell and B. Simon, Duke Math. J. 47 {1980} 845.

Large Order Behavior of Perturbation Theory, Current Physics - Sources and Com-
ments, Vol. 7, edited by J. C. Le Guillou and J. Zinn-Justin (North-Holland, Ams-

terdam, 1990)
J. J. Loeffel, A. Martin, B. Simon and A. S, Wightman, Phys, Lett. B30 (1969) 656.
S. Graffi, V. Grecchi and B. Simon, Phys. Lett. B32 (1970) 631.

G. A. Arteca, I'. M. Fernandez and K. A. Castro, Large Order Perturbation The-
ory and Summation Methods in Quantum Mechanics (Springer, Berlin, 1990), and

references therein.
A. D. Sokal, J. Math. Phys. 21 (1980) 261.

I. R. C. Buckley, A. Duncan and H. F. Jones, Phys. Rev. D47 (1993) 2554.

57



(28] A. Duncan and H. F. Jones, Phys. Rev. D47 (1993) 2560.

[29] C. M. Bender, A. Duncan and H. F. Jones, Phys. Rev. D49 (1994) 4219,
[30] C. Arvanitis, H. F. Jones and C. S. Parker, Phys. Rev. D52 (1995) 3704.
[31] H. Kleinert and W. Janke, Phys. Lett. A206 (1995) 283.

(32] R. Guida, K. Konishi and H. Suzuki, Ann. Phys. 241 (1995) 152.

[33] R. Guida, K. Konishi and H. Suzuki, Aun. Phys. 249 (1996) 109.

[34] H. Kleinert, Path Integrals in Quantum Mechanics, Stalistical and Polymer Physics,

2nd. Ed. (World Scientific, Singapore, 1995) Chapter 5, and references therein.
[35] R. Seznec and J. Zinn-Justin, J. Math. Phys. 20 (1979) 1398.
[36] I. G. Halliday and P. Suranyi, Phys. Rev. D21 (1980) 1529.
[37) P. M. Stevenson, Phys. Rev. D23 (1981) 2916.
138] H. Kleinert, Phys. Rev. D57 (1998) 2261.
[39] M. P. Blencowe, l. F. Jones and A. P. Korte, Phys. Rev. D57 (1998) 5092.
140] J. Zinn-Justin, Phys. Rep. 70 (1981) 10Y.
[41} J. C. Le Guillou and J. Zinn-Justin, Ann. Phys. 147 (1983) 57.
[42] W. Janke and H. Kleinert, Phys. Rev. Lett. 75 (1995) 2787.
[43] E. J. Weniger, Phys. Rev. Lett. 77 (1994) 2859.
[44] E. J. Weniger, Ann. Phys. 246 (1996) 133.

[45] N. M. Temme, SIAM J. Math. Anal. 18 (1987} 1638.

by



[46] N. M. Temme, SIAM J. Math. Anal. 10 (1979) 757.

[47] Handbook of mathematical functions with formulas, graphs and mathematical tables,

edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965)

[48] W. Janke and H. Kleinert, Phys. Lett. A199 (1995) 287.

59



AR

L]

S8



