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Abstract

A new model based on Quantum Molecular Dynamics (QMD) is developed to in-
vestigate the instability and the fragmentation of expanding nuclear matter, where
generalized periodic boundary conditions make it possible to simulate the dynamics
of fragmentation free from the complication of the finiteness of the system.

The equation of state (EOS) of static nuclear matter is calculated by the Metropo-
lis method with the QMD potential. As compared to the EOS, the spinodal region
of expanding nuclear matter is calculated by the new model. To investigate how
expanding motion affects the liquid-gas phase transition, the new model is applied
to the quasi static expanding matter with the Lennard-Jones (LJ) potential, which
is compared with the coexistent region calculated by the Gibbs ensemble method
for static matter.

The fragment mass distribution resulting from expanding matter is investigated
and is compared with that of static matter. The exponential distribution is obtained
from rapid expanding nuclear matter which corresponds to the participant region in
heavy ion collision with large radial flow, where the slope increases with increasing
speed of expansion. On the other hand, slowly expanding nuclear matter which
corresponds to a spectator generates a power law which is different from the power
law obtained in thermal equilibrium which is assumed in the Fisher’s droplet model.
To elucidate the general feature of fragmentation of the expanding matter, the L.J
system is also investigated.
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Chapter 1

Introduction

Fragmentations caused by instability are ubiquitous phenomena, which have been
studied in several branches of physics [1, 2]. In the field of nuclear physics, the
instability of nuclear matter has been an attractive topic in connection with the
equation of state [3, 4, 5, 6, 7, 8, 9, 10]. In order to investigate the instability
of nuclear matter, a lot of heavy-ion collision experiments have been conducted
[11, 12, 13, 14, 15, 16, 17]. An expanding fire ball created in the collisions is a
typical experimental example of energetic nuclear matter. The fire ball explodes
and generates many fragments simultaneously, which is multifragmentation.

The mechanism of multifragmentation can be investigated from the fragment
mass distributions Y (A), where A is the fragment mass. The feature of fragment
mass distribution depends on the source where fragmentation occurs. As two im-
portant sources of multifragmentation, the participant region and the spectator
region are identified. The former is the overlap region of target and projectile in
heavy-ion reaction where compression and decompression play an important role,
and the latter is non-overlapping region where thermal excitation is dominant. In
the participant region, the fragment mass distribution shows an exponential shape
Y (A) = exp[—AA], where X depends on the speed of the radial flow [12, 14]. On the
other hand, in the spectator region, the distribution obeys a power law Y(A) = A7,
where 7 is a critical exponent [11, 13].

In particular, the power law distribution has attracted many authors’ interest
because the power law is predicted by the Fisher’s droplet model as a signature of
the liquid-gas phase transition in the vicinity of the critical point [18]. According
to the model, nuclear matter undergoes a second order liquid-gas phase transition.
However, the Fisher’s droplet model is based on the thermal statistical physics,
namely it is assumed that the system is in thermal equilibrium. Although the
power law is observed experimentally and is attached to spectator region where
non-equilibrium effects is thought to play a minor role, it is not clear that thermal
equilibrium is fulfilled in the system.

Molecular dynamics (MD) simulations are suitable to deal with the fragmenta-
tions under non-equilibrium condition. In order to simulate heavy ion collisions, an
extension of MD from a classical MD with the Lennard-Jones potential [19, 20, 21]
into more advanced MD including quantum effects has been achieved. Among these



advanced MD, Quantum Molecular Dynamics (QMD) [22] is a semi-classical MD,
which describes the nuclear many-body system in terms of gaussian wave packets.
The anti-symmetrized version of the QMD are Anti-symmetrized Molecular Dynam-
ics (AMD) [23] and Fermionic Molecular Dynamics (FMD) [24, 25]. These advanced
MD approach have succeeded in describing several aspects of fragment production
in heavy-ion reaction. Nevertheless it does not mean that the MD can fully eluci-
date the mechanism of multifragmentation, especially the property of the nuclear
phase transition. This is because the result of MD simulation for finite system is too
complicated to extract the general properties of multifragmentation. From another
point of view, the finiteness of heavy-ion reaction is a main reason of complication to
investigate the property of hot nuclear matter. For instance, the surface of a fireball
is likely to affect the instability of the system and thus the resultant fragment mass
distribution.

What we intend in this thesis is to develop a new model which links more directly
the properties of nuclear matter and the multifragmentation. With this model, we
try to understand more systematically the mechanism of multifragmentation which
follows from the properties of hot and expanding nuclear matter. Special interest
is devoted to investigate the role of the liquid-gas phase transition in dynamically
evolving matter. At the same time, we try to obtain more directly the property
of such excited nuclear matter by applying the model to the multifragmentation
analysis. For this purpose, we also investigate the Lennard-Jones system in addition
to QMD model as an example of matter governed by the different interaction. Since
we start from such motivation, we disregard some feature of multifragmentation
which originates from the finiteness of the nuclear system, like surface effect.

The QMD with periodic boundary condition was applied for the first time in
[26] to investigate the surface structure of the neutron star. As opposed to several
models based on plane waves, nuclear matter below saturation density shows non-
uniform structure in the framework of the QMD based on wave packets. In [26],
the structure of nuclear matter at subsaturation density shows some exotic shapes
which change according to the change of the density.

In this study, we generalize the QMD with periodic boundary condition to ex-
panding nuclear matter, which corresponds to a fire ball without surface. The time
evolution of expanding nuclear matter is carried out in the framework of the QMD
under a generalized periodic boundary condition [27, 28, 29]. This generalized peri-
odic boundary condition enables us to simulate the dynamics of fragmentation free
from the complication due to the finiteness of the system. When the expansion is
slow, it simulates a spectator region where the collective motion is small. On the
other hand, the rapid expansion simulates a participant region where collective mo-
tion plays an important role. The rate of expansion is controlled by one parameter
(h). By changing h, we can investigate both spectator and participant regions. One
of our main purpose is to investigate how the fragment mass distribution depends on
expansion velocities and temperatures. Slow expanding matter is expected to gen-
erate a power law distribution, while rapid expanding matter is expected to show
an exponential shape.

When & = 0, the system is just in a static thermal equilibrium state with tem-



perature (7'), which is similar to what is assumed in Fisher’s droplet model. The
Metropolis method [30] is used to calculate configurations of the static nuclear mat-
ter in wide range of densities and temperatures, where the energy and the pressure
are calculated in order to investigate the stability condition of nuclear matter. On
the other hand, it is possible to calculate the instantaneous pressure and the effec-
tive temperature during the time evolution of the expanding matter. In this case,
from the change of the pressure and the temperature, we analyze the dynamical
instability of the system. How the expanding motion affects the nuclear phase tran-
sition defined in thermal equilibrium is our main concern of the liquid-gas phase
transition.

Expanding matter is not restricted to nuclear matter [28, 29]. Using a classical
MD instead of QMD, the expanding matter composed of classical particles can be
simulated. We perform the expanding matter model with the Lennard-Jones (LJ)
potential to investigate general features of expanding matter. The LJ system is
a typical example to show the liquid-gas phase transition in thermal equilibrium.
Therefore, the expanding matter model with the L.J potential is used to investigate
how the expanding motion affects the liquid-gas phase transition. Furthermore,
it is possible to calculate the exact coexistent region for the LJ system by the
Gibbs ensemble method [30] (see Appendix C). Therefore we can compare directly
the density-temperature curve in the expanding matter model with the coexistent
region.

In this thesis, two topics are mainly discussed using the expanding matter model.
One is the instability of the expanding matter, and the other is the fragment mass
distributions resulting from the instability. The latter is a main source of the exper-
imental information for the stability of excited matter.

This thesis is based on [31, 32] and organized as follows. In Chapter 2, we will
explain how the expanding matter model works. In the model, the QMD with gener-
alized periodic boundary condition is developed to solve the equations of motion and
the Metropolis method is used to prepare static nuclear matter, which is also used
as an initial state of expanding matter model. We will see that the time evolution
of the expanding matter is subject to only two parameters: the initial temperature
T and the expanding velocity h.

Chapter 3 is devoted to discussion of the instability of the expanding matter.
The Metropolis method enables us to calculate the equation of state (EOS) of static
nuclear matter in wide range of densities and temperatures, where the spinodal
region is identified. On the other hand, the pressure and the temperature calculated
during the time evolution of the expanding matter gives another spinodal region
for dynamical system. These two spinodal regions are compared to investigate how
the expanding motion affects the instability of nuclear matter. Furthermore, to
confirm general features of expanding matter, the same calculation is repeated with
the classical Molecular Dynamics with Lennard-Jones system, the coexistent region
of which can be exactly calculated by the Gibbs ensemble method.

In Chapter 4, we concentrate on the fragment mass distribution coming from
the expanding matter. The distribution is expected to depend on both the initial
temperature 7" and the expanding velocity h. We will see that slow expanding



matter gives a power law, while rapid expanding matter gives an exponential shape.
The LJ expanding matter is again examined to confirm what is the general feature
of the distribution.

In Chapter 5, the conclusion is given.



Chapter 2

Molecular simulation

In this chapter, we will discuss molecular simulations used to investigate the property
of nuclear matter. Molecular simulations are composed of Molecular Dynamics
(MD) simulations and Monte Carlo simulations, the former is used to deal with
non-equilibrium phenomena directly with equation of motions and the latter is used
to calculate specific ensembles based on statistical mechanics [30].

Expanding nuclear matter, which is a main object of this study, is simulated by
an expanding matter model, where saturated nuclear matter at a certain tempera-
ture is given as an initial state by the Metropolis method and afterward boosted in
such a way that the matter expands homogeneously. The time evolution of expand-
ing nuclear matter is calculated based on the equation of motion of the Quantum
Molecular Dynamics (QMD) under generalized periodic boundary conditions.

The QMD is a MD simulation developed to treat nuclear system, which has been
developed to simulate heavy ion reaction experiments [22] and is the basis of more
advanced MD with wave packets like the Anti-symmetrized Molecular Dynamics
(AMD) and the Fermionic Molecular Dynamics (FMD). With periodic boundary
conditions, static nuclear matter can be described in the framework of the QMD [26].
What we will show in this thesis is that we can extend the model to dynamically
expanding system.

Metropolis method is the simplest one in several Monte Carlo simulations for en-
semble calculations, which calculates configurations subject to canonical ensembles.
That is, static matter for a given density and temperature can be obtained by this
method. This method is used in this thesis to calculate the statistical properties of
matter.

In the following, we will start with the framework of the QMD and discuss the
method to apply the QMD to nuclear matter. After that, the Metropolis method
which uses the same interaction as that of QMD is explained. The Metropolis
method gives not only the initial state of the expanding matter model but also the
equation of state (EOS) of nuclear matter. Finally, the expanding matter model
is introduced, where generalized periodic boundary conditions to simulate infinite
matter with expanding motion is explained.



2.1 Quantum molecular dynamics (QMD)

The Quantum Molecular Dynamics (QMD) is a Molecular Dynamics (MD) which
has been developed to simulate heavy ion reactions experiments, where nucleons are
expressed in terms of gaussian wave packets. The QMD Lagrangian is obtained by
replacing the anti-symmetrized state of the Anti-symmetrized Molecular Dynamics
(AMD) by a tensor products of single particle states. This simplicity leads to a
simple Hamilton’s equation. The Hamiltonian has the effective interaction which
includes momentum dependent parts to compensate the lack of anti-symmetrization
in the many-body state. The parameters in the effective interaction are determined
under periodic boundary conditions so as to reproduce several properties of nuclear
matter. In the following, we will explain the framework of the QMD and the method
to apply the QMD to nuclear matter.

2.1.1 Gaussian wave packets

A gaussian wave packet is regarded as the coordinate representation of a coherent
state. In general, a coherent state is an eigenstate of annihilation operator as follows:

¢z) = Z|¢z), (2.1)

a

where a is an annihilation operator and Z is the eigenvalue of the coherent state
|pz). Assuming that (¢z|¢z) = 1, the following expression is obtained:

eZ.éT
|02) = —17=10), (2.2)
17z
where a' is a creation operator and |0) is the vacuum state defined as a|0) = 0.

To express |¢z) in terms of the coordinate of a particle r, remember the operator
transformation in view of harmonic oscillators:

A= b+ ——p

2h\/ljp7

where v is a parameter and p is the momentum of a particle. With the help of

(2.3)

this relation, a gaussian wave packet is obtained as a coordinate representation of

)= (2) o [ e ) 43

This expression is widely used in the literatures regarding AMD and FMD [23, 25],
where Z; is introduced for the ¢-th nucleon. In the framework of AMD, Z;(: =
1,2,--+, N) are variational parameters to represent a system of N identical particles.

coherent states:

(2.4)

In the case of QMD, it is assumed that a system of V identical particles is represented
by a tensor product of (r|¢z,). As a result, it is possible to discuss each single



particle state (r|¢z,) independently. In this case, Z; includes the information about

the position and momentum of the :-th nucleon. If we define R; and P; as
7
Z;=\vRi+ —=Pi, 2.5
ViRt (25)

we get the following expression by substituting this into Eq. (2.4):

(r] ) = (%)%exp [—Z/(r R4 %r P (2.6)

From this equation, we find that R; and P; stand for the expectation values of the
position and momentum of :-th particle respectively.

2.1.2 Lagrangian

Let us derive the QMD Lagrangian in a formal way. The most general expression

of Lagrangian is given as follows:

(2(2)|(ih g — H)|®(Z))
(®(2)|®(2)) ’

L (2.7)

where H is the Hamiltonian density of the whole system and |®(Z)) is the cor-

responding many body state composed of |¢z,),|dz,), -, |¢zy). Calculating the
derivative of |®(7)) with respect to ¢, the Lagrangian is expressed as follows:
. 0 dz; (O(Z)|H|®(Z))
L =ih In(®(2)|®(2))—— — 2.8
WL gzl e - EEEEL ey

where a = z,y,z. Assuming that |®(7)) is the tensor products of |¢z,) (1 =
1,2,---, N), the following simple Lagrangian is obtained:

. * dZ'oz
L= mz Z, d; — HRN, PN V), (2.9)
Jo

where RY, PV and yV stand for R;, P; and x; ( = 1,2,---, N) respectively and
v; indicates the spin and the isospin of 7-th nucleon. Notice that the Hamiltonian
is expressed in terms of new variables.

2.1.3 Equation of motion

The equation of motion is derived from the following Lagrange’s equation:

d [ 0L oL
) - =0 (2.10)
O—* 7

The derivative of the Hamiltonian in terms of Z7%, can be transformed into the
following form:
OH(RN, PN N OH(RN, PN N 1 OHRN PN N
(,,X):mﬁ(,,x)Jr (R, PV xY)
dzz, 9 Pia 2Vv IRja

(2.11)
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With this relation, the Lagrange’s equation is separated into real and imaginary
part, which are found to be the following Hamilton’s equations:

dRj, OH(RN, PV Y)
= 2.12
dt oP;, ’ (2.12)
b OH (RN, PN ")
S o . 2.13
i OR,, (2.13)

In this way, the time evolution of QMD is subject to /N sets of the Hamilton’s
equations. To solve the equations of motion, the fourth order Runge-Kutta method
is used (see Appendix B.1).

Notice that R; and P; are the eigenvalues of the position and the momentum of
the coherent state |¢z,):

r

p

¢ZJ> = RJ|¢Z]>7 (214)
b2,) = Pyloz,) (2.15)

This relations allow us to regard R; and P; as the position and the momentum of
the j-th particle.

2.1.4 Effective interaction

The equation of motion is subject to the Hamiltonian, which is expressed in terms
of the position, the momentum and the internal degrees of freedom:
(®(2)H|®(2))
(®(Z)|@(2))

= H(RN, PN ™). (2.16)

The Hamiltonian operator is composed of the kinetic energy operator and the po-
tential energy operator. The expectation value of the kinetic energy operator in
the anti-symmetrized state includes a function which represents the Pauli exclusion
effect. In the QMD), this function is approximated by the Pauli potential, which is
a two body potential expressed in terms of the relative momentum and the relative
distance. Thus, the Hamiltonian is written as follows:

N 2
P-
H(RN7 PN7 XN) = l§ 2]\24 + VPauli] + ‘/nuclv (217)
=1

where Vp,u; is the Pauli potential and V.. is the nuclear potential to reproduce
several properties of nuclear matter.

Pauli potential

The Pauli potential is a crude approximation of the matrix element of the kinetic
energy operator in the anti-symmetrized states. The accurate expression of the
matrix element is still complicated even though only two identical particles are
taken into account (see Appendix A.1). Therefore, the Pauli potential is introduced

10



in a phenomenological way to mimic the Pauli exclusion effect. In practice, the Pauli
potential is expressed as follows:

C N R, - R;*> |P,—P;?
VPauli = 7P3 Z exp _| 2 ]| - | 2 ]| Ti77]50'i70']7 (218)
Q(QOPO/hC) i QQO 2p0

where Cp, qo, po are parameters, hic = 197.3 MeV fm, and 7;, 0; are the isospin and
the spin of the ¢-th particle respectively.

The parameters are determined so that the kinetic energy fits to that of free Fermi
gas. The fitting is performed in such a way that the equation of motion is solved for

the Hamiltonian consisting of the Pauli potential and 37, 2]\;2 and afterwards the
value of YN, 2]\?4 is fitted to the Fermi gas value. It is controversial if the kinetic

energy should be replaced by the kinetic energy plus the Pauli potential. In this
study, the Pauli potential is not regarded as the part of the kinetic energy, that is,

only YN, 2P]\$4 is regarded as the kinetic energy. Actually, it is possible to carry out

similar fitting in such a way that the kinetic plus the Pauli potential energy is in
agreement with the energy of free Fermi gas.

Nuclear potential

The nuclear potential consists of several two-body interactions like:

1NN

nucl - Z Z ¢ ¢]

21]1

6:) = |¢2.) @ [Xai)s (2.20)

where |y,,) indicates the state vector of both the spin and the isospin for the i-th
particle. There are five terms in the nuclear potential:

) — |oidi)), (2.19)

‘/nucl — ‘/Skyrme + Vdensity + ‘/symmetry + VYukawa + ‘/surface- (221)

The Vgkyrme 1s the Skyrme interaction given as follows:

1NN

Voasme = 3 303 (006 100(r: — 1)(1+20P) (1906 — loso)), (222
=1 j5=1
where ¢y, z¢ are constants and P, is the spin-exchange operator. The Skyrme in-
teraction includes the delta function so that the exchange term is equivalent to the
direct term. Substituting the expression of |¢;) into the above formula gives the
following expression:

a N
‘/Skyrme — 2— Z<pz>7 (223)
Po =1
where a = %poto is a constant, pg is the saturation density, (p;) is an overlap of

one body density p; for -th nucleon with other nucleons defined as

)= p= Y [ draonr), (2:24)
3(#9) 3(#9)

11



1

1 2
r)(rl¢z,) = W exp {—ﬁ(r - R)) } , (2.25)

where L = -- = 1.95 fm? is the squared width of the wave packet.

Pi(r) = <</5z

The Vden51ty is the density-dependent potential, which is also a part of the Skyrme
interaction:

N

(616516 (e — 1) p( S

5 ) H(|9ids) — |00i)

DN |
Mz

Vdensity

7

- LZW, (2.26)

(1 —I_ T)pg =1

where t3, 7, 3 are constants and p; is given by:

A 1 1 )
ilr) = mexp{—i(r—fii) } (2.27)
L = g(r+1)% (2.28)

The above relation between L and L comes from the following condition[26]:

/d3r (é Pi(r))T = i_v: (é/d?’rﬁi(r)ﬁj(r))T. (2.29)

i=1
The Viymmetry 18 the symmetry potential which distinguishes the proton and the
neutron:

+1

1 N N
‘/symmetry = 52:2_: ¢ ¢]|t 2|cl - CQ|)5(ri - I']) (|¢Z¢]> - |¢]¢Z>)
Coo
~ 2 7]#(1 —2lei — ¢)pij, (2.30)

where t,, Cyo are constants, ¢; = 1 for protons and ¢; = 0 for neutrons. In this study,
it is assumed that the proton number is equal to the neutron number so that the
symmetry potential plays a miner role.

The Vyukawa 1s the exchange term of the Yukawa potential, which has a finite
range as opposed to the above Skyrme type potentials. The finite range potentials
integrated over wave packets become momentum dependent like the Pauli potential.
We introduce two kinds of ranges for the Yukawa potential as follows:

1 N N Ele—u1|r1—r2| Eze—u2|r1—r2|
VYukawa = = l P
;; ad fii|ry — 12l fiz|r1 — 13 19561
Cexl N 1 Cex2 N 1
T2 P> e 2T > PP\ 2P
o s (TR G (B

(2.31)

12



where Cex(1), 11, Cex(2), 2 are parameters and £ is the Planck constant.

The Viuface 18 the surface potential, which is introduced to improve the geometri-
cal structure of the finite nucleus. Without the surface interaction, the finite nucleus
is distorted mainly due to the Pauli potential. The surface interaction is given by:

Var o
‘/surface — —5/3 /d3erZ(r)Vp](r), (232)
Po  dj#i

where Vgp 1s a constant.
Putting the above terms together, the total nuclear potential is obtained as

follows:
N N N
o CSO
Viwd = — D (pi) + ———=) (ps)" + (1 —2[e; = ¢jl)pi
2p0 = (1+7)p ; 2po 2%2 Y
Cex(l) N 1 Cex(Z) al 1
+ pij + > 3 Pij
20 . PP, [\? 2 — |Pi—P,|
Gy (" o S ()
Vsr
+ T d>rV p;(r)Vp;(r). (2.33)
Po 4541

Parameter fitting

There are many parameters in the effective interaction. It is difficult to set these
parameters in systematic way. In practice, the fitting is carried out step by step as
given in [26] and [33]. There are four requirements from experimental data.

o The property of free Fermi gas

e The real part of the optical potential
e The equation of state

e The property of finite nucleus

The effective interaction should satisfy the above requirements, which are connected
to each other. It is technically crucial to determine the order of the fitting procedure,
which is not unique but first of all the free Fermi gas should be taken into account.

As mentioned earlier, the parameters in the Pauli potential are fitted to the free
Fermi gas. The average energy of the free Fermi gas at zero temperature is given

by:

2
E B 3 37‘(’2 . % (2 34)
N woM\z2) " '

where M is the nucleon mass. When the ground state of nuclear matter is calculated

with the Hamiltonian composed of the Pauli potential and the kinetic energy, the
kinetic energy of the matter should obey the above formula.

13
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Figure 2.1: The fitting of the Fermi-gas with the Pauli potential
It is necessary to prepare the matter at zero temperature. For this purpose, the

frictional cooling method is utilized. This method is carried out by calculating the
equation of motion with the following damping terms:

dR;q IH(RN, PN V) IH(RN, PN V)
_ 2.35
al op, L T (2:35)
dPj, IH(RN, PN V) IH(RN, PN V)
— 2.36
al oR;. e p ’ (2.36)

where ur and pp are the damping coefficients. The above equations of motion
ensure that the total energy decreases as long as ygr < 0 and pp < 0.

Imposing the condition that the results of the cooling calculation simulate free
Fermi gas, we can fix a set of the parameters C,, qo, po in Eq. (2.18). The values of
parameters obtained are

Cp, = 115 MeV,
go = 2.5 fm,
po = 120.0 MeV/c. (2.37)

Figure 2.1 shows the fitting of the Fermi gas using these coefficients of the Pauli
potential.

Next, consider the real part of the optical potential, which contains the informa-
tion about the momentum dependence in nuclear matter at the saturation density.
Assuming that nuclear matter is completely homogeneous, the potential for one nu-
cleon with the momentum P in nuclear matter at the saturation density is calculated

)

as follows:

4 1 ypr Cow C
Up) = a+p+(gmh) [Ty
3 0 1+ (Ip—pl) 1+ (

H1

[

z(2)
lp—Dl
p2

14



Real Part of Optical Potential

for p-Nucleus elastic scattering
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Figure 2.2: The real part of the optical potential

K P K P
= a+ B+ Cumgle="2y=")4 Copglz = 2,y =),
br br PF PF
(2.38)
where pp is the Fermi momentum and g¢(x,y) is given by:
3 1 2 g2 1)2 22 1 —1
g(z,y) = —2° oy In 1)+ —|———2{arctany+ — arctan 2 } :
4 2xy (y—1)2+22 z x x
(2.39)

Figure 2.2 shows the corresponding experimental data and fitted curves using the
above formula subject to the following conditions [26].

U(0) = —80 MeV, (2.40)
Ulp) = 0 at FEpp =200 MeV, (2.41)
U(p — 00) = 75.43 MeV. (2.42)

On the other hand, the derivative of the optical potential U(p) in terms of the
momentum p is related to the effective mass:

L1 (laU(p)) - (2.43)

m*  m p Jp

In the above relation, we impose m* = 0.8m at the saturation density. There are
altogether four conditions regarding to the optical potential, thus four parameters
Cex(1), #1, Cex(2), pt2 are determined.
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EOS of Nuclear Matter
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Figure 2.3: The equation of state at zero temperature

The next condition to be considered is the equation of state (EOS). It is assumed
that the EOS of nuclear matter at zero temperature in the vicinity of the saturation
density is expressed by a parabolic function with the ground state energy per particle
—16 MeV and the incompressibility K. The incompressibility A is defined by:

0*E
K =p?
" op

: (2.44)

p=po

where F is the total energy per particle and pr is the Fermi momentum. Using
the fact that pp is proportional to p'/?
obtained as follows:

, 1t 1s found that the parabolic function is

K ’
E=—16+ — (ﬁ—l) . (2.45)
Po
This parabolic function is compared with the energy of the QMD nuclear matter at
zero temperature, which is prepared by the frictional cooling method under periodic
boundary conditions. Figure 2.3 shows the density dependence of the ground state
QMD nuclear matter and the parabolic function with K = 280 MeV. Coincidence of
these two constrains the value of 7 and /3 in the density dependent potential Vyepsity-
[t is assumed in this procedure that the value of 7 is set at a typical value of 4/3.
To fix the values of the parameters, Vgp, Cso and the wave packet length L. the
properties of finite nucleus are used, which are the binding energy and the radius of
finite nuclei. The experimental data for stable nucleus is compared with the QMD
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Table 2.1: Effective interaction parameter set (K =280 MeV)

a (MeV) [ —121.9 G (MeV) | 197.3 173
Coo (MeV) | 25.0 || Coxry (MeV) | —258.5 || Ci (Me\/) 375.6
p1 (MeV) 2.35 2 (MeV) 0.4 VSF (MeV) | 20.68
Cp (MeV) 115.0 || po (MeV/e) 120.0 ¢o (fm) 2.5

L(fm?) | 1.9

prediction for the ground state nuclei prepared by the frictional cooling. In this
fitting, the Coulomb potentials is included. Figure 2.4 shows the binding energy of
finite nuclei and the Fig. 2.5 shows the radius of finite nuclei. For both properties,
the experimental data are in good agreement with the values calculated by the QMD.

At this stage, all parameters are determined in principle. The parameters deter-
mined by four requirements are summarized in the Table 2.1.

2.1.5 Periodic boundary condition

To simulate nuclear matter by QMD, periodic boundary conditions are imposed.
Here, we will discuss general aspect of normal periodic boundary conditions.

One primitive and 26 replica cells

The purpose of periodic boundary conditions is to simulate infinite matter. There-
fore, we must be careful that the periodicity caused by boundary conditions should
not affect the quantities calculated in the simulation. We assume that the infinite
matter is simulated in periodic cubic cells. In order to avoid the appearance of
the periodicity, it is necessary that the cell size is at least larger than the twice
of interaction length. It is better that the cell size is as large as possible because
the correlation length is likely to be larger than the interaction length in critical
conditions near phase transition.

Since we are interested in subsaturated nuclear matter, the cell size is the smallest
when the density is the saturation density:

N3
Reen = (—) : (2.46)

Po

where N is the total number in a cell and py = 0.168 fm™ is the saturation density.
We set N = 200 and Ry = 10.6 fm, which is not so bad because the force between
two particles separated more than 5 fm is negligible with the wave packet length
L =1.95 fm*.

The actual calculation is carried out for the particles in the primitive cell but
these particles interact with the mirror particles in 26 replica cells surrounding the
primitive cell shown in Fig. 2.6. In general, periodic boundary conditions impose
additional calculation besides the calculation for the primitive cell. However, the
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Binding Energy of Finite Nuclei
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Figure 2.6: A schematic picture of periodic boundary conditions. The primitive cell
marked by thick lines is surrounded by 26 replica cells.

minimum image convention given below allows us to reduce the additional compu-
tational task.

Minimum image convention

In the molecular simulation, the calculation of the force is one of the most time
consuming part. When calculating the two-body interaction in the cell with N
particles, we have to check N(N —1)/2 pairs with the loop ¢ =1,---, N — 1 and the
inside loop j = ¢41,---, N. However, the two particles in most of the pairs are more
separated from each other than the interaction length so that they are negligible in
the dynamics of the system. Clearly it is a waste of time to check these pairs.

In the minimum image convention, we introduce a cutoff length r.,; within which
the interaction is active. When the relative distance |r;;| between ¢-th particle and
J-th particle is larger than r.,, we check whether the following quantity is within
the rey or not:

ri; = min [\/(51?2] + nyReen)? + (yij + nyReen)? + (25 + 1o Reen)?| (2.47)

where n,, n,,n, assume the values 0, £1 and R.ep is the cell size. In this convention,
the number of pairs we must calculate is restricted within the primitive cell, where
the boundary condition is naturally introduced without taking the replica cells into
account. As a result, we can save much computational time.

It is possible to reduce the computational time further by keeping a list of pairs.
All interactions are expressed in terms of the relative distance AR and the relative
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momentum AP. Thus, it is possible to calculate the interactions in a single loop
over the pairs instead of in the double loop over the (N x N) particles.

To evaluate the pairs, we introduce a definite length r.y, which is larger than
reat- The point is that the list of pairs is not significantly changed during a few time
steps as long as rqy 1s reasonably chosen. Once the list of pairs is calculated, the
same list is used to calculate the force for next several steps before the updating of
the list.

Notice that the actual efficiency depends on the computer hardware to be used.
The method of the pair list is effective in the scalar computer but not in the vector
computer. In the vector computer, it is better to use the triple loop over the N x
N x 27 particles with replica cells because such structure of the loop is suitable to
the architecture.
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2.2 Metropolis method

The Metropolis method is a method to generate configurations of matter at fixed
temperature and density, which are regarded as the canonical ensembles. In this
study, the Metropolis method is used to prepare the initial state of the expanding
matter model and to calculate the equation of state (EOS) of static nuclear matter.

2.2.1 Canonical ensemble

First, we remember the basic formula regarding the canonical ensemble, where the
number of particle N, the volume of the system V and the temperature T are fixed.
An expectation value of an observable O is calculated as follows:

57 (22) " exp [ HE78) 0(e, )

kgl

Z(N,V,T)

(O)vyr = , (2.48)

where kg is the Boltzmann constant, r" stands for the positions of N particles, p?v
for the corresponding momenta and the partition function Z(N,V,T) is given by:

Z(N,V,T) = %/ (d’;p)Nexp [—%1. (2.49)

Notice that the Hamiltonian does not include the degrees of freedom for the spin
and the isospin. In general, the integral should include these internal degrees of
freedom but we will neglect them for simplicity.

In the case that the interaction does not include momentum dependent poten-
tials, the partition function becomes simpler form:

Z(N,V,T) = W [ ¥ esp [— ‘;tT>] , (2.50)
where

A(T) = (%) . (2.51)

2.2.2 Algorithm of Metropolis method

In the procedure of the Metropolis method, the configuration of the system is mod-
ified step by step with evaluating the transition probability to go from one configu-
ration to other configurations. In the canonical ensemble, the probability that the
system has a configuration characterized by (r"V,p”) is given by:

e gy — P 2]
= . 2.52
(r 7p ) Z(N,V,T) ( )

Let us to assume that the system has the configuration denoted by “o”. Our task
is to modify the configuration “0” to approach a specific equilibrated configuration
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we want to obtain. The procedure is as follows. After the current configuration “o”

is stored in the memory of the computer, a new configuration “n” is generated from
the old configuration “o” based on the probability a(o — n). This probability itself
does not assure that the obtained new configuration is adequate for our demand.
To check whether the new configuration should be accepted or not, the acceptance
probability acc(o — n) is introduced. That is, the transition probability is expressed
as afo — n) X acc(o — n).

We introduced, three unknown probabilities: N(o), a(o — n) and acc(o — n).
Now we will investigate the relations among these probabilities under the condition
that the system is in thermal equilibrium. Consider the flow of configuration “o” to
[T

n” as follows:
k(o — n) = N(o) X a(o — n) x acc(o — n), (2.53)

where A (0) is the probability of being in configuration “0”, a(0 — n) is the probabil-
ity of generating configuration “n”, and acc(o — n) is the probability of accepting
this modification. In thermal equilibrium, we can assume that the above flow is

equal to the reverse flow:

2
Y

k(o = n) =k(n — o). (2.54)

This condition is called as the detailed balance condition. Furthermore, it is possible
to require that the way of generating configuration is symmetric:

alo = n) =a(n — o). (2.55)
Then, we obtain the following relation:

acc(o — n) _ N(n) e [_ U(n) — U(o)]
acc(n — o)  N(o) kgT '

(2.56)

This relation indicates that we can determine whether the new configuration is
accepted or not by evaluating U(n) — U(o). There are several choices for acc(o — n)
to satisty the above relation. In the Metropolis method, the following choice is used:

exp [—%] U(n) > Ulo)

1 U(n) < Ulo) (2:57)

acc(o — n) = {
This tells us how to proceed by modifying the system. When the energy of the new
configuration is larger than that of the old configuration, the acceptance probablity
is 0 < acc(o — n) < 1. With a random number 0 < rand < 1, we can check
whether the new modification is accepted or not. Specifically, the new configuration
is accepted when rand < acc(o — n). On the other hand, for U(n) < U(o), the new
configuration is always accepted. In principle, many modifications to this acceptance
probablility are possible to give the equilibrated configuration at the temperature
T.

It should be noted that the above method is independent of a(o — n), i.e., how
to modify the configuration. In pactice, how to modify configurations are crucial in
view of computational time. It is also important to estimate whether the obtained
configuraion is really in thermal equilibrium or not. In the next subsection, we will
discuss the actual procedure to obtain the cannonical ensembles of nuclear matter.
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2.2.3 Canonical ensembles of nuclear matter

In the Metropolis method, nuclear matter is described in terms of N = 200 nucleons
under periodic boundary conditions in the same way as was used in QMD. First of
all, a temperature T" and a density p are given as input parameters.

Initialization

We assign the initial positions, momenta, spins and isospins to the particles. The
1

initial positions are distributed randomly in the cubic cell with a size Ry = (%) ?

Using a random number rand in the range [0, 1], such a random distribution is given

by:

R, = (rand —0.5)Rcen,
R, = (rand —0.5)Rcn,
R. = (rand —0.5)Rcan. (2.58)

However, we must avoid the situation where any two particles are too close to each
other, in which case the Pauli potential energy may cause overflow. Thus we require
additional condition that the distance of any two particles is larger than 0.1 fm.

For the momentum distribution, it is reasonalble to use the Fermi distribution
for a given temperature as the initial distribution, in which case the corresponding
chemical potential has to be calculated. In practice, it is not necessary to use the
exact Fermi distribution for the initial configuration. Instead, we generate a random
configuration inside the Fermi surface in the momentum space. The procedure is
very similar to the case of the positional configuration:

P, = (1 —=2%rand)Fr,
P, = (1 —=2%rand)Fr,
P. = (1 —=2%*rand)Pp, (2.59)

1
where Pr = he (37;&) ® is the Fermi momentum. To ensure that the particles are

inside the Fermi surface, we impose an additional condition that |/P? + P? + P? <

Pr. The obtained momentum configuration is thought to be near to the ground
state and the temperature T will be recovered in the Metropolis method.

Finally we comment on the spin and the isospin. These internal degrees of
freedom are phenomenologically assigned to the particles. Each particle belongs
to one of four kinds of attribute p T,p |,n T,n |, where p is the proton, n is the
neutron, T is the spin up and | is the spin down. We assign these degrees of freedom
to the particles sequentially in the same weight.

Modification

The modification of the configuration is carried out in two steps. First we generate
a new configuration “n” from the old configuration “o”, then check whether the new
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configuration should be accepted or not by the acceptance probability, which is a
function of the energy difference U(n) — U(o). The original configuration is stored
in case of rejecting the new configuration.

Now, we modify the configuration to calculate the new energy U(n). The mod-
ification is carried out by changing the position and the momentum of a particle
selected at random. Assuming that the i,,,-th particle is selected, its position and
momentum are changed as follows:

Ro(tvan) —  Ra(iran) + (rand — 0.5)AR,
P.(tran) —  Paltvan) + (rand — 0.5)AP, (2.60)

where a = z,y,z, AR, AP are constants and rand is a random number in the region
[0,1]. The value of AR and AP should be determined so that the sequentially
obtained configurations range over the whole configuration space.

For the positional configuration, AR = R is a reasonable choice. When a
new position is over the boundary, the new position is shifted by + R so that the
particle is in the primitive cell.

On the other hand, AP should be set at the value which is larger than the
corresponding value for the fluctuation of a given temperature T'. It is safe to set
AP > 10Pg even for T' = 30 MeV. For lower temperatures, smaller value should be
used because too large AP leads to too large system energy U(n) which causes the
very small acceptance probability resulting in the too long computational time.

With the new configuration, the energy of the new configuration U(n) is calcu-
lated. When U(n) < U(o), the new configuration is always accepted by difinition.
When U(n) > U(o), the acceptance probability exp (—%) is evaluated with
a random number rand in the range [0, 1].

In case the new configuration is accepted, the initial configuration is updated,
otherwise, the original configuration is reserved. Anyhow, at this stage, one Monte
Carlo step is completed. Afterwards, a next particle is selected at random and the
same procedure is carried out again. This loop should continue untill the detailed
balance condition is fulfilled.

When should we stop the modification?

To obtain good statistics, it is necessary to extract many independent samples from
the configurations obtained by Metropolis method. It is clear that sequential two
configurations are almost the same because the configuration of all particles except
one is the same. After the first sample is extracted, the second sample should be
extracted from the configuration which is modified well enough to be independent
of the first sample.

We can check whether the detailed balance condition is fulfilled or not by inves-
tigating the fluctuation of the total energy. In almost all cases, the total energy of
the initial configuration is much larger than the energy adequate for a given tem-
perature. Thus, in the course of the modification, the energy decreases gradually
step by step and afterwards, fluctuates in a certain region. This fluctuation is the
signature of the detailed balance.
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Calculation of the energy

In practice, we do not need to calculate the total energy U(n) at each time step
because we have already known U(o) at this stage. In other words, we need to cal-
culate only the difference between U(o) and U(n). The total energy U is calculated
as follows:

Sp(i)? 1o .
U= Z +35 Z Z ‘/tWO(ZL]) + Vdensityy (261)
oM 2
1= 1=1 j#¢
where %Zﬁl > j#i Viwo(7,7) indicates the total potential energy except for the den-
sity dependent potential Viensity. Naively, one may think that U(n) — U(o) can be
calculated by the difference of the following single particle energy of the displaced
particle €(tran):

. 2
. Pllran . .
e(lran) — (2M) + E ‘/two(lranv ]) +
J#%ran

1
ﬁVdenSity. (2.62)

Note that Vjensity cannot be split into N single particle energies because the sum

over 7 and the sum over j are not symmetric as the expression Y%, (Zé\f:l pij)T
shows. It should also be noted that the single particle energy does not include the
factor 1/2 for compensating the double counting.
Now it is important to understand that U(n)—U(o) # e(n)—e(0), where e(0) and
(1))

e(n) mean the single particle energy for the configuration “o” and “n” respectively.
Actually, U(n) — U(o) is expressed by the difference of the following quantity:

2
_ piran

é(iran) — oM + Z ‘/two(iranaj) + Vdensity- (263)

JFiran

That is to say, it is inevitable to calculate the total energy for the density dependent
potential.

Single particle energy distributions

Figure 2.7 shows the single particle energy distributions of the samples obtained by
the Metropolis method. The single particle energy is calculated for each particle in
the samples. The value of the vertical axis indicates the number of particles which
belong to the energy regions divided by 1 MeV on the horizontal axis. The upper
figure 2.7(a)(b) is the case of the saturation density p = po and the lower figure
2.7(c)(d) is the case of p = 0.05py. The left hand side is the case T'= 5 MeV and
the right hand side is the case T' = 30 MeV.

Each distribution consists of 1000 samples, each of which includes 200 particles.
Namely, each distribution indicates the canonical ensemble composed of 200000
particles at a given temperature and density. The samples are picked up from
the configurations generated by the Metropolis method after the detailed balance
condition is fulfilled. It is necessary to pick up the samples in such a way that the
obtained samples are statistically independent. To assure this, we do not pick up
the next sample untill the old sample is modified N = 200 times.
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Figure 2.7: Single particle energy distribution over 1000 samples: (a) p = 1.00pg,
T =5 MeV. (b) p = 1.00py, T = 30 MeV. (¢) p = 0.05p9, T' = 5 MeV. (d)
p = 0.05p9, T'= 30 MeV. The abscissa is the single particle energy and the ordinate
is the number of particle per 1 MeV. There are 200000 particles because one sample
consists of 200 particles. Dashed line refers to the Fermi distribution multiplied by
the density of state.
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In each figure, corresponding Fermi-Dirac distribution f(£) multiplied by the
density of state D(FE) is also depicted (dashed line):

D(E)f(E) = 1000N (2.64)

VE <2M ) 2 1

2 2 E—un\’
wp \ R 1+ exp (T“)
where M is the nucleon mass and p is the chemical potential. The chemical potential
is determined by:

/0 " F(E)D(E)dE = 1000N. (2.65)

Consider the case (a)(b) of p = po, which is used as the initial state of expanding
matter. At the saturation density, the particle is under the influence of the attractive
interaction so that the obtained distribution is shifted in the negative energy direc-
tion as compared to the Fermi-Dirac distribution. Apart from this difference, the
shape of the obtained distribution is similar to that of the Fermi-Dirac distribution.

On the other hand, the case (¢)(d) is the distributions at low density p = 0.05pq.
In this case, it is expected that the calculated distribution is close to the Fermi-Dirac
distribution because the particles behave like free particles at low density. Never-
theless, the case (¢) of T = 5 MeV shows that the obtained distribution deviates
significantly from the Fermi-Dirac distribution. This is because some fragments
appear in the samples at T = 5 MeV. As this example shows, the local density
fluctuation is allowed in the framework of the Metropolis method.

For the case (d) of T = 30 MeV, the system is clearly outside the coexistent
region and the particles are effectively free. As a result, the obtained distribution
is in good agreement with the Fermi-Dirac distribution. In this case, the system
is thought to be classical and the Fermi distribution reduces to the Boltzmann
distribution.
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Figure 2.8: Snapshots of expanding nuclear matter at different densities. (a) an
initial state with p = po. (b) an intermediate state at p = 0.05p, during the
expansion. (c) a final state with p = 0.001py. (a) shows not only the primitive cell
but also 26 replica cells used in periodic boundary conditions. Although it looks like
a finite system, it is a part of an infinite system.

2.3 Expanding matter model

The expanding matter model simulates the matter which expands at a fixed rate,
where the time evolution of matter is calculated by Molecular Dynamics under gener-
alized periodic boundary conditions. The generalized periodic boundary conditions
allow us to investigate the dynamics of expanding matter free from any finite size
effects. We apply this model to nuclear matter with the QMD in order to investigate
how the expanding motion affects the nuclear phase transition, which is examined
experimentally in heavy ion reactions with large radial flow.

2.3.1 Overview

Now, we will explain how the model works in terms of the classical Molecular Dy-
namics, in which the position r and the velocity v are basic quantities.

First, we prepare the thermally equilibrated matter at saturation density by the
Metropolis method. Based on the procedure in the previous section, 1000 samples
at a given temperature Tj,; are generated. The obtained matter has thermal motion
resulting from a given temperature but such a thermal motion cannot cause the
system to expand. This is because the particles cannot escape from the cell at a
fixed density.

To let the whole system expand, it is necessary that the cubic cell expands so
that the average density can decrease. We assume that the average density decreases
as follows:

N p(0)

M) = FaP ~ T4 (2.66)

where t is the time, R.o is the cell size and h is the parameter, which controls the

28



speed of expansion. This constraint determines the macroscopic constraint of the
system. The cell size Rean(t) increases in such a way that it is proportional to time
t.

In microscopic point of view, the particle is considered to have the following
velocity:

V(1) = Vieeal(t) + hr(0). (2.67)

The above velocity consists of the local velocity and the collective velocity. When
t = 0, the local velocity is Vieeal(0), which is given by the Metropolis method. The
system cannot expand only with vigea(0) and therefore, the collective velocity hr(0)
is also given at ¢ = 0, which is consistent with the way the density decreases as given
by Eq. (2.66). The collective velocity is proportional to the initial position of the
particle r(0). Forcing all particles have collective velocities which is proportional
to the initial position, we find that the whole system expands homogeneously at a
fixed rate characterized by the parameter h. This is because any two particles have
the relative collective velocity which is proportional to their relative distance.

The time evolution of expanding matter proceeds according to the equations of
motion. At each time step, we need to evaluate the relative distance between two
particles for calculating the force in the equation of motion. The force is calculated
only when the distance Ar is smaller than the cutoff length r.y. If Ar islarger than
Teut, We check whether the following modified distance is within r.u:

Ara(t) — Ara(t) £ Ren(t), (2.68)

where o = x,y, z. This procedure is same as normal periodic boundary conditions
except that the cell length depends on the time. Under the generalized periodic
boundary conditions, the following procedure is additionally assumed:

Ava(t) — Ava(t) £ hReen(0). (2.69)

Notice that Reen(0) is used instead of Reen(?). This procedure is valid because the
relative collective velocity of the two particles separated by Reen(t) is hReen(0) at
t = 0 and this velocity is assumed to be conserved. These procedures also applies
when the particle is over the boundary. Actually, particles seldom go over the
boundary because the speed of the boundary is always higher than particles inside
the cell as long as thermal motions do not boost particles significantly.

As time evolution proceeds, the density of the system decreases and the system
becomes unstable with decreasing its effective temperature. The effective temper-
ature is proportional to the kinetic energy composed of the thermal component of
the velocity. The instability of the system causes the density fluctuation and results
in the fragmentation. One of our purpose is to investigate how the system becomes
unstable and how the density fluctuation grows during the expansion process which
depends on both the initial temperature and the expansion velocity given at the
beginning.

The time evolution continues untill the density of the system reaches p = 0.001pg
where fragments can be unambiguously identified. At this stage, we obtain several
fragments in the primitive cell. Using 1000 samples prepared by the Metropolis
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method, we can obtain the fragment mass distribution composed of 200000 particles
for a given temperature and a given expanding speed h. To investigate how the
expanding motion and the temperature affect the final fragment mass distribution
is another purpose of this study.

2.3.2 QMD under generalized periodic boundary conditions

In the case of the QMD, the momentum is the basic quantity rather than the velocity.
Therefore, the discussion of previous subsection is a little modified. The average
density of the system is given by:

N p(0)
p(t) = Rl (1+h_PFt_)3, (2.70)

where M is the nucleon mass, pg is the saturation density and FPp is the Fermi

_1
momentum. Notice that the parameter h is non-dimension and p,* = 1.81 fm is
introduced as the scale of the distance. The momentum of the particle is expressed
as follows: R.(0)
Pi(t) = Pijocal(t) + h—Pr. (2.71)
Po’

% is the scale

In this way, the Fermi momentum is the scale of the momentum and py
of the distance.

Consider the relation between the particle in the primitive cell and the particle in
the replica cell. The replica cell is located at Reen(?) from the origin of the primitive

cell. The velocity of the replica cell V. is given by:

R (0
MV = h “f ) pe. (2.72)

po’

The position of the particle in the replica cell is deduced from the position of the
particle in the primitive cell as follows:

R;(t) — Ri(t) + Reen(?). (2.73)
Now, what is the momentum of the particle in the replica cell? It is given by:

R cn(0
Pl(t) - Pl(t) + h 111( )PF = Pi,local(t) + h

po’

R;(0) + Reen(0)

e

Po

Pe. (2.74)

In this way, it is found that the collective momentum in the replica cell obeys the
same rule that the collective momentum is proportional to the corresponding dis-
tance. Figure 2.9 illustrates the relation between particle position and its collective
momentum.
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Figure 2.9: The relation between particle position and its collective momentum.
The left hand side is the primitive cell and the right hand side is a replica cell.

2.3.3 Characteristic of infinite expanding system

In the framework of the expanding matter model, the speed of expansion is conserved
during the time evolution. This means that an external force exists and it controls
the system so that the system expands at a fixed rate. As a result, the energy
conservation is violated during the time evolution as opposed to simulations of finite
systems.

For the thermalized finite system, the system expands due to the thermal motion
characterized by the temperature. Such a system expands with decreasing the tem-
perature and as a result, the speed of expansion also decreases. Differently from this
situation, for infinite expanding matter, the system expands constantly regardless
of the thermal motion. When the thermal motion overcomes the expanding motion
given by h, the total energy decreases because the thermal motion is suppressed by
the slow expansion. On the other hand, when the system is forced to expand rapidly
in spite of low temperature, the system gains the energy during the expansion.

Figure 2.10 shows the dependence of energy on a mean nearest-neighbor distance
for Tini = 5 MeV and Ti,; = 30 MeV with A = 0.1. The case of A~ = 0.5 is almost the
same as h = 0.1 except for the fact that the error bars become larger as h increases.
However, when h = 0.1 or A = 2.0, the energy decreases even with Tj,; = 5 MeV.
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Figure 2.10: The dependence of energy on the mean nearest neighbor distance for
the initial temperature Ti,;; = 5 and 30 MeV with A = 0.10.
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Chapter 3

Instability of expanding matter

In this chapter, the instability of nuclear matter is investigated based on molecular
simulation discussed in the previous chapter. The molecular simulation illustrates
the property of nuclear matter as composite of nucleons, where the instability of
nuclear matter leads to nuclear fragmentation.

The instability appears in both static and dynamic nuclear matter. Static nuclear
matter is characterized by the equation of state (EOS), which can be calculated by
the Metropolis method. On the other hand, dynamical aspects of nuclear matter
can be investigated by the expanding matter model, where the pressure and the
effective temperature are calculated at each time step during time evolution. These
instantaneous quantities can be compared with the EOS obtained by the Metropolis
method because the small & limit of expanding matter approaches to static nuclear
matter. In this way, both static and dynamic properties can be discussed in the
same framework.

Using the Lennard-Jones potential instead of complicated QMD potentials, it is
possible to simulate very slow expanding matter which can be regarded as quasi-
static. Introducing an inhomogeneity function, we will investigate how the expand-
ing motion affects the liquid-gas phase transition as compared to the coexistent
region, which can be exactly calculated by the Gibbs ensemble method.

3.1 EOS of nuclear matter

In this section, we calculate the EOS of nuclear matter by the Metropolis method
to know the static property of nuclear matter. For given temperature and density
(T, p), the Metropolis method provides us with the canonical ensembles of nuclear
matter, from which 100 independent samples are extracted. Each sample includes
200 nucleons so that 100 samples give nuclear matter composed of 20000 particles.
Averaging these samples, the energy and the pressure for given (7', p) are obtained.

3.1.1 Density dependence of the energy

Figure 3.1 shows the data points of the total energy per particle plotted in the
density-energy plane. Temperatures are 3,8,10,15,20,30 MeV and the density
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ranges from 0.05py to po by increment of 0.05py. A set of data with a fixed temper-
ature forms an isotherm. The “fcc ground state” indicates the ground state energy
for the configuration that the positions of particles are fixed on the face-centered
cubic (fce) lattice.

First of all, it should be noted that fragments may appear in the samples obtained
by the Metropolis method. This means that the resultant EOS is not necessarily
that of the homogeneous matter. When the selected (p,T) belongs to unstable
regions, fragments are likely to appear in the corresponding samples. In this sense,
our EOS based on the Metropolis method is different from usual EOS diagrams. To
clarify this point, the “fcc ground state” is also depicted, where the homogeneity of
the system is maintained.

As shown in Fig. 3.1, the line for “fcc ground state” has a parabolic shape, which
is expected around the saturation density. It should be noted that the energy of
low density matter is positive for “fcc ground state”. This is because the matter
behaves like free Fermi gas in low density region due to the Pauli potential. On the
other hand, the isotherm for T' = 3 MeV is significantly different from the parabolic
shape despite T'= 3 MeV is still near to the ground state. We see that the energy
for T'= 3 MeV is constant at —5 MeV in the region 0.3py < p < 0.7pg. This is due
to the fact that fragmentation occurred in the matter at 7' = 3 MeV. The energy
of =5 MeV is considered to be the sum of the binding energy of a fragment and its
kinetic energy par particle.

In the next subsection, we will see that the T' = 8 MeV is the critical temperature.
Thus, the data points for T' < 8 MeV can fall on the spinodal region, in which case
fragments can appear in the samples so that the corresponding isotherm deviates
from a palaboric shape. On the other hand, for T' > 8 MeV we see that the isotherm
approaches a palaboric shape as the temperature increases. The isotherm for 7' = 30
MeV shows almost the same density dependence as the “fcc ground state”.

This is because the matter is homogeneous and the kinetic energy per particle is
independent of density in the classical limit. That is to say, the density dependence
of the energy for T' = 30 MeV is due to the density dependence of the potential
energy for homogeneous matter. Figure 3.2 shows the density dependence of kinetic
energy. We see that the kinetic energy for 7' = 30 MeV is constant around 37" = 45
MeV, which indicates that the matter is in a classical limit.

It is found that the kinetic energy of “fcc ground state” is similar to that of
free Fermi gas, which is mentioned in the parameter fitting of the Pauli potential.
Figure 3.2 together with Fig. 3.1 shows how the momentum dependent potential
affects the matter at a given temperature.

3.1.2 Density dependence of the pressure

Next, we study the pressure against density, which enables us to analyze the unstable
region of the system. The pressure is calculated using the virial equation as follows:

P oH =t X oH
p=-_|P, = R.—R;) — | . 3.1
Slr S s memy iy o
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Notice that the kinetic part of the pressure includes P; - 2L instead of P; - Py,

aP;
38{)[. indicates the velocity in the equations of motion. This difference is very

important in the model with the momentum-dependent potential.

Figure 3.3 shows the dependence of pressure on density for the same temper-
atures used in Fig. 3.1. The “fcc ground state” is also depicted. The isothermal
spinodal region is defined by the condition (%) < 0, where the system is unsta-
ble. The critical temperature T, under which isothermal spinodal region appears is
determined as the temperature at which the local minimum of the density-pressure
curve disappears. We calculate the density-pressure curve for each temperature by
1 MeV step and find that T, = 8 MeV. We can see in this figure that local minimum
disappears for T' > 8 MeV.

Now it should be reminded that our procedure allows that particles form frag-
ments when the system is unstable. This means that the instability is suppressed
by fragmentation which is allowed in our approach. In fact, this is the reason why
T. = 8 MeV is smaller than typical values (~ 15 MeV [34]) predicted by models
based on plane wave using similar interactions. Traditional models explicitly as-
sume continuous matter, which has higher critical temperature and wider spinodal
region. The pressure of “fcc ground state” simulates the continuous matter. The
larger negative pressure region is caused by the constraint that the particles cannot

form fragments. This negative pressure region is thought to belong to coexistent re-

where

gions, inside which the pressure is expected to be constant and equal to the saturated
vapor pressure. The saturated vapor pressure is always positive. If the particles can
form fragments, the pressure is thought to approach the positive pressure.

Nevertheless, it is found that the pressure for T' = 3 MeV has negative value
around p = 0.7py despite the fact that fragmentation is allowed. This is because
the interfaces between fragment (liquid) and gas play a dominant role in the system
which includes only N = 200 particles. In principle, percentages of particles in inter-
faces is negligible in real infinite matter. However, in the small system, percentages
of particles which belong to interfaces are essential and contribute to the negative
pressure. To investigate the coexistent state exactly, we need a different technique
called Gibbs ensemble method. However, the Gibbs ensemble method with QMD
interaction is a future work. The Gibbs ensemble method with the Lennard-Jones
potential will be introduced in the later section.

3.2 Instability of expanding matter

In this section, the expanding matter model is utilized to investigate how the expand-
ing motion affects the instability of nuclear matter. The instability is investigated
by the pressure calculated in the course of the time evolution, which is compared
with the isotherms obtained from the Metropolis method. The pressure is usually
obtained from the virial equation but it should be noted that expanding matter is
not in thermal equilibrium. The virial equation is often derived with the help of the
ergodic theorem, which states that a time average is equivalent to an ensemble av-
erage. In this case, it is assumed that a time average is performed at a fixed density.
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To apply the virial equation to expanding matter, it is necessary to confirm that
the virial equation works for the instantaneous pressure during the time evolution
of expanding matter [35].

3.2.1 Virial equation for the instantaneous pressure

Consider the pressure in the cubic cell with the length R..y, where N particles
are distributed at random. The following derivation is based on the fact that the
pressure is regarded as the momentum flux which pass through an unit area in
a space. The momentum flux is composed of two kinds of sources. One is the
momentum of each particle and the other is the forces on particles. First, we estimate
the contribution of the momentum of particles. Given a unit area dydz located at
an arbitrary position in the cell, the probability that :-th particle pass through the
area dydz is given by

vx(i)dt) ( dydz ) . dtdydz
— (1) 3.2
( Rcell Rcelchell ( )Rcelchelchell ( )

where v,(7) is the  component of the ¢-th velocity and df is an unit time. Statisti-

cally the xx component of the momentum flux is estimated as the product of pa(i)

dtdydz
and the above probability:
1
PEE(r) = pe(0)v,(1) =——=——5—. 3.3
kln( ) P ( ) ( )Rcelchelchell ( )
The above discussion is valid for any component of any particle. Assuming
N N N
> Pinli) =3 P = Bi(i) = P, (3.4)
=1 =1 =1
Piin 18 expressed as follows:
1 N
P = (3.5)

- - 1) -vie).
3Rcelchelchell ; p( ) ( )

Notice that we distinguish between p(¢) and v(7) on purpose because p(i) is not
proportional to v(7) in the model where momentum dependent potentials are used.

Next, we estimate the contribution of the forces. Defining x;; as the  component
of the distance vector between the two particles ¢ and j, the probability that x;
traverses the area dydz is as follows:

( iy ) ( dydz ) _ adydz (3.6)
Rcell Rcelchell B Rcelchelchell' ‘

The momentum carried by the force F,.(¢,j) during the unit time is F,(7, j)dt. Thus,
the corresponding momentum flux is expressed as follows:
orce ¢ ] = = *
! 7 dy dzdt Rcell Rcell Rcell Rcell Rcell Rcell

(3.7)
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The other components can be similarly derived. Now we assume the following

equality:
N-1 N-1 N-1
Z Z force Z Z force Z Z force Pforce (38)
=1 j=14+1 =1 j=14+1 =1 j=14+1

Then, Pioree is obtained by
1 N-1

Progee = ————— rij - Fij. 3.9
f 3Bzcellj:icellfgcell ; ]:ZH:J ! ! ( )

Summing P, and Pyopee, the total pressure is given in the the following form:

1 N N-1 N
P = = i) - v(i) + ri - F,,
3Bzcellfgcellfgcell ;p( ) ( ) ; ]:Zz;—l J I
p N N-1 N
- 3N ZP(Z)V(ZH‘ Z Z ri; - Fil, (3.10)
=1 =1 j=i+1

where p = m is used. In the above discussion, time-average is not invoked
but statistical concept is significant throughout the derivation. To obtain the pres-
sure under a certain condition, we need a lot of samples which correspond to the
specific condition.

3.2.2 Expanding nuclear matter

Since we understand the instantaneous pressure expression, we can use the virial
equation in the expanding matter model. However, when applying the virial equa-
tion to the expanding matter model, we should take into account the effect of col-
lective motion appropriately. It is assumed that the system expands at a specific
rate in the expanding matter model. Thus, we extract the local momentum from
the total momentum and use only the local momentum in the virial equation. The
local momentum is expressed as follows:

Ri(t)l Pr, (3.11)

p(t)==

where the second term is the collective component, which depends on time but notice
that

Piiocal(t) =Pi(t) — R

R;(t R;(0
h (_); Pr~h _(l)PF. (3.12)
p(t)s Po’

In this case, Eq. (3.11) is the same as Eq. (2.71). All potentials used in the QMD
are represented in terms of the relative distance and the relative momentum. Using
the QMD potentials, the virial equation is expressed as follows:

0
OR,;

p= pTeff—I——Z Z R: — R;)

=1 j=14+1

(R, —R;,,P, —P))|, (3.13)

39



3 1 N Pz local oH
Sg = 3 Lilocal , 3.14
2 ! N Z 2 (aPi)local ( )

=1

oH Pi,local 5}
(api)lwﬂ ==t ; aPZ»U(RZ —R;.P,—P)), (3.15)
where U is the total potential and Ty is an effective temperature expressed in terms
of the local momentum. Notice that the derivative of the potential with respect to
the momentum is also calculated with the local momentum.

Figure 3.4 shows the pressure and the effective temperature calculated by the
above virial equation during the time evolution of expanding matter. The speed of
expansion is set at h = 0.1, which is the minimum in the QMD expanding matter
because slower expansion demands very long computational time. The time unit dt
is set such that hdt = 0.02. The smooth lines in the upper figures (a)(b)(c) indicate
the pressures calculated during expansions and the lower figures (d)(e)(f) show the
corresponding effective temperatures respectively. The initial temperatures are set
at Tim = 30 MeV in (a)(d), Tim = 15 MeV in (b)(e) and Tiy = 5 MeV in (¢)(f),
each of which is compared with the isotherm with the same temperature. These
isotherms are the same as those in Fig. 3.3, where each data point is calculated
independently by the Metropolis method.

Let us evaluate the kinetic energy resulting from the expansion with A = 0.1.
The expanding energy per particle of a sphere with a radius [ fm at py = 0.168 fm™>
is estimated as follows:

2 2
1o 1 R 3( 1 )

2

where N is the number of particles and the Fermi energy ZP—]\Z = 37.6 MeV. The
typical value of [ should be set based on the range of the potentials used in the
model. In the case of the QMD potential, the effective range is estimated within
5 fm. When [ = 5 fm and A = 0.1, the expanding energy per particle is 1.72
MeV. Thus, the expanding energy per particle for A = 0.1 is smaller than the initial
temperatures.

The pressure of expanding matter is calculated successively during time evolu-
tion. This means that the data points on the density-pressure curve are connected
by the equations of motion. Once the density fluctuation occurs at a certain den-
sity, it affects later stages at lower density. Such grow of fluctuation is considered
to depend on both the speed of expansion and the temperature.

As shown in the Fig. 3.4, for all the initial temperatures, the pressure of expand-
ing matter with 2 = 0.1 is below the isotherm in all density region except pg, where
both pressures agree. This is because T.¢ decreases with decreasing density.

For Ti,; = 30 MeV, the pressure and Tog decrease with decreasing density untill
the density reaches 0.3py where T.g is around 8 MeV, which is equal to the critical
temperature T, for static nuclear matter. We can say that the matter is considered to
be stable against fragmentation at least for Teg > T. because fragmentation cannot
occur. We see that the pressure is zero for p < 0.3pg, while Teg > 4 MeV holds in
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the same region. This means that the attractive force works in this region because
Teg contributes to the positive pressure. Therefore, fragmentation is considered to
start from p = 0.3pg

For Ti,; = 15 MeV, the pressure decreases with decreasing density and reaches
zero around p = 0.7pg, where T, = 8 MeV holds again. In this case, the pressure
decreases further and reaches —0.3 MeV fm™ around p = 0.5p,. The density-
pressure curve is similar to the case of “fcc ground state”. This is because the matter
maintains its homogeneity due to the collective motion. In the case of expanding
matter, the positions of the particles are not fixed like fcc lattice but it is a strong
constraint that the matter expands at a fixed rate. The spinodal region % < 01s
found in the region p < 0.5p9, where fragmentation is expected to occur. Notice
that T.g starts to increase around p = 0.3pg, where fragmentation may start since
it means the increase of the local temperature. However, it is not certain that this
increase of Tyg indicates the fragmentation because Teg is affected by the momentum
dependent forces.

For Ti,; = 5 MeV, the matter is below T. = 8 MeV from the beginning. We
see that the pressure decreases with decreasing density and reaches zero around
p < 0.85p, and afterwards decreases further and reaches —0.7 MeV fm 2 around
p = 0.6pg. That is to say, the spinodal region is in the range p < 0.6py. It may look
strange that T.g is a little below zero at p = 0.6py. This is because the momentum
is not proportional to the velocity due to the momentum dependent potentials. The
situation P; - aa—f‘,/i < 0 leads to the negative temperature.

The Fig. 3.4 includes only h = 0.1 case. More rapid expansions h = 0.5,1.0,2.0
are also carried out but the results are almost the same as those of A = 0.1. This is
partly because the virial equation is used with the local component of the momentum
so that the effects of expansion does not directly affect the dynamics. To see the
effect of h on the local pressure and the local temperature, it is necessary to carry out
the simulation of slower expanding matter. Unfortunately, A = 0.1 is the lowest limit
in our QMD simulation because slower expansion requires very long computational
time.

3.3 Quasi static limit

In this section, to simulate a very slow expanding system which is regarded as quasi
static, a classical Molecular Dynamics with the Lennard-Jones (LJ) potential is
utilized. The LJ potential has features similar to the nuclear potential in the sense
that it has a short range repulsion and a long range attraction. We can expect that
expanding matter with the L.J potential behaves similarly as that with the QMD
potential. Using the LJ potential instead of the QMD potential, the quantities
which appear in the model becomes simple. In particular, the effective temperature
is always positive as opposed to the negative temperature of the QMD expanding
matter. This allows us to clarify some uncertain points in the previous discussion.
For the LJ system, it is possible to calculate the exact coexistent region by
the Gibbs ensemble method. The coexistent region is compared with the effective
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temperature of the expanding matter with A = 0.001. In addition, an inhomogeneity
function is introduced to investigate how the density fluctuation grows during time
evolution.

3.3.1 Molecular Dynamics with Lennard-Jones system
Lennard-Jones potential

The original L.J potential is given as follows:

vo(r) = 4e [(5)12 _ (3)6] . (3.17)

r r

However, we use the following modified form with a cutoff distance:

Avg (1
o(r) = {vo(r) — vo(Teut) — %—Z(T — Teut) TS Teut (3.18)
0 r > Tcut,

where r.y = 2.5 and o, € are the unit of length and energy respectively. The deriva-
tive with respect to r is introduced to ensure that the potential approaches smoothly
zero at rey. Without this additional term, the cutoff would cause an unphysical force
at r. [36].

Reduced units

All quantities are expressed in reduced units, including o, € and the particle mass
M. In particular, the collective momentum is simply expressed by hr, where h is
also non-dimension. Thus, the effective temperature is given by:

3 1 X (P; — hR;)?
g ==Y 3.19
2 T N & 2 (3.19)

where particle mass is 1 in reduced units.

Equations of motion

The equation of motion with the L.J potential is solved by the velocity-Verlet algo-
rithm (see Appendix B.2). The time step dt is set at hdt = 0.0004 in reduced units.
For h = 0.001, however, dt = 0.004 is used.

3.3.2 Coexistent region

It is known that the LJ system shows the liquid-gas phase transition. That is
to say, the expanding matter model with the LJ system allows us to investigate
how the expanding motion affects the liquid-gas phase transition. Furthermore, for
the LJ system, an exact coexistent curve in the density-temperature plane can be
calculated with the help of the Gibbs ensemble method, which is an advanced version
of the Metropolis method (see Appendix C). The inside of the coexistent curve is the
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coexistent region, where fragmentation is expected to occur in the thermodynamical
limit.

Notice that the spinodal region defined as % < 0 1s different from the coexistent
region, where liquid and gas have the common pressure and the common chemical
potential. On the other hand, there are two kinds of the spinodal region, one is
isothermal spinodal region and the other is adiabatic spinodal region. In case of van
der Waals model, the isothermal spinodal region is inside of the coexistent region
and the adiabatic spinodal region is further inside of the isothermal spinodal region
(see Appendix D).

3.3.3 Inhomogeneity function

During the time evolution, the pressure and the temperature change with decreasing
density, where the density fluctuation grows. To measure the density fluctuation
directly, the following function is introduced:

.
S(p) = — : (3.20)
;s (vt — 1)

where the denominator is the number of the pairs when the system is completely
homogeneous, while the numerator np,, 1s the actual number of pairs which is
calculated in the minimum image convention.

When the system is completely homogeneous, the number of particles which
interacts with a particle is %ﬂ'rfutp — 1. The total number is divided by two to avoid
the double counting.

By definition, S(p) = 1 only when the system is homogeneous, in which case the
number of the pairs in the system is minimum. As the density fluctuation grows, the
number of pairs increases. Using this property of the function, the inhomogeneity

of the system is estimated during the time evolution of expanding matter.

3.3.4 Expanding matter with Lennard-Jones potential

We will perform the simulation of expanding matter composed of 1372 particles with
h = 0.1 and h = 0.001, the latter of which is slow enough to be regarded as quasi
static. The pressure, the effective temperature and the inhomogeneity function are
calculated during the expansion and compared with the coexistence curve obtained
by the Gibbs ensemble method. Figure 3.5 shows the density dependence of the
pressure, the effective temperature and the inhomogeneity S(p) for h = 0.001 (left)
and h = 0.1 (right). The initial temperatures are set at Ti, = 1 (thick line), Ti; = 3
(thin line) and T = 5 (dotted line) in the reduced unit. The pressures are shown
in the top panel. The effective temperatures are shown in the middle panel with
the coexistence curve (open circle) calculated by the Gibbs ensemble method. The
inhomogeneity is shown in the bottom panel.

First of all, it should be noted that the critical temperature T, for the LJ system
is around 0.95 in reduced unit, which is identified as the max point of the coexistent
curve plotted in the middle panel. Thus, the initial temperature Ti,; = 1 is near the
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Figure 3.5: The pressure, the effective temperature and the inhomogeneity S as a
function of average density p. The left hand side is for A = 0.001 and the right hand
side is for h = 0.1. In each side, the pressure is plotted in the top panel, the effective
temperature is plotted in the middle panel and corresponding inhomogeneity S is
plotted in the bottom panel. The broken line is for Ti,; = 5, the thin solid line is
for Tin; = 3, and the bold line is for Ti,; = 1. The open circles are calculated by the
Gibbs ensemble method and form a liquid-gas coexistence curve. € is unit of energy
and o is unit of length used in the LJ system [30].
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critical temperature T, and Ti,; = 3,5 are above the T.. Roughly speaking, these
initial temperatures 1, 3,5 for the LJ system correspond to the initial temperatures
5,15 and 30 MeV for the QMD system.

Consider the case of A = 0.001 in the left hand side, which is considered to
be slow enough to be regarded as quasi static process. In the middle panel, it
is impressive that the effective temperatures for T;,; = 1,3 remain constant in the
coexistent region. The effective temperatures decrease with decreasing density untill
the system enters the coexistent region, outside of which we cannot distinguish
between gas and liquid. When the system reaches the coexistence curve, the system
is separated into liquid and gas, the former of which appears as fragments. During
the phase separation, the effective temperatures for 71i,; = 1,3 remain constant,
which is a characteristic of the first order phase transition. However, the effective
temperature for Ti,; = 5 continues to decrease after the system enters the coexistent
region.

In the top pannel, the corresponding pressures are plotted. We see that the
pressures for Ti,; = 3,5 remain zero just after the system reaches the coexistence
curve. On the other hand, the pressure for Ti,; = 1 reaches at a negative minimum
when the system reaches the coexistence curve. As the system goes inside the
coexistent region, the pressure for Tlm = 1 fluctuates and reaches to zero, which
part corresponds to the spinodal reglon I <.

Now, the bottom panel shows what happens about the stability of matter in
expandmg matter during the time evolution. An increase in S indicates an increase
of the inhomogeneity. The figure clearly shows that the inhomogeneity starts to
increase at the density where the system reaches the coexistence curve. In this way,
the very slow expanding matter with & = 0.001 is governed by the coexistent region.

On the other hand, for the expanding matter with A = 0.1, the coexistence
curve does not work as the border of the inhomogeneity. All effective temperatures
continue to decrease even after the system enters the coexistent region. The effective
temperature for Ti,; = 1 decreases towards 0.3 as the density reaches at p = 0.6 and,
afterwards, increases to 0.6, which value is common to other effective temperature
cases.

As density decreases, the pressures for 1j,; = 5,3 become zero similarly to the
case of h = 0.001. However, the pressure for Tj,; = 1 reaches the minimum at —2.1
after the system goes well inside the coexistent region. The minimum of the pressure
for o = 0.1 is deeper than that for A = 0.001. This is because the fragmentation
is not well developed due to the relatively fast expansion for &~ = 0.1. In view of
the spinodal region, the density fluctuation should occur at least after the density
reaches p = 0.7.

Actually, the inhomogeneity function in the bottom figure shows that the density
fluctuation for Tj,; = 1 occurs at smaller density around p = 0.5. We see that the
other inhomogeneities also start to increase in smaller density region as compared
to the case of o = 0.001. From the comparison between A = 0.1 and h = 0.001, the
homogeneity of the expanding matter is maintained untill smaller density for faster
expanding motion.
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Chapter 4

Fragment mass distribution

In the previous chapter, the instability of the expanding matter was investigated
by the effective temperature, the pressure and the inhomogeneity during the time
evolution. At the end of the simulation, the instability appears as a fragment mass
distribution, which can be observed in experiments. In the heavy ion collision ex-
periments, there are two kinds of fragment mass distributions.

One is a power law distribution Y (A) = A~7, where A is the mass number and 7 is
a critical exponent, which is observed in the spectator region. The spectator region is
often regarded as thermalized matter because collective motions like radial flow play
a minor role. The power law is thought to indicate a second order phase transition
because the power law includes a critical exponent 7. The other distribution is
the exponential distribution, which is observed in the participant region with large
radial flow. The exponential distribution is considered to have close relation to the
expanding motion.

These two kinds of fragment mass distributions are also observed in the expand-
ing matter model. The power law is found in slow expanding matter, while the
exponential shape is found in rapid expanding matter. In the framework of the
expanding matter model, we can see that the fragment mass distribution changes
from the power law to the exponential shape as the speed of the expanding mo-
tion increases. On the other hand, these fragment mass distributions also appear in
thermalized systems generated by the Metropolis method, in which case the thermal
equilibrium is satisfied. In this chapter, the origin of these fragment mass distribu-
tions will be investigated.

4.1 Nuclear fragment mass distribution

In this section, we will investigate the fragment mass distribution resulting from
the expanding matter with QMD interaction. There are two parameters in the
expanding matter model: the speed of expansion h and the initial temperature Ti;.
Our purpose is to relate these parameters to the resultant fragment distribution.
We prepare 1000 samples of nuclear matter composed of 200 nucleons at the
saturation density po with Ti,; by the Metropolis method, and afterwards boosted
them by h. The time evolution of the expanding matter is calculated from pg to
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Table 4.1: The time for expansion from pg to 0.001pg
h 0.1 0.5 1.0 2.0

time (fm/c) 575 115 57.5 28.8

0.001pg. The same time evolution is carried out for the different 1000 samples. The
resultant configurations at 0.001py provide us with a fragment mass distribution for
a given (h, Tin).

4.1.1 Fragment identification

Identification of fragments is carried out after the density becomes small enough
that fragments are well separated. Fragments can be identified below 0.05pq, where
an average distance between particles is larger than the interaction length. Each
fragment is identified in such a way that the distance from a particle to its nearest
neighbor is within a certain distance rjq in the fragment. Fragment identification
should be carried out at densities as low as possible, where the fragment identifica-
tion is independent of riq. Our fragment mass distribution is calculated at 0.001pg.

It should be noted that fragments may not be stabilized even at 0.001pq. In par-
ticular, fragments resulting from rapid expanding matter are likely to be unstable.
To compare the results of the expanding matter model with experimental observa-
tions, so-called secondary decay should be taken into account because the fragments
observed in experiments are completely stable.

Unfortunately, typical calculation time in the time evolution with the QMD is
much shorter than the time scale of secondary decay. Table 4.1 shows the duration
time for expansion with A from pg to 0.001py. Except h = 0.1, obtained fragment
distributions may change after the system reaches at 0.001py. However, such addi-
tional change has nothing to do with the phase transition of the expanding matter
we are interested in. Thus, in the following discussion, we will concentrate on the
primary fragmentation at 0.001pg. In this respect, the direct comparison between
our calculated results and experimental data is not intended in this thesis.

4.1.2 Rapid expansion

Figure 4.1 shows the fragment mass distributions for Ti,; = 30 MeV, where expand-
ing speeds are set at A = 0.1,0.5,1.0 and 2.0. Notice that the horizontal axis is linear
but the vertical axis is logarithmic, where the calculated values for A = 0.1,0.5,1.0
and 2.0 are multiplied by 100, 10,1 and 0.1 respectively to be easily recognized.

It is found that the distributions for A = 0.5,1.0 and 2.0 show straight line be-
havior with different slopes. This indicates that these distributions obey exponential
functions. We see that the slope increases as the expanding speed increases. These
features are also observed in heavy ion collisions with large collective flow [14], which
corresponds to large h in the expanding matter model.

48



] + h=0.10 (x100.)
10 o h=050(x10))
. h=1.00 (x1.0)
>10° & h=2.00(x0.1)
© .
_.C:L 2 v + o+ o+
= 10 *
=
10°
-2
lo I 1 1 1 1 I 1 1 1 1 I 1 1
0 10 20

mass number A

Figure 4.1: The fragment mass distribution resulting from QMD expanding matter.
Notice that the graph is in semilogarithmic scale.
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Figure 4.2: The fragment mass distribution resulting from QMD expanding matter.
Notice that the graph is in semilogarithmic scale.
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The case for Tiy; = 5 MeV is shown in Fig. 4.2, where each distribution is similar
to that of Ti; = 30 MeV except for the fact that large fragments appear due to
the low temperature. This means that the exponential shape for rapid expansion is
independent of initial temperature Tiy;.

In such rapid expanding matter, the interactions play minor role. As a matter
of fact, the exponential function is a characteristic of random distributions. When
h is large enough to suppress the interaction, the final distribution is simply an
enlarged copy of the initial configuration at saturation density po. At pg, particles
are distributed homogeneously and particle positions form a random distribution
irrespective of Ti,;.

Random distribution

The exponential function can be derived from the random distribution by calculating
the most probable configuration of the system composed of fragments with different
sizes. Let us assume a system composed of N particles, where there are Ny fragments
and n; is defined to be the number of the fragment with the size ;. Then, the following
two relations hold:

Nf = an7 (41)
k=1

N = > nik. (4.2)

Now consider what distribution is the most probable. The number of configurations
of a set of (ny,ng,---) is given by:
Ny!
W=————. 4.3
n1!n2!n3!--- ( )

With the help of the Stirling approximation, the variation of In W is obtained as
follows:

o(InW) = Z(Snk (In Ny — Inng) + )\Zk&lk, (4.4)

k=1 k=1

where A is Lagrangian multiplier. The condition 6(In W) = 0 leads to the expression
of ny:

ni = Nrexp (Ak). (4.5)

In principle, ny and A can be uniquely determined by substituting Eq. (4.5) into the
equations (4.1) and (4.2).

This equation indicates that exponential distributions are likely to be found on
the condition that fragments are formed free from interactions. However, it should
be noted that the above discussion does not tell us how to identify fragments. A
random distributions is subject to both the density p and 7y used for the frag-
ment identification. To assure the exponential shape, pr; should be so small that
fragments are separated completely.
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4.1.3 Slow expansion

On the other hand, when & is small, interactions play an important role in the
fragmentation. Figures 4.3 and 4.4 show the same data as Fig. 4.1 and Fig. 4.2
respectively in double logarithmic scale. In this case, h = 0.1 shows a straight line,
which indicates so-called power law Y (A) o< A™7, where Y(A) is multiplicity of the
fragment of mass A and 7 is a critical exponent.

Power law distributions are often explained by the Fisher’s droplet model based
on the grand canonical ensembles, where the pure power law appears only when
the chemical potential of the gas state is equal to the that of the liquid state (see
Appendix E). In the context of the droplet model, the power law is regarded as an
evidence that the system undergoes a second order liquid-gas phase transition.

However, it should be noted that the power law in the Fisher’s droplet model
requires that the system is in thermal equilibrium. Therefore, the power law appear-
ing in expanding matter does not necessarily imply that the system passes through
the critical state predicted by the Fisher’s droplet model. This is because there
is no enough time to stabilize the system even for A = 0.1. Furthermore, in the
Fisher’s model, the power law must occur at the critical temperature. Nevertheless,
the expanding matter which starts at Ti; = 5 MeV gives a power law, in which
case the fragmentation occurs well below the critical temperature of 8 MeV, which
is estimated from the EOS obtained by the Metropolis method.

4.1.4 Expanding fragmentation vs. static fragmentation

In the case of expanding matter, it seems that the fragment mass distribution
changes from the power law to the exponential law as the speed of expansion in-
creases. These two kinds of distribution also appear in thermally equilibrated matter
at a certain density and temperature. Using the Metropolis method, the thermal-
ized QMD matter can be generated. Now, we will investigate what condition leads
to characteristic distributions in thermalized matter.

Consider the fragment distributions for 7' = 5,8 and 18 MeV on condition that
the density is set at p = 0.05py, where the average distance between particles is
larger than the interaction length. The EOS indicates that T'= 8 MeV is the crit-
ical temperature. Figure 4.5 shows such isothermal fragment mass distributions in
comparison with the distributions resulting from the expanding matter with A = 0.1
in double logarithmic scale. Each isothermal fragmentation is given by 1000 samples
of nuclear matter at p = 0.05pg, which is prepared by the Metropolis method.

We see that the fragment mass distribution for 7' = 8 MeV shows a power law
with the exponent 7 = 2.5. This feature is consistent with the Fisher’s droplet
model, where the value of 7 is restricted within 2 < 7 < 2.5 [37]. Above the critical
temperature, a power law is violated and an exponential shape appears like rapid
expansions. In (c), we see that the distribution at 7' = 18 MeV is the exponential
shape in a double logarithmic scale, where thermal motion suppresses fragmentation
so that the particles are distributed in random way.

It should be noted that isothermal fragment distributions are calculated with
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Figure 4.3: The fragment mass distribution resulting from QMD expanding matter.
Notice that the graph is in double-logarithmic scale.
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Figure 4.4: The fragment mass distribution resulting from QMD expanding matter.
Notice that the graph is in double-logarithmic scale.
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riqa = 3 fm. In the case of the expanding matter, the fragment mass distribution is
independent of rig because the distribution is evaluated at a small density 0.001pg.
However, 0.05p9 adopted for isothermal calculation is not so small to satisfy that the
distribution is independent of rq. The power law for T' = 8 MeV is subject to both
riqa = 3 fm and p = 0.05p9. In fact, it is possible that the random distribution shows
a power law when the prf, is intentionally selected. In this context, pri; corresponds
to the occupation probability of the site percolation model.

On the other hand, T'= 5 MeV in (a) is neither the power law nor the exponential
law. The system at 0.05p and T' =5 MeV is considered to be inside the coexistent
region. Thus, each of 1000 samples for T' = 5 MeV includes a few large fragments and
copious monomers, which leads to the U-shape in (a). The U-shape is characteristic
of critical condition in finite systems [7].

Such U-shape does not appear in the expanding matter even though the initial
temperature is well below the critical temperature. We see that the fragment mass
distribution resulting from the expanding matter with T;; = 5 MeV shows a power
law in (d). In this case, the fragmentation occurs at temperature of at most 5 MeV
because the effective temperature decreases during the expansion. This indicates
that the fragmentation mechanism of (d) is completely different from that of (b).

4.2 LJ fragment mass distribution

In the previous section, effects of expanding motion on fragment mass distributions
are discussed with QMD expanding matter model. We have seen that the fragment
mass distribution changes from a power law to an exponential law as the expand-
ing velocity increases regardless of the the initial temperature. These features are
considered to be general independent of the potentials used in the model. In this
section, we again examine the Lennard-Jones potential and confirm whether similar
features are reproduced.

4.2.1 Setup

The initial temperature Ti,; is set at 1 and 5 in reduced units, where the former is
near the critical temperature T. = 0.95 and the latter is above T.. The speed of
expansion is set at A = 0.1,0.2,0.3 and 0.4. The time evolution of the expanding
matter is carried out for 100 independent samples with a given (Tiy,h), each of
which is composed of 1372 particles.

The time evolution stops when the density reaches at 0.001, where the fragment
mass distribution is calculated. Using 100 samples, a distribution for a specific
(Tini, h) is calculated. To check the dependence of the number of the particles, the
same simulations with only 500 particles are carried out. We confirm that the results
from 500 particles are almost the same as the results of 1372 particles except for the
h =0.1 and T} = 1.
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Figure 4.6: Fragment mass distribution as a result of expanding matter. The four
figures are for A = 0.1,0.2,0.3 and 0.4 respectively. Each figure contains two dif-
ferent initial temperatures: Tiy; = 1 (closed circle) and Tini = 5 (open circle); each
temperature is represented by 100 independent configurations and one primitive cell
includes 1372 particles.

4.2.2 Exponential shape and bimodal distribution

Figure 4.6 shows the fragment mass distributions in semi-logarithmic scale. For
Tini = 5, we see that the distributions show an exponential shape except h = 0.1.
In addition, the slope of the distribution in semi-log scale becomes steeper as the
h increases. These features are similar to the case of the QMD expanding matter.
Namely, these exponential shape indicates a random distribution resulting from the
rapid expansion.

For Tiy; = 1, only A = 0.3 and h = 0.4 show a clear straight line. However, there
is another part in the small mass number region. The distribution for A~ = 0.1 and
Tini = 5 also has two components in similar way. This distribution is called a bimodal
exponentials, which is discussed in [28, 29] using the same expanding matter model.
According to [28], the large mass number region comes from fragments, while the
small mass number region comes from monomers. In the case of the QMD expanding
matter, the large mass number region is considered to be hidden because there are
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Figure 4.7: The same data as Fig. 4.6 in double logarithmic scale.

only 200 particles in the system.

4.2.3 Power law

Let us investigate the same data in double logarithmic scale shown in Fig. 4.7.
We see that the monomer part of the bimodal distribution for 7i,; = 5 and h = 0.1
looks like a power law as opposed to the exponential shape stated in [28]. If the max
fragment mass is restricted, it is possible that only this part appears in the system.
This is exactly the case of the QMD expanding matter with only 200 particles.

On the other hand, the distribution for T;,; = 1 and A = 0.1 shows completely
different shape, where very large fragments appear. The max fragment mass number
reaches almost the number of particles in the primitive cell. This means that the
more the system includes particles, the larger the max fragment mass becomes.
However, the small mass number region is similar to the corresponding part of the
U-shape in Fig. 4.5. For h = 0.2 and T},;; = 1, the max fragment mass number is
independent of the system size. We see that the small mass number region is similar
to the Ti; = 5 MeV and & = 0.1 of the QMD expanding matter shown in Fig. 4.5.
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4.2.4 Final remarks

We have investigated the fragment mass distributions resulting from the expanding
matter with both the QMD potential and the LJ potential. The exponential shape
is considered to be a general feature for rapid expanding matter. However, the
monomer part of the bimodal exponentials resembles a power law shape. When
only the monomer part survives, it may be regarded as a power law. This situation
occurs in small systems like heavy ion collisions.

The two parts of the bimodal exponentials correspond to the liquid phase and
the gas phase. That is, the monomer part is subject to the behavior of the gas phase,
which depends on how the phase separation between liquid and gas proceeds during
the expansion. As discussed in the previous chapter, the system goes through a spe-
cific path in the coexistent region according to the initial temperature and the speed
of the expansion. During the time evolution, the phase separation proceeds with
accumulating density fluctuations, where the bimodal exponentials are organized.
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Chapter 5

Conclusion

In this thesis, we have developed the expanding matter model based on QMD, with
which we can investigate both statical and dynamical aspects of nuclear matter
by making use of generalized periodic boundary conditions. This new QMD model
enables us to simulate the dynamics of fragmentation free from the complication due
to the finiteness of the system. The expanding matter model has two parameters,
which are the speed of expansion i and the initial temperature Ti,;. By controlling
these parameters, the instability and the resultant fragmentation in both static and
dynamic nuclear matter have been investigated in an unified way for the first time.

Static nuclear matter which corresponds to h = 0 has been studied by the
Metropolis method. The equation of state (EOS) of static nuclear matter shows
the presence of the isothermal spinodal region. As opposed to the models assuming
homogeneous matter, nuclear matter composed of the QMD wave packets shows
the special property of nuclear matter as composite of nucleons, i.e., the critical
temperature T, is identified as 8 MeV which is lower than typical matter value and
the spinodal region is narrower due to the fragmentation. In order to get more clear
insight to the relation of these features to the liquid-gas phase transition, we need
to investigate the Gibbs ensemble method with the QMD which is a future work.
The configuration at 0.05p9 shows the fragment mass distribution which is consis-
tent with the Fisher’s droplet model, where the power law appears at the critical
temperature.

Slowly expanding matter with small A simulates the spectator region without
surface effect. With the virial equation for the instantaneous pressure, the density-
pressure curve has been calculated and compared with the EOS of static matter. The
dynamical spinodal region is significantly affected by the expanding motion, which
enhances the stability of the matter. That is, the matter maintains its homogeneity
after the matter goes over the coexistence curve determined in thermal equilibrium.
The fragment mass distribution coming from slowly expanding matter shows a power
law in small mass regions irrespective of the initial temperature. The origin of
this power law is thought to be different from what is predicted by the Fisher’s
droplet model, where the power law appears in the critical point and the system
is in thermal equilibrium. In our case, the expanding process is clearly in non-
equilibrium and the fragmentation happens when the effective temperature is far
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below critical temperature.

The rapid expansion with large h simulates the participant region, where col-
lective motion plays an important role. The value of i corresponds to the speed of
the radial flow in heavy-ion reaction. The fragment mass distribution coming from
rapid expansion shows an exponential shape, which is a characteristic of a random
distribution. The slope of the exponential shape becomes steep as the expansion
speed increases. This feature is consistent with the experimental results observed
in heavy ion collision with strong radial flow. In case of Lennard-Jones system, it
is found that the exponential shape is composed of two parts to form a bimodal
distribution. The small fragment region of the bimodal distribution appears as a
power law in case of the slow expanding matter. This feature may be a common
and universal aspect of expanding system, irrespective of the precise form of the
interaction between particles.

In this way, the expanding matter has enabled us to explore several aspects of
nuclear matter in unified way. This thesis is mainly devoted to nuclear matter, but
the dynamics of the expanding matter and resultant fragmentation is thought to be
general because the Lennard-Jones system shows several common features to QMD
system. In particular, the universality of power law distribution resulting from the
expanding matter might be a signature of self-organized criticality. The mechanism
of such a power law is subject to how the matter goes through inside the unstable
regions, during which density fluctuations are accumulated in a complex way. This
process is thought to be a dynamical phase transition which is different from what
is considered in thermal physics. The expanding matter model has a capability to
tackle this problem.
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Appendix A
QMD potential

A.1 Pauli potential

The Pauli potential is derived from the eigenvalue of the kinetic energy with respect
to the anti-symmetrized state. Let us consider an anti-symmetrized coherent state
composed of two particles, which can be separated into center-of-mass and relative
motions [24]:

|¢Z1> ® |¢Z2> - |¢Z2> @ |¢Z1> = |¢Z1¢Z2 - ¢Z2¢Z1> = |¢ZG¢+Z - ¢ZG¢—Z>7 (Al)

where Z; indicates the eigenvalue of the coherent state for :-th particle, Z¢g = %(Zl +
Z,) is for the center-of-mass and Z = Z; — Z is for relative motion. For simplicity,
the internal degrees of freedom are neglected. Then, the eigenvalue of the kinetic
energy can be expressed as follows:

<¢Z1¢Z2|%|¢Z1¢Z2 - ¢Z2¢Z1> _ <¢+Z|%|¢+Z - ¢—Z> ) (AQ)

(02,92, |02, 02, — D2, 2.) (byz|d1z — ¢_2)

The annihilation operator is related to the position operator and the momentum

operator as follows: .
i
a = /vt + ——=p A3
d= Vi b, (A3

Thus, the kinetic energy operator is expressed in terms of a and al:

52 2
p v, At\2
—=——(a— . A4
5 = g —(a—al) (A.4)
Using the eigen equation
aldyz) = +Z[d4z), (A.5)

we see the eigenvalue of the kinetic energy can be expressed in terms of Z and Z*.
Furthermore, Z = Z, — Z, is separated into the position R = R; — R, and the
momentum P = P, — P, as follows:

Z =R+ #P = V7(Ri - Ry) (P, — P,). (A.6)

NG MG
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Then, the direct term and the exchange term of the kinetic energy are obtained by:

52 2 Ry
<</5+z|2p—m|</5+z> = [QP—m + gﬁ] (012]P42), (A7)

.9 2 2

p hv  3h7v
<</5+z|—2 |p_z) = [—QRQ— + 35—
m m 2 m

]<¢+Z|¢_z>. (A8)

When (¢z|oz) = 1, the coherent state |¢z) is given by

o Z-at
|02) = 175 10); (A.9)
i
and the overlap of different coherent states are obtained as follows:
oLt %o
(9z,|0z,) = AT (A.10)

Using this, the following relation is obtained:

<¢+Z|%|¢+Z—¢—z> _ <¢+Z|%|¢+z> K2y |Z2| iz
(0+2]¢+2 — ¢-2) B (01z|P42) + m sinh(|Z|?) p[ |Z|] (A.11)

The first term in the right hand side is the eigenvalue of the kinetic energy with

respect to the single particle state. The second term becomes the Pauli potential,
which is a function of |Z|*:

1
4h%y

|Z|2 = I/|R1 — R2|2 + |P1 — P2|2. (A12)

On the other hand, the function % ~ 1 holds around Z = 0. Therefore, the

second term is approximated as follows:

v |22 hiv 1
by -z ~ 2 [—R—RQ——P—PQ]
m Slﬂh(|Z|2) exXp [ | | ] m €xXp l/| 1 2| 4h21/| 1 2|
e [[RRE PP
(qopo/hc)? 243 2p3 ’
(A.13)

where pg and ¢ are introduced as free parameters. The replacement of the last line
is carried out in a phenomenological sense. Taking the internal degrees of freedom
into account, this is the Pauli potential.

A.2 Derivatives of QMD potential

QMD potential is summarized as follows:

1 N N N
V= 5221)2] —I_gdensity Z</§Z>77 (A14)
=1

=1 j5=1
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where v;; is two-body potentials, gensity s @ constant and (p;)7 is given by
N 2
1 R
;) = ————exp |——| , A.15
0= % oo |t (A13
where L is defined by
- L 1
L= §(T—|—1)?. (A.16)

The two-body potentials are proportional to the overlap p;; except for the Pauli
potential:

3 R?j
Uy = [gSkyrme + Gsymmetry (1 - 2|cz — ¢ |) + Gsurface 5 - E
Gex Gex RZQ Piz
+ (;) 2 + (;) 2:|pij ‘I’gPauli exXp [_2 ; - 9 ]2 57,‘,7']501',0]7
b+ () 1+ G) o
(A.17)
where ¢skyrme, Ysymmetry * * - are constants and p;; is given by
1 R,
pij = /d rpi(r)p;(r) = (r Ly P [—4—5] : (A.18)
The form of the surface potential is calculated by
1 (3 R
[t S =1 (3-12) o (A19)
The derivative of vy; with respect to Ry; or Py; are calculated as follows:
8v1j Rl]ac [ 5 R%
- - TMme symmetr, 1 - 2 — Gy surface | —
R, 97, gSkyrme T+ Gsymmetry ( lc1 = ¢j]) + Gourt 5 4l
Yex(1) Yex(2)
+ 2:| P1j
L) ()
Ry:, R2. Pz
—GPauli— 5 Y exp [_—lg - —1;] 57’177']50170]7
45 245 2pg
(A.20)
avlj 2 gex(l) gex(?)
= — Py + P1;j
oPy, (Mlh)Q ! Py 2\? Py 21” !
{1+(m) } {”(m) }
P, R2 P2
—l—ggpauh exp [——lg — —1;] 07170010, (A.21)
Po 244 2pg
The derivative of the density dependent potential with respect to Ry, is calculated
as follows.
0 N ~\7—1 ~\1—1
IR Y Api) == Z verns [(A0) T+ ()Y (A.22)
¢ =1
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Appendix B

Integration Scheme

B.1 Runge-Kutta method

The Runge-Kutta method can be derived from comparing two different kinds of
Talor expansions [38]. The Talor expansion of y(¢ + 7) is given by

dy 1dy2 ldy3 1dy4
t = y(t — —— - . B.1
) =+ Tt o e Tt (B.1)

Using new variable g(y,1) = %, y(t+ 7) is expressed as a function of several deriva-
tives of ¢ as follows:

1 1
y(t+7)=y(t) + 97+ 59 + 99y)7° + 5 (90 + 2990, + 99y + 992 + g19,)7°
1 2 3 2 3 2
+ﬂ(3ggnsy + Gt + 397Gy Gyy + 9° Gyyy + 39" Gy + 99, + 919,
+599ty9y + 9119y + 39919y + 3g19y1) 7"

(B.2)

On the other hand, it is possible to represent y(f 4 7) in another way. We introduce
a set of functions of ¢ as follows:

ki = gly. )r, (B.3)

kQ = g(y + l/Qlkl,t + 1/217') (B4)

ks = g(y + varky + vaoka, t + va17 + vao7)T, (B.5)

ks = gy + varky 4 vagks + vashks, t 4 v T, vagT + vas7)T, (B.6)

where, v91,v31,- -+ are free parameters which will be defined later. We represent
y(t + 7) in terms of ky, ko, ks, ky:

y(t+7) = y(t) + ark + asks + asks + auky, (B.7)

where aq, g, -+ are also parameters. Now, we compare two kinds of expansion to

obtain the Runge-Kutta method. Before that, it is necessary to fix some parameters.
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We assume the following relations:

1
Va1 = 5, (BS)
1
V3g = 5, (Bg)
ZEE (B.10)
the others = 0. (B.11)
In this case, we can express y(t + 7) as follows:
y(t+71) = y(t) + (o1 + s+ az + aq)gr
1 2
+ 5(062 + a3+ 2a4)(g: + 99,)7
1
+ Jlas+204)g:(gy + 99)7°
1
+ gy (g + 99,)7" (B.12)

4

Notice that there are no 2nd order term due to the choice of parameters. To compare
this expansion and previous one, we obtain the relations for the parameters:

o +ag +asz+ag =1, (B.13)
ay + as +2a4 = 1, (B.14)

2 =3(as + 2a4), (B.15)

1 = 6ay. (B.16)

Substituting these relations into y(t + 7), we obtain the following Runge Kutta
formula:

1
y(t+7) = y(0)+ ok + 2k + 2k + k), (B.17)
ki o= 719(y,1), (B.18)
1 1
ky = Tg(y+§k1,t—|-§7-)7 (B.19)
1 1
ks = 79y + §k2,t + 57), (B.20)
ky = 719(y+ ks, t + 7). (B.21)

B.2 Velocity-Verlet algorithm

The velocity-Verlet algorithm is a set of equations as follows:

rit+7) = r(t)+ }%T + %72, (B.22)
plt+7) = p(t)+ St 72) LEiON (B.23)
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The velocity-Verlet algorithm is derived from the second order Talor expansion as
follows. Using the equation of motion

dr(t) p(t)
= B.24
dt m Y ( )
d*r(t) ft)
= B.25
dt? m ( )
r(t + 7) is expressed as follows:
pt) | J{) ,
t =r(t — —Tre, B.26
(i) = o)+ 2 SO, (B.26)
This is just the first equation. We prepare the same equation with 27:
p(t+7) fit+7) ,
t+27)=r(t : B.27
i) = ot 4+ AT, JOET), (B.27)
Combining Eq. (B.26) and Eq. (B.27), the following relation is obtained:
1 — pl(t 1 — f(t
Pt 2r) —r(t47) = (i 7) —r(t) £ PEED ZPO JEFD =) o

m 2m

Dividing the both side by 7, the above equation is expressed in terms of p and f as

ptr) _plt) SO ST =S (B.29)

m m m 2m

follows:

Thus, we obtain the second equation:

[+ 1)+ (1)

. (B.30)

p(t+7) = p(t) +
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Appendix C

G1bbs ensemble method

The Gibbs ensemble method is a technique to calculate the coexistence curve in
the density-temperature plane. The algorithm is similar to the Metropolis method,
which is based on the partition function of the canonical ensemble [30].

C.1 Algorithm

First of all, we introduce an useful form of the partition function. When the in-
teraction is independent of the momentum, the partition function of the canonical
ensemble is obtained as follows:

1

Z(N,V,T) = W/(dr)%xp [— U(‘m] , (C.1)

where A(T') is defined by

A(T) = (%) g (C.2)

Under periodic boundary conditions, the integral should be performed inside the
cell with Reen:

1 Rcell N U(I‘N)
2NV, T) = —— / d ) C.3
( Y Y ) N'A(T)SN 0 ( r) expl kBT ( )
Introducing the scaled coordinates r; = Re.s; for ¢ = 1,2,---, N, the integral can

be transformed into a form which is independent of the volume V. We define the

following reduced partition function:
VN 1 N U(SN)

Zeea(N, V. T :7/ ds _ZE ) CA4

d( ) N'A(T)SN 0 ( ) expl kBT ( )

The idea of the Gibbs ensemble method is that a coexistent system can be

represented by two cells interacting with each other by exchanging their particles

and volume. One cell corresponds to the pure gas phase and the other corresponds

to the pure liquid phase. The introduction of two cells enables us to express a
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coexistent system free from the difficulty of the interface which is inevitable in the
single cell used in the Metropolis method. Our task is to construct the partition
function for the combined system, which is expressed by the products of the two
partition functions. Assuming that Ny particles are in one cell with a volume V] and
N — Nj particles are in the other cell with a volume V' — Vi, the partition function
for the total system is given as follows:

Zred(N - N17 V - ‘/17 T)Zred(N17 ‘/17 T)
VlNl (V _ Vl)N_Nl
ATPEVNI(N — M)

« /Ol(dsl)Nl /OI(dSQ)N—Nlexp [—Uk(j;l)]exp [-%} (C.5)

Notice that the total volume V' and the total number of particles NV are constant and

N7 and V] are variables. The partition function of the Gibbs ensemble method is de-
fined as the summation and integration of the Zyea(N — N1,V = Vi, T') Zyea( N1, V1, T)
over Ny and V;:
1 v N
QGibbs(Nv VvT) = V‘/O d‘/l Z Zred(N_vav_ ‘/lvT)Zred(va‘/hT)' (CG)

N1=0

Substituting Zyeq into the above expression, Qaibhs(N, V, T') is expressed as follows:

Qaibbs( N, V. T) = Z/ dVl/ dsy)V /l(dsz)N_Nl

WY VNN T e 4 O]
NN N P [ VA(T)N
(C.7)

The integrand of the Qaibbs(V, V,T) represents the probability of finding a specific
configuration for the system composed of two cells, where the degrees of freedom for
the volume and the number of particle are included besides the energy. To assure
that the Monte Carlo process covers all possible values of Vj, the integral of V] is
transformed into the following form:

v - Vi O\ KV = W)
v :/ dl ( ) . 08
/0 R A A T T2 Vv (C-8)

In this case, the Qgipps 15 expressed as follows:

QGibbs(Nv V? T)

_= _ O
VZA(T)2N NZFO I AN R

1 U(st) 4+ U(sy ™)
VN1—|—1 vV — V, N-N1+1 . 1 2 )
NN = Ny (V=) xp fnT
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The probability of finding a specific configuration is identified as:
U(s™)

1
V(Y — V)N exp | - ——~ |, (C.10)
kT

. N = AT /AT AT N1
NGlbbS(N17‘/17S )_ Nll(N—Nl)' !

where the total energy is introduced by
U(s™) = U(s) + U(s) ™). (C.11)

We see that ./\/’Gibbs(Nl,Vl,sN) is an extension of the probability used in the
Metropolis method. When the configuration is modified from Ngipps(old) to
Naibbs(new), the acceptance probability acc(old — new) is related to them under
the detailed balance condition as follows:

acc(old — new) Naibbs(new)

= . C.12
acc(new — old) Naibbs(old) ( )
Three variables in Ngipbs( N1, V1, SN) lead to three ways of modifications:
(1) Displacement of a randomly selected particle
ivbs( N1, Vi, s U(sY ) —U(sY

NG bb( 1, 17Sr]1\efw) = exp [_ (Snew) (Sold)] 7 (013)

Naibbs(N1, Vi, 804) kgT

U(s ) — U(s)
acc(old — new) = min{l,exp [— (Snewli T (S(’ld)] } (C.14)
B

(2) Change of the volume in such a way that the total volume remains constant

NGibbs(N1, Vi o1d) Vi oa V—W aa
U(SN ) — U(s]Yd)
— new 9 C.15

V new Ni+1 V - V new N-N1+1
acc(old — new) = min{l,( ! ) (*1)

Vi oa V—Vioa
U(sN )y —U(sN
% exp [_ (Snew])CBT (Sold)] }

(C.16)

(3) Transfer of a randomly selected particle from one cell to the other

Naivbs(N1 =1, V1) (V=V))M exp [_ U(Shew) — U(Sﬁd)] RNTeRt:
Naibbs(N1, V1) VI(N — Ny + 1) kT
V= V)N U(s,) — U(sY
acc(old — new) = min{l, Vl((N — ]\1[3 —|—11) exp [— (Snewl)gBT (Scia) }

(C.18)

Notice that the minimum function is used to evaluate which is larger in Ngipbs(old)
and Ngipps(new). In practice, a random number in the range [0, 1] is used in the
code.
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Figure C.1: The Density of the two cells of the Gibbs ensemble method as a function
of the number of Monte Carlo cycles for a system of Lennard-Jones particles and
the calculated coexistence curve. The particle number is 256.

C.2 Simulation results

Let us consider an actual calculation for the Lennard-Jones system. Figure C.1
shows the density of the two cells as a function of the number of Monte Carlo
cycles composed of the above three kinds of modifications. At the beginning of
the simulation, both densities of the two cells are set at p = 0.3. When the given
temperature is below the critical temperature, the density of one cell increases and
the density of the other cell decreases as the Monte Calro cycles proceeds. After
a lot of modifications are carried out, the increased density fluctuates around the
liquid density and the decreased density fluctuates around the gas density, where
the total system is in thermal equilibrium at a given temperature.

The lower the given temperature is, the larger the difference between liquid
density and gas density becomes. Above the critical temperature, both densities of
the two cells fluctuates around the initial density, that is, the liquid phase and the
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gas phase are not separated. We can see that the critical temperature is T' = 0.95
in the figure.
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Appendix D

Van der Waals gas

In this appendix, we shows the relation between the spinodal region and the coex-
istent region for van der Waals gas. The pressure and the chemical potential of van
der Waals gas are calculated as follows [39]:

Tp

wp,T) = T [log{pA(T)?’} —1+]1og (1:}) + 1fp] —2,0,  (D.2)

where I' > 0 is a constant introduced in van der Waals approximation, which depends
on the details of the interactions and A(7') is given by

A(T) = (%) . (D.3)

First, we calculate critical values. The critical point is determined by the following

conditions:
OP(p,T)
— =0 D4
ap 2 ( )
0Py, T)
— 7 = 0. D.5
- (0.5)

The solution of these equations are obtained as follows:

(D.6)

D.1 Coexistence curve

Let us calculate the coexistence curve, which is obtained by solving two phase co-
existent conditions:

P(p1,T) = P(ps,T),
plp1,T) = plpe,T),

—~
o o
[0 RN
e
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where p; is the density of the liquid phase and p, is that of the gas phase. Using
normalized variables with the unit of critical value obtained in Eq. (D.6), these two
conditions are transformed into the following two relations.

8T = (3 —=p1)(3 = p2)(pr + p2), (D.9)
- p1(3 — p2) S .
11 | = = — 6 —pp — D.10
og [/32(3—/31)] g (P1 = p2)(6 = p1 = p2), (D.10)
where 7' = Tlc, p1 = Z—i and py = ’;—i. The above simultaneous equations can be

solved numerically.

D.2 Isothermal spinodal region

The normalized pressure P= P% is expressed as follows:
S
P(p,T) = -~ — 3p°. (D.11)

3—p
The isothermal spinodal region is determined by solving the following equation.
aP(p,T) 24T

— 64— —0. D.12
(o sy (D.12)

A

D.3 Adiabatic spinodal region

When the entropy is constant, the pressure and the temperature are expressed in
terms of a constant C as follows:

. s [ 3\
P = —C( pA) — 352, (D.13)
3 3—p
. 35 \7
o= C( pA) . (D.14)
3—=p

To calculate the adiabatic spinodal region in the density-temperature plane, we
calculate the derivative of the pressure with respect to the density on the condition
that the entropy is constant:

opP 3p)3

" eprac By (D.15)

9 (3—p)

. 35 \ 3

o= C( pA) . (D.16)
3—p

The above equations can be solved numerically using C' as a parameter. Figure D.1
shows the coexistent region, isothermal spinodal, and adiabatic spinodal curve for
van der Waals gas.
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Figure D.1: The coexistent region, isothermal spinodal, and adiabatic spinodal curve
for van der Waals gas
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Appendix E

Fisher’s droplet model

Fisher’s droplet model is based on the partition function for the grand canonical
ensemble [18]. Assuming that Z(A,V,T) is the partition function for the single
fragment composed of A particles at T in a volume V, Z(A,V,T) is expressed as
follows:

! A U(4)
Z(A7 V7T) = A!ASA /(dr) eXp [_ kBT] Y
_ 2r M kT
AT = T (E.1)

where U(A) is the total potential energy of the single fragment. The grand partition
function Zg(p, V,T) is represented in terms of Z(A,V,T) as follows:

Za(wV,T) = 3 NZAVT) (5.2
A=0

where A = exp [kBLT] is the fugacity and the p is the chemical potential. Using the
relation Z(A =0,V,T) =1, In Zg(u, V,T) is transformed as follows:

InZo(u, V,T) = 1n{1—|—2)\AZ(A,V,T)}
A=1

(-1

= g:l 7{2 MZ(A,V, T)}

n

n

(E.3)

When the fragments are well separated and the interactions between fragments can
be neglected, the only n = 1 term in the above formula is significant:

In Za(u, V, T) ~ D M Z(AV,T). (E.4)
A=1

In order to calculate Z(A,V,T), let us assume a simple form of U(A) which is
the potential energy of the single fragment composed of A particles:

U(A) = —AFq + ws(A), (E.5)
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where Fy is the volume energy per particle inside the fragment , w is a surface energy
arising through loss of binding energy by particles near the surface and 3(A) is the
surface area of the cluster. In this case, Z(A,V,T') is calculated as follows:

Z(AV,T) = A"/i?’A /(dr)A_l exp [?BEJS] exp l—w];(;)] . (E.6)

Notice that an integral with respect to one particle is carried out and the volume
V appears. The remnant integrals depend on how the particles form a fragment.
Introducing ¢(3(A)) as a combinatorial factor, Z( A, V,T) is simplified further:

Z(A,V,T) ~ Vg(s5(A))exp [ﬁfTO] exp [—“’;ﬁ)] . (E.7)

The function ¢(5(A)) is subject to the geometrical structure of the fragment. Ac-
cording to [18], when 3(a) is very large, g(5(A)) is evaluated by

g(5(A)) =~ gh*Ws(A)""  (5(4) — o), (E.8)

where ¢o, h and 7 are constant. In particular, 7 is related to the critical exponent
and satisfies T > 2. Substituting this into Z(A, V,T), In Zg(p, V,T) is calculated as
follows:

> - 2 AFE S(A
InZa(p, V,T) = gV > )\Ahs(A)E(A)_iT exp [ 0] exp l—wl . (E.9)
= kT kT

When the fragment mass is large, the surface area 3(A) is approximated by
S(A) = apAT (A — o0), (E.10)

where ag is a constant. Substituting this into 5(A), the following relation is obtained:

AFE, s(A
In Zg(p, V,T) = goVaO Z MREATT exp [ ] exp [_ws( )] ) (E.11)
= kgT kgT

On the other hand, the expectation value of the fragment mass is calculated using

In Zg(p, V., T) as follows:

(A) = )\%lnu T,7;V) ZAP (E.12)

where P(A) is introduced as the fragment mass distribution. Using the expression

of In Za(p, V, T'), P(A) is obtained as follows:

57475 AFE 5(A

kT kT
B A(E S(A
= Poh®™MA 7 exp l%l exp [_w]j(T)] , (E.13)
B B
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where a new constant Fy is introduced. When T' is equal to or above the critical
temperature, the surface term can be neglected:

A(Eo + 1)

P(A) = PbA " exp l T

] (T > T.). (E.14)

Notice that Fy is the binding energy per particle inside the fragment, which is
regarded as the chemical potential of the liquid. Therefore, when T' = T, p is equal
to —FEg, P(A) becomes the power law:

P(A)=PyA™ (T =T.). (E.15)
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