Chapter 2

Poincaré formulas

2.1 Coarea formula

Before the main discussion of this chapter, we shall introduce a funda-
mental theorem called “coarea formula”, which plays an important part in
this thesis.

Definition 2.1.1. Let ¥V and W be inner product spaces of dimension m
and n respectively, and assume that m > n. Let F': V — W be.a linear
mapping. Then we define the Jacobian JF of F by

JF = sup{||F{u) A - AF(up)|| | w1, ,up 18 an orthonormal system of V}.

Proposition 2.1.2. If F' is not an onto mapping then JF = 0. If F is an

© onto mapping then
[ F{v1) A=+ A F(u)]

g Ao Ay
for any basis vy, -+ , v, of (KerF)t.

JF =

Definition 2.1.3. Let M and N be Riemannian manifolds of dimension m
" and n respectively, and assume that m > n. Let f : M — N be a smooth
mapping. Then z € M is a regular point of f if and only if df, : ToM —
TyyN is an onto mapping, and is a critical point otherwise. And y € N is a
reqular value of f if and only if every point of f~'(y) is a regular point of f,
and is a critical value otherwise.

Theorem 2.1.4. (Sard’s theorem)
The set of critical values of f has measure zero.
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Ify € N is a regular value of f then f~1(y) is empty ora closed embedded
(m ~ n)-dimensional submanifold of M, by the implicit function theorem.
Therefore if ¢ is a measurable function on M, then the function

Y= / P(x)dpss-1(5)(2)
R €)
is defined for all regular values of f and thus almost everywhere on . So

this is measurable function on N.

Theorem 2.1.5. (Coarea formula) If ¢J f is integrable on M or ¢ > 0 then

fN ( ff ) ¢(m)dw—l(m(m)) dun(y) = /M(}b(fﬂ)Jf(m)dpM(g;),

- where J f(z) is the Jacobian of the linear mapping dfy : T,M — Ty N.

- 2.2 Generalized Poincaré formula

~ In this section, we shall review the generalized Poincaré formula for
Riemannian homogeneous spaces obtained by Howard [13]. We begin with
the definition of the angle between subspaces in an inner product space.

Definition 2.2.1. Let F be a finite dimensional real vector space with an
inner product:{, ). For two vector subspaces ¥ and W of dimensions p and
¢ in B, we take orthonormal bases v,...,v, and wy,....,w, of ¥V and W
respectively. And we define '

c(V,W) = |[lvi Av - Avpg Awr A= Ay

where _
o A Amgl]? = det({a, ;).

This definition is independent of the choice of orthonormal bases. Under
this definition the following proposition is clear.

Proposition 2.2.2. 0 < o(V,W) < 1 with o(V,W) = 0 if and only if
VNW # {0} and oV, W) = 1 if and only if V is perpendicular to W. Also
if p is a linear isometry of B, then

ooV, W) = o (V, W) (2.2.1)
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Furthermore if p+ q = dim E, then
o(V,W) =o(Vt,wi. (2.2.2)

Let G be a Lie group and K a compact subgroup of G. We denote by «
the natural projection from G to G/K. Then ={e) is called the origin of a
homogeneous space G/K and denoted by o, where e is the identity element
of . We assume that G has a left invariant Riemannian metric that is
also invariant under the right action of /. This metric induces an invariant
Riemannian metric on G/K. And then 7 becomes a Riemannian submersion.

We shall define the angle of subspaces tangent to homogeneous space
G/ K at different points. If V' is a subspace of T,(G/K) and W is a subspace
of T,(G/K) then there are g, and g, in G with g,0 = z and g,0 = y. We
translate V and W to the subspaces of T,(G/K)} by the differential mapping
of translations g, and g,, and try to define the angle between V' and W as
the angle between (g,);*V and (g,);'W. But the choice of g, and g, is not
unique, so it is not well-defined. We can overcome this problem by averaging
over all possible choice of g,.

Definition 2.2.3. For z and y in G/K and vector subspaces V in T,(G/K)
and W in T (G/K), we define o4 (V, W) the angle between V and W by

o (V,W) = ]

K _
where g, and g, are in G with g,0 =z and g,0 =y.

o((ge) 71V, kMg W ) dk

K is a unimodular Lie group because X is compact, this implies that the
measure of K is invariant under the changes of variable k — k71, left and
right translations. If g} and g} are any other elements of G with g,0 = z and
g,0 = ¥y, then g} = g,a and g, = g,b for some @ and b in K. Therefore

[ ot v ) wa

K

= [ olar (@ Vi s ) Wk
K

= f o((90)y Vsauky 0. (gy)d ' W) (by (2.2.1))
K

- fKa((gm):lv,fs;l(gy)fW)dk.

Thus Definition 2.2.3 is independent of the choice of g, and gy.
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Proposition 2.2.4. Forall g in G

(1) ox(V, W) =0 (0. V, W) = 51 (V, 9. W),

(2) 0 < o (V, W) < vol(K).
Furthermore if dimV -+ dimW = dim(G/K) then

(8) o (VW) = o (VH, WH).

Proof. (1) Put z = gz then gV € T,(G/K) and gg,0 = 2. From
Definition 2.2.3
oV W) = [ ollogi e Vi K @) Wk

= f}(c((gm):lv, K7 (o) W) dk
= GI((V:W)'

By the same way we have o, (V,W) = o, (V, 0. W), (2) and (3) are obvious
from Proposition 2.2.2,

With these notations, the generalized Poincaré formula for homogeneous
spaces can be stated as following,

Theorem 2.2.5. ([13]) Let G/K be o Riemannian homogeneous space, and
assume that G is unimedular, that is, |det Ad{g)| = 1 for all g € G. Then
- for any submanifolds M and N of G/K with dim M + dim N > dim(G/K)

[wolaagmag= [ 0T M TN ).
G MxN

Proof. The proof which here we show was given by Tasaki [32].
We set
IG x (G/KY) = {{g,2,9) € G x (G/K)* | = = gy}.

At first we show that 7(G x (G/K)?) is a regular submanifold of G x (G/K)?.
We define the mapping

p: G X (G/K)* = (G/K) ; (9,%,9) — (z,9y).
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Then p is a submersion because its differential mapping is surjective. We put
D(G/K) = {(z,z) € (G/K)* | z € G/K}.

Then D(G/K) is a regular submanifold of {G/K)?. Therefore p~! (D(G/K)),
inverse image of D(G/K) under the submersion p, is a regular submanifold
of G x (G/K)?. By the definitions we have

I(G x (G/K)*) = p~/(D(G/K)).
Thus 7(G x (G/K)?) is a regular submanifold of G x (G/K)?. We note that
dim 1(G % (G/K)?) = dim G + dim(G/K).
We define the mapping
¢: I(G % (GIK)*) = (G/K)* ; (g, 3,4) + (z,y).

We will show that ¢ gives a fiber bundle with fiber K. For (z,y) € (G/I)?
- we take g, 9, € G with g,0 =z and g,0 = y. Then obviously

g Yz w) D (0K g, ") % {(=9)}.
Conversely, since z = gy for (g,z,y) € ¢7'(z,y) we have
o= gt =079y = g7 99,0 -
This implies g7 '¢g, € K. Thus |
g Mz, y) = (9. K9;") x {(z,9)}.

Therefore ¢~!(z,y) is diffeomorphic with K.

We denote by g Lie algebra of Lie group G. The invariant Riemannian
metric on G/K induces Ad(K)-invariant inner product on g. Then we have
the direct orthogonal decomposition g = &+ m, where £ is Lie algebra of I,
Then we can identify T,(G/K) with m. There are open neighborhood U of
0 € m and open neighborhood V of 0 € G/K such that the mapping

U—V; ur (expu)o
becomes a diffeomorphism. And then
U= gV ; ur ge(expu)o,
U— g,V ; v gylexpu)o
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are also diffeomorphisms. So we define the mapping
@ ICX gV X g,V — ¢ gV X gy V)
by
w(k, g.(expu)o, g,(exp v)o)
= (gelexp u)kexp(—v)g; ", ge(expu)o, g,(expv)o).
This mapping is C*™-class. And the inverse mapping
o g gV X g)V) = K x g,V x g,V
is given by
¢~ (g, ga{exp u)o, g, (exp v)o)
= (exp(—u)g; " g9y (expv), ga(exp u)o, gy(expv)o),

this is also C®-class. Consequently i is a diffeomorphism. Therefore ¢ shows
- the local triviality of g. Thus ¢ is a fiber bundle with fiber X.
By direct calculation we have

CP-*((LJG)*T: (gm)*X} (gﬂ)*lf)
= '((L(p(k.a:,y))*Ad(.qy)(T + Ad(k—l)X —-. Y): (gm)‘*X) (g!.')*y) o

for T € tand X, Y € m. ¢~}(M x N) is a submanifold of I{G x {G/K)*)
because g is a submersion. We note that

dim M + dim N + dim K
dim({G/K) + dim I
dim G,

dim(q~ (M x M))

v

Define the mapping
Fra M xN)~G; {g,2,9) g

then f is a C*-mapping. Applying Theorem 2.1.5to ¢~}(M x N) with ¢ = 1
we have

ol andg= [ I fdroan
a

g (M= N)
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Here

fHe) = oM x Nyn({g} x (G/K)?)
= {(g,9%,v) | 9y € M,y € N}
= {(g,9v,v) | 9y € M NgN},

so the mapping

P:MngN— f7g); gvrs (9,99, v)

is bijective. If g is a regular value of f, then f~(g) is a submanifold of
g1 (M x N). Moreover 9 is a diffeomorphism. For X € T,(97}(M N gN))
we have

(94 X) = (0, 0. X, X).
Since g, is a linear isometry, we have
(a9 X), (@Y )) = (0 X, 0:Y) + (X, V) = 2(X,Y).
Put |
r = dim{f~'(g)) = dim(M NgN) = dim M +dim N — (lim(G/K).

Then we have
vol{f~*(g)) = 2"/*vol(M N gN).

Therefore

2‘"/2f vol(M N gN)dg = / J fdpg—1carx -
G g H{MXN}

Now we shall calculate the right hand side of this equation, We take {75},
{X,} and {Y;} orthonormal bases of E, (g,)7* (ToM) and (gy);" (T V) respec-
tively. Then for the differential mapping of ¢ at (k,2,y) € K x M x N we
have that

(P*((Lk)*Ta:O:O) = ( !p(Lmy) Ad(gy)Tﬂ,O 0)
POx (0: (gm)*Xb: 0) = ( ik, z,y) Ad(gy)Ad(k )Xb: (Qm)*sz 0)
P00, (g)uYe) = (= (anuc o )xBd(9,)Ye, 0, (gy)4Ye)
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is a basis of Tykeq (¢~ (M x N)). We note that

Feox (D }aTa, (92)e X, (9y) 4 Ye)
(L(p(k,m,y))*Ad(gy) (Ta + Ad(k’l)Xb - Yc) .

If we extend Xy = Ad(k)Yy (1 < d £ r) to an orthonormal basis {X,} of
(g2) s H{Te M), then

90*(0: (gm)*xda (gy)*yd) = (0: (gm)*xd; (gy)*y'd) (1 <d< T)
is a basis of Ker(f,). Therefore if we put

Ta = ((Lk)*TmO;O)

Xb - (Oi(ga:)*Xb’O) (T+1Sb)
7, = (0,0,(g).Y) (+1<q)
2, = %(o,(gm)*xd.—(gy)*m (1<d<r)

then these vectors make a orthonormal system and

‘P*(Tq)f (P*(Xb): ‘P*(YC): (P*(Zd)

is a basis of (Ker(f,))*. Moreover we have

f*‘P*(Ta) = (Lpprep)s Ad(gy)(Ta)
FpuXs) = (Lpom)sAd(gy) (Ad(K71) )
Frpe(Ye) = (LograayAd(gy)(—Ye)
f*@*(zd) - (Lw(k-w.y))*Ad(Qy)(ﬁYd)

Hence from Proposition 2.1.2 we have

Jf
= ”(Ltp(k,m,y))*Ad(gy) ( Ne T A /\bAd(kpl)Xb A Ac(.“n) A Ad\/z_yd) H
= 22| Ad(g,) ( Aa Ta A AbAd(E™1) Xy A AYe A AgY3) |
= 27| det Ad(g,)||| Ax To A AbAd(E1) X, A AYe A AY

(since G is unimodular, |det Ad(gy)| = 1)
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= 2 Ay To A AAd (R Xy A ALY A A
(since Ad(k™1) X, em)

= 272 Ay Ad (K1) X5 A ALY A Ayl
(since Ad(k~ )X, L Ad(k™1) X, =Yy L Y,)
22| Ay Ad(RT) Xy A A

= 2% ((9.)7M(T5 M), Ad (A7) (g,) (T, )

= 20 ((ga) 7 (T3 M), k. (9,) (T N)) .

Its integral on K is equal to 27/%¢ (T} M, T;N). Consequently we have

/ de,u;q—l(MxN) = 211‘,2/ G;((T;M,T;N)dp(ﬂi,’y),
~L{(MXN) MxN
and thus
f vol(M NgN)dg :f ox (T M, TjN)dp(x, y).
G MxN

This completes the proof.

Remark 2.2.6. By Definition 2.2.3, it is clear that if G/K and G'/K’ have
same isotropy representation then o, and o, coincide with each other, Thus
it holds same Poincaré formula in G'/K' as in G/K by Theorem 2.2.5. This
is called the “transfer principle”.

Remark 2.2.7. Since K acts isometrically on T,(G/K), K acts isometri-
cally on the Grassmannian manifold G,(7,(G/K)) of all p-dimensional sub-
spaces of T,(G/K). In the definition of o, we can reduce the integral on K
to an integral on an orbit of this action by the fiber integration.

Definition 2.2.8. Let V, be a p-dimensional subspé,ce of To(G/K). Then a
p-dimensional submanifold M of G/K is of type V, if and only if for all z in
M there exists g in G with gV, = T, M.

If M is a submanifold of G/K of type V,, then o (Ti M, T,-N) becomes
to an integral on a same orbit of the action in Remark 2.2.7 for any z € M.
This implies that oy (T;-M,T;"N) is independent of £ € M., Furthermore if
N is a submanifold of type W,, then oy (T M, Ty**N ) is also independent of
i € N. So we have the following corollary.
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Corollary 2.2.9. Under the hypothesis of Theorem 2.2.5

(1) If M s o submanifold of G/K of type V, for some subspace V, of
To{G/K), then

/ vol{M " gN)dg == Vol(JM)f o (VsH Ty Nydpy ().
G N

(2) If in eddition to the hypothesis of (1), N is a submanifold of G/K of
type W, for some subspace W, of T,(G/K), then

f vol{M N gN)dg = o5 (V5 W:)vol(M)vol(N).
€

2.3 Examples of Poicaré formula

However Theorem 2.2.5 is a general shape, it is not easy to get a concrete
expression of Poincaré formula in general. In this section we will give some
examples which we can obtain the explicit expressions of Poincaré formula
applying Theorem 2.2.5. '

2.3.1 The case of real space forms.

A simply connected, complete Riemannian manifold which has constant
sectional curvature is called a real space form. Here we consider the Poincaré
formula in real space forms. It is well-known fact that multiplying the Rie-
mannian metric by some constants, all n-dimensional real space forms are
isometric with one of the following typical cases.

(1) Euclidean space R*. Put
_ Az n |
¢ = {[4%] [4esom, sex),
¥ = {4 9| aesom!=som
0 1
Then G can be regarded as the identity component of the group of
isometries of R*, and R" is identified with Riemannian homogeneous

space G/ K. '
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(2) Unit sphere S® in R**!, Put

G = SO(n+1),

K = {[g ‘1)] ‘Aesom)}gsom).

Then G can be regarded as the identity component of the group of
isometries of S™, and S™ is identified with Riemannian homogeneous
space G/ K.

(3) Hyperbolic space RH™ in R**!| that is

RH" = {(z1, ", Tn41) € R m%+"'+mg_mi+l =—1, Tpp1 > 1}.

Put
G’ = {g € GL(TL + 11]R) | tg-[n,lg = In,l}’
A O ~ .
K = {{ o 1 } iAESO(n)}:.SO(n),
wlﬁere I o ‘
=[5 9.

Then G acts on R**! preserving the bilinear form defined by I, ;. We
denote by G the identity component of G'. Then & acts transitively on
RH™ with isotropy K. Therefore RH™ is identified with Riemannian
homogeneous space G/K.

Theorem 2.3.1. ([13]) Let G/K be an n-dimensional real space form. If
M 1is a p-dimensional submanifold and N is a g-dimensional submanifold of
G/ with p+ g > n, then

fGVOI(M NgN)dg = vol(S”;‘f)l‘("S)l:)C)‘L(}.i‘i‘(g‘E;z * 1))vol(M)v01(N).

Proof. K acts transitively on the Grassmannian manifold G,(T,(G/K))
of all p-dimensional subspaces in T,(G/K) for any p This implies that any p-
dimensional submanifold of G/K is type V, for any p-dimensional subspace
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V, in To(G/K), and any g-dimensional submanifold is type W, for any ¢-
dimensional subspace W,. Therefore from Corollary 2.2.9 we have

/ vol(M N gN)dg = o, (V5 W) vol(M)vol (N).
G

By Remark 2.2.6, a5 (V,;", W;") coincides for all real space forms. Consider
the case where G/K = 8", M = 5P and N = S%. Then SP N g&7 = grte—n
for almost all g € SO(n + 1). So we have

vol (ST vol(SO(n + 1)) = oy (Vi*, Wi)vol{SP)vol(S9).

Bence
vol (ST~ yol(SO(n + 1))

1 1y
ox(Vo  We) = vol(S7)vol(59)

This completes the proof.

2.3.2 The case of complex space forms

A simply connected, complete Kihler manifold which has constant holo-
morphic sectional curvature is called a complex space form. Here we consider
~ the Poincaré formula in complex space forms. Multiplying the Riemannian
metric by some constants all n-dimensional complex space forms are isomet-
ric with one of the following typical cases.

(1) Complex Euclidean space C*. Put

o {[53]
< {[49]

Then € is identified with Riemannian homogeneous space G/K.

AcUm), seC, ue U(l)},

AelU(n), u€ U(l)} =~ U(n) x U(1).

(2) Complex projective space CP", Put

G = Uln+1), |
K = {[é 2] ‘AGU(n),uEU(l)}’v_‘—‘U(n)xU(l).

Then CP™ is identified with Riemannian homogeneous space G/K.,

30



(3) Complex hyperbolic space CH". Put
G = {Q’ € GL(TL + 11(:) | L.gIn,lg = In,l}a

K = {[g 2] AeU(n),uEU(l)}’:“U(n)xU(l).

Then G acts on C**' preserving the Hermitian form defined by I, ;.
Moreover G acts transitively on RH™, Therefore CH™ is identified with
Riemannian homogeneous space G/K.

Theorem 2.3.2. ([13]) Let G/K be an n-dimensional complez space form.

(a) If M is a complex submanifold in G/ K of complex dimension p and N
is o complex submanifold of complex dimension q with p+ g > n, then

_ vol(CPPH ™ )vol(U(n + 1))
/Gvol(ﬂ’f NgN)dg = vol(CP#)vol(CPY)

vol{M)vol(N).

(b) If M is a totally real submanifold in G/K of real dimension p and N is
a complex submanifold of compler dimension q with p+2g = 2n, then

VOL(RPPH20-20Yyol (U (n + 1))

dg = - .
/GVOI(M NgN)dg 7ol (RPP)vol(CP7) vol(M)vol(N)
(¢) If M and N are totally real submanifolds in G/K of real dimension n,
then , .
_ (n+ Lvol{U(n + 1))
fGH(M N gN)dg = (VOI[RP™))? vol( M )vol( V).

Proof. Since K is isomorphic to U{n} x U(1), J{ acts transitively on the
complex Grassmannian manifold of all p-dimensional complex subspaces in
To(G/K) and the set of all g-dimensional totally real subspaces in 7,(G/K)
for any p and ¢g. This implies that any p-dimensional complex submanifold of
G/K is type V, for any p-dimensional complex subspace V; in To(G/K), and
any g-dimensional totally real submanifold is type W, for any g-dimensional
totally real subspace W,. Therefore from Corollary 2.2.9 we have

f vol{M N gN)dg = o5 (V;-, Wi )vol(M)vol(N)

G

for each case (a), (b) and (c¢). By Remark 2.2.6, o (V;*, W;") coincides for
all complex space forms. Therefore it is enough to consider the case where

GJK = CP".
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(a) Let M = CP? and N = CP?, then CP? N gCP7 = CPP+*" for almost
all g € U{n+1). So we have

vol(CPPH™")vol(U(n + 1)) = o4 (V- W) vol{CPP)vol (CPY).
Hence :
vol{CPPH7 ™ )yol(U(n + 1)}

vol(CPP)vol(CP?)

(b) Let M = RP? and N = CP?, then RPPNgCPT = RPP*+21-2" fo1 almost
all g € U(n +1). So we have

"K(V.:.J':WQL) =

VOI(RPPF2=21)yol(U (n + 1)) = 0 (VH, W) vol(RPP )vol (TPY),

Hence ) _
vol(RPPH20=2" Yol (U(n + 1))

vol{RPP )vol(CP?)

(c} Let M = RP" and N = RP", then {{RP" N gRP") = n + 1 for almost -
all g € SO(n + 1) (see [13] for details). So we have

UI((WL,W&L) =

(n+ Wvol(U(n + 1)) = o (Vi+, Wi)vol(RP™ jvol(RP™).

Hence
{(n+ Lyvol(U(n + 1))

(VL WY =
(Ve W) = o mPF)val(RPY)

4]

This completes the proof.

From Remark 2.2.7, the integral in the definition of oy is reduced to the
integral on K-orbit in G,(T,(G/K)). Thus parameterizing the orbit space
of this action we can formulate the Poincaré formula by this parameter. We
shall call this parameter isotropy invarient. In the case G/ K = CP™ multiple
Kéhler angle, which defined by Tasaki [32], becomes the isotropy invariant.

Definition 2.3.3. Let w denote the Kéhler form on €*. If 1 < k < n,
for a real k-dimensional subspace ¥ in € we can take an orthonormal basis
al, -+, o of the dual space V* which satisfies
[k/2} ' .
(a) w|y = Z cos i A 0,

i=]
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(b) 050 < < Oppyg < /2.

We put 8(V) = (81, -+, 0xse)) and call it the multiple Kihler angle of V. If
n < k < 2n — 1, we define the multiple K&hler angle of real k-dimensional
subspace V in €* as that of its orthogonal complement V',

Remark 2.3.4. The action of U(n} preserves the multiple ahler angle. In
the case k = 2, the multiple Kihler angle becomes exactly the Kahler angle.

The multiple Kihler angle can be regarded as a function defined on the
Grassmannian manifold G (C") of all real k-dimensional subspaces in C*, If
k<, for = (01, ,0pm) with0 <8 <+ < Opyy < wf2 we define

ro = {VeGiEC) | o(V)y=V},
[£/2)
ng = Z spang{ezi—1,c08 0V —leg_1 +sinfiey} (+Rey),

gl

where the last term is added only when k is odd. Then Gio = Uln) VJ‘
holds, We can express

GE(C") = 0(2n)/(O(k) % (2n — k})

as a compact symmetric space. Here O(2n)/U(n) is also a compact symmet-
ric space. Therefore the action of U(n) on GR{C") is a Hermann action.

Proposition 2.3.5. ([32]) Let k < n. The set {VF | 0 € R¥/A} is o flat
section of the action of U(n) on GR(C™).

Hence in the viewpoint of isometric transformation group, the multiple
K#hler angle can be regarded as a coordinate of the flat section. Namely,
it is parameterizing the orbit space of this action. Applying this we can
express o (1;-M, T;'N) by the multiple Kihler angle of TLM and T}N.
Furthermore in the case p = 2 and ¢ = 2n — 2 one can obtain the con('lete '
value of o as follows:

Theorem 2.3.6. ([33]) For any real 2-dimensional submanifold M and real
(2n — 2)-dimensional submanifold N in the complez projective space CP" of
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dimension n, we have

] §(M N gN)dg
U(n+1)

vol{U(n + 1))
vol(CP1)vol(CP»-1)

1 . n . .
X /MXN (1(1 + cos® 8;) (1 + cos® 7)) + oD sin? 8, sin? 'ry) dulz,y)

where 8, is the Kdhler angle of T, M and 7, is the Kdhier angle of Tle .

2.3.3 The case of two point homogeneous spaces

A Riemannian manifold M is called two-point homogeneous if for any
two pairs z,y € M and &',y € M satisflying d(z,y) = d(z',y') there exists
an element g € I(M), the group of isometries of A, such that gz = &’ and
gy = v, where d denotes the distance of two points in M. A Riemannian
manifold M is called isotropic if for each z € M the isotropy subgroup I{(M),
acts transitively on the unit sphere in the tangent space T, M. We can see
- easily that a Riemannian manifold is two-point homogeneous if and only if
it is isotropic. These manifolds have been classified by many geometers, and
showed that a Riemannian manifold is isotropic if and only if it is either a
Euclidean space or a Riemannian symmetric space of rank one (see [9] for
reference). We note that in all these cases the isometry group G = I(M) of -
M is unimodular.

Theorem 2.3.7. ([13]) Let G/K be a two-point homogeneous space of di-
mension n. Let M be a p-dimensional submanifold of G/K aend N o hyper-
surface of G/K. Then we have

/G vol(M N gN)dg = "°If§f(" ;:)(f;_(g:ﬂgsn)vol(ﬂf-f Jvol(N).

Remark 2.3.8. We must make special mention that in most cases G does
not act transitively on the set of tangent spaces to M.

"Proof. Since KX acts transitively on the unit sphere in T,(G/K), all
hypersurfaces of G/K are type W, for any (n — 1)-dimensional subspace W,
of T,{(G/K). Thus from Corollary 2.2.9 we have

f vol(M N gN)dg = vol (N} [ o (TEM, WHduy, ().
a M
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We identify R® with the tangent space T,(G'/K). Let K X R" be K x R*
with the product Riemannian metric and view it as a group of transformation
on R* by the rule for (k,v) € K x R® and X € R*

(k, )X = kX +v.

Then the group I ¥ R® acts isometrically and transitively on R*. So we can
regard R™ as the homogeneous space K ¥R* /K. Let V' be any p-dimensional
subspace of R” and BP the unit ball in V. Then the translations of R, and
thus also I »x R™, is transitive on the set of tangent spaces to B?. Because
G/ K is a two point homogeneous space the group /£ x R" is transitive on the
set of tangent spaces to the unit sphere ™! of R*. We note that SO(n} xR"®
is the group of orientation preserving isometries of R®, and thus the result of
Theorem 2.3.1 apply to this group. From symmetry properties of the sphere
S*=1 and vol(SO{n + 1}} = vol(SO(n))vol(S™), we have

o (VE, Whvol(B?)vol (S™1)
= / fvoi(Bpﬂ(k*S““l+v))dk(lv
nJ K

1 f s/. N .‘
= —— vol(BP N (k,a,S™ " + v))du a) dk du
vol(SO(n ./n K Jsom) ( ( 'So(n}(
 yol(K) -
= 1(BP M (a.5™" d n dv
VOl S‘O fﬂ ./So(n) VO (CL )) P’SO( )( )

vol(K) vol(SP~V)vol(SO(n + 1)) Pyol( !
= Wl(80m)  val(Sr)vol(51) "01(_3 Jvol($™)
vol(K) vol (87~ )vol (S™)vol(B)

vol(S7)

Hence

vol (K )vol{ 57~ 1)vol (5")

vol(SP)vol(Sn—1)
Since V is an arbitrary p-dimensional subspace of R* = T,(G/K), from the
transfer principle it follows that for any z € M and y € N

vol (I )vol(SP~1)vol(S™)
vol(S?)vol(Sn-1)

UK(VJ”:W;') =

O-I{(T;’M, TyJ_N) —_
This completes the proof.
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2.3.4 Other examples

Let G/K be a Riemannian symmetric space, let M a curve and N a
hypersurface in G/K. Then using the Hodge operator we have

0 (T M, TLN) = f (e, Ad(k))] dk,

where » and v are unit vectors in (ge); ' (T5M) and (gy); " (T;-V) respectively.
This implies that we integrate on an R-space. We denote by g = €+ m the
canonical decomposition of g, where g and E are the Lie algébra of G and K
respectively. We take a unit sphere S in m and a maximal Abelian subspace
ain m. Then SN a becomes a non-flat section of K-action on S. So linear
isotropy actions of symmetric spaces induce non-hyperpolar polar actions on
spheres, We can define the isotropy invariant by the coordinate of SNa. In
particular if rank(G/K) = 2, then dim{5 Na) = 1, so we can parametrize
the orbit space by one parameter. '

Example 2.3.9. In the case G/K is the Grassmannian manifold Go(R*) =
S0O(4)/50(2) x SO(2) of all oriented 2-dimensional subspaces in R*, then

0O X .
l'n:{{_tX O:| AEMQ(R)}.
We can identify m with My(IR) by
m — M; (R) ; [ m?X g ] - X.

We take a maximal Abelian subspace a in m as
a 0 ’
a—{[o b] a,bER}.

cosd O T T
E:{[ 0 Sing]\—ZSHSZ}CS‘ﬂu

is a section of K -action on S, namely —w/4 < 0 < w/4 is the isotropy
invariant and parameterizing the orbit space in this case. We may assume
that « and v are vectors in a section. So we put

cos@ O cosT O '
. - — < < 4).
u_.l 0 sinﬂ]’ 'u—-l 0 ] (7(/4_5’,7’_71’/).

Then

sinT
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Then we have
o (TEM,TEN) = / \(at, Ad(k)Y | ke
%
=f |(uka, k)| delky, ko).
SO(2)x SO{2}

We represent k; and kg in SO(2) as
cose sing costp siny |
kl = 3 k2 : .

—siny cosg —8ine cos
Then
kit = cos cost 0 4 sin 0 sinT
W= o ginr Y| —cosT 0

Therefore kv moves on the unit sphere in

Vi = span 4 | €57 0 0 sinT
1 = 5pan 3 0 sint {'| —cosT 0

according to . Similarly

cosf? O

uk:ag:cosnp[ 0 0 0080]1

sin @ ] +siny l —ginf | 0

and uk; moves on the unit sphere in

v, = cosf 0 0 cos @ |
2 = spah 0 sinf |'| —singd O

according to 1. We define the orthogonal projection P : V; — V3. Then

0 cos d ]

6 . .
cos 0 ]—E—smgosm(6’+'r) [ —sinf 0

P(kv) = cospcos(@—17) [ 0 sing

Thus P(kv) moves on an elliptic curve in V, defined by

2 2

x L _
cos?(f — 1)  sin®*(8 +7)

We denote this elliptic curve by Ellip(8, 7). Now we put

ry = 4/ cos? p cos?(@ — 7) + sin® @ sin®(f + 7).
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Then

o (THM, TEN)

Ly

= / |(’U;rlﬂ2., k]_“U)] dﬁz(kll kQ)
S0(2)xS0(2)
_ f (wka, P(kyv))| dpa(e, ks)
SO(2)x50(2)
27 2r
- ./o /0 [{(cos ¥, sin9), (cos(6 — 7) cos o, sin(0 + 7) sin ) dypdep
2 2
fﬂ fo |{(cos 1, sineh), (7, 0))|depdy

2T 2w

= f f |7 cos 1 |dipde
o Jo
2n - 2w

= f |cos¢|dw/ oty
0 0

= 4vol(Ellip(8, r)).

It

Hence we have the Poincaré formula as follows:

Proposition 2.3.10.- Let G/K be the Grassmannian manifold Go(RY) of all
oriented 2-dimensional subspaces in R, For any curve M and hypersurface
N of G/ K we have '

f vol(M N gN)dg = 4] vol(Ellip{@,, 7,)}du(x, ¥),
G MxXN

where 0, and 7, are isotropy invarients at * € M and y € N respectively.

Remark 2.3.11. This was first obtained by Kang [16]. However, he i is con-
sidering in §2 x 52 = G5(R') and expressing by elliptic functions.

2.4 Poincaré formula of complex submanifolds

In this section applying the Howard’s generalized Poincaré formula, we
will show that the Poincaré formula for almost complex submanifolds in an -
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almost Hermitian homogeneous space comes down some representations of
the isotropy subgroup

Let (V,J) be a complex vector space with an inner product {-,-). We
consider the exterior algebra APV (19 of degree p on helomorphic vector space
VU9, We extend {:,-) to a complex bilinear form on V<, and denote by the
same symbol. Note that if X and ¥ are both in V(1 (or V(Y)Y then
(X,Y) = 0. Expressing the norm on this exterior algebra by Gramian, we
have following lemma immediately.

Lemma 2.4.1. For each & A -+ A&, in APV L0)

e A AGAGA NGl =l6rA- A&

Proposition 2.4.2. Let G be o unimodular Lie group and G/K an almost
Hermitian homogeneous space of complex dimension n. Assume that K acis
irreducibly on the exterior algebras AP(To(G/K))Y and A(T,(G/K))10
with p + q < n. Then there exists a positive constant C such that for any
almost complez submanifolds M and N of G/K of complex codimensions p
and g respectively

f vol(M NgN)dg = Cvol(M’)vol(N)
. ;

fiolds.

Proof. From Theorem 2.2.5 it is sufficient to show that o (T;-M, T,* N)
is a positive constant function on M x N.

Let {uz, Juihi<s<p and {v;, Jui}i1<icq be or Lhonormal bases of {g, ) (T5- M)
and (g,); H(T,;- M) respectively. We put

Ea-:E(ua—\/—_lJui), nw—\/—( —V=1Jv;}.

Then &, ,&, and -+ ,&; are unitary bases of (gu);7(T:-M)® and
(gy);l(TTj'N)(l'U) respectively. We note

ANJu; = ——1E6 A&, v A Jyy = —/—1n; A
S0 we have

lus A Jug Av e Aug A Jupy A Ad(R) o1 A dJug A< Aug A Jug)|
161 A& A A& A&y AAd(R) (s ATy A+ Ay Aig) |-

39



Now we put
E=G NN, n=m A A
From Lemma 2.4.1

o (T M, Ty N) = K||€f\Ad(k)ﬂ/\€/\Ad(k‘)nlldk
= /. 1€ A Ad(k)nl|* dk.

Fix n, and define @, by

Qu(X,Y) = [ (X AAd(k)n, ¥ AAd(k)n)dk
K
for each X, Y in AP(T,(G/K))"9. Then @, is a K-invariant Hermitian form
on AM(T,{G/K))?. From Schur's lemma, there is a positive constant C,
such that

Qn(X,Y) = Cy(X,Y),
since K acts irreducibly on A?(To(G/K))X9, So we have

UK(TmlMa T;'N) = C‘,7||§||2 = Cy.

This implies that oy (T M, T;-N) is independent of T;"M. By the similar
way, we can show that o (T-M, T;—N ) is also independent of T;"N by the
assumption which I acts irreducibly on A%(T,(G/K))"™. This concludes
the proof.

Theorem 2.4.3. ([18]) Let G be a unimodular Lie group and G/ K an almost
Hermitian homogeneous space of complez dimension n, Assume thal K acts
irreducibly on the exterior algebra NP(To(G/K))3®, Then for any almost
complez submanifolds M and N of G/K with

dimg M =p, dimgN =n-—p,

we have 1 :
f 4(M N gN)dg = = ,(,K) vol(M)vel(N).
¢ G)
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Proof., From the proof of Proposition 2.4.2 there exists a constant C
such that

C = o (T M, TAN) = fj I A Al

for any T:-M and Tle . Using Hodge star operator we have

C = /[gAd ld,k
K

where &' is a vector in AP(T,(G/K))1% which corresponds to (g.)7 {(ToM).
Let Xj,- -+, X, be a unitary basis of A?(7,(G/K))*?), where we put

r = dim(A(T,(G/K)) M) = (2) :
Since for any ¢ and j |

[ T 4~

we have

rC = Zr:[KKXi,Wdek
i=1

‘ r T
- f ZKX;-,Ad(k))QN dk
= [ 1admna
K
= vol(K).
This completes the proof,

We will consider the case where AP(To(G/K)) is reducible by K-
action. The other conditions are same with Theorem 2.4.3.

N (T,(G/K)) Y = EB Vi

denotes the irreducible decomposition by K-action. Let X and Y be complex
vector subspaces of dimension p in (T,(G/K))M® and take unitary bases
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£1,0++,&pand 1y, -+ ,mp, of X and Y respectively. We denote by X; and Y
be the Vi-components of £ == & A - A&, and 7 =51 A - -+ A7, respectively,
We define A(X,Y) by

VOI(K )

ie 2 l
A R

A(X,Y) =

Theorem 2.4.4. ([18}) If V; and V; are not equivalent when i # 4, then we
have

f WM NgN)dg = f A(ToM, T;"N)dp(z, y).
G MxN

Proof. From the proof of Theorem 2.4.3, we have

rex,v) = [ |(e Ram)[ a
- fﬁ Z(X Ad(k)V;)

_ ; f X, AT (%5, Ad(R)Y, >d!c

2
dk

The last integrals vanish when ¢ % j by the Peter-Weyl theorem. Therefore

we get
o (X,Y) = Z/ (%, A AR )|

By the similar way with Theorem 2.4.3, we can conclude that each integral
in just above equation is constant and determine it.

dk.

vol(

7 dimV;

ox(X,Y) = IIX PIViI? = A(X,Y),

In the case where G/K is irreducible Hermitian symmetric spaces, we
give p when K acts irreducibly on AP(T,(G/K))® in Table 2.1, Although
we show the case of compact type, it is clear that their non-compact duals
also give the same result of Table 2.1.
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Table 2.1:

compact type

AIIT  SU(Y/S{U(m) x U(I —m)) any p (ifm=1)
p=1 (if m > 2)
D IIT 0700 p=1,2

SO(2
BD I SO21)/SO(2) x SO(2t - 2) pFEL-1
SOQ2I+1)/SO(2) x SC(21—1) any p
CrI Sp(l)/U(1) p=12
EIIl (Bﬁ,{_']gl,ﬁﬂ(l()) + R) pP= 1,2, 3
EVII (er_1a3),% + R) p=123

Theorem 2.4.5. ([29]) Let G/K be an irveducible Hermitian symmetric
- space of compler dimension n. Assume that IC acls érreducibly on the exte-
rior algebra AP(T,(G/K)YO, Then for any comples submanifolds M and N
of G/ K of comples dimensions (n—p) and (n—q) respectively with p+q < n,
we have :

_ (n—p}(n—q)vol(K)

fgvol(M NgN)dg = altn—p— )l vol{ M )vol(N).

Proof. From Table 2.1, if K acts irreducibly on AP(T,(G/K))H9 for
p < n/2, then K acts irveducibly on A™(Z,(G/IC))M? for any r with r < p.
In addition, if K acts irreducibly on AP(To(G/K)1®, then K acts irve-
ducibly on A" P(T,(G/K))(0), since it is a dual representation of a unitary
representation.. From these facts, it is sufficient to show the theorem with
p<gsSn-p. |

From the proof of Proposition 2.4.2, we have

*ty

o (T M Ty N) = [ [l A- - Ao AAAR) (A - A mg)l[dk.
K
We put a p x ¢ matrix A = (a;) = ((ft-,Ad(k)nj)), then

L A
”&A“.A@AAammwv~AmM2=@tLﬁ @]'
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where I, and I, are unit matrixes of degree p and g respectively. Expanding
with respect to the diagonal element 1, we can expand the right hand side
to the sum of minor determinants as follows:

pq i1 tg
detlj* ﬁ] =1+Zz Z det[ Ait za) Ajbjb] )

a=1 b=1 1< <ig J1 e
F1 <<y
where
Qigy " iy
iyenda . .
AJI " Fb
ainjl T a‘fa.'fb

If A;ll ;‘; is not a square matrix, then
O Al }
det [ I
(A 0 |

Therefore we have

I, A
et [ A Ia']

K = O A
1—]—2 Zdetl(fl“ g Jb]a]
a=1 | i1<-<ia froda
1< <Ja

P

= 1+ -0 3 [detAii|®

a=1 if<<ia
Jjp<--<ja

= 0 Y WA A G KT A AP

a=1 i) <oedin
J1 < <ja

Since K acts irreducibly on A™(T,(G/K))MD for any integer r < p, by
the way of the proof of Theorem 2.4.3 we have

(G A+ A oo BAE) 5, A A Ptk = ),
K (%)
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Thus

Here

i3 a constant determined by n,p and g. In the case where G/K is a complex
space form, for any n,p and ¢ it satisfies the condition of this theorem. So
comparing with the result of the case of CP®, we have

o (TEM, TEN) = (z!("npl!;":q‘)’?!val(x).

This completes the proof.

Corollary 2.4.6. If p+ ¢ < n, then

min{p,q} L) (D) (n=p)in —g)!
; (~1) (*)  nln-p-—g)°
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