Chapter 1

Orbits of group actions

1.1 Lie transformation group

In this section we give a brief survey of Lie transformation groups which
act on manifolds, and provide some results which we need in this thesis.

Let G be a Lie group and M a smooth manifold. If there is a smooth
mapping p : G x M — M such that '

p(e,:c) = I, P(Ehgz,ﬂ:) = P(gl,f)(g21$)) (91:.92 @.G, T G M)

then G is called a Lie transformation group of M. And we say that G acts on
M or that M is a G-manifold. This defines a group homomorphism from G
to the group Diff(M) of diffeomorphisms of M, namely p(g,z) = p(g)z = g=.
Moreover if M is a Riemannian manifold and p(&) is included in the group
of isometries of M, then we say that G acts isometrically on M or that M is
a Riemannian G-manifold.

Definition 1.1.1, If M is a G-manifold and = € M then we define Gz, the
G-orbit through z, and G, the isotropy subgroup at = by

Gz = {gz|g€G},

Gy, = {g€@G}gz =z}
We denote by g the Lie algebra of G. For X € g we define the vector field
X(z) on M by

X(z)= b% i exp(tX)z (z € M).



The following Proposition is easy to prove.
Proposition 1.1.2. Let M be ¢ G-manifold, then
(1) Ggo = gGag™,
(2) if Gz NGy # O then Gz = Gy,
(3) Tu(Gz) ={X (=) | X € g}

The mapping G/G; = Gz ; gG. — gz is clearly bijective. Since G, is a
closed subgroup of G, G/G, has a smooth quotient manifold structure. This
implies that we can regard each orbit as a smooth homogeneous submanifold
of M. But in general the topology that Ga inherits from G /G, does not
coincide with the topology induced from M.

Example 1.1.3. For o € R, the Lie group R acts on the flat torus T2
isometrically by

RxT?—=T%: (t]r,y]) - [z+1y+ at],

where [z,y] denotes the image of (z,y) € ®? under the projection R* — T2,
If o is an irrational number, then each orbit of this action is dense in T

Let M/G denote the set of all orbits of the action of G on M. The
set M/G equipped with the quotient topology by tlle_'projection M —
M/G-; & + Gu is called the orbit space of the G-manifold M. In gen-
eral M/@ is not a Hausdorff space. For instance if o is an irrational number
in Example 1.1.3, then T%/IR is not a Hausdorff space.

Definition 1.1.4. The action of G on M is called proper, if for any two -
distinct points 2,y € M there exist open neighborhoods U, and U, of x and
y in M respectively such that {g € G | U, N gU, # ¥} is relative compact in
(7. This is equivalent to saying that the mapping

GxM~—~MxM; {gz)— (z,92)

is a proper mapping, that is, the inverse image of each compact set in M x M
is also compact in G x M.



Remark 1.1.5. If GG is & compact Lie group then any action of GG is proper.
Also if (7 is a closed subgroup of the isometry group of a Riemannian manifold
M, then the action of & on M is proper. On the other hand, if a Lie group
G acts properly on a manifold M, then all the isotropy subgroup G, are
compact and M/G is a Hausdorff space.

Definition 1.1.6. For z,y € M if there exists g € G such that G, = gG,g™*
then we say that x and y have same ésoiropy type. From Proposition 1.1.2
(1), all points.of an orbit have same isotropy type. Thus this defines a equiv-
alence relation among the orbits of G. We denote by [Gx] the corresponding
equivalence class, which is called the orbit type of Gz.

Now we introduce a partial ordering on the set of all orbit types by saying
that [Gz] < [Gy] if and only if there exists g € @ such that G, C ¢Gzg™ ",
An orbit of the largest orbit type is called a principal orbif, and the other
orbit is called a singular orbit. A point z € M is called a regular point if Ga
is a principal orbit, and z is called a singular peint if Gz is a singular orbit.

Theorem 1.1.7. Let G be a Lie group acting properly on o manifold M. If
the orbit space M /G is connected, then there exists @ principal orbit. The set
of all regular points is open and dense in M and ils orbit space is connected.

“Proof.  See [21] Section 4.8 or [28] Section 5.4, * -

Definition 1.1.8. The cohomogeneity of the action is the codimension of a
principal orbit. ' '

Theorem 1.1.9. ([1], [26]) Let M be a connected. complete Riemannian
manifold and G a connected closed subgroup of the isometry group of M
acting on M with cohomogeneity one. Then the orbit space M /G is homeo-
morphic to R, S, [0,1] or [0, co).

Definition 1.1.10. Let M be a connected complete Riemannian manifold
and G a Lie group acting isometrically on M. Then a connected closed
regularly embedded smooth submanifold ¥ of M is called a section if %
intersects each orbit of G in M and Ty(X) € TH(Gx) for all x € . The
action of G is called polar if it admits a section. A polar action is called
hyperpolar if it admits a flat section.

Proposition 1.1.11. Bvery section of a polar action is totally geodesic.

Proof. See [28] Section 5.6.



Definition 1.1.12. Let (G, K;) and (G, K3) be symmetric pairs of compact
type. Then K acts isometrically on a compact symmetric space G/K;. This
action of Ky on G/K is called a Hermann action.

Definition 1.1.13. Let M; be a Riemannian Gi-manifold and A, a Rie-
mannian Gy-manifold. The action of (7, on M, and the action of Gy on My
are called isomorphic if there exists a Lie group isomorphism 1 : G} — Gy
and an isometry f : My — Mp such that flgz) = ¥(g) f(z) for all g € G4
and © € M.

And the action of G; on M; and the action of G, on M, are called orbit
equivalent if there exists an isometry f : My — M, such that f(Giz) =
Gof(x) for all x € M,.

Theorem 1.1.14. ([24]) All hyperpolar actions on the irreducible Rieman-
nian symmetric spaces of compact type are either cohomogeneity one aclions
or are orbit equivalent to Hermann actions.

1.2 R-spaces

- In this section we shall review some geometric plopeltws of R—spaces as
submanifolds in spheres,

- Definition 1.2.1. An isotropy representatio'n of a semisimple Riemannian
symmetric space is called a s-representation. And an orbit of this action is
called an R-space.

Let {@, K) be a Riemannian symmetric pair and let & the involutive auto-
morphism of G such that (K)o € K C K, where XKy is the set of fixed points
of @ and (Kj)yp is the identity component of Ky. We denote by g and € the Lie
algebras of Lie groups ¢ and K respectively. The involutive automorphism
§ of G induce involutive automorphism of g, and we will denote it by the
same symbol. Since # is involutive, we have the direct sum decomposition

g=Et+m,

where we put _ '
m={Xeg|dX)=-X}

Then we can identify 7,(G/K) with m, and the action of K on T,(G/K) with
the adjoint representation of X on m in a natural manner. If we assume G/ K
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has an invariant Riemannian metric then corresponding Ad( K )-invariant in-
ner product is induced on m. Therefore R-spaces are submanifolds of hyper-
sphere in m.

Proposition 1.2.2. Letf a be a maximal subspace of m then

= | J Ad(k)a

keK
and a intersects the orbits AA(K)H for all H € a perpendicularly.

This proposition implies that a is a section of this action. Moreover since
ais a subspace of m, thus it is flat. Hence the s-representation is a hyperpolar
. action. Conversely the following theorem had been obtained by Dadok.

Theorem 1.2.3. ([6]) All polar representations are orbit equivalent to s-
representations. '

For H € m wa consider the orbit Ad(K)H. We set the isotropy subgroup
Ky at H of this action, that is

Ky = {k e K I Ad(lﬂ)H = H}

Then AA{K)H — K/Ky; Ad(k)H — kKpisa dlﬂ'eornmphlsm We denote
the Lie algebra of K by ¥, then we have : _

by = {XEE Ad(exth)H=0} '
- =0

= {X et|[x,H] =0}

Let (4)* denote the orthogonal complement of ¥y in t. We can identify
TAK/Ky) with (€5)%. And the tangent space of Ad(K)H at H is given by

Tu(Ad(K)H) = {% Ad(exptX)H XEE}
{==(
(ad(X)H | X €6}

e, H].

Since Ad(K)H is diffeomorphic with KX/Ky, there is a linear isomorphism
from [[’,, H] to ({’.H)J‘.



Proposition 1.2.4. ([27]) Let X be in (Eg)* and € in (6, H". We put a
curve c(t) = Ad(exptX)H in Ad(K)H. Then the normal vector field £(t) =
Ad(exptX)E along c(t) is parallel with respect to the normal connection.

Proof. The tangent space of Ad(K)H at c(f) is given by

Xe(!}

We denote the covariant derivative on m by V, then we have

Viofl) = | Ad(explt+s)X)E

Ad{exp(t + 9) X)H

3=0

Ty (Ad(K)H) = {%

{Ad{exptX)[X, H] | X € ¥}
= Ad(exptX)[t, H].

ds 5=0
= Ad(exptX)[X,¢].
Here we have
BH = {Xem| (X[ H]) =0}
= {X em | ([X,H],E) = 0}
{X em| [X H]em}
= {Xem]|[X H =0}

Therefore for Y, Z € [, H]*
(1) v, 2] e,
(2) [[Y: Z]zH] = “[[Za H]sY] '""" [[I"Ia Y, Z] = 0.
This implies that [Y, Z] € ty. Thus
[[&, H]*, [¢, HIY] C &y
A ((EH)J‘» [[E: H]J_i [E: H]_L]) 0
& (o)t (6 H [ H) =0
& [t [6 BTV C [t A

Hence Viyé(t) € Toy (Ad(K)H). So we have Vi £(1) = 0, namely £(Z) is a
parallel vector field along ().

From Proposition 1.2.4 we can obtain the following geometric properties
of R-spaces.
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Theorem 1.2.5. ([22]) The mean curvature vector field of the R-space is
parallel with respect to the normal connection.

Theorem 1.2.6. ([8]) The normal holonomy representation of Ad(K)H is
equivalent to the (effectively made) action of a subgroup of Ky on [b, H|.

1.3 Orbits of Hermann actions

In the previous section we review some geometric properties of R-spaces.
Here we will express the parallel translations of the normal bundles of the
orbits of Hermann actions by the group actions. And we show that the orbits
have similar properties to R-spaces.

Let 8, and 83 be two involutive automorphisms of a compact connected Lie
group G furnished with a biinvariant Riemannian metric {, ). We denote by
Gy, (i = 1,2) the closed subgroup consisting of all fixed points of &; in &. For
a closed subgroup K;-(¢ = 1,2) of G which lies between G, and the identity
component of Gy,, (G, K;) and (G, K3) are Riemannian symmetric pairs. We
consider the Hermann action Iy on a compact symmetric space My = G/K,
with the induced Riemannian metric from the biinvariant Riemannian metric
{, ) on G. We denote by g, & and b, the Lie algebras of G, K, and K,

‘respectively. The involutive automorphisms 6; and 8 of G induce involutive
automorphisms of g, also denoted by & and # respectively. Since 6, and 8,
are involutive, we have -

g= b+my = E2+m2,
where we put
m={Xegl|b(X)=-X} (i=12)

We can identify m; with 7,(M;) in a natural manner. For H € my, we
consider the I(y-orbit KoExpH in My, where Exp is the exponential mapping
from my into M,. We define a closed subgroup N [Ki] in K, by

NEIK)] = {keK, |kExpH =ExpH}
{ke Ky | kexp HK; = exp HK}
{k € Ky | exp(—H)kexp H € K}
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Then we have the following diffeomorphism from KoExpH onto Ko /N, [K1]:
K,ExpH — Ko/NE K] 3 kExpH — &N [K)].
We denote by nfl[t;] the Lie algebra of N (K], Then we have

n[zi[{fl] = {X € b 7
t=0
= {X €ty | Ad{exp(—H)}X € &, }.

exp(—H)exptXexp H € El}

We denote by (“e [£4])* the orthogonal complement of n{[¢,] in €. Then we
can identify (n{ [w‘.!l])"L with To (X, /NE (K1)). On the othel hand, the tangent
space of KngpH at ExpH is given by

d
TEpo(I{ZEXPH) = {EE
t=0
(exp H) {(Ad(exp(—H )} X ), | X € b}
= (expH)*(Ad(exp(—H))EQ),m,
where (Ad{exp(—H))t)m, is the my-component of Ad(exp(—H))¥,. There-

fore the above diffeomorphism K,ExpH = Ko /NE [K1] induces a linear iso-
morphism from Ty (KoExpH) onto (nf[4])*.

Theorem 1.3.1. ([18)) Let Y be in (nil[t])*. We define q; curve c(t) in
KyExpH by

exptXexp HK, I X € Eg}

e(t) = exp tY ExpH.

Let £ be i (Ad(exp(—H))t)y,. We define a normal vector field £(t) of
KoExpH along c(t) by

£(t) = (exp tY), (exp H).<.
Then £(t) is parallel with respect lo the normal connection.

In order to show the theorem we prove the lemmas below.

Lemma 1.3.2. We denote by VL the normal connection. of I(gEpo C M,
We define a curve g(t) in G by

g(t) = exptY exp H.
Then
Viné(®) = g(t).[(Ad (exp(~H))Y ), €]

12



Proof. Let 7 be the natural projection from G onto M; = G/K;. We
consider the principal fiber bundle G(M, Ki, 7). The canonical decomposi-
tion g = £, -+m; induces an invariant connection on G(M;, K, ). It is known
that the Levi-Civita connection of M, is reduced to the invariant connection.
The tangent bundle E = TM, of M, is the vector bundle associated with
G{M,, K;,n) with standard fiber m;. We denote by A?(FE) the vector space
of E-valued p-forms on M;, and by AM(G) the vector space of tensorial
p-forms £ of type Ad(X) on G, that is, £ satisfies the following conditions.

(1) Rif = Ad(aY)E (Vae Ky),
(2) €(X1, -+, X,) = 0 when X, is vertical (Xy,---,X, € T,G),

where R denotes the right translation, It is well-known that the linear map-
ping given by 5
AN(E) ~ AR4(G) ;€ = ¢

g(*"{lg e 1X,’p) = g*_l(g(ﬂ-*-Xl: e :W*Xp))

is an isomorphism. We denote by V the covariant derivative on T'M;. When ‘
X in A°(E) corresponds to € in A%,(G) by this correspondence, VX in AY(E)
- corresponds to df o H in AL 4(G) (see 23] Chapter II), where we denote by
H(Z) the horizontal component of Z € T,G. Therefore for V € Thg( G’ /K1)

VX = gu(dE)(H(V)) = g*’H(Z)f

where Z € T,G with n(Z) = V.-

Let B(t) be a curve in G such that A{0) = g and B(0) = Z, and A in ¥
such that g.A = V(Z), where we denote by V(Z) the vertical component of
Z € TG Then we have

VvX = 0.(2E-V(Z)E)
f(gexptA))

 Ad(ep(—t4)E(0)
£60) + 14,600

BU) X ooy + [A,-g;lxﬂcgﬂ) ‘

d
],
d
di 1=0
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In particular we put ¥V = g,v for v € my, and a curve «(t) in G such that
a(0) = e and &(0) = v+ A. If we set B(t) = ga(t) then S(t) satisfies above
conditions. Hence we have

d ol _
vgruX = O (E{ Qf(t)* lg* lX?r(go:(L)) + [A,Q* lj{?r(g)]) .
=0

For fixed t, we define a(s) by a(s) = g(t)'g(t + s). Then a(0) = e and
&(0) = Ad(exp(—H))Y. Here we have

ot) = % exp(t + s)YExpH
5=0

d
B g(t)* (E; s=0
= g(t)«(Ad(exp(—H))Y ),

exp(—H) exp sY exp HKI)

Thus we have

Viné(t)

afs); g(t)y 1§(t + )+ [(Ad(GXp(“f_I))‘Y)g, s.g(t);l‘f(t)} .
0

Cn

g

o {3
{5—

| gt 0)7 60+ 0) + Ad(exa(-E)Y €]
B X LS O

Consequently we obtain the lemma.

Hence in order to show the theorem it is sufficient to prove

[(Ad(exp(—H ))(nii [84) ey (Ad(exp(=)ee), ] C (Ad(exp(=H))E2)m,-
The following lemma is trivial.

Lemma 1.3.3. ‘
Ad(exp H)(nz;"[ta]) = ny 8],

where ng"[t] = {X € & | Ad(exp H)X € &},
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Lemma 1.3.4.
(Ad{exp(—H))b)s, = {X € m; | Ad(exp H)X € my}.

In particular (Ad(exp(—H))¥;)y;, is a Lie triple system inwy (cf. Proposition
1.1.11).

Proof.

(Ad(exp(—H))eo)y, = {X € my | (X, (Ad(exp(—H))ts)m, ) = 0}
= {X € m [ (X, Ad(exp(—H))t)) = 0}
= {X €my | {Ad(exp H)X, &) = 0}
= {X € m | Ad(exp H)X € my}.

Hence the lemma. is proved,

The following lemma immediately follows from the lemma above,

Lemma 1.3.5.

[(Ad(exp(—H))E)y,, (Ad(exp(—H))ta)z, ] C ng,"[E2].

Lemma 1.3.6.

| (Ad(.exlﬁ( H)) (ngg (1) D ey C (g [E2])
Proof. |
{(Ad(exp(—H))(ngs [1]) e, g [Ea])
= (Ad(exp(—H))(ngi[ta]) "y 05 [B])  (by ng7[e] C )
= ((nj[t])", Ad(exp H)ng 7]}
= ((nh[ﬁl]) , "ez 1)) (by Lemma 1.3.3)
= {0}.

Hence the lemma is proved.

Lemma 1.3.7.

[(nEIH[FQ]) (Ad(exp(_‘H))Ei!)ml] C (Ad(exl)( )){!2)1111'
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Proof.

{[(ng, 7 [ea]) ", (Ad(exp(—H))E2)yy, |, (Ad(exp{~H))E2)m,)
((ng,"[e2]) ", [(Ad(exp(—H)) o)y, , (Ad(exp(—H))Ea)i, )
C {(ng#leht g ) (by Lemma 1.3.5)

= {0}.

Hence the lemma is proved.

By Lemmas 1.3.6 and 1.3.7 we have
[(Ad(exp(~H))(nes [&:]) ey, (Ad(exp(—H))E2),] € (Ad(exp(—H))bo)m, -
This completes the proof of Theorem 1.3.1.

Corollary 1.3.8. The mean curvature vector of KoExpH C My is parallel
with respect to the normal connection.

Proof. We denote by H the mean curvature vector of K. oExpH C M.
Since ﬁexpt/\’Epo = (exp tX)*ﬁEpo (X € (nfl[t1])*), we have Viﬁ =0 by
Theorem 1.3.1, Hence (Vlﬁ Yexpar = 0. Therefore VL H vanishes everywhere
by the homogeneity of KyolExpH.

The decomposition
b = nfl[ta) + (nfl[ta])* __
- defines an invariant connection V¢ of IGExpH. We denote by & the second
fundamental form of KoExpH C M, We define V¢h by
(V&h)(Y, Z2) = VERY, 2)) — h(V5Y, Z) - h(Y, V% Z).
Corollary 1.3.9.
Veh = 0.

Proof. Let X,Y and Z be elements of (nf[¢,])**. Then the vector
fields (exptX).(exp H),Y and (exp tX).(exp H).Z of K3ExpH along a curve
exp tX ExpH are Ve-parallel. Thus we get

(V'(cexp o) X m(Y, Z)
V toxp 1) (B{(exp £X) o (exp H),Y, (exp tX)(exp H). Z))
Y oxp 1y x ((exp tX )u(h((exp H),Y, (exp H)..Z))

= 0  (Theorem 1.3.1).
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Hence we have (Vh)gypn = 0. By homogeneity we have V°h = 0.

By Corollary 1.3.9, for any vector fields X,Y and Z of I{GExpH we have
(VR(M(Y, 2))), € span{h(Y, 2) | Y, Z = T,(I2ExpH)}. |
In other words we get:
Corollary 1.3.10. The degree of KoExpH C My is at most 2.

We consider the normal holonomy representation of IGExpH C M. By
Lemma 1.3.4, we can define an action p of N# [K1] on (Ad(exp(—H))&) 5,
by

p(k)X = Ad(exp(—H)kexp H)X
for k € NfL[Ky], X € (Ad(exp( —H))t)%,. This action is equivalent to the
differential representation of NF, [K1] on Ty, 5 (FC2ExpH ).

Corollary 1.3.11. The normal holonomy representatton of KExpH C M,
is equivalent to the (effectively made) action of a subgroup of NE [I4] on

(Ad (exP ( H) ) E2) m

Proof. Every geodesic ¢(t) of Ko/ Nf [K1] through the origin ExpH
" with respect to the normal homogeneous Riemannian metric is given by

¢(t) = exptYExpH for some € (ng [El]) .

By Theorem-1.3.1, the parallel translation along c¢(t) with respect to the
normal connection is given by (exptY),. Now any curve in K;ExpH can be
approximated by broken geodesics with respect to the normal homogeneous
Riemannian metric. It follows that the normal holonomy representation is
equivalent to the action of /L on (Ad(exp(—H))E)%: where

L={keNLU] | p(k) =1 on (Ad(exp(~H))b)y,}
and where K is a subgroup of NJ (K] with L C K.

We shall prove that the mean curvature vector of any orbit of any hyper-
polar action is parallel with respect to the normal connection. In order to do
this we review a result of Hsiang.
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Let &G be a compact, connected Lie group of isometries of a Riemannian
manifold M. Fach orbit of G has a well defined volume by the induced metric
as a submanifold. The volume of an orbit Ny = Gz is said to be extremal
among nearby orbits of the same type if

d
'&‘t" t=aVOl(Ng) =0

for all smooth families N, ltl < €, of G-orbits of the same type on M.

Theorem 1.3.12. ([14]) Let G be a compact connected Lie group of isome-
tries of a Riemannian manifold M. Then any orbit of G whose volume is
extremal among nearby orbits of the same type is a minimal submanifold of
M. In particular if there exists a neighborhood of Ny in which there are no
other orbits of the same type, then Ny is a minimal submanifold of M.

Corollary 1.3.13. The mean curvature vector of any orbit of any hyperpolar
action on a compoct symmetric space is parallel with respect to the normal
connection. '

Proof. From Theorem 1.1.14 all hyperpolar actions on compact sym-
- metric spaces are either cohomogeneity one actions or orbit equivalent to
. Hermann actions, We have already proved that the mean curvature vector
of any orbit of any Hermann action is parallel in Corollary 1.3.8, sc it is
sufficient to consider the case of cohomogeneity one actions.

We assume that the cohomogeneity of the action is equal to one. Since
the codimensions of principal orbits are equal to one, they have parallel mean -
curvature vectors, From Theorem 1.1.9 the cohomogeneity one action has at
most two singular orbits, corresponding to the boundary points of the orbit
space. Thus singular orbits of the cohomogeneity one actions are minimal by
Theorem 1.3.12. Hence we have the conclusion.
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