Chapter 3

Dendrites constructed by *P*-expansive maps of the interval into itself

In this chapter, we investigate the structure of Z under the restriction that f is a continuous map of the interval into itself, where Z is a regular continuum constructed in Chapter 2.

Denote I = [0,1]. And let $f: I \longrightarrow I$ be a continuous map and P a periodic orbit of f. Let A be a subset of I containing more than one point, then we will use [A] to denote the smallest subinterval containing A. If $A = \{a,b\}$, then denote [A] by [a,b]. And we define $(a,b) = [a,b] \setminus \{a,b\}, (a,b] = [a,b] \setminus \{a\}$ and $[a,b) = [a,b] \setminus \{b\}$. Put $S(I,P) = P \cup \{C \mid C \text{ is a component of } I \setminus P\}$. Given $x \in I$, the itinerary of x with respect to P and f is defined to be the unique infinite sequence $(C_n)_{n\geq 0}$ from S(I,P) given by the rule $f^n(x) \in C_n$ for all $n \geq 0$. If no two points of I have the same itinerary, then f will be called P-expansive. And we say that f is pointwise P-expansive if for each $p, q \in P$, there exists some non-negative integer m such that $(f^m(p), f^m(q)) \cap P \neq \emptyset$ (see Chapter 2).

Notices. In this chapter, we assume the followings:

- 1. $f: I \longrightarrow I$ is pointwise P-expansive.
- 2. f(C) is the union of some elements of S(I, P) for any $C \in S(I, P)$.
- 3. f(C) is not one point for each $C \in S(I, P) \setminus P$ with $C \neq \emptyset$.

Recall the following facts shown in Chapter 2.

Fact 1. Z is a dendrite.

Fact 2. $g|_{B_{s_0,s_1,\ldots,s_\ell}\cap Z}: B_{s_0,s_1,\ldots,s_\ell}\cap Z\longrightarrow B_{s_1,s_2,\ldots,s_\ell}\cap Z$ is a homeomorphism $(0\leq s_0,s_1,\ldots,s_\ell\leq n).$

Fact 3. Denote $P_{\infty} = \{h_{s_0, s_1, \dots, s_{\ell}}(P) \mid \ell \geq 0 \text{ and } 0 \leq s_0, s_1, \dots, s_{\ell} \leq n\}$. Then P_{∞} is dense in Z and $Br(Z) \subset P_{\infty}$.

The first part can be proved by the last part of section 2 in [2]. We show that $\operatorname{Br}(Z) \subset P_{\infty}$. Let x be an element of $Z \setminus P_{\infty}$. Then it suffices to show that $\operatorname{Ord}(x,Z) \leq 2$. By the way of the construction of Z, there exists an infinite sequence s_0, s_1, \ldots such that $x \in \operatorname{Int}(B_{s_0,s_1,\ldots,s_k} \cap Z)$ for each $k \geq 0$, where $\operatorname{Int}(B_{s_0,s_1,\ldots,s_k} \cap Z)$ means the interior of the set $B_{s_0,s_1,\ldots,s_k} \cap Z$. For any neighborhood U of x, there exists $\ell \geq 0$ such that $x \in B_{s_0,s_1,\ldots,s_\ell} \cap Z \subset U$. We see that $\operatorname{Bd}(B_{s_0,s_1,\ldots,s_\ell} \cap Z) \leq 2$. Thus we have $\operatorname{Ord}(x,Z) \leq 2$.

Fact 4. $\operatorname{Ord}(p_{s_0,s_1,...,s_{\ell}},B_{s_0,s_1,...,s_{\ell-1},t_{\ell}}\cap Z) = \operatorname{Ord}(p_{s_1,s_2,...,s_{\ell}},B_{s_1,s_2,...,s_{\ell-1},t_{\ell}}\cap Z)$ for each element $p_{s_0,s_1,...,s_{\ell}}$ of P_{∞} with $p_{s_0,s_1,...,s_{\ell}}\in\operatorname{Bd}(B_{s_0,s_1,...,s_{\ell-1},t_{\ell}})$. Hence we have $\operatorname{Ord}(p_{s_0,s_1,...,s_{\ell}},B_{s_0,s_1,...,s_{\ell-1},t_{\ell}}\cap Z) = \operatorname{Ord}(p_{s_{\ell}},B_{t_{\ell}}\cap Z)$ inductively.

In fact since $g|_{B_{s_0,s_1,\ldots,s_{\ell-1},t_\ell}\cap Z}: B_{s_0,s_1,\ldots,s_{\ell-1},t_\ell}\cap Z \longrightarrow B_{s_1,s_2,\ldots,s_{\ell-1},t_\ell}\cap Z$ is a homeomorphism by Fact 2, we see that $\operatorname{Ord}(p_{s_0,s_1,\ldots,s_\ell},B_{s_0,s_1,\ldots,s_{\ell-1},t_\ell}\cap Z)$ $= \operatorname{Ord}(p_{s_1,s_2,\ldots,s_\ell},B_{s_1,s_2,\ldots,s_{\ell-1},t_\ell}\cap Z) \text{ for each element } p_{s_0,s_1,\ldots,s_\ell} \text{ of } P_{\infty} \text{ with } p_{s_0,s_1,\ldots,s_\ell} \in \operatorname{Bd}(B_{s_0,s_1,\ldots,s_{\ell-1},t_\ell}).$

3.1 A necessary and sufficient condition that Z is the universal dendrite

Let P be a periodic orbit of f with period n. We say that $C_{i_0} \longrightarrow C_{i_1} \longrightarrow \cdots \longrightarrow C_{i_{n-1}} \longrightarrow C_{i_0}$ is a *cycle* of length n for the orbit O(p,f) of an element p of P in $S(I,P)\backslash P$, written an n-cycle for O(p,f), provided that $f^k(p) \in cl(C_{i_k})$ for each $k=0,1,\ldots,n-1$. In this chapter, C_{i_k} means $C_{i_{k(mod\ n)}}$ for each natural number k.

Let p,q be elements of P and C_{α_0} the element of $S(I,P)\setminus P$ such that p is an endpoint of [P] and $C_{\alpha_0}=(p,q)$. Let C_{α_1} be the element of $S(I,P)\setminus P$ such that $f(p)\in cl(C_{\alpha_1})$ and $C_{\alpha_1}\subset (f(p),f(q))$. Then we have the element q_1 of P such that $C_{\alpha_1}=(f(p),q_1)$. Let C_{α_2} be the element of $S(I,P)\setminus P$ such that $f^2(p)\in cl(C_{\alpha_2})$ and $C_{\alpha_2}\subset (f^2(p),f(q_1))$. Then there exists the element q_2 of P such that $C_{\alpha_2}=(f^2(p),q_2)$. Similarly let C_{α_3} be the element of $S(I,P)\setminus P$ such that $f^3(p)\in cl(C_{\alpha_3})$ and $C_{\alpha_3}\subset (f^3(p),f(q_2))$. And let q_3 be the element of P with $C_{\alpha_3}=(f^2(p),q_3)$. Repeating this operation, we can have a cycle $C_{\alpha_0}\longrightarrow C_{\alpha_1}\longrightarrow \cdots \longrightarrow C_{\alpha_{n_1}}\longrightarrow C_{\alpha_0}$ of length n such that $f^k(p)\in cl(C_{\alpha_k})$ for each $k=0,1,\ldots,n-1$. We say that this cycle $C_{\alpha_0}\longrightarrow C_{\alpha_1}\longrightarrow \cdots \longrightarrow C_{\alpha_{n_1}}\longrightarrow C_{\alpha_0}$ is a fundamental cycle for O(p,f). A fundamental cycle always exists and is unique (see [4,p.8]). Note that $C_{\alpha_k}\subset [P]$ for any $k=0,1,\ldots,n-1$. Let C_{β_k} be the element of $S(I,P)\setminus P$ with $\{f^k(p)\}=cl(C_{\alpha_k})\cap cl(C_{\beta_k})$ for each $k=0,1,\ldots,n-1$, but $C_{\beta_k}=\emptyset$ if $f^k(p)$ is an endpoint of I.

Lemma 3.1.1 If there exists an element p of P such that $Ord(\pi(p), Z) < \infty$,

then we have that $\operatorname{Ord}(\pi \circ f^k(p), Z) < \infty$ for each $k = 0, 1, \ldots, n-1$.

Proof. Let C_{i_k}, C_{j_k} be elements of $S(I, P) \setminus P$ such that $\{f^k(p)\} = cl(C_{i_k}) \cap cl(C_{j_k})$, but $C_{j_k} = \emptyset$ if $f^k(p)$ is an endpoint of I. Assume that $\operatorname{Ord}(\pi(p), Z) < \infty$.

Then it is clear that $\operatorname{Ord}(\pi(p), B_{i_0} \cap Z) < \infty$ and $\operatorname{Ord}(\pi(p), B_{j_0} \cap Z) < \infty$.

Since $C_{i_0} \longrightarrow C_{i_1}$ or $C_{i_0} \longrightarrow C_{j_1}$, we see that $\operatorname{Ord}(\pi(p), B_{i_0} \cap Z) = \operatorname{Ord}(\pi(p), B_{i_0, i_1} \cap Z) + \operatorname{Ord}(\pi(p), B_{i_0, j_1} \cap Z)$ by the way of the construction of Z, where $\operatorname{Ord}(\pi(p), B_{i_0, i_1} \cap Z) = 0$ if $B_{i_0, i_1} = \emptyset$, and $\operatorname{Ord}(\pi(p), B_{i_0, j_1} \cap Z) = 0$ if $B_{i_0, j_1} = \emptyset$ (see Figure 3.1.1).

Thus we have that $\operatorname{Ord}(\pi(p), B_{i_0, i_1} \cap Z) < \infty$ and $\operatorname{Ord}(\pi(p), B_{i_0, j_1} \cap Z) < \infty$.

Figure 3.1.1

By Fact 4, it holds that $\operatorname{Ord}(\pi(p), B_{i_0,i_1} \cap Z) = \operatorname{Ord}(\pi \circ f(p), B_{i_1} \cap Z) < \infty$ and $\operatorname{Ord}(\pi(p), B_{i_0,j_1} \cap Z) = \operatorname{Ord}(\pi \circ f(p), B_{j_1} \cap Z) < \infty$. Hence we have that $\operatorname{Ord}(\pi \circ f(p), Z) = \operatorname{Ord}(\pi \circ f(p), B_{i_1} \cap Z) + \operatorname{Ord}(\pi \circ f(p), B_{j_1} \cap Z) < \infty$. Similarly since $\operatorname{Ord}(\pi \circ f(p), B_{i_1} \cap Z) = \operatorname{Ord}(\pi \circ f(p), B_{i_1,i_2} \cap Z) + \operatorname{Ord}(\pi \circ f(p), B_{i_1,j_2} \cap Z)$, we have that $\operatorname{Ord}(\pi \circ f(p), B_{i_1,i_2} \cap Z) < \infty$ and $\operatorname{Ord}(\pi \circ f(p), B_{i_1,j_2} \cap Z) < \infty$. By Fact 4, it holds that $\operatorname{Ord}(\pi \circ f(p), B_{i_1,i_2} \cap Z) = \operatorname{Ord}(\pi \circ f^2(p), B_{i_2} \cap Z) < \infty$ and $\operatorname{Ord}(\pi \circ f(p), B_{i_1,j_2} \cap Z) = \operatorname{Ord}(\pi \circ f^2(p), B_{j_2} \cap Z) < \infty$. Thus we have that $\operatorname{Ord}(\pi \circ f^2(p), Z) = \operatorname{Ord}(\pi \circ f^2(p), B_{i_2} \cap Z) + \operatorname{Ord}(\pi \circ f^2(p), B_{j_2} \cap Z) < \infty$. Repeating this operation, we obtain that $\operatorname{Ord}(\pi \circ f^k(p), Z) < \infty$ for each $k = 0, 1, \ldots, n-1$. \square

Lemma 3.1.2 If we have that $\operatorname{Ord}(\pi \circ f^k(p), Z) < \infty$ for each $k = 0, 1, \ldots, n-1$, then it holds that $\operatorname{Ord}(x, Z) < \infty$ for each element x of P_{∞} .

Proof. Let $p_{s_0,s_1,\ldots,s_\ell}$ be an element of P_{∞} and $B_{s_0,s_1,\ldots,s_{\ell-1},t_\ell}$ an element of A_{ℓ} such that $p_{s_0,s_1,\ldots,s_{\ell}} \in \operatorname{Bd}(B_{s_0,s_1,\ldots,s_{\ell-1},t_\ell})$. By Fact 4, we have that $\operatorname{Ord}(p_{s_0,s_1,\ldots,s_{\ell}},B_{s_0,s_1,\ldots,s_{\ell-1},t_{\ell}}\cap Z) = \operatorname{Ord}(p_{s_{\ell}},B_{t_{\ell}}\cap Z) \leq \operatorname{Ord}(p_{s_{\ell}},Z) < \infty$. This means that $\operatorname{Ord}(p_{s_0,s_1,\ldots,s_{\ell}},Z) < \infty$. \square

Lemma 3.1.3 If there exists an element x of P_{∞} such that $\operatorname{Ord}(x, Z) = \infty$, then we have that $\operatorname{Ord}(y, Z) = \infty$ or $\operatorname{Ord}(y, Z) \le 2$ for each element y of P_{∞} .

Proof. It is sufficient to show that if $\operatorname{Ord}(y,Z) \geq 3$ for some element y of P_{∞} , then $\operatorname{Ord}(y,Z) = \infty$. Let y be an element of P_{∞} such that $\operatorname{Ord}(y,Z) \geq 3$. Then there exist a natural number ℓ and an element $B_{s_0,s_1,\ldots,s_{\ell}}$ of \mathbf{A}_{ℓ} such that $y \in \operatorname{Bd}(B_{s_0,s_1,\ldots,s_{\ell}})$ and $\operatorname{Ord}(y,B_{s_0,s_1,\ldots,s_{\ell}}\cap Z) \geq 2$. Denote $m=\min\{\ell'\mid \text{there}\}$ exist two distinct elements B,B' of $\mathbf{A}_{\ell'}$ in $B_{s_0,s_1,\ldots,s_{\ell}}$ such that $y \in B \cap B'\} \geq \ell$. Let $B_{s_0,s_1,\ldots,s_{m-1},\gamma_m}$, $B_{s_0,s_1,\ldots,s_{m-1},\delta_m}$ be distinct elements of \mathbf{A}_m such that $y \in B_{s_0,s_1,\ldots,s_{m-1},\gamma_m} \cap B_{s_0,s_1,\ldots,s_{m-1},\delta_m}$ (see Figure 3.1.2).

Figure 3.1.2

Then we have that $\operatorname{Ord}(y, B_{s_0, s_1, \dots, s_\ell} \cap Z) = \operatorname{Ord}(y, B_{s_0, s_1, \dots, s_{m-1}, \gamma_m} \cap Z) + \operatorname{Ord}(y, B_{s_0, s_1, \dots, s_{m-1}, \delta_m} \cap Z) = \operatorname{Ord}(g^m(y), B_{\gamma_m} \cap Z) + \operatorname{Ord}(g^m(y), B_{\delta_m} \cap Z) = \operatorname{Ord}(g^m(y), Z) = \infty$ by Lemma 3.1.1 and 3.1.2, since $g^m(y)$ is an element of $\pi(P)$. Thus there exists no element y of P_∞ such that $3 \leq \operatorname{Ord}(y, Z) < \infty$. \square

Lemma 3.1.4 If we have that $Ord(\pi \circ f^k(p), Z) = \infty$ for each k = 0, 1, ..., n-1, then Z is the universal dendrite.

Proof. By Lemma 3.1.3, there exists no element y of Z such that $3 \leq \operatorname{Ord}(y,Z) < \infty$. Thus it is sufficient to show that the set $\{x \in Z \mid \operatorname{Ord}(x,Z) = \infty\}$ is dense in Z. By the way of the construction of Z, for any open subset U of Z, there exist an element $p_{s_0,s_1,\ldots,s_\ell}$ of P_{∞} and elements $B_{s_0,s_1,\ldots,s_{\ell-1},\gamma_\ell}$, $B_{s_0,s_1,\ldots,s_{\ell-1},\delta_\ell}$ of A_ℓ such that $p_{s_0,s_1,\ldots,s_\ell} \in U$ and $p_{s_0,s_1,\ldots,s_\ell} \in \operatorname{Bd}(B_{s_0,s_1,\ldots,s_{\ell-1},\gamma_\ell}) \cap \operatorname{Bd}(B_{s_0,s_1,\ldots,s_{\ell-1},\delta_\ell})$. Then we have that $\operatorname{Ord}(p_{s_0,s_1,\ldots,s_\ell},Z) \geq \operatorname{Ord}(p_{s_0,s_1,\ldots,s_\ell},B_{s_0,s_1,\ldots,s_{\ell-1},\gamma_\ell}\cap Z) + \operatorname{Ord}(p_{s_0,s_1,\ldots,s_\ell},B_{s_0,s_1,\ldots,s_{\ell-1},\delta_\ell}\cap Z) = \operatorname{Ord}(p_{s_\ell},B_{\gamma_\ell}\cap Z) + \operatorname{Ord}(p_{s_\ell},B_{\delta_\ell}\cap Z) = \infty$. \square

Lemma 3.1.5 Let p be an element of P and $C_{i_0} \longrightarrow C_{i_1} \longrightarrow \cdots \longrightarrow C_{i_{n-1}} \longrightarrow C_{i_0}$ an n-cycle for O(p, f). And let C_{j_k} be the element of $S(I, P) \setminus P$ such that $\{f^k(p)\} = cl(C_{i_k}) \cap cl(C_{j_k})$, but $C_{j_k} = \emptyset$ if $f^k(p)$ is an endpoint of I. If $C_{i_k} \not\leftarrow C_{j_{k+1}}$ for each $k = 0, 1, \ldots, n-1$, then we have that $\operatorname{Ord}(\pi \circ f^k(p), B_{i_k} \cap Z) = 1$ for each $k = 0, 1, \ldots, n-1$. Moreover $\operatorname{Ord}(\pi \circ f^k(p), Z) = \operatorname{Ord}(\pi \circ f^k(p), B_{j_k} \cap Z) + 1$.

Proof. Assume that $\operatorname{Ord}(\pi \circ f^m(p), B_{i_m} \cap Z) \geq 2$ for some $m = 0, 1, \ldots, n - 1$. Then there exists a natural number ℓ such that $\operatorname{Card}\{B \in \mathbf{A}_{\ell} \mid \pi \circ \mathbf{A$

 $f^{m}(p) \in B \subset B_{i_{m}}\} = 2 \text{ and } \operatorname{Card}\{B \in \mathbf{A}_{\ell-1} \mid \pi \circ f^{m}(p) \in B \subset B_{i_{m}}\} = 1. \text{ Let } B_{s_{0},s_{1},\ldots,s_{\ell-1},\gamma_{\ell}}, B_{s_{0},s_{1},\ldots,s_{\ell-1},\delta_{\ell}} \text{ be distinct elements of } \mathbf{A}_{\ell} \text{ in } B_{i_{m}} \text{ such that } \{\pi \circ f^{m}(p)\} = B_{s_{0},s_{1},\ldots,s_{\ell-1},\gamma_{\ell}} \cap B_{s_{0},s_{1},\ldots,s_{\ell-1},\delta_{\ell}}. \text{ This implies that } C_{s_{0}} = C_{i_{m}}, C_{s_{0}} \longrightarrow C_{s_{1}} \longrightarrow \cdots \longrightarrow C_{s_{\ell-1}} \longrightarrow C_{\gamma_{\ell}}, C_{s_{\ell-1}} \longrightarrow C_{\delta_{\ell}}, f^{m+k}(p) \in C_{s_{k}} \text{ for } k = 0, 1, \ldots, \ell-1 \text{ and } \{f^{m+\ell}(p)\} = cl(C_{\gamma_{\ell}}) \cap cl(C_{\delta_{\ell}}). \text{ Since } C_{i_{k}} \not\leftarrow C_{j_{k+1}} \text{ for } \text{ each } k = 0, 1, \ldots, \ell-1 \text{ and } \{C_{\gamma_{\ell}}, C_{\delta_{\ell}}\} = \{C_{i_{m+\ell}}, C_{j_{m+\ell}}\}. \text{ Since } B_{\gamma_{\ell}}, B_{\delta_{\ell}} \text{ are distinct elements of } \mathbf{A}_{0} \text{ such that } \{\pi \circ f^{m+\ell}(p)\} = \operatorname{Bd}(B_{\gamma_{\ell}}) \cap \operatorname{Bd}(B_{\delta_{\ell}}), \text{ we see that } \{B_{\gamma_{\ell}}, B_{\delta_{\ell}}\} = \{B_{i_{m+\ell}}, B_{j_{m+\ell}}\}. \text{ Thus we have that } C_{i_{m+\ell-1}} \longrightarrow C_{j_{m+\ell}}. \text{ This is a contradiction.} \text{ Hence it holds that } \operatorname{Ord}(\pi \circ f^{k}(p), B_{i_{k}} \cap Z) = 1 \text{ for each } k = 0, 1, \ldots, n-1. \\ \operatorname{Note that } \operatorname{Ord}(\pi \circ f^{k}(p), Z) = \operatorname{Ord}(\pi \circ f^{k}(p), B_{i_{k}} \cap Z) + \operatorname{Ord}(\pi \circ f^{k}(p), B_{j_{k}} \cap Z) + \operatorname{Ord}(\pi \circ f^{k}(p), B_{j_{k}} \cap Z) = \operatorname{Ord}(\pi \circ f^{k}(p), B_{j_{k}} \cap Z) + \operatorname{Ord}(\pi \circ$

Lemma 3.1.6 Let p be an element of P and $C_{i_0} \longrightarrow C_{i_1} \longrightarrow \cdots \longrightarrow C_{i_{n-1}} \longrightarrow C_{i_0}$ an n-cycle for O(p, f). And let C_{j_k} be the element of $S(I, P) \setminus P$ with $\{f^k(p)\} = cl(C_{i_k}) \cap cl(C_{j_k})$ for each $k = 0, 1, \ldots, n-1$, but $C_{j_k} = \emptyset$ if $f^k(p)$ is an endpoint of I. If there exists $k = 0, 1, \ldots, n-1$ such that $C_{i_k} \longrightarrow C_{j_{k+1}}$, then Z is the universal dendrite.

Proof. Without loss of generality, we may assume that $C_{i_{n-1}} \longrightarrow C_{j_0}$. Then $B_{i_{n-1}}$ contains two distinct elements B_{i_{n-1},i_0} , B_{i_{n-1},j_0} of \mathbf{A}_1 such that $\pi \circ f^{n-1}(p) \in B_{i_{n-1},i_0} \cap B_{i_{n-1},j_0}$ (see Figure 3.1.3).

Figure 3.1.3

Since $f^{n-2}(p) \longrightarrow f^{n-1}(p)$ and $C_{i_{n-2}} \longrightarrow C_{i_{n-1}}$, $B_{i_{n-2}}$ contains an element $B_{i_{n-2},i_{n-1}}$ of A_1 such that $\pi \circ f^{n-2}(p) \in B_{i_{n-2},i_{n-1}}$. As $B_{i_{n-2},i_{n-1}} \cap Z$ is homeomorphic to $B_{i_{n-1}} \cap Z$, $B_{i_{n-2},i_{n-1}}$ contains two distinct elements B_{i_{n-2},i_{n-1},i_0} , B_{i_{n-2},i_{n-1},j_0} of A_2 such that $\pi \circ f^{n-2}(p) \in B_{i_{n-2},i_{n-1},i_0} \cap B_{i_{n-2},i_{n-1},j_0}$ (see Figure 3.1.4).

Figure 3.1.4

Similarly B_{i_k} contains two distinct elements $B_{i_k,i_{k+1},\dots,i_{n-1},i_0}$, $B_{i_k,i_{k+1},\dots,i_{n-1},j_0}$ of A_{n-k} such that $\pi \circ f^k(p) \in B_{i_k,i_{k+1},\dots,i_{n-1},i_0} \cap B_{i_k,i_{k+1},\dots,i_{n-1},j_0}$ for each $k = 0, 1, \dots, n-1$ (see Figure 3.1.5).

Figure 3.1.5

Since $B_{i_{n-1},i_0} \cap Z$ is homeomorphic to $B_{i_0} \cap Z$, B_{i_{n-1},i_0} contains two distinct elements $B_{i_{n-1},i_0,i_1,\dots,i_{n-1},i_0}$, $B_{i_{n-1},i_0,i_1,\dots,i_{n-1},j_0}$ of \mathbf{A}_{n+1} such that $\pi \circ f^{n-1}(p) \in B_{i_{n-1},i_0,i_1,\dots,i_{n-1},i_0} \cap B_{i_{n-1},i_0,i_1,\dots,i_{n-1},i_0}$. Similarly $B_{i_{n-1},i_0,i_1,\dots,i_{n-1},i_0}$ contains two distinct elements $B_{i_{n-1},i_0,\dots,i_{n-1},i_0,\dots,i_{n-1},i_0}$, $B_{i_{n-1},i_0,\dots,i_{n-1},i_0,\dots,i_{n-1},i_0}$ of \mathbf{A}_{2n+1} such that $\pi \circ f^{n-1}(p) \in B_{i_{n-1},i_0,\dots,i_{n-1},i_0,\dots,i_{n-1},i_0} \cap B_{i_{n-1},i_0,\dots,i_{n-1},i_0,\dots,i_{n-1},i_0}$ (see Figure 3.1.6).

Figure 3.1.6

Repeating this operation, we have that $\operatorname{Ord}(\pi \circ f^{n-1}(p), B_{i_{n-1}} \cap Z) = \infty$. By Lemma 3.1.1 and 3.1.4, we see that Z is the universal dendrite. \square

The following result is the main theorem in this chapter.

Theorem 3.1.7 There exist two n-cycles for the orbit of some element of P if and only if Z is the universal dendrite.

Proof. Let p be an element of P such that p is an endpoint of [P] and $f^{n-1}(p)$ is not an endpoint of [P]. And let $C_{\alpha_0} \longrightarrow C_{\alpha_1} \longrightarrow \cdots \longrightarrow C_{\alpha_{n-1}} \longrightarrow C_{\alpha_0}$ be the fundamental cycle for O(p, f) and C_{β_k} an element of $S(I, P) \setminus P$ with $\{f^k(p)\} = cl(C_{\alpha_k}) \cap cl(C_{\beta_k})$ for each $k = 0, 1, \ldots, n-1$, but $C_{\beta_k} = \emptyset$ if $f^k(p)$ is the endpoint of I.

(Sufficiency): Suppose that there exists an n-cycle for O(p, f) other than the fundamental cycle. Note that there exists an n-cycle for O(p, f) other than the fundamental cycle if and only if $C_{\alpha_k} \longrightarrow C_{\beta_{k+1}}$ for some $k = 0, 1, \ldots, n-1$, or there exists the n-cycle $C_{\beta_0} \longrightarrow C_{\beta_1} \longrightarrow \cdots \longrightarrow C_{\beta_{n-1}} \longrightarrow C_{\beta_0}$.

Let $C_{\gamma_0} \longrightarrow C_{\gamma_1} \longrightarrow \cdots \longrightarrow C_{\gamma_{n-1}} \longrightarrow C_{\gamma_0}$ be an n-cycle for O(p,f) other than the fundamental cycle. Then we have that $C_{\gamma_\ell} = C_{\beta_\ell}$ for some $\ell = 0, 1, \ldots, n-1$. Assume that $C_{\gamma_k} = C_{\alpha_k}$ for each $k = 0, 1, \ldots, n-1$, i.e. $C_{\beta_0} \longrightarrow C_{\beta_1} \longrightarrow \cdots \longrightarrow C_{\beta_{n-1}} \longrightarrow C_{\beta_0}$. Since $C_{\beta_{n-1}} \longrightarrow C_{\beta_0}$ and $C_{\beta_0} \not\subset [P]$, we have that $C_{\beta_{n-1}} \longrightarrow C_{\alpha_0}$. Thus Z is the universal dendrite by Lemma 3.1.6. Assume that $C_{\gamma_k} = C_{\alpha_k}$ for some $k = 0, 1, \ldots, n-1$. Since $C_{\gamma_\ell} = C_{\beta_\ell}$, there exists a natural number k' such that $C_{\alpha_{k'}} \longrightarrow C_{\beta_{k'+1}}$. Thus we see that Z is the universal dendrite by Lemma 3.1.6.

(Necessity): We prove by the reductive absurdity. Assume that there exists no *n*-cycle for O(p,f) other than the fundamental cycle. This implies that $C_{\alpha_k} \not \rightharpoonup C_{\beta_{k+1}}$ for each $k=0,1,\ldots,n-1$ and $C_{\beta_{k'}} \not \rightharpoonup C_{\beta_{k'+1}}$ for some $k'=0,1,\ldots,n-1$.

Since $C_{\alpha_k} \neq C_{\beta_{k+1}}$ for each k = 0, 1, ..., n-1, we see that $\operatorname{Ord}(\pi \circ f^k(p), B_{\alpha_k} \cap Z) = 1$ for each k = 0, 1, ..., n-1 by Lemma 3.1.5.

Assume that $C_{\beta_{k'}} \neq \emptyset$. Since $C_{\beta_{k'}} \not \sim C_{\beta_{k'+1}}$, we have that $\operatorname{Ord}(\pi \circ f^{k'}(p), Z) = \operatorname{Ord}(\pi \circ f^{k'}(p), B_{\alpha_{k'}} \cap Z) + \operatorname{Ord}(\pi \circ f^{k'}(p), B_{\beta_{k'}} \cap Z) = 1 + \operatorname{Ord}(\pi \circ f^{k'}(p), B_{\beta_{k'}, \alpha_{k'+1}} \cap Z)$

 $Z) = 1 + \operatorname{Ord}(\pi \circ f^{k'+1}(p), B_{\alpha_{k'+1}} \cap Z) = 2.$

When $C_{\beta_{k'}} = \emptyset$, we have that $\operatorname{Ord}(\pi \circ f^{k'}(p), Z) = \operatorname{Ord}(\pi \circ f^{k'}(p), B_{\alpha_{k'}} \cap Z) = 1$. By Lemma 3.1.1 and 3.1.2, we obtain that $\operatorname{Ord}(x, Z) < \infty$ for each element x of P_{∞} .

Since $Br(Z) \subset P_{\infty}$, we see that Z is not the universal dendrite. \square

Let P be a periodic orbit of f with period n, p an element of P and $C_{\alpha_0} \longrightarrow C_{\alpha_1} \longrightarrow \cdots \longrightarrow C_{\alpha_{n-1}} \longrightarrow C_{\alpha_0}$ the fundamental cycle for O(p, f) in $S(I, P) \setminus P$. And let C_{β_k} be the element of $S(I, P) \setminus P$ with $\{f^k(p)\} = cl(C_{\alpha_k}) \cap cl(C_{\beta_k})$ for any $k = 0, 1, \ldots, n-1$, but $C_{\beta_k} = \emptyset$ if $f^k(p)$ is an endpoint of I.

Proposition 3.1.8 Assume that Z is not the universal dendrite. Then the following statements are equivalent:

- (1) there exist $\ell + 1$ elements $C_{\beta_k}, C_{\beta_{k+1}}, \ldots, C_{\beta_{k+\ell}}$ of $S(I, P) \setminus P$ $(\ell < n)$ and a natural number m such that $C_{\beta_k} \longrightarrow C_{\beta_{k+1}} \longrightarrow \cdots \longrightarrow C_{\beta_{k+\ell}}$ and $Card\{C_{\beta_s} \mid C_{\beta_s} \longrightarrow C_{\alpha_{s+1}} \text{ and } k \leq s < k + \ell\} \geq m$.
- (2) Z has an (m+2)-branch point.

Proof. (1) \Longrightarrow (2): We may assume that k=0. Denote $\ell_0=\max\{\ell'\mid C_{\beta_0}\longrightarrow C_{\beta_1}\longrightarrow \cdots\longrightarrow C_{\beta_{\ell'}}\}$ and $m_0=\operatorname{Card}\{C_{\beta_\bullet}\mid C_{\beta_\bullet}\longrightarrow C_{\alpha_{\bullet+1}}$ and $0\leq s\leq \ell_0-1\}\geq m$. Let $C_{\beta_{s_{m-m_0+1}}},C_{\beta_{s_{m-m_0+2}}},\ldots,C_{\beta_{s_{-1}}},C_{\beta_{s_0}},C_{\beta_{s_1}},\ldots,C_{\beta_{s_m}}$ be elements of $\{C_{\beta_0},C_{\beta_1},\ldots,C_{\beta_{\ell_0-1}}\}$ such that $C_{\beta_{s_k}}\longrightarrow C_{\alpha_{s_k+1}}$ for each $k=s_{m-m_0+1},s_{m-m_0+2},\ldots,s_m$ ($s_{m-m_0+1}< s_{m-m_0+2}<\ldots< s_m$) (see Graph 3.1.7).

$$\cdots \longrightarrow C_{\alpha_{s_{k-1}}} \longrightarrow C_{\alpha_{s_{k-1}+1}} \longrightarrow \cdots \longrightarrow C_{\alpha_{s_k}} \longrightarrow C_{\alpha_{s_k+1}} \longrightarrow \cdots$$

$$\nearrow \qquad \qquad \nearrow$$

$$\cdots \longrightarrow C_{\beta_{s_{k-1}}} \longrightarrow C_{\beta_{s_{k-1}+1}} \longrightarrow \cdots \longrightarrow C_{\beta_{s_k}} \longrightarrow C_{\beta_{s_k+1}} \longrightarrow \cdots$$

Graph 3.1.7

We show that $\operatorname{Ord}(\pi \circ f^{s_1}(p), Z) = m + 2$. Since Z is not the universal dendrite, we have that $C_{\alpha_k} \not\leftarrow C_{\beta_{k+1}}$ for each $k = 0, 1, \ldots, n-1$ by the proof of Theorem 3.1.7. Thus it holds that $\operatorname{Ord}(\pi \circ f^k(p), B_{\alpha_k} \cap Z) = 1$ for each $k = 0, 1, \ldots, n-1$ by Lemma 3.1.5. Since $\operatorname{Ord}(\pi \circ f^{s_1}(p), Z) = \operatorname{Ord}(\pi \circ f^{s_1}(p), B_{\alpha_{s_1}} \cap Z) + \operatorname{Ord}(\pi \circ f^{s_1}(p), B_{\beta_{s_1}} \cap Z)$, it suffices to show that $\operatorname{Ord}(\pi \circ f^{s_1}(p), B_{\beta_{s_1}} \cap Z) = m+1$.

Since $C_{\beta_{\ell_0}} \longrightarrow C_{\alpha_{\ell_0+1}}$ and $C_{\beta_{\ell_0}} \not \rightharpoonup C_{\beta_{\ell_0+1}}$, we see that $\{B \in \mathbf{A}_1 \mid \pi \circ f^{\ell_0}(p) \in B \subset B_{\beta_{\ell_0}}\} = \{B_{\beta_{\ell_0},\alpha_{\ell_0+1}}\}$. Thus it holds that $\operatorname{Ord}(\pi \circ f^{\ell_0}(p), B_{\beta_{\ell_0}} \cap Z) = \operatorname{Ord}(\pi \circ f^{\ell_0}(p), B_{\beta_{\ell_0},\alpha_{\ell_0+1}} \cap Z) = \operatorname{Ord}(\pi \circ f^{\ell_0+1}(p), B_{\alpha_{\ell_0+1}} \cap Z) = 1$. Since $C_{\beta_{*m+1}} \longrightarrow C_{\beta_{*m+2}} \longrightarrow \cdots \longrightarrow C_{\beta_{\ell_0}}$ and $C_{\beta_k} \not \rightharpoonup C_{\alpha_{k+1}}$ for $k = s_m + 1, s_m + 2, \ldots, \ell_0 - 1$, we have that $\operatorname{Ord}(\pi \circ f^k(p), B_{\beta_k} \cap Z) = \operatorname{Ord}(\pi \circ f^k(p), B_{\beta_k,\beta_{k+1},\ldots,\beta_{\ell_0}} \cap Z) = \operatorname{Ord}(\pi \circ f^{\ell_0}(p), B_{\beta_{\ell_0}} \cap Z) = 1$ for each $k = s_m + 1, s_m + 2, \ldots, \ell_0 - 1$. Since $C_{\beta_{*m}} \longrightarrow C_{\alpha_{*m+1}}$ and $C_{\beta_{*m}} \longrightarrow C_{\beta_{*m+1}}$, we see that $\{B \in \mathbf{A}_1 \mid \pi \circ f^{s_m}(p) \in B \subset B_{\beta_{*m}}\} = \{B_{\beta_{*m},\alpha_{*m+1}}, B_{\beta_{*m},\beta_{*m+1}}\}$. Thus it holds that $\operatorname{Ord}(\pi \circ f^{s_m}(p), B_{\beta_{*m}} \cap Z) = \operatorname{Ord}(\pi \circ f^{s_m}(p), B_{\beta_{*m},\alpha_{*m+1}} \cap Z) + \operatorname{Ord}(\pi \circ f^{s_m}(p), B_{\beta_{*m},\beta_{*m+1}} \cap Z) = \operatorname{Ord}(\pi \circ f^{s_m+1}(p), B_{\alpha_{*m+1}} \cap Z) + \operatorname{Ord}(\pi \circ f^{s_m+1}(p), B_{\beta_{*m+1}} \cap Z) = 2$ (see Figure 3.1.8).

Figure 3.1.8

Since $C_{\beta_{s_{m-1}}} \neq C_{\alpha_{s_{m}}}$ and $C_{\beta_{s_{m-1}}} \longrightarrow C_{\beta_{s_{m}}}$, we have that $\{B \in \mathbf{A}_{1} \mid \pi \circ f^{s_{m-1}}(p) \in B_{\beta_{s_{m-1}}}\} = \{B_{\beta_{s_{m-1}},\beta_{s_{m}}}\}$. Thus we see that $\operatorname{Ord}(\pi \circ f^{s_{m-1}}(p), B_{\beta_{s_{m-1}}} \cap Z) = \operatorname{Ord}(\pi \circ f^{s_{m-1}}(p), B_{\beta_{s_{m-1}},\beta_{s_{m}}} \cap Z) = \operatorname{Ord}(\pi \circ f^{s_{m}}(p), B_{\beta_{s_{m}}} \cap Z) = 2$. Similarly we have $\operatorname{Ord}(\pi \circ f^{k}(p), B_{\beta_{k}} \cap Z) = 2$ for $k = s_{(m-1)} + 1, s_{(m-1)} + 2, \ldots, s_{m-1}$. Since $C_{\beta_{s_{(m-1)}}} \longrightarrow C_{\alpha_{s_{(m-1)}+1}}$ and $C_{\beta_{s_{(m-1)}}} \longrightarrow C_{\beta_{s_{(m-1)}+1}}$, $\{B \in A_{1} \mid \pi \circ f^{s_{(m-1)}}(p) \in B \subset B_{\beta_{s_{(m-1)}}}\} = \{B_{\beta_{s_{(m-1)}},\alpha_{s_{(m-1)}+1}}, B_{\beta_{s_{(m-1)}},\beta_{s_{(m-1)}+1}}\}$. Thus we have that $\operatorname{Ord}(\pi \circ f^{s_{(m-1)}}(p), B_{\beta_{s_{(m-1)}}} \cap Z) = \operatorname{Ord}(\pi \circ f^{s_{(m-1)}}(p), B_{\beta_{s_{(m-1)}},\alpha_{s_{(m-1)}+1}} \cap Z) = \operatorname{Ord}(\pi \circ f^{s_{(m-1)}+1}(p), B_{\alpha_{s_{(m-1)}+1}} \cap Z) + \operatorname{Ord}(\pi \circ f^{s_{(m-1)}+1}(p), B_{\beta_{s_{(m-1)}+1}} \cap Z) = 3$ (see Figure 3.1.9).

Figure 3.1.9

Repeating this operation, we have $\operatorname{Ord}(\pi \circ f^{s_1}(p), B_{\beta_{s_1}} \cap Z) = m+1$

(2) \Longrightarrow (1): By the reductive absurdity, we show that (2) \Longrightarrow (1). Assume that for each $\ell+1$ elements $C_{\beta_k}, C_{\beta_{k+1}}, \ldots, C_{\beta_{k+\ell}}$ of $S(I, P) \setminus P$ with $C_{\beta_k} \longrightarrow C_{\beta_{k+1}} \longrightarrow \cdots \longrightarrow C_{\beta_{k+\ell}}$, it holds that $\operatorname{Card}\{C_{\beta_s} \mid C_{\beta_s} \longrightarrow C_{\alpha_{s+1}} \text{ and } k \leq s < k+\ell\} < m \ (m \leq \ell)$. Then by the proof of (1) \Longrightarrow (2), we see that $\operatorname{Ord}(\pi \circ f^{k'}(p), Z) < m+2$ for each $k' = k, k+1, \ldots, k+\ell$. This implies that $\operatorname{Ord}(\pi \circ f^k(p), Z) < m+2$ for each $k = 0, 1, \ldots, n-1$.

Now we prove that $\operatorname{Ord}(p_{\infty}, Z) < m+2$ for each element p_{∞} of P_{∞} . We may assume that $p_{\infty} \notin \pi(P)$. Then there exist a natural number ℓ' and an element B of $\mathbf{A}_{\ell'}$ such that $p_{\infty} \in \operatorname{Bd}(B)$ and $p_{\infty} \in \operatorname{Int}(B')$ for each element B' of $\mathbf{A}_{\ell'-1}$. Denote $p_{\infty} = p_{s_0,s_1,\dots,s_{\ell'}}$. And let $B_{s_0,s_1,\dots,s_{\ell'-1},\gamma_{\ell'}}, B_{s_0,s_1,\dots,s_{\ell'-1},\delta_{\ell'}}$ be elements of $\mathbf{A}_{\ell'}$ such that $\{p_{s_0,s_1,\dots,s_{\ell'}}\} = \operatorname{Bd}(B_{s_0,s_1,\dots,s_{\ell'-1},\gamma_{\ell'}}) \cap \operatorname{Bd}(B_{s_0,s_1,\dots,s_{\ell'-1},\delta_{\ell'}})$. Then we have that $\operatorname{Ord}(p_{s_0,s_1,\dots,s_{\ell'}},Z) = \operatorname{Ord}(p_{s_0,s_1,\dots,s_{\ell'}},B_{s_0,s_1,\dots,s_{\ell'-1},\gamma_{\ell'}}\cap Z) + \operatorname{Ord}(p_{s_0,s_1,\dots,s_{\ell'-1},\delta_{\ell'}}\cap Z) = \operatorname{Ord}(p_{s_{\ell'}},B_{\gamma_{\ell'}}\cap Z) + \operatorname{Ord}(p_{s_{\ell'}},B_{\delta_0,s_1,\dots,s_{\ell'-1},\delta_{\ell'}}\cap Z)$

Since $Br(Z) \subset P_{\infty}$ by Fact 3, we have that Ord(b, Z) < m + 2 for each element b of Br(Z). \square

Corollary 3.1.9 If Z is not the universal dendrite, then $Ord(x, Z) \le n + 1$ for each element x of Z, where n = Card(P).

Proof. By Theorem 3.1.7, it holds that $C_{\alpha_k} \not\rightharpoonup C_{\beta_{k+1}}$ for each $k = 0, 1, \dots, n-1$ and $C_{\beta_{k'}} \not\rightharpoonup C_{\beta_{k'+1}}$ for some $k' = 0, 1, \dots, n-1$. Thus $\max\{\ell \mid C_{\beta_k} \longrightarrow C_{\beta_{k+1}} \longrightarrow \cdots \longrightarrow C_{\beta_{k+\ell}}\} \leq n-1$ for each $k = 0, 1, \dots, n-1$. By Proposition

3.1.8, we see that $Ord(x, Z) \leq n+1$ for each $x \in Z$. \square

Corollary 3.1.10 Assume that Z is not the universal dendrite. Then if Z has an m-branch point $(m \ge 3)$, then Z has also an (m-1)-branch point. \square

3.2 Examples

In this section, we give some concrete examples.

Example 3.2.1 Denote that I = [0, 1] and $f : I \longrightarrow I$ a continuous map such that $f(x) = 2x(0 \le x \le \frac{1}{2})$ and $f(x) = -2x + 2(\frac{1}{2} \le x \le 1)$. Let P be a periodic orbit $\{\frac{2}{9}, \frac{4}{9}, \frac{8}{9}\}$, $C_0 = [0, \frac{2}{9})$, $C_1 = (\frac{2}{9}, \frac{4}{9})$, $C_2 = (\frac{4}{9}, \frac{8}{9})$ and $C_3 = (\frac{8}{9}, 1]$ (see Graph 3.2.1).

By the definition, $C_1 \longrightarrow C_2 \longrightarrow C_2 \longrightarrow C_1$ is the fundamental cycle. The Markov graph of $S(I, P) \setminus P$ is as in Graph 3.2.2.

$$C_1 \longrightarrow C_2 \longrightarrow C_2 \longrightarrow C_1$$

$$\searrow$$

$$C_0 \longrightarrow C_1 \qquad C_3 \longrightarrow C_0$$

Graph 3.2.2

Since we have that $C_2 \longrightarrow C_2$ and $C_2 \longrightarrow C_3$, we see that Z is the universal dendrite by Lemma 3.1.6 (see Figure 3.2.3).

Figure 3.2.3

Example 3.2.2 Let f be the same map as Example 5.1. Denote $P = \{\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\}$, $[0, \frac{2}{7}), C_1 = (\frac{2}{7}, \frac{4}{7}), C_2 = (\frac{4}{7}, \frac{6}{7})$ and $C_3 = (\frac{6}{7}, 1]$ (see Graph 3.2.4).

Graph 3.2.4

The fundamental cycle is $C_1 \longrightarrow C_2 \longrightarrow C_2 \longrightarrow C_1$. The Markov graph of $S(I, P) \setminus P$ is as in Graph 3.2.5.

Graph 3.2..5

Since there exists an 3-cycle $C_0 \longrightarrow C_1 \longrightarrow C_3 \longrightarrow C_0$ other than the fundamental cycle, we see that Z is the universal dendrite by Theorem 3.1.7 (see Figure 3.2.3).

Example 3.2.3 Denote I = [0,4], $f: I \longrightarrow I$ a continuous map and $P = \{1,2,3\}$ a 3-periodic orbit of f with $f(i) = i+1 \pmod 3$ for i=1,2,3. And denote $C_0 = [0,1)$, $C_1 = (1,2)$, $C_2 = (2,3)$ and $C_3 = (3,4]$ (see Graph 3.2.6).

By the definition, $C_1 \longrightarrow C_2 \longrightarrow C_2 \longrightarrow C_1$ is the fundamental cycle for O(1,f). Assume that there exist no cycles for O(1,f) other than the fundamental cycle. The Markov graph of $S(I,P) \setminus P$ is as in Graph 3.2.7.

$$C_1 \longrightarrow C_2 \longrightarrow C_2 \longrightarrow C_1$$

$$\nearrow \qquad \nearrow$$

$$C_0 \longrightarrow C_1 \longrightarrow C_3 \qquad C_0$$

Graph 3.2.7

Then it holds that $\operatorname{Ord}(x, Z) \leq 3$ for any $x \in Z$. And $\operatorname{Br}(Z)$ is dense in Z (see Figure 3.2.8).

Example 3.2.4 Let P be the same periodic orbit as Example 3.2.3. And let $f: I \longrightarrow I$ be a continuous map as in Graph 3.2.9.

The Markov graph of $S(I, P) \setminus P$ is as in Graph 3.2.10.

$$C_1 \longrightarrow C_2 \longrightarrow C_2 \longrightarrow C_1$$

$$\nearrow \qquad \nearrow$$

$$C_0 \longrightarrow C_1 \longrightarrow C_3 \qquad C_0$$

Graph 3.2.10

Then it holds that $Ord(x, Z) \leq 4$ for any $x \in Z$. There exists only one 4-branch point $\pi(1)$ in Z and the set of 3-branch points of Z is dense in Z (Figure 3.2.11).

Figure 3.2.11

Example 3.2.5 Denote I = [0,5]. Define a continuous map $f: I \longrightarrow I$ as follows: f(x) = 2x + 3 ($0 \le x \le 1$), f(x) = -x + 6 ($1 \le x \le 2$), f(x) = 3x - 2 ($2 \le x \le \frac{7}{3}$), f(x) = -15x + 40 ($\frac{7}{3} \le x \le \frac{8}{3}$), f(x) = 3x - 8 ($\frac{8}{3} \le x \le 3$), f(x) = -x + 4 ($3 \le x \le 4$) and f(x) = 2x - 8 ($4 \le x \le 5$). Denote $P = \{0, 1, 2, 3, 4, 5\}$, $C_0 = [0, 1)$, $C_1 = (1, 2)$, $C_2 = (2, 3)$, $C_3 = (3, 4)$, $C_4 = (4, 5]$ (see Graph 3.2.12).

The fundamental cycle for O(0, f) is as in Graph 3.2.13.

$$C_0 \longrightarrow C_3 \longrightarrow C_0 \longrightarrow C_4 \longrightarrow C_1 \longrightarrow C_4 \longrightarrow C_0$$

$$\nearrow \qquad \nearrow \qquad \nearrow \qquad \nearrow$$

$$C_2 \longrightarrow C_1 \qquad \qquad C_2 \longrightarrow C_3$$

Graph 3.2.13

Then there exist infinite 3-branch points in $B_3 \cap Z$, but there exist no branch points in $Z \setminus (B_3 \cap Z)$. The structure of Z is as in Figure 3.2.14.

Figure 3.2.14