Chapter 3

Dendrites constructed by
P-expansive maps of the
interval into itself

In this chapter, we investigate the structure of Z under the restriction that f
is a continuous map of the interval into itself, where Z is a regular continuum
constructed in Chapter 2.

Denote I = [0,1]. And let f : I — I be a continuous map and P a periodic
orbit of f. Let A be a subset of I containing more than one point, then we will
use [A] to denote the smallest subinterval containing A. If A = {a,b}, then
denote [A] by [e,4]. And we define (a,b) = [a,8] \ {a,0},(a, 8] = [a,8] \ {a}
and [g,b) = [a,b] \ {b}. Put S(I,P) = PU{C | C is a component of I \ P}.
Given z € I, the itinerary of z with respect to P and f is defined to be the
unique infinite sequence (Cy)p»o from S(I, P) given by the rule f*(z) € C, for
all n > 0. If no two points of I have the same itinerary, then f will be called
P-ezpansive. And we say that f is pointwise P-ezpansive if for each p,q € P,
there exists some non-negative integer m such that (f™(p), f™(g)) NP # 0

(see Chapter 2).
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Notices. In this chapter, we assume the followings :
1. f: I — I is pointwise P-expansive.
2. f(C) is the union of some elements of S(I, P) for any C' € S(I, P).
3. f(C) is not one point for each C € S(I,P) \ P with C # §.

Recall the following facts shown in Chapter 2.
Fact 1. Z is a dendrite.

Fact 2. glB,.,...,02 ¢ Bsosipense N4 — Boysp,0 N Z 18 8 homeomorphism

..... .
(0 < 89, S1y--., 8 < 1),

Fact 3. Denote Po = {hsps;,..5.(P) | £ =0 and 0 < s9,81,...,5 < n}. Then
P, is dense in Z and Br(Z) C Pa.

The first part can be proved by the last part of section 2 in [2]. We show
that Br(Z) C Pw. Let z be an element of Z \ Py. Then it suffices to show
that Ord(z, Z) < 2. By the way of the construction of Z, there exists an
infinite sequence sg, 51, ... such that £ € Int(Bygs,...se N Z) for each & 2> 0,
where Int(B,, s,...s, N Z) means the interior of the set By, .5, N Z. For any
neighborhood U of z, there exists £ > 0 such that z € Byys,,..s N4 CU. We
see that Bd(Byq.e,...s, N Z) < 2. Thus we have Ord(z, Z) < 2.

Fact 4. Ord(psos....00s Brosor,orste N Z) = Ord{Pay a0, .00 Bopysanseciite 1 Z)
for each element pyq o5 OF Poo With Pag,sy,...er € Bd(Bug,syse-rte) FHenCE We
have Ord{Psq s1....00Bso.or,serte V Z) = Ord(py,, By, N Z) inductively.

In fact since g|p, ... 0z * Bpsiysiorte N Z — Bajapnseetite 1 Z is

el 1ety
a homeomorphism by Fact 2, we see that Ord(Dsg,s,,..se» Bso.simise—1ite N Z)
= Ord(Psy ss....500 Bs1sa,nss_ity N Z) for each element pygsy,..s, Of P,, with
pso'si.----sl E Bd(B-‘OpSh---.Sl—htt)'
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3.1 A necessary and sufficient condition that
Z is the universal dendrite

Let P be a periodic orbit of f with period n. We say that C;; — C;, —
voo — G, — Cy, is a cycle of length n for the orbit O(p, f) of an element p
of Pin 8(I, P)\ P, written an n-cycle for O(p, f), provided that f*(p) € cl(C;,)

foreachk = 0,1, ...,n~1. In this chapter, C;, means C; for each natural

K(mod )
number k.

Let p, ¢ be elements of P and C,, the element of S(I, P)\ P such that p is
an endpoint of [P] and C,, = (p,q). Let Cy,, be the element of S(I,P)\ P
such that f(p) € ¢l(Ca,) and Co, C (f(p), f(g)). Then we have the element
q of P such that C,, = (f(p),q1). Let Ca, be the element of S(I,P) \ P
such that f2(p) € cl(Cq,) and Ca, C (F%(p), f(q1)). Then there exists the
element g; of P such that C,, = (f*(p), ¢2). Similarly let Cy; be the element
of S(I,P) \ P such that f3(p) € cl(Ca,) and Cuy C (f3(p), fg2)). And let
g3 be the element of P with C,, = (f%(p),¢s). Repeating this operation,
we can have a cycle Coy ~— Coy — +++ — Co, — Cly, of length n
such that f*(p) € cl(Cy,) for each k = 0,1,...,n — 1. We say that this
cycle Cop — Cop = =+ — O, — Uy Is a fundamental cycle for
O(p, f). A fundamental cycle always exists and is unique (see [4, p.8]). Note
that Cy, C [P]forany k =0,1,...,n—1. Let Cj, be the element of S(/, P)\ P
with {f*(p)} = cl(Ca,) Ncl(Cp,) for each k =0,1,...,n—1, but Cp, = B if

f¥(p) is an endpoint of I.

Lemma 3.1.1 If there erists an element p of P such that Ord(x(p), Z) < o0,
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then we have that Ord(m o f¥(p),Z) < oo for each k=0,1,...,n— 1.

Proof. Let Ci,, Cj, be elements of S(J, P) \ P such that {f*(p)} = c(C;,) n
c(Cy,), but Cy, = @if f¥(p) is an endpoint of I. Assume that Ord(n(p), Z) <
oo. Then it is clear that Ord(z(p), B;, N Z) < 0o and Ord(n(p), B;,NZ) < oo.

Since Cy, — Cj, or Gy — Cjj,, we see that Ord(7(p), B;;NZ) = Ord(x(p), Biy,i, N
2)+0rd(n{(p), Bi,.i NZ) by the way of the construction of Z, where Ord(n(p), B;, 1,
Z) = 0if Bigyi, = 9, and Ord(n(p), Bi,,;,NZ) = 0if Bjy;, = @ (see Figure 3.1.1).

Thus we have that Ord(7(p), Bi,;, N Z) < o0 and Ord(n(p), By ;, N Z) < 00.

. B"Orj'l
Figure 3.1.1

By Fact 4, it holds that Ord(x(p), By, N Z) = Ord(mo f(p), By N Z) < 00
and Ord(n(p), Biy;, N Z) = Ord(w o f(p), B; N Z) < 0o. Hence we have that
Ord(mo f(p), Z) = Ord(mo f(p), B;,NZ)+Ord(mo f (p), B;;NZ) < oo. Similarly
since Ord(w o f(p), B;, N Z) = Ord(ro f(p), By, 1,1 Z)+Ord(ro f(p), Biy a2,
we have that Ord(x o f(p), Bi i, N Z) < oo and Ord(m o f(p), Bi, j, N Z) < 0.
By Fact 4, it holds that Ord(m o f(p), By, 5, N Z) = Ord(mo f2(p), B;,NZ) < 00
and Ord(r o f(p), By 1 Z) = Ord(r o f2(p), By, N Z) < 00. Thus we have
that Ord(r o f2(p), Z) = Ord(r f(p), B, N Z)+ Ord(w o §(p), BN Z) < 0.
Repeating this operation, we obtain that Ord{w o f%(p),Z) < oo for each

k':Oaly---,n“'].. D
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Lemma 3.1.2 If we have that Ord(mo f*(p), Z) < oo for eachk =0,1,...,n—

1, then it holds that Ord(z, Z) < oo for each element z of P.

Proof. Let pgs,..e D€ an element of Py and B,y s, s .4 20 element
of A, such that ps,.5, € Bd(Bss,..518,)- By Fact 4, we have that
Ord(pso,-?l..--ﬁuBSD,Ss,---,st-htz n Z) = Ord(péruBtt N Z) < Ord('p,t,Z) < .

This means that Ord(pyg.s,..5,Z) < 0. O

Lemma 3.1.3 If there ezists an element x of P, such that Ord(z, Z) = oo,

then we have that Ord(y, Z) = o0 or Ord(y, Z) < 2 for each element y of P.

Proof. It is sufficient to show that if Ord(y, Z) > 3 for some element y of P,
then Ord(y,Z) = 0. Let y be an element of Py, such that Ord(y, Z) > 3.
Then there exist a natural number £ and an element By, ,, . ,, of A, such that
y € Bd(B,, s,,..5,) and Ord{y, By, 5,5, N Z) > 2. Denote m = min{¢ | there
exist two distinct elements B, B’ of Ay in By, ,,..s, such that y € BNB'} > &
Let Bsg,siinismvtms Bsgusyosmo1,6m D€ distinct elements of A, such that y €

Bios1,ismo1vm [V Bsgsy,smo1,6m (s€€ Figure 3.1.2).

B’Dl"l yeeesSe

B

30,81 peeeySmm=1

B‘O:’l 1 Smal,Tm

v B

~ 30,31 100y Sm—1,6m

Figure 3.1.2
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Then we have that Ord(y, B,,,,..s, N Z) = Ord(y, Bogstsmetiim N Z) +
Ord(¢™(y), Z) = oo by Lemma 3.1.1 and 3.1.2, since ¢g™(y) is an element of

n{F). Thus there exists no element y of P, such that 3 < Ord(y, Z) < co. LI

Lemma 3.1.4 If we have that Ord(wo f*(p), Z) = oo for eachk = 0,1,...,n—

1, then Z is the universal dendrite.

Proof. By Lemma 3.1.3, there exists no element y of Z such that 3 <
Ord(y, Z) < co. Thus it is sufficient to show that the set {z € Z | Ord(z, Z) =

oo} isdense in Z. By the way of the construction of Z, for any open subset I of

Z, there exist an element py, s,,....s, Of Poo and elements By 1. s,_, ver Big,s1,50-1 60
of Agsuch that pyys,,..e, € U and peg,s,,...s0 € Bd(Bagay,...ose1,)NBA(Bog 1,00 1.60)-
Then we have that Ord(psgs,,...e00 Z2) = Ord(Psg,sy.ser Bsossysenime N Z) +
Ord(pag,s1,..0500 Bisossi,onsiorge N Z) = Ord(ps,, By, N Z) + Ord(p,,, Bs, N Z) =

Ord(p,,, Z) = 00. O

Lemma 3.1.5 Letp be an element of P and Ciy — C;, — +++ = Cj,_, —>
Ci, ann-cycle for O(p, f). And let C;, be the element of S(I, P)\ P such that
{f*(0)} = c(C,)NCl(Cy,), but C;, = B if f*(p) is an endpoint of I. If C;, /
Cioyy for eachk =0,1,...,n—1, then we have that Ord(wo f*(p), B;,NZ) = 1
for each k = 0,1,...,n—1. Moreover Ord(wo f*(p), Z) = Ord(w o f¥(p), B;, N

Z)+ 1.

Proof. Assume that Ord(r o f™(p), B;, N Z) > 2 for some m = 0,1,...,n —

1. Then there exists a natural number £ such that Card{B € A, | 7o
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ff{p) e B C Bi,} = 2and Card{B € Agy | mo f™(p) € B C B} =
1. Let By si,osemimr Bsosiyonsea,8, be distinct elements of A, in B;, such
that {m o f™(p)} = Bios1,onsrine N Bagayarorse- This implies that C,, =

CirisCsg = Coy = -+ — Cy, | — C,,,C,,., — Cy,, f™(p) € C,, for

k=0,1,...,¢~1and {f"(p)} = cl(Cy) N cl(Cs,). Since C, 4 Cj,,, for
each k =0,1,...,n— 1, we see that C,, = C;,, foreach k=0,1,...,6~1
and {C,,,Cs,} = {Ci,,0» Cjpi}- Since B,,, Bs, are distinct elements of Ag
such that {7 o f™*(p)} = Bd(B,,) N Bd(B;,), we see that {B,, Bs;} =
{Bi,..0» Bj.ye}- Thus we have that C; ., . — C; ... Thisis a contradiction.
Hence it holds that Ord(mwo f*(p), B;, N Z) =1 foreach k=0,1,...,n - 1.

Note that Ord{w o f*(p), Z) = Ord(m o f¥(p), By, N Z) +Ord(w o f*(p), B,, N

Z) = Ord(m o f*(p),B;yNZ)+ 1. O

Lemma 3.1.6 Letp be an element of P and Cyy —— Cyy — -+ == G5, |
Ci, an n-cycle for O(p, f). And let C;, be the element of S(I,P)\ P with
{F*(p)} = cl(Ci,) N cl(C},) for each k = 0,1,...,n— 1, but C;, = 0 if f*(p)
is an endpoint of I. If there exists k = 0,1,...,n — 1 such that C;, — Cj,,,,

then Z is the universal dendrite.

Proof. Without loss of generality, we may assume that C;,_, — Cj,. Then
B;,_, contains two distinct elements B;__, i, Bi._,.jo f Ay such that mof"~!(p) €

Bi, e N B, . j, (see Figure 3.1.3).
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B;._,
ll"“:r"'ﬂ
mo f*~1(p)
Bl'u—-ldo

Figure 3.1.3

Since f**(p) — f*"'(p) and C;,_, — Ci,_,, Bi,_, contains an element
B, _yi._, of Ay such that 7o f**(p) € By, _44._,. As Bi_,i._, N Z is home-
omorphic to Bi,_, N Z, B;__,;,, contains two distinct elements B;, . _, .,

Bi, ;a0 Of A such that wo f*72(p) € Bi,_;.in_yiio N Binssgsines.jo (see Figure

3.1.4).
gy Bin—-?n“n—l
- Bi i
P of" 2(13) ) - 2/in-1 vo
A ‘.nwﬂl"n-—lﬂﬂ

Figure 3.1.4

Similarly By, contains two distinct elements By, i\, in_1.ior Bicizstrorin-1.o
of A, such that 7 o fk(p) € Bfk.ik+;.~-.inu1,io n Bik.*'kﬂs---,in—l,jo for each k =
0,1,...,m 1 (see Figure 3.1.5).

B;,

Bilnih+l

Bik,ik_'_l...-.in-l

l Bi'llik-l-l N A 1

Bik!"k-[-!.i-“tiu—hjo

Figure 3.1.5
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Since B;,_, i, N Z is homeomorphic to B;, N Z, B;, _, i, contains two distinct
elements By, io,ir,...in-1,i01 Bin-1,ioyis,vin-rjo Of Ansr such that mo f*~1(p) €
Bi, ot sin-tiio 1V Bin.1sioyitiain1o- Similarly B; .0 . . contains two
distinct elements B;, | i.in_1i0rin-107 Bin-triorsinetsiorin_1.o OF Agnyy such
that wo f"“l(p) € Bin_1,io,---.in—l,z‘o,...,in..1,io n Bin—x,t'o,---.in—l.icn,.--,in-z;J'o (see Figure

3.1.6).

B;

Bin-— 1 tiOO‘"li‘n"l

it !

Bi,,_.l H0srensin=1,80

B‘.n-— 1 .i0w-;in-l |£0l'"|“ﬁ— I

Biﬂ_hiol_._'iﬂ_1 80, nin=1)

J

- Bin-x.io.---,t'n-z,io,---,in.-l,

mo fri(p)

Bt',.-l |‘.0|--v-‘.n--l 2jo

Figure 3.1.6

Repeating this operation, we have that Ord(w o f*(p),B;,_, N Z) = oo.

By Lemma 3.1.1 and 3.1.4, we see that Z is the universal dendrite. O

The following result is the main theorem in this chapter.

Theorem 3.1.7 There ezist two n-cycles for the orbit of some element of P

if and only if Z is the universal dendrite.
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Proof. Let p be an element of P such that p is an endpoint of [P] and f™~'(p)
is not an endpoint of [P]. And let Coy — Coy — v+ — Cy,, — C,,
be the fundamental cycle for O(p, f) and Cj, an element of S(Z, P) \ P with
{¥(p)} = cd(Ca,) N cl(Cp,) for each k =0,1,...,n ~ 1, but Cg, = 0 if f*(p)
is the endpoint of 1.

(Sufficiency) : Suppose that there exists an n-cycle for O(p, f) other than
the fundamental cycle. Note that there exists an n-cycle for O(p, f) other than
the fundamental cycle if and only if Co, — Cp,,, forsome £ =0,1,...,n-1,
or there exists the n-cycle Cg, — Cp, — +++ — Cj,_, — Cp,-

Let Oy — Cyy, — -+ — C,,_, — C,, be an n-cycle for O(p, f)

other than the fundamental cycle. Then we have that C,, = Cp, for some
€=0,1,...,n — 1. Assume that C,, = C,, foreachk = 0,1,...,n -1, i.e
Cgy — Cpy —= -+« ~— Cg,_, —> Cg,. Since Cy _, — Cp, and Cy, ¢ [P,
we have that Cp, , — Cq,. Thus Z is the universal dendrite by Lemma 3.1.6.
Assume that C,, = C,, for some k = 0,1,...,n — 1. Since C,, = Cp,, there
exists a natural number &’ such that C,, — Cp,,,,. Thus we see that Z is
the universal dendrite by Lemma 3.1.6.
(Necessity) : We prove by the reductive absurdity. Assume that there exists
no n-cycle for O(p, f) other than the fundamental cycle. This implies that
Coy 7 Cpy,, for each k = 0,1,...,n — 1 and Cp, # Cj,,,, for some &' =
0,1,...,n—1.

Since Ca, # Cp,,, for each k = 0,1,...,n — 1, we see that Ord(r o
¥}y BeyNZ) = 1 for each k = 0,1,...,n — 1 by Lemma 3.1.5.

Assume that Cp,, # §. Since Cg, # Cgk,+1, we have that Ord('rfOf’cr (»),2) =

Ord(wof¥(p), Ba,,NZ)+0rd(wo f¥ (p), By, NZ) = 1+0rd(nof* (p), Bay apn
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Z) =1+ Ord(r o f¥*(p), Ba,,, N Z) =2.

When Cp,, = @, we have that Ord(wo f¥(p), Z) = Ord(wo f* (p), B.,NZ) =
1. By Lemma 3.1.1 and 3.1.2, we obtain that Ord(x, Z) < oo for each element
z of Py.

Since Br{Z) C Py, we see that Z is not the universal dendrite. O

Let P be a periodic orbit of f with period n, p an element of P and C,, ——+
Cqy — +++ ~— Cy,_; — Cy, the fundamental cycle for O(p, f) in S(I, P)\P.
And let Cy, be the element of S(I, P)\ P with {f*(p)} = cl(Cua, )N cl(Cp,) for

any k=0,1,...,n—~ 1, but Cs, =@ if f*(p) is an endpoint of I.

Proposition 3.1.8 Assume that Z is not the universal dendrite. Then the

following statements are equivalent :

(1) there exist £ 1 elements Cg,,Cp,,,,...,Cs,,, of SU,P)\ P
(¢ < n) and a natural number m such that Cg, — Cp,,, —
+ — Cp,,, and Card{Cy, | Cg, — C,,,, andk < s < k+{} 2

m.

(2) Z has an (m + 2)-branch point.

Proof. (1) == (2) : We may assume that k& = 0. Denote & = maz{¢ |
Cpo — Cp, — -+ — Cp,} and my =Card{Cy, | Cp, —+ Ca,,, 2nd
0<s< - l} > m. Let Cp,m_moﬂ,Cﬂ.m_mon, . ’Cﬁ'-l’cﬂ'n’cﬁq’ e ,Cﬁ.m

be elements of {Cy,, Cp,,...,Cp, _,} such that Cs, — C, ,, for each k =

Sm-mg+1y Sm—mg+21--+35m (Sm-—mo+l < Sm—mg+2 <...< Sm) (See Graph 317)
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I Cﬂ:k_l e Calk_l-H IR Calh - Caak-i-l >
e /"
e Oy Gy s G, G,y e
Graph 3.1.7

We show that Ord{w o f*(p),Z) = m + 2. Since Z is not the universal
dendrite, we have that C,, / Cp,,, for each k = 0,1,...,n — 1 by the proof
of Theorem 3.1.7. Thus it holds that Ord(m o f¥(p), By, N Z) = 1 for each
k = 0,1,...,n ~1 by Lemma 3.1.5. Since Ord(w o f*(p),Z) = Ord(xw o
f(p), Ba,, N Z) + Ord(m o f'(p), Bp, N Z), it suffices to show that Ord(x o
£ (p), By, N 2) =m+ 1

Since Cp,; — Ca,,, and Cp,, # Cp,,,, Wesee that {B € A | 7o f(p) €
B C By} = {Bpgaepei}- Thus it holds that Ord(m o f%(p), Bg, N Z) =
Ord(r o f% (P)s Boygxqper N Z) = Ord(m 0 f‘““(p),BamH N Z) = 1. Since
Chomir = Crppa = - = Cg, and Cp, # Co,,, for k = sm + 1,8, +
2,...,8—1, we have that Ord(wo f*(p), Bs,NZ) = Ord(‘]rofk(p)!Bﬁk‘ﬂk-}-l.-‘-xﬁton
Z) = Ord(vr0f”°(p),BﬁloﬂZ) = lforeach k = s, +1,8m+2,...,4 —1. Since

Cp,.. — C

o +1

and Cp, - Cp, .., weseethat {B € A; |mof*~(p)€ B C
Bs, } = {Ba.,. a0 i1s Bg, ...} Thus it holds that Ord(w o f*(p), Bs, N
2) = Otd(m o *(9), By, corvs 0 2) + Ond(x o [*(p), By, 5, 1 Z) =
Ord(r o f**'(p), Ba,, ., N Z) + Ord(wo f>»*'(p), By, . NZ) = 2 (see Figure

3.1.8).
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B 1Cam +1
o fo(p)

uB B Bom 41
Figure 3.1.8

Since Cp, ., 7 Ca,, and Cp, _, — Cp, , we have that {B € A; | 7o
fm~Yp) € Bg, ..} = {Bs....1,6., }- Thus wesee that Ord(wof*=~1(p), Bs, _,N
Z} = Ord(w o f*~~Y(p), By, ._,.8,,. N Z) = Ord(w o f*(p), Bs, NZ)=2.

Similarly we have Ord(w o f*(p), Bg, N Z) = 2 for k = $gm_1y + 1, $(m-1 +
2,...,8m = 1. Since Cﬂ,(mqn — C“-(m_nﬂ and C’ﬁ,(m_l) s C’g,(m“ml, {Be
Ay fon(p) € BC Bay Y = (Bay oy Boopybunyin}
Thus we have that Ord(ro fétm~1(p), Bﬂ-(m_u NZ) = Ord(wo fm-1(p), B

' ﬁ'(m-—-l) ’a‘(m-—

Z}+Ord (o fém-0(p), B NZ) = Ord(mo fom-1+1(p), B N
nB’(m

Z) + Ord(w o fim-nti(p), B, nNZ)=3 (see Figure 3.1.9).

_l),ﬁs(m_l}-{-l ®ayyngy+l

BﬁC(m_l)

Bnﬂ-(m..l)!a'(mml)""

ﬁ;(m___” lﬂl(m_l)‘l'l

o fim-1)(p)

Bﬁr(m_l)cﬂl(m_1)+l t---nalm

ﬂncm__l) 'ﬂ'(m-1)+l ,...,ﬂ.m 'Q‘m

ﬂl(m___ 1) oﬂl(m_,l)'f"-v"‘lﬁlm lnalm+

Figure 3.1.9
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Repeating this operation, we have Ord(r o f1(p), Bs, NZ)=m+1

(2) == (1) : By the reductive absurdity, we show that (2) = (1). Assume
that for each £ + 1 elements Cp,,Clg, ., ... ,C‘gﬂ; of S(I, P)\ P with C5, —
Coeyy — -+ — Cg,,, it holds that Card{Cp, | Cs, — C,,,, and k <
s < k+£€} <m(m < ¢). Then by the proof of (1) == (2), we see that
Ord(m o f¥(p), Z) < m +2 for each &' = k,k+1,...,k +£. This implies that
Ord(m o f¥(p),Z) <m +2foreach k =0,1,...,n 1.

Now we prove that Ord(pes, Z} < m+2 for each element p,, of P,,. We may
assume that p,, & 7{P). Then there exist a natural number £ and an element
B of Ay such that p, € Bd(B) and p,, € Int(B’) for each element B’ of
Ag_y. Denote poo = pog,s1,sy- A0 let Bog sy s s Bigjsr,sp_y 80 D€ €le-
ments of Ay such that {psg,sy,....e, } = BA(Bsgs1,sp_yive ) NBA(Bag o,y by )
Then we have that Ord(ps,,s,,..s,» Z) = O1rd(Dsys,..00s Bioystysp_yiip N Z) +
Ord(Psp,s1,.sy s Bsostvnnsyr g be NV E4) = Ord(ps,, By, N Z) + Ord(ps,, Bs, NZ) =
Ord(p,,, Z) < m + 2, since p,,, is an element of w(p).

Since Br(Z) C P, by Fact 3, we have that Ord(b,Z) < m + 2 for each

element b of Br(Z). O

Corollary 3.1.9 If Z is not the universal dendrite, then Ord(z,Z) < n+1

for each element x of Z, where n = Card(P).

Proof. By Theorem 3.1.7, it holds that C,, # Cpg,,, foreachk =0,1,...,n—1
and Cp, 7 Cg,,, for some &' = 0,1,...,n — 1. Thus maz{ | Cp, —

Cpopy — ==+ — Cp,,,} <n—1foreach k=0,1,...,n— 1. By Proposition
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3.1.8, we see that Ord{z,Z) < n+1foreachz € Z. O

Corollary 3.1.10 Assume that Z is not the universal dendrite. Then if Z

has an m-branch point (m > 3), then Z has also an (m — 1)-branch point. O

3.2 Examples
In this section, we give some concrete examples .

Example 3.2.1 Denote that [ = [0,1] and f : I —— I & continuous map such
that f(z) = 20(0 <z < 1 and f(z) = ~22+2(; <z < 1). Let Phea
periodic orbit {%,3,8}, Co = [0,$),Cy = (3,8),Ch = (3,%) and Cs = (3,1]

(see Graph 3.2.1).

- -]

I R el R Ry Y

--------------------

0 Giait ¢ G
Graph 3.2.1

By the definition, C; — Cy — C — C) is the fundamental cycle. The

Markov graph of S({, P) \ P is as in Graph 3.2.2.
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C, —Cy ~— Cy — G

N
Co — Cy Cs — Cy

Graph 3.2.2

Since we have that Cy — Cy and Cy ~— Cj, we see that Z is the universa.

dendrite by Lemma 3.1.6 (see Figure 3.2.3).

1
-1
Foe b b
1k L kg = 2
Figure 3.2.3

Example 3.2.2 Let f be the same map as Example 5.1. Denote P = {£,3,5},

7 7

0,2),C,=(34),C=(4, ) and Gy = (8,1} (see Graph 3.2.4).

i
]

-----------------

- g

Y T LY N "SI PO §

o ey, ¥

0 G2 ¢ ¢ G ic
Graph 3.2.4
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The fundamental cycle is C; ~— Cy — Cy — C}. The Markov graph of

S(I,P)\ P is as in Graph 3.2.5.

Ct—Cy— Cy — (4
S

Cy —> C) — Cy — Gy
Graph 3.2..5

Since there exists an 3-cycle Cy — C, — C3 — C, other than the
fundamental cycle, we see that Z is the universal dendrite by Theorem 3.1.7

(see Figure 3.2.3).

Example 3.2.3 Denote [ = [0,4], f : I — I a continuous map and P =
{1,2,3} a 3-periodic orbit of f with f(z) = i+ 1 (mod 3} for ¢ = 1,2,3. And

denote Cp = [0,1),C) =(1,2),C; = (2,3) and C3 = (3,4] (see Graph 3.2.6).

4 i 1 1
] 1 ]
L [ [)
[] ¥ [
[] [ ] 1
----- '- - -—---1 - o e
3 T
1 1 ]
) 1 t
[} 1 i
1 ¥ )
2 ) 1]
.......... A WP |
] 1 [}
1 1 ]
[} [} X
) H 1
1 i [}
......... . 7 S
[} 1 []
¥ 1 ]
t 1 ]
[} ) 1
) 1 [}

0 0.01. 012023634

Graph 3.2.6
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By the defipition, €, — Cy —— Cy — C, is the fundamental cycle
for O(1,f). Assume that there exist no cycles for O(l, f) other than the

fundamental cycle. The Markov graph of S(J, P) \ P is as in Graph 3.2.7.

Cy s O s Cy — Oy

e /
Co—C1 —Cy Co

Graph 3.2.7

Then it holds that Ord(z, Z) < 3 for any z € Z. And Br(Z) is dense in Z

(see Figure 3.2.8).

_—J’J

T
-

l!"ll—_ll"!

Figure 3.2.8

Example 3.2.4 Let P be the same periodic orbit as Example 3.2.3. And let

f I I be a continuous map as in Graph 3.2.9.

S I E—
SEETA
NI
LN
S R R
Graph 3.2.9
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The Markov graph of S(I, P)\ P is as in Graph 3.2.10.

01—>Cz——+cz'““*c1

S / /!
CD——-*Ci—-—%C;; Co

Graph 3.2.10

Then it holds that Ord(z,Z) < 4 for any x € Z. There exists only one
4-branch point w(1) in Z and the set of 3-branch points of Z is dense in Z

(Figure 3.2.11).

I e
-

Figure 3.2.11

Example 3.2.5 Denote I = [0,5]. Define a continuous map f : ] — I as
follows: f(z) =2z+3(0<z <), f(z)=-2+6(1<2<2), f(z)=3z—-2
2<zs<D fl@)=-12+40 (L <z<?) fl2)=3z-8( <x<3),
flz) = -z +4(3< z<4)and f(z) =2z -8 (4 <z <5). Denote P =
{0,1,2,3,4,5}, Cy = [0,1),C1 = (1,2),Cs = (2,3), C3 = (3,4),Cs = (4, 5] (see

Graph 3.2.12).
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Graph 3.2.12

The fundamental cycle for O(0, f) is as in Graph 3.2.13.

Co— C3 — Oy —2 O ~— C) — Cy ~ G

S 7 e /!
C’g—_%C; 02'—"’03

Graph 3.2.13

Then there exist infinite 3-branch points in B3NZ, but there exist no branch

points in Z \ (B3 N Z). The structure of Z is as in Figure 3.2.14.

Figure 3.2.14
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