Chapter 2

The construction of
P-expansive maps of regular
continua : A geometric
approach

In this chapter, we construct a new space Z from a continuous map f of a
graph G and investigate the relationship between the dynamical behavior of f
and the structure of Z.

Let G be a graph, f : G — G a continuous map and P a finite subset of
G such that f(P) C P. Put 5(G,P) = PU{C|C is a component of G\ P}.
Given z € G, the itinerary of x with respect to P and f, written Ips{z) (or
just I(z) if P and f are obvious from context), is defined to be the unique
infinite sequence (C,)n>0 from S(G, P) given by the rule f™(z) € C,, for all
n > 0. If no two points of G have the same itinerary, then f will be called
P-ezpansive. And f is point-wise P-expansive if for each p, ¢ € P, there exists
some non-negative integer m such that AN (P\ {f™(p}, /™(¢)}) # 0 for each

arc A in G between f™(p) and f™(q).

Let G be a graph, f : G — G a continuous map and P a finite subset of G



such that f(P) C P. We construct new spaces X_, and X_. from P and f.

2.1 The constructions of X_, and X_.

First we want to define an equivalence relation ~ on P. Let p, g € P. If for any
non-negative integer 7, there exists an arc A; in G between f*(p) and f(¢) such
that A; NP = {f*(p), f{(g)}, then we put p ~/ ¢, where A; may now consist of
a single point. Now, if for p,¢ € P, there exist some points p;,pa, ..., of P
such that p ~| p; ~| p2 ~| -+ ~| pr ~| ¢, then we set p ~; ¢g. This relation |
~1 is an equivalence relation on P. Let [p]; be the equivalence class of p, P, =
{l[philp € P} and G| = G/ ~; the space obtained from G by identifying each
equivalence class of P. Then we define a continuous map f; : Gy ~ G| such
that filenp = flewe and fi([p]i) = [f(p)1 for [p); € P,. Similarly, if for any
p,q € P, and non-negative integer %, there exists an arc A; in Gy between fi(p)
and fi(q) such that A; NPy = {fi(p), fi(g)}, then we put p ~, ¢. And if there
exist some points pi,pa, - -+, pr of Py suchthat p ~4 py ~5 po ~ -~ pp ~h gy
then we set p ~4 ¢. This relation ~y is also an equivalence relation on P;. Let
[ple = {glp ~2 q and p,q € P}, P = {[plz]p € £} and Gy = G1/ ~» the
space obtained from G by identifying each equivalence class of P;. Then we
define a continuous map f, : Gy — G such that folg,\p, = filens = flowe
and fo([pla) = [fi(p)i2 for [p}2 € 2. In the same way, we can obtain the
space (¢ and a continuous map f; : Gy — G, for £ > 1. Since P is finite,
there is some natural number m such that f,, : G,, — Gy, is point-wise P-
expansive. There exists a semi-conjugacy m; between (G;_1, fi_1) and (G;, f;)

for i =1,2,...,m, where (Gy, fo) = (G, f) (see Graph 2.1.1).
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Graph 2.1.1

By the argument above, we may proceed with our construction, under the

assumption that f is point-unse P-cxpansive, in the rest part of this section.

Let S(G, PP = {C\,Cy,...,Cry and PP = {p,py, ..., pr}. We will express
the relation of clements of S(G, P) as follows : I p,q € P and f(p) = ¢, then
p — q. This arrow — defines the Markov graph P, on P (See section 4).
If C,Cy e S(G,P)\ P and C; ¢ f(Cy), then C; — C;. If f(CHNC; # 0,
then C; — ;. These arrows —— and — define the Markov graphs M_, and

M_. of elements of S(G, P)\ P respectively. Note that — implies —,

Now we will construct a new space X _. by using the Markov graphs M _. and

P_,. First we will construct a subspace X which is the union of 3-dimensional
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balls By, By, ..., B, in the Euclidean 3-dimensional space E3 by regarding
elements C,,Cy, ..., Cy of S(G, P)\ P as 3-dimensional balls By, By, ..., B, of
E3. That is to say, X = U, B;, where the relationship of B; and B; is decided
as follows : If cl(Ci) N cl(C;) = @ for C;, C; € S(G, P)\ P, then B; N B; = {.
And if d(C)Nel(C;) = {q1, q25- .., qe} C P, then BiNB; = Bd(B;)NBd(B;) =
{4}, b, .. .,q¢}, where Bd(B) is the boundary of B. Without confusion, we can
express elements of cl(C;) N cl(C;) and B; N B; in a similar way. And for each
p € (POA(CH\U{l(C;) nel(Ci)li # 7 and 1 £ 4,7 < n}, we take a
corresponding point p' € Bd(B;)) \U{B; N By|j # j' and 1 < j,5' < n}. For

simplicity, we set p' = p € P (see Figure 2.1.2).

n Ps

Figure 2.1.2

Put Xy = X. We will construct a subspace X; contained in Xy by using the
Markov graph M_. and P.,. For eachi = 1,2,...,n, we have an embedding
h; : X — B; such that

(1) h{X)N Bd(B;) C P, and

(2) for each p, g € P with p € Bd(B;) and p — q, hi(q) = p € Bd(B;).
If C; — C; (C;,C; € S(G,P)\ P) in the Markov graph M_., then let B;; =
hi(B;) which is a copy of B;. If C; 4 Cj, then B;; = @. Let ¥; = Uj~; Bis
B; = {B;|C; — C;} and (UB:)NP = {psgi1y Pui2)s - - - » Pegiik(iy) }» Where ¢(2 : f)
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and k(i) are natural numbers with 1 < ¢(i: €),k(i) <k (1 <€ < k(3)). And
put hi(peie)) = Pige). Then we obtain a connected subset X; = YUY, U

- UY, (see Figure 2.1.3).
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Figure 2.1.3

Similarly, we will construct a subspace Xz in X;. Let by : X — By i be

an embedding such that

(1) hig i, (X) N Bd(Biy 4, ) C hip(P), and

(2) for each p;y; € Bd(Bi ;) Nhi(P) and ¢ € P with p; — ¢,

Pioiy (@) = Pigj € Bd(Biyys,)-

If C;, — C; in the Markov graph M_., then let Biyi,; = hipi (B;). And if
Ci, #~ Cj, then B, ; = 0. Let Yi; = Uter Bigings Biy = {B;|Ci, — C}}
and (UBi,) N P = {Duipir:1)s Pagio,is2)s - - - » Pelioviskioin)) J+ PUb Rig iy (Petio,in:s)) =
Dio.intlioiry (1 < J < tdo, 01 ¢ k(’l:g,ljl)). Then we obtain X; = [J{Y;4 |l <

i, i1 < n} (see Figure 2.1.4).
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When this operation is repeated inductively, we obtain X D X1 D X D -+
and a subspace X_. = (12, X; of E3. Note that X_. is connected.

Next let X|, X},... be subspaces constructed in a similar way on basis of
the Markov graph M_,. Then we obtain a subspace X_, = 2, X! of E3. Note

that X_, is not always connected.

By using the construction of X_., we show that limm_.c diam{Biy;,, in) =
0. Since we have assumed that f is point-wise P-expansive, for any distinct
points p, ¢ of P there exists a non-negative integer N,, such that AN (P \
{fNa(p), fN»2(g)}) # O for any arc A in G between f¥s(p) and f¥*(q).
Let N = maz{N,4lp,q € P and p # ¢}. Let m be a natural number and
Biysi,..in @ 3-dimensional ball from the construction of X,,. For any nat-
ural numbers fmi1, fmty - s JmiN (1 < Jmats mts -y Jman < 1), Where
n = Card(S(G, P)\ P), the 3-dimensional ball Biyi, . i, jms1dmizrinsy 0T
the constructing of X,y cannot contain two or more points of (J{Big iy --sim n

BEQ,E\,...,emll S_ gg,gi,..‘,gm S n and (60,81,...,€m) ?é (‘ig,'il,...,’im)}- Sup'
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pose that there exist distinct points z, y of I Big 41,..im M Bto,tr, |l < &, b1, -+ s bm
nand (£o,4,...,4,) # (%0,%1,...,4m)} Such that z,y € B.-O,,-,,,_,,,-mjm“._._’jmw.
Put = = pigit,inoris = Riginimo (Ps) 804 ¥ = Pig iy imost = Rigr, i1 (22)-
Then p,,p, € PN B;,,. By the construction, for each ¢ =0,1,..., N, there ex-
ists an arc A; in G between fi(p,) and f*(p;) such that A;NP = {fi(ps), ()}
This contradicts the definition of N. Thus any two points 2,y € U{Bis iy, N
By iy, tmll S0, 8y, ..l <moand (6o, 8y, , 8n) # (G0, %1, .. ,im)} are con-
nected by the union of two or more 3-dimensional balls Biy i, .im jeriie N
(1 < Jrmepls- - s Gman < n). Hence we may assume that B0 (Big is,....impmg it )

< 1 diam(Biy,,. i) Thus we can suppose that 1iMnoadiam(Big s . i) = 0

(see Figure 2.1.5).

B;

Ositrimidmetidmtn Binitrimdmt vl

Figure 2.1.5

2.2 The construction of 7

Let G be a graph, f : G — G a continuous map, P = {p;,ps,..., P} 2 finite
subset of G such that f(P) C P and S(G, P)\ P = {C},Cs,...,Cn}. We may
also assume that f is point-wise P-expansive in this section from the argument
in section 2. And let X_,, X_. be the above spaces constructed by the Markov

graphs (M_,, P_}, (M_., P_) on S(G, P) respectively.
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Theorem 2.2.1 The subspace X_. of E3 is a regular continuum.

Proof. Let ¢ > 0 and z € X_.. As Uimmocodiam(Bi,,..:.) = 0, for an
e-neighbourhood U (z) of z in X_. there exists a non-negative integer ¢ such

that B ;i N X C Ucz) for any 3-dimensional ball By ;. containing

10,41 00m
z. Let B = U{Biyir,..itlZ € Bigsis,ie N X— C Udx)}. Then BN X_. is a
neighbourhood of z in X_. such that BN X_. C U,(x). By the construction of
X_., the boundary of B has finite cardinality. Thus X_. is a regular continuum.

0

We define a map 7 : G — X_. as follows : Given z € G, if f(z) € cl(C;)
for any £ = 0,1,2,..., then w{z) = Nio Bigir,ian.ier We will investigate
the uniqueness of w(z) for each z € G. Let {is}en0, {je}ez0 be sequences
of natural numbers such that {ic}eso # {je}epo, F2) € cl(Cy) N cl(Cy)
for each £ > 0 and 1 < 45, < n. We will show that Ny Bigis,ie =
2o Biojrrie-  Let m = min{€|C;, # Cj,}, then f™z) € P. We put
T = Pigiy,imorts WHETE Digs i v € Bigir i _1iim N Blojtsmime1dm 204
pe € P. Since f(p) € cl(C,, ., )NEl(C) 1) Piosir i1t € Bigsitsmim=tsimimsr 11
Bio juonimerimiimss Dy the construction of Xp41. Similarly, since f3(p) €
cl(Cirers) N EUCh10)s Piviroimort € Biosoimaz ( Bioyjtimimsa- Inductively, for
each £ > 0, pio,il,...,i,;,_l,t € Bigir,rimpe N Bioitronimaes A8 N0 Bio,itvimse 20d
Thus we can define {7(z)} = N2 Bisirsrimpr = (Vemo Bivuityrimit = z' (see

Figure 2.2.1).
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Figure 2.2.1

Lemma 2.2.2 7 : G — X_. is continuous.

Proof. Let z € G and V be a neighbourhood of #(z) in X_.

Case 1. Assume that f(z) ¢ P for any £ = 0,1,2,... and {n(z)} =
Ne=g Big,ir,....ie- There exists a non-negative integer £ such that By, ;. ,NX_. C
V, where By, i 18 a 3-dimensional ball containing w(z). Since Cj;, .4, =
{z € Glz € Cy, f(z) € Ciy,..., f{z) € C;,} is an open set containing z and

7(Cigiis,ie) C Bigin,.ie N X, T is continuous at z.

Case 2. Assume that there exists m = min{{|f*(z) € P} < co. There exists
¢ > m such that By, 5, N X C V for each By ;,,. ;, containing w(x). Let
Co = {Cipir.is|1 < d0, 11, ... ig < Card(S(G, P))} and U = UJ{C € Cylz €
cl(C)}. Since f is continuous, U is a neighbourhood of z such that #(U) C V.

Thus 7 is continuous. [l

Now we will put Z = «(G). Then X_, C Z C X_.. In general it is difficult to
recognize the precise structure of Z, but by the above relation X_, C Z C X_.,
we can realize the approximate structure of Z. Since X.. is regular, Z is also
regular.

Note that by the construction, if for any element C' € S(G, P)\ P, there exist

finitely many elements Cy,Cy,...,Cm of S(G, P) such that f(C) = U2, Ci
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then X, = Z = X_..

Define a map g : X. — X_. as follows : If {s} = NZy B, 4, then
{9(2)} = 9(NZo Bissir,ie) = Ne21 Biys,...i,- We can investigate the uniqueness

of g as we did that of 7. Note that g(Z) C Z.
Lemma 2.2.3 g: X_. — X_. is conlinuous.

Proof. Let x € X_. and V be a neighbourhood of g(z) in X_.. Then there ex-

ists a non-negative integer £ such that B;,;, . ;,NX-. C V for any 3-dimensional

B is a neighbourhood of z and ¢(BN X_) C V. Thus g is continuous. O

The following is the main theorem in this paper.

Theorem 2.2.4 Let G be a graph, f : G — G a continuous map and P a
finite subset of G such that f(P) C P. Then there exist a regular continuum

Z, a continuous map g : Z — Z and a semi-conjugacy 7 : G — Z such that

(1) g is w(P)-ezpansive, and

(2) ifp,qg € P and Q is a subset of P with ANQ # @ for any arc
A in G between p and g, then A'Nw(Q) # O for any arc A" in Z

between m(p) and =(q).
In addition, f is point-wise P-expansive if and only if |p is one-to-one.

Proof. Let 7 and g be the above maps. Let £ € G with f¢(z) € cl(Cy,) for
£=0,1,2,.... Then {7(z)} = N2y Biy.s,..; and {gom(2)} = N721 Birsiz,..i =

{r o f(2)}. Thus 7 is a semi-conjugacy between (G, f) and (Z, g)-
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We will show that (1) g is #(P)-expansive. Let x,y be distinct points of
Z. There exists a 3-dimensional ball Bj;, . i, such that 2,9 € By i,

2 € Bigiyi a0d y & Bigsy,.i,- Then g'(z) € B;, and ¢*(z) ¢ Bi,. Thus

Ivip) (2} # Laipyo(9)-

By the construction of X_., we can easily check (2). O

Proposition 2.2.5 Let G be a graph, f : G — G a continuous map and P
the set of vertices of G with f(P) C P. If f is point-wise P-ezpansive and f|pq)
is one-to-one for each edge |p, q] between p and q, then Z is homeomorphic to

G.

Proof. Let p,q € P and [p, g be the edge between p and ¢. Since flj, 4 is
one-to-one, f([p,q]) is an arc between f(p) and f(g). Let {Cmys Crngy+ -1 Cim, }
be the set of elements of S(G, P) \ P which is contained in f([p,q]). As f
is point-wise P-expansive, by the construction of X the 3-dimensional balis
B, Bmay - oo, Bm, corresponding to Cp,y, G, . - -, Cr, form a chain between
7(p) and n(q), i.e., Bm, N B, # O if and only if [¢ ~ j] < 1. Similarly, by
the construction of X, finitely many smaller balls form a chain in each ball
B, (i = 1,2,...,8), too. When we repeat this operation, 7([p, ¢]) is an arc

between «(p) and w(g). Thus Z is homeomorphic to G. O

2.3 Appendix

Let K be a continuum and P a finite subset of K. Then we say that P graph-
separates K if and only if there exists a finite set S(K, P) of subsets of K such

that
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(1) the element of S(K, P) partition K, i.e., every point of K is in

exactly one member of S(K, P),

(2) for each p € P, {p} € S(K, P),

(3) for each A € S{K, P), the closure of A in K is arc-wise con-
nected, and

(4) if A,B € S(K, P), then the closure of A and B either have

empty intersection or intersect in only elements of P.

Note that we can also define P-expansive for a graph-separated continuum

in a similar way.

Remark. We can obtain the same result in Theorem 2.2.4 by using a graph-

separated continuum instead of a graph. (J

2.4 Examples

In this section, a few concrete examples will be given to clarify the explanation

given so far.

Example 2.4.1 Let G be the unit interval [0,1). And denote P = {%,%,%}.
We define a continuous map f of G into itself such that f{z) = 2z (if 0 £
r < 3)and flz) = -2z +2 (if § <z < 1). This map f is point-wise P-
): {%}: '47': g)’ {'—?}r (g: 1]}, where

put Gy = [0,2),Cy = (1,4),C = (4,9),Cy = (S, 1, py = §,p2 = Fand ps = %,

e

expansive. Then S(G,P) = {[0,2),{3},(3,

The Markov graph of S(G, P)\ P and P is as in Graph 2.4.1 :
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Graph 2.4.1

The above Markov graphs (M_, P_) will give information useful in con-
structing the space Z. Let X = ByUB,UB3;UBs;and h; : X — B;
(i = 1,2,3,4) be an embedding such that (1) h;(X') N Bd(B;) C P, and (2)
for each p,q € P with p € Bd(B;) and p — ¢, hi(q) = p € Bd(B;). Then
we describe the union Y; of finitely many balls in each ball B;. For example
when ¢ = 2, ¥y = By3sU Byy C ho(X), p1 = ha(p2) and py = hy(p3), since
Cy — (3, Cp — C4, p1 — py and p; — p;. In this way, we obtain a

subspace X; = Y1 UYa U Y3 U Y, of E® (see Figure 2.4.2).

Figure 2.4.2

Next we describe finitely many 3-dimensional balls in X;. Let h;; : X < B; ;
be an embedding such that (1) k; ;(X) N Bd(B;;) C hi(P), and (2) for each
p,q € Pwith hi(p) € Bd(B;;) and f}(p) = g, hi j(q) = hi(p). Then we describe
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the union Y; ; of finitely many balls in B; ;. For example, when ¢ = 2 and j = 3,
hos(X) = Byaoa U Byas = Yas, ha(pa) = hos(p1) and ha(ps) = hos(ps), since

Cy — Cy, C3 — Cy, f{p2) = p1 and f2(ps) = po. Put Xy = U, ¥ij (see

Figure 2.4.3).

Figure 2.4.3

Similarly, we can describe X;(i = 3,4,...). Finally the space Z': N2, Xi is

the universal dendrite {see Figure 2.4.4).

-

M

L E N

Figure 2.4.4

Example 2.4.2 Let G = [0, 1] be the unit interval, P = {0, 1,1} and f the
same continuous map of G as in Example 2.4,1. Then X_ = Z = X_and Z
is homeomorphic to G = [0,1]. This implies that the structure of Z depends

on the way of selecting the points of P (see Proposition 2.2.5).
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Example 2.4.3 Let G = [0,1] be the unit interval and P = {-é-,g-, 1}. | We
will define a continuous map f of G as follows : f(z) = 4z(0 < z < 1),
flz) = =22+ 4§ <z <) fl@) =2~ 3(3 £ 2 < %) and fz) =
-2z + 3(§ < z < 1). Then S(G,P) = {0,5),{3}. (3 D). (3L, G 1), {1}},
where put C; = [0, %), Cy = (%,:‘}), Cy = (%:1): P = %, p2 = ¥ and p; = 1.

The Markov graph of S(G, P)\ P and P is as in Figure 2.4.5.

1
f Q
““"—"Cz - P2
2 4

Figure 2.4.5

From the above Markov graph of S(G, P)\ P, we know that By, = § and
Bj 1 = . Furthermore, the Markov graph of P suggests the way of connection

of each ball B; ;, where i, = 1,2, 3 (see Figure 2.4.6).

Figure 2.4.6
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Finally, Z is the following dendrite (see Figure 2.4.7).

N

Figure 2.4.7

Example 2.4.4 Let G be the following graph, P = {py,p2,p3,p4, s, p6} &

finite subset of G and f : ¢ — G a continuous map. And assume that

f(el(C)) = G forany C C S(G, P)\P, f(p1) = p1 = f(ps), f(p3) = p2 = f{ps)

and f(py) = p3 = f(ps). Note that f is point-wise P-expansive (see Figure
2.4.8).

P1

Ps Ds

J2]
P2 P4

Figure 2.4.8

Then Z is the triangular Sierpinski curve (see Figure 2.4.9).
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Figure 2.4.9

Example 2.4.5 Let f be a continuous map of [0, 3] into itself and £ a periodic
orbit {1,2,3} of f such that f(z) = 6z(0 < r < 2 flz) = —20 + 3 <<
1), fle) = 2+ 11 < z < 2) and fz) = 22472 < z < 3). Denote

Co=1[0,1),C = (1,2) and ¢, = (2, 3] (see Graph 2.4.10).

SN
X
I8 %
0

Graph 2.4.10

The process of the construction of Z is as in Figure 2.4.11.

[
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Figure 2.4.11

Then we see that the structure of Z is as in Figure 2.4.12.

e

Figure 2.4.12

Example 2.4.6 Let f be a continuous map of [0, 3] into itself and P a periodic
orbit {1,2,3} of f such that f(z) = Yz +{(0<z < Hflx) = —4z+6(3 <
r<1),f(@)=2+1(1 <z <2)and f(z) = —22+ 7(2 < z < 3). Denote

Co = [0,1),C) = (1,2) and C; = (2, 3] (see Graph 2.4.13).
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Graph 2.4.13
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The process of the construction of Z is as in Figure 2.4.14.

Figure 2.4.14

Then we see that the structure of Z is as in Figure 2.4.15.

Figure 2.4.15
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