LIST OF FIGURES

Figure		Page
1 ·	Distribution of principal continental terranes and sutures	2
	of East and SE Asia (Metcalfe, 1998).	
2	Geotectonic subdivisions of Northern Thailand (Ueno,	5
	1999).	
3	Location of the Sa Kaeo-Chanthaburi area, eastern	6
	Thailand (inserted block) with the distribution of	
	Permian (orange color) and Triassic (purple color) rocks	
	of marine sedimentary deposits along the western margin	
	of the Khorat Plateau.	
4	Paleogeography of West Gondwana and East Gondwana	13
	(Rogers and Santosh, 2003).	
5	Geologic outline of the Sa Kaeo-Chanthaburi suture zone	15
	showing the Chanthaburi chert-clastic sequence and the	
	Thung Kabin mélange (Hada et al., 1997, 1999).	
6	Geological map of the eastern Thailand (Chaodumrong,	17
	1992b).	
7	Distribution of granite belts in Thailand (Charusiri et al.,	20
	1993).	
8	Rock distribution in the Sa Kaeo-Chanthaburi	22
	accretionary complex showing characteristics of blocks	
	in mélanges.	

Figure		Page
9	Geological map of the Sa Kaeo-Chanthaburi accretionary	23
	complex.	
10	Outcrop sketch of mélange in the Khao Hleam units	27
	displaying a diverse assemblage of rocks of various sizes	
	with the chaotic structures.	
11	Outcrop sketch of basalts along the Highway 317 (km	28
	90) in the Khao Hleam unit showing the typical pillow	
	structure. Field note in sketch is a scale.	
12	Outcrop sketch of dark brown basalts along the Highway	29
	317 (km 90+700) in the Khao Hleam unit showing the	
	characteristics of pillow structures with green	
	inter-pillows. Hammer in sketch is a scale.	
13	Outcrop sketch of basaltic pillow lavas associated with	30
	fault contacts at Wat Khao Hleam in the Khao Hleam	
	unit.	
14	Outcrop sketch of basaltic pillow lavas intruded by black	31
	porphyrite or dolerite dikes at the same location as Fig.	
	13. Hammer in sketch is a scale.	
15	Outcrop sketch of tectonically deformed basalt rocks	32
	associated with reddish brown chert floats. Small blocks	
	of greenish gray chert and sandstone are found in the	
	deformed basalts.	
16	Outcrop sketch of volcaniclastic rocks associated with	33
	pillow lavas (Figs. 11 and 12) showing clasts of	
	amygdaloidal basalts and porphyritic basalts. Some	
	fusulinids are found in matrix part of volcaniclastic rock.	

Figure		Page
17	Outcrop sketch of reddish brown radiolarian-bearing	35
	bedded cherts along the Highway 3448 (km 6+850)	
	showing large size of a block in mélange of the Khao	
	Hleam unit.	
18	Outcrop sketch of large blocks of reddish brown chert in	36
	shale matrix near the radiolarian location in the Khao	
	Hleam unit. Hammer in sketch is a scale.	
19	Outcrop sketch of reddish brown chert, basalt and	37
	limestone near the Highway 317 (km 91+600) in the	
	Khao Hleam unit showing their relationship among each	
	other. Tree (6 m high) in sketch is a scale.	
20	Outcrop sketch of mélange at type locality of the Ban	38
	Nong Bon unit showing the distributions of sandstone,	
	gray chert, limestone and conglomerate blocks in shale	
	matrix.	
21	Outcrop sketch of mélange at the same location as Fig.	39
	20 showing alignment of blocks of sandstones and	
	limstones.	
22	Outcrop sketch of close-up on surface of mélange rock at	40
	the same location as Fig. 20 displaying the major	
	foliation and slip sense of chert and sandstone blocks.	
23	Outcrop sketch of mélange along the Highway 3424 (km	42
	3+800) in the Ban Nong Bon unit showing various sizes	
	of sandstone blocks in shale matrix. Hammer in sketch is	
	a scale.	

Figure		Page
24	Outcrop sketch of duplex developed in sandstone beds of	43
	coherent turbidite sequence in the Ban Nong Bon unit	
	along the Highway 3448. Hammer in sketch is a scale.	
25	Outcrop sketch of the turbidite sequence in the Ban Nong	44
	Bon unit along the Highway 317 (km 74+390) showing	
	alternation of sandstone and shale. It is covered by	
	Quaternary sediments. Hammer in sketch is a scale.	
26	Outcrop sketch of the conglomerate and sandstone of the	45
	coherent succession in the Ban Nong Bon unit.	
	Paleocurrent is measured from the alignment of clast	
	imbrication and is from southeast.	
27	Outcrop sketch of large "loose" block of conglomerate	46
	on the top of the Khao Sa Taeng hill showing various	
	kinds of well-rounded rock clasts in sand matrix. Fine to	
	medium grained granite are also found.	
28	Outcrop sketch of basalts in the Soi Dao unit showing the	48
	typical pillow structure. Arrows indicate top from pillow	
	shape. Hammer in sketch is a scale.	
29	Outcrop sketch of mélange of the Soi Dao unit displaying	49
	mélange foliation and their tectonic blocks of greenish	
	gray cherts, basalts and limestones.	
30	Outcrop sketch of close-up chert blocks in the same place	50
	as Fig. 29, showing various sizes of blocks in matrix.	
31	Sketch of a "loose" block of basalt accompanied with	51
	limestone in the mélange at the same location as Fig. 29.	
32	Outcrop sketch of mélange in the Soi Dao unit showing	52
	blocks of cherts and sandstones in shale matrix.	

- 3

Figure		Page
33	Outcrop sketch of radiolarian-bearing gray chert in the	53
	Soi Dao unit along the Highway 3210 (~ km 6) showing	
	a well-developed bedding.	
34	Outcrop sketch of alternation of sandstone and shale	56
	along the Highway 317 (km 29+880) showing the	
	characteristics of turbiditic sequence of the Pong Nam	
	Ron Formation. Hammer in sketch is a scale.	
35	Outcrop sketch of overturned bed of turbiditic sandstone	57
	in the Pong Nam Ron Formation displaying the groove	
	casts on sole of bed. Hammer in sketch is a scale.	
36	Outcrop sketch of the overturned bed of turbiditic	58
	sandstone of the Pong Nam Ron Formation showing the	
	flute casts on sole of bed. Measured paleocurrent from	
	these flute casts is from the south.	
37	Diagram of sandstone classification (after Folk, 1974).	61
38	Standard triangular diagrams of Dickinson et al. (1983).	63
39	The plots of turbiditic sandstones of the Pong Nam Ron	67
	Formation on the triangular QtFL diagram of Dickinson	
	(1985).	
40	The plots of turbiditic sandstones of the Pong Nam Ron	68
	Formation on the triangular QmFLt diagram of	
	Dickinson (1985).	
41	Roundness and sphericity classes of the AGI (American	70
	Geological Institute) Data Sheets (Powers, 1989).	
42	Clast population in conglomerate block in mélange of the	72
	Ban Nong Bon unit.	

Figure		Page
43	End member compositions in the spinel group as	78
	represented in a spinel prism (Klein and Hurlbut, 1993).	
44	Relationships between Cr# and TiO2 content of detrital	105
	chromian spinels from the Pong Nam Ron Formation in	
	comparison with fields of MORB, intraplate basalt and	
	arc magmas proposed by Arai (1992).	
45	Relationships between Cr# and TiO2 content of detrital	106
	chromian spinels from the sandstone and conglomerate	
	blocks in mélange in comparison with fields of MORB,	
	intraplate basalt and arc magmas proposed by Arai	
	(1992).	
46	Relationships between Cr# and TiO2 content of detrital	108
	chromian spinels from the volcaniclastic rocks in	
	comparison with fields of MORB, intraplate basalt and	
	arc magmas proposed by Arai (1992).	
47	Relationships between Fe ³⁺ /(Cr+Al+Fe ³⁺) and TiO ₂	109
	content of detrital chromian spinels from the Pong Nam	
	Ron Formation in comparison with fields of MORB,	
	intraplate basalt and arc magmas proposed by Arai	
	(1992).	
48	Relationships between Fe ³⁺ /(Cr+Al+Fe ³⁺) and TiO ₂	110
	content of detrital chromian spinels from the sandstone	
	and conglomerate blocks in mélange in comparison with	
	fields of MORB, intraplate basalt and arc magmas	
	proposed by Arai (1992).	

Figure		Page
49	Relationships between Fe ³⁺ /(Cr+Al+Fe ³⁺) and TiO ₂	111
	content of detrital chromian spinels from the	
	volcaniclastic rocks in comparison with fields of MORB,	
	intraplate basalt and arc magmas proposed by Arai	
	(1992).	
50	Tectonic model of the western margin of the Indochina	116
	around the Saraburi and Phetchabun areas during the	
	Middle Permian to Late Permian.	
51	Tectonic model of the western margin of the Indochina	119
	around the Sa Kaeo-Chanthaburi area during the Latest	
	Permian to Middle Triassic.	

LIST OF TABLE

Table		Page
1	Tectono-stritigraphic units in the Sa Kaeo-Chanthaburi	24
	accretionary complex, eastern Thailand	