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Abstract

We present the isospin I = 2 S-wave pion scattering phase shift with two-flavor dynamical
quark effect obtained from lattice QCD. The calculation uses two-flavor full QCD configura-
tions previously generated with a renormalization group improved gauge action and clover
quark action with a tadpole improved clover coefficient at three different bare couplings,
corresponding to a = 0.22,0.16 and 0.11 fm, for the continuum extrapolation. This is the
first calculation for the scattering phase including the two flavor dynamical quark effect and
taken to the continuum limit. The scattering phase is obtained through the finite volume
method in the center of mass system, and its extension to the non-rest system. While the in-
clusion of the non-rest system requires little extra computational cost, the use of the system
allows significantly more dense sampling of the scattering phase. We observe a reasonable
fit with the results obtained from the calculations in the different systems. We also find that
the pion mass and the lattice spacing dependences for the scattering phase are large. These
dependences cause large systematic errors at the physical pion mass and in the continuum
limit. The result for the scattering phase in the continuum limit agrees with the experimen-
tal result. Furthermore as an extension of this work we calculate the two-pion wave function.
The wave function contains various information of the scattering. From the wave function
we obtain the effective potential, its interaction range and the scattering length.



Contents

1 Introduction
2 7w scattering
2.1 Theoretical results . . . . . . . . ...
2.1.1 Scattering amplitude . . . . . . ... oo o
2.1.2 A simple parametrization of scattering phase shift . . . . . .. . . ..
2.1.3  Chiral perturbation theory . . . . . . . .. ... ... ..
2.1.4 Amplitude at two looporder . . . . . . ... ... ...
2.1.5 Result with phenomenological representation . . . . . . . ... .. ..
2.2 Experimental results . . . . . .. .. ...
221 Keodecay . . . . e
2.2.2 (m,2m) reaction . . . ...
2.2.3 Lifetime of 7*7~ atom . . . . . . .. .. ... ...
3 Lattice QCD
3.1 Standard action . . . . . .. ...
3.1.1 Gaugeaction . . . . . ...
3.1.2 Quark action . . . ...
3.2 Continuum limit . . . . . . . ...
3.3 Improvement . . . . . . . .
3.3.1 Renormalization group improvement . . . . ... .. .. ... ....
3.3.2 Clover action . . . . . . . . . . . ..
3.3.3 Tadpole improvement . . . . . . . .. ... ... ... ... ...,
4 Previous results for 77 scattering
4.1 Scattering length . . . . . . ... Lo
4.2 Scattering phase shift . . . . . . ... o o000
4.2.1 Effective potential . . . . . ... .. ... L
4.2.2 Finite volume method . . . . . . .. .. ... ... ... ... ...
5 Finite volume method
5.1 Center of mass system . . . . . .. ... Lo
5.1.1 Wave functioninabox . . . . . ... ... ... ... ... ...
5.1.2 Definition . . . . . . . . e
5.1.3 General solution. . . . . . ... ... ...
5.1.4 Matching of wave function and Green function . . . . . . . . . . . ..
5.1.5 Finite volume formula in Af representation . . .. ... ... ....

17
17
17
17
18
19
19
19
20

21
21
24
24
25



5.1.6 Large-L expansion . . . . . . . . . . . ... ...
5.1.7 Relativisticcase . . . . . . ...
5.2 General system . . . ... L
5.2.1 Lorentz transformation of wave function . . . . ... ... ... ...
5.2.2  boundary condition of wave function . . . .. .. ... ... ... ..
5.2.3 Scattering interaction . . . . . . . .. ..o oL
5.2.4 Singular d-periodic solutions . . . . . . ... ..o
5.2.5 Generalized finite volume formula in A} representation . . . ... ..
6 Extraction of two-particle energy
6.1 Diagonalization method . . . . . . . ... .. oo
6.1.1 Simple model and definition . . . . . . ... ..o 0oL
6.1.2 Difficulty of two-particle state on lattice . . . .. .. .. ... ....
6.1.3 Diagonalization method . . . . . . .. .. ... ... 0L
6.1.4 Extraction of spectral amplitude . . . . . . . ... ... ... ... ..
6.2 Maximum entropy method . . . . . . . ... oo oo
6.2.1 Spectral function . . . . .. ..o
6.2.2 Results of decomposition . . . . . .. ..o oL
7 Calculation method
7.1 Finite volume method . . . . . . . . .. ... ... ...
7.1.1 Center of mass system . . . . . . .. .. ...
7.1.2 Laboratory system . . . . . .. .. ...
7.2 Extraction of two-pion energy eigenvalue . . . . .. .. ... ... ... ...
7.3 Parameters . . . . . . . . L e e
8 Results
8.1 Effect of diagonalization . . . . . . . ... ... ... ... ...
8.2 Result for scattering length . . . . . ... ... o 0oL
8.3 Result for scattering phase shift . . . . ... ... ... 000000
9 Two-pion wave function in box
9.1 Definition . . . . . . .
9.2 Analysis method . . . . . . . ...
9.3 Parameters . . . . . . . . .. e e e
94 Result . . . . .
9.4.1 Result for interaction range . . . . . . ... ... oL
9.4.2 Result for scattering length . . . . .. ... ... ... ...
9.4.3 Time dependence forresults . . . . . ... .. ... ... .......

10 Conclusion

11 Future problems
11.1 p—=rmmdecay . . . . . o o o e

11.1.1
11.1.2

Center of mass system . . . . . . . . . . ... ... ...
Laboratory system . . . . . . .. . ... ... ... ... ...

11.2 K — 77w weak matrix element . . . . . . . . . . ... .

11.2.1

Final state interaction . . . . . . . . . . . . . .. ...

38
38
38
38
39
40
40
40
41

43
43
43
43
44
47

50
50
99
64

69
69
69
70
71
71
76
77

79



11.2.2 Relation to the infinite volume . . . . . . . . . ... ... ... ...
11.3 Wave function . . . . . . . . . ..
11.3.1 Wave function for higher states . . . . . . ... ... ... ... ...
11.3.2 Wave function in laboratory system . . . . . . . . . .. ... ... ..

Coefficients and functions in A(s,t,u) of ChPT
A1 Coefficient b; . . . . . . . . e
A.2 Functions GO, F) GO F@

Coefficients ¢; and p;
B.1 Coefficients in C'(s,t,u) . . . . v v v v v
B.2 Coefficients in P(s,t,1) . . . . o . 0o v i

Spherical zeta function

C.1 Calculation method of zeta function . . . . . . . . .. ... ... ... ....
C.2 Calculation method of wave function . . . . . .. .. ... ... .......
C.3 Property of zeta function in free case . . . . . . . .. .. ... ... ... ..

Table for Results of scattering length and scattering phase shift

89
89
90

91
91
91

92
92
93
94

95



1 Introduction

The strong interaction is described by Quantum chromodynamics (QCD) in the Standard
Model. It is formulated in terms of quarks and gluons which are the basic degrees of freedom
that make up hadronic matter. It has been very successful in predicting phenomena involving
large momentum transfer. In this region the strong coupling constant becomes small due
to asymptotic freedom, which is a property of QCD, so that perturbative calculation is a
reliable tool. However, at the scale of the hadronic world the coupling constant is order
of unity and perturbative methods fail. In this domain lattice QCD is a powerful tool of
non-perturbative calculations. From first principles lattice QCD can be used to address
issues like hadronic spectrum, matrix elements of any operator within these hadronic states,
the mechanism of confinement and chiral symmetry breaking, the role of topology, and the
equilibrium properties of QCD at finite temperature or density.

Lattice QCD is QCD formulated on a discrete Euclidean space time grid with a finite
lattice spacing a. QCD is reconstructed in the limit of the continuum, a — 0, and the
infinite volume. Since a finite lattice spacing corresponds to an ultraviolet energy cut-off at
O(1/a), no new parameters or field variable are introduced in this discretization. Lattice
QCD retains the fundamental character of QCD, and there are no infinities at finite a.
Furthermore renormalized physical quantities have a finite limit in the continuum limit.
Since lattice QCD is formulated on discrete space-time, it is possible to simulate on the
computer using methods analogous to those used for statistical mechanics systems. These
simulations allow us to calculate correlation functions of hadronic operators and matrix
elements of any operator between hadronic states in terms of the fundamental quark and
gluon degrees of freedom.

So far most of lattice QCD calculations have focused on ’static’ physical quantities, e.g.,
hadronic spectrum, and succeeded in this region. CP-PACS Collaboration studied the light
hadronic spectrum with quenched approximation [1] of ignoring the dynamical effects of
sea quarks, and with two-flavor full QCD [2] which contains the dynamical effects of u,d
quarks. They obtained results consistent with experiment within 10% order for quenched
QCD. Recently a more realistic calculation with three flavor full QCD has been pursued by
HPQCD/UKQCD/MILC/Fermilab [3] and CP-PACS/JLQCD [4] Collaborations. On the
other hand, for ’dynamical’ physical quantities, such as scattering amplitudes and decay
widths, there have been few studies. Calculation of the scattering phase shift is a challeng-
ing study beyond the static physical quantities to understand hadronic dynamics based on
(lattice) QCD.

However, calculation of the phase shift poses several problems from the technical point
of view. One of them is that Euclidean hadron correlation functions calculated by Monte
Carlo evaluation methods of lattice QCD are generally only indirectly connected to real
time scattering amplitudes. An elegant solution to this problem is the finite volume method,
proposed by Liischer [5, 6], relating the phase shifts to the energy of two hadron states on
a finite volume lattice with periodic boundary condition. Another problem is the extraction
of the energy of the two-hadron state. Since a two-hadron correlation function behaves as
a sum of exponentials due to the presence of a number of states having the same quantum
numbers, it is non-trivial to extract the two-hadron energy eigenvalue of the excited states.
To solve this problem Liischer and Wolff [7] proposed a diagonalization method, which have
succeeded in many works with effective theory [7, 8, 9].

Historically the first attempt toward a lattice calculation of hadron scattering length,



which is defined as the threshold value of the scattering phase shift, was made by Guagnelli,
Marinari and Parisi [10] for 77 and 7-N scattering cases. They found a finite volume shift
of the energy of two-hadron states and examined the volume dependence. However, they
did not calculate full diagrams, and thus the results cannot compared with the physical
scattering lengths. Gupta, Kilcup, Patel and Sharpe [11, 12] developed an analysis of the
physical w7 scattering length for the isospin I = 2 channel. Kuramashi et al. [13] studied
the scattering lengths in various channels, 77 in I = 0,2, 7-N in [ = 1/2,3/2, K-N and
K-N in I = 0,1, and baryon scattering N-N. JLQCD Collaboration [14] and Liu, Zhang,
Chen and Ma [15] obtained the I = 2 77 scattering length in the continuum limit within the
quenched approximation. Recently Meng, Miao, Du and Liu [16] reported K-N scattering
length in the I = 0 channel, and BGR Collaboration [17] studied the I = 2 77 scattering
length in the small pion mass region. These works employed the quenched approximation.

Due to the difficulty of extraction of two-hadron energy for momentum excited states,
calculation of the scattering phase shift is more difficult than that of the scattering length.
So far only pioneering works in I = 2 77 scattering system have been reported. The isospin
I =2 77 scattering is the simplest hadronic scattering, because in the low energy region £ <
4m,; physical states with the quantum number I = 2 are only 77 state. Fiebig et al. [18] used
an effective potential calculated from lattice simulation to estimate the phase shift. Since
their calculation did not take into account the multi-exponential behavior of the pion four-
point function, the result has a strange behavior. CP-PACS Collaboration [19] attempted
a direct calculation for the phase shift employing the finite volume method [5, 6]. They
observed a 30% smaller result in magnitude than the experiment. Very recently Kim [20]
have explored a calculation through the finite volume method with anti-periodic boundary
conditions. This boundary conditions allow an easier extraction of the two-pion energy with
momentum.

All the previous works for the phase shift have employed quenched approximation, and did
not take the continuum limit. Bernard and Golterman [21], and Colangelo and Pallante [22]
claimed that the quenched approximation causes divergence of the scattering length in the
chiral limit where the pion mass vanishes. In the phase shift, the same problem also occurs.
Furthermore the approximation violates unitarity. Unitarity is expected to become more
important in the calculation of scatterings and decays than in that of the hadron mass
spectrum. For these reasons calculations without the quenched approximation are required
to evaluate realistic physical phase shifts.

In this work we aim to obtain a realistic scattering phase shift for the I = 2 77 scattering
system. To do this, we calculate the scattering phase on the gauge configurations with dy-
namical u, d quarks effect, at three different lattice spacings for the continuum extrapolation.
We use the configurations previously generated for study of light hadron spectroscopy [2].
Since the result can get rid of the uncertainties of unitary violation and effects of finite
lattice spacing, it is expected to be a more realistic phase shift than those of the previous
works. In this calculation we attempt to apply the finite volume method not only in the
center of mass system [5, 6], where the total momentum of two pions is zero, but also in
non-rest system, where the total momentum is non-zero. The method in the non-rest system
was proposed by Rummukainen and Gottlieb [8]. The inclusion of the non-rest system adds
little extra computational cost, and yet the use of the system allows a significantly more
dense sampling of the energy states. The method in the non-rest system has been employed
only in effective theory [8]. The result in this work is the first not only with two-flavor full
QCD in the continuum limit, but also employing the non-rest system method in QCD. We



compare our result in the continuum limit with the experimental results [23, 24] and the
prediction extracted in the framework of chiral perturbation theory [25], an effective theory
of Goldstone bosons.

In the finite volume method it is an important assumption that the interaction range
of scattering is contained in the finite volume considered. Check this assumption, a simple
method is to examine the volume dependence of the phase shift, but the examination de-
mands calculations with changing volume. In stead we explore a direct observation of the
interaction range from the two-pion wave function calculated on lattice. A similar study of
the wave function have been carried out previously by Balog et al. [26] for the two-dimensional
XY model, but the calculation in the four-dimensional lattice QCD has not been carried out.
From the wave function we extract the interaction range and the scattering length.

The understanding of hadronic dynamics is also important for evaluations of hadronic
effect included in the cross section observed experimentally. Since the effect cannot be
estimated by perturbation theory, the lattice calculation is a powerful tool. For example,
the CP violation parameter ¢ /¢ and the AT = 1/2 selection rule of K — 77 decay are
famous open problems. There are a number of difficulties in the calculation, which are
summarized in Ref. [27]. Main difficulties are the following two points: (i)extraction of the
on-shell amplitude at m% = 4(m?2 + p?) with p # 0, (ii)the relation between the amplitude
calculated on a finite volume lattice and that in the infinite volume. Lellouch and Liischer [28]
proposed a solution of the second difficulty. The solution, however, assumed that the first
difficulty have been solved. The first difficulty has not solved. Some strategies [29] have been
suggested to avoid the difficulty, and its applications [30] have been reported. However, even
the recent works have not obtained results consistent with the experiment. The first difficulty
is related to the final state interaction, i.e., the 77 scattering. Thus the study of the 77
scattering is a first step toward the calculation of K — 77 decay [31].

This article is organized as follows. In Sec. 2 we review the results obtained from the-
oretical and experimental sides. On the theoretical side we focus on the results of chiral
perturbation theory. The formulation of lattice QCD is described in Sec. 3. In Sec. 4, the
previous studies for the 77 scattering calculated from lattice QCD are summarized. In Sec. 5
we explain the two finite volume methods in the center of mass system proposed by Liischer,
and in general systems proposed by Rummukainen and Gottlieb, which are methods to ex-
tract the scattering phase shift from the two-pion energy calculated on lattice. To employ
the finite volume method, we need to extract the two-pion energy from the pion four-point
function. The extraction method is discussed in Sec. 6. Then we show our work in Sec 7—
9. In Sec. 7 the detailed calculation method to obtain the scattering phase shift, and the
simulation parameters are given. The results for the scattering length and phase shift at
each lattice spacings and in the continuum limit are presented in Sec. 8. We present the
pioneering work of the two-pion wave function in Sec. 9. In Sec. 10 we summarize this work,
and we list future problems related to this thesis in Sec. 11.



2 7w scattering

In this section we first present the theoretical results predicted by chiral perturbation
theory (ChPT), which is an effective theory of Goldstone bosons. Later we show the exper-
imental results with several approaches.

2.1 Theoretical results

The study of 77 scattering is a classical subject in the field of strong interactions. The
properties of the pions are intimately related to an approximate chiral symmetry of QCD.
In the chiral limit, where m,, and m, vanish, this symmetry becomes exact, the Lagrangian
being invariant under the group SU(2)g xSU(2)y, of chiral rotations. The symmetry is spon-
taneously broken to the isospin subgroup SU(2)y. The pions represent the corresponding
Goldstone bosons.

The properties of the Goldstone bosons are strongly constrained by chiral symmetry. In
the chiral limit, the scattering amplitude vanishes when the momenta of the pions tend to
zero. To first order in the symmetry breaking, the S-wave scattering lengths are proportional
to the square of the pion mass:

Tm?2 m?2
0 _ s 2 _ T
R T (1)

where a! stands for the scattering length in the isospin I channel with angular momentum I,
and F is the pion decay constant in the chiral limit. The two low energy theorems eq.(1) are
valid only at leading order in a series expansion in powers of the quark masses. The next-to-
leading order corrections were calculated in [32], and even the next-to-next-to-leading order
corrections are also known [33].

2.1.1 Scattering amplitude

We consider elastic mr scattering in the framework of QCD and restrict our analysis to
the isospin symmetry limit, where the masses of the up and down quarks are taken equal and
the electro magnetic interaction is ignored. The pion is denoted as the isovector particle 7¢
for a = 1,2, 3. In this case, the scattering process is described by a single Lorentz invariant
amplitude A(s,t,u),

(m*(pa)7°(ps) out|r* (p1)7”(pz) in)
= 64 + (2m)Yi6" (P — P){0°°6“A(s, t,u) + 6*0" A(t, u, 5) + 6“4 A(u, 5, 1)}, (2)

The amplitude depends only on the Mandelstam variables s, ¢, u,
s=(p+p)t=(ps—p)’u=(ps—p)°, (3)

which are constrained by s + ¢ +u = 4m2. Moreover, crossing symmetry implies the inter-
change symmetry of the second and third arguments,

A(s,t,u) = A(s,u,t). (4)

The pion can be described by the I, = 4+1,0 components as

7t = F—=(r' £in?), 7° = (5)

G-



In the isospin basis, the two-pion is classified into the I = 0,1 and 2 state as

1 13
I=0: —=(ata" +7 7t -7 = ——=3 =%
I=1: a0 — 70t = —§(Wl7r0 — ! 4 i(n?n® — 7'7%)), (6)
I=2: Tttt = 5(7r17r1 +i(r'r? + w?nt) — wird).

Substituting eq.(6) to eq.(2), one obtains the s-channel isospin I components of the amplitude
T!,

T°(s,t) = 3A(s,t,u) + A(t,u,s) + A(u, s, t), (7)
T'(s,t) = A(t,u,s) — A(u,s,t), (8)
T?(s,t) = A(t,u,s)+ A(u,s,1). 9)

The partial wave decomposition reads
T'(s,t) = 321> (20 + 1)P(cosb) t/(s),
!

1

H — T [20((s) _ 1
l (S) 220’(8) {6 }7
4m2
ofs) = yf1- -, (10)
s

where Pj(cos#) is the Legendre function and cos 6 is given by the Mandelstam variables,

2t
=1+ —— 11
oS t (11)

™

and the real parameter ¢/ (s) is the scattering phase shift with s = 4(m2+p?). The threshold
parameters are given by the coefficients of the expansion

Ret! (p) = <i>21{al[mw+bl[ (i>2+---}. (12)

My My

Using the definition of ¢/ (s) eq.(12), we find that the amplitude T7(s, ¢) is normalized by the
S-wave scattering length af,

T°(4m2,0) = 32waym,, T (4m2,0) =0, T*(4m2,0)= 32waim,. (13)

2.1.2 A simple parametrization of scattering phase shift

In the elastic scattering region the partial wave amplitudes are written by eq.(10) with
the phase shift for isospin I with angular momentum [. Schenk [34] proposed a simple
parametrization of the phase shifts using the following properties of the amplitudes:

(i) The threshold behavior of the scattering amplitude 77 is described by eqs.(10) and
(12).



(ii) The phase shifts 6 and ] pass through 90° at some measured values m, and m,

(V5 = my) = 5 (/5 = m,) = 90°. (14)

s m2 [ s—m’ .
118 iy <4m72r — 7:1%> tan d; (s) (15)

is very smooth below /s ~ 1 GeV. In this region tan d; (s) can be described by a simple
Breit-Wigner form

(iii) The quantity

r
tan ot :M 16
ndl(s) = (16)

where I', is the decay width of the rho meson.

A simple parametrization, respecting all three conditions, is given by

5 p\? 1/ p\? 4m?2 — s
twﬁ“*ﬁﬁt@ﬁ(aﬂ @”“*QC;>+“><7:§# - 1D

where the threshold expansion is reproduced with

4m

T 4m?2
s, —4mz

2
s

b =bl —alm, + (afma) 8. (18)

2.1.3 Chiral perturbation theory

In order to obtain the scattering amplitude 77 in eq.(10), most studies employ chiral
perturbation theory (ChPT). We show the framework of ChPT in this section.
If the quark masses are set equal to zero, the QCD Lagrangian
Ny

1 y . — e
LQCD = _ZFHVF# + qlp(L q = (U,d,S, te ) (19)

is symmetric under the chiral group SU(N;)xSU(N;). One assumes that the ground state
of the theory spontaneously breaks this symmetry down to SU(N;). The hidden symmetry
then manifests itself in the occurrence of N}% — 1 pseudoscalar Goldstone bosons; in the
Ny =2 case m* and 7° appear.

In reality, the QCD Lagrangian contains a quark mass term which breaks the symmetry.
The vector and axial currents are not exactly conserved,

o, (ud) = i(my, — mg)ud, (20)
O (W ysd) = i(my, + mg)uysd. (21)
Since the masses of u and d quarks, however, are tiny, the divergence of the currents approx-

imately vanishes. Deviations from chiral symmetry may be studied by treating the quark
mass

m = (my, +mgq)/2, (22)

in the Lagrangian as a perturbation.



Let us consider effective theory containing only the Goldstone modes in the isospin sym-
metry limit. Our basic assumption is the pattern of spontaneous symmetry breaking,

SU(2) x SU(2) — SU(2)y. (23)

We denote by ¢* (a = 1,2, 3) the coordinates describing the Goldstone fields in the broken
symmetry SU(2)xSU(2)/SU(2)y. We choose the two-by-two unitary matrix

U(¢) = exp (ivV2®/F), (24)

where F' is the pion decay constant in the chiral limit, and ® gives a convenient parameter-
ization of the Goldstone fields

@zgng(ﬂlfi_ﬁlﬁ>- (25)

The U(¢) linearly transforms under the chiral symmetry (g;,gz) = SU(2),xSU(2)g as

U(¢) — GrU(0)Fh, (26)

but the transformation of the Goldstone fields is highly non-linear.

Since the low energy effective Lagrangian can be organized in terms of U(¢) and increasing
powers of momentum, the Lagrangian contains an even number of derivatives due to parity
conservation;

Leg(U) =" Loy, (27)

At lowest order, the Lagrangian is given in term of,
F2
Ly=—Tr o.Ut0r U] (28)

Let us consider an extended effective Lagrangian including the mass term, which explicitly
breaks chiral symmetry. To do this, we extend the QCD Lagrangian to

Laocp + 77" (v + ayvs)q — G(s — i5p)q, (29)

where the external fields v, (z), a,(z), s(z) and p(x) are Hermitian flavor two-by-two matrices.
The s(x) at the leading order is related to the mass matrix M as

s=M=m-1. (30)

The Lagrangian eq.(29) is invariant under the following local transformations (g, gr) =
SU(2),xSU(2)g,
qr — 919L,  9rR — 9RYR;
W=t ay = grrugh + i9rOuh,
h=vi—au = golugl +igrdugp,
s —1ip — gR(s—ip)gz.
We use this symmetry to build a generalized effective Lagrangian with these external fields.
Due to the local symmetry, only v, and a, appear in the covariant derivatives,

(31)

DU =0,U —ir,U +iUl,, DU =0,U" —ir, U +il, U (32)

7



At the lowest order, the generalized effective Lagrangian is given by

FZ
Ly=—Tr (DLUTDMU + Uty + XU, (33)

where
X = 2B(s — ip). (34)
The parameter B is related to the quark condensate as

B = —(0[gq|0)/F*. (35)

We can extract the pseudoscalar mass term from the x term in eq.(33) by taking the
external fields as s = M eq.(30) and p = 0, and expanding in @,

F2

ZQBTr[M(UT +U)] = —BmTx[0?] + O(*/F?) (36)
- —%2Bm(7r+7r bt 10 0@ ), (37)

where we drop constant terms. So we obtain the relation between the physical pion mass
and the quark mass at lowest order,

m2.0 = 2Bn. (38)

This relation means m? is treated as the same order as the quark mass. The expansion of
the quark mass is not rather than the one of m?. The momentum expansion of the effective
Lagrangian eq.(27) is also carried out by taking into account the order of the momentum
p* ~m2.

The scattering amplitude for the isospin I = 0,2 at the lowest order can be calculated
from L, as,

25 — m?
to(s) = =it
o(s) 3 F?
s — 2m?
12 = ——7 39

In the limit s — 4m?2 and t = u — 0, we find the scattering lengths of the lowest order

eq.(1).
The effective Lagrangian of order p* was given by Gasser and Leutwyler [32],

£, = L(n[pUip,v)) + L [DUt DY U] o [D,UTD,U]
1y (T [\ U+ xU'))” + uTx[D#XI DU + D'y D, U] + -, (40)

which is the part of £, related to the scattering amplitude eq.(10). The low energy constants
[; are divergent and renormalized with the divergences generated by one loop graphs from Ls.
The renormalized constants [} logarithmically depend on the renormalization scale p [32],

7”I”L2 1 2 1
l: i <l +In— lu ) Y1=5, V2= 75, V3= —%5, V4= 2. (41)

~ 3272 3 3 9



Here [, is scale independent constants. At this order the pion mass and pion decay constant
in terms of F' and m?, which is the pion mass at the lowest order, are given by

m2 = m2{1 3277’L22F2l3_|_0( )} (42)
2
fo= F{1+16m2F2l4+O( )} (43)

The complete effective Lagrangian Lg of order p® is not yet available. The list of necessary
counter terms has been published [35], but their divergence structure is under investigation.

2.1.4 Amplitude at two loop order

The scattering amplitude at two loop order was calculated by Bijnens et al. [33]. The
momentum expansion of the amplitude amounts to a Taylor series in

= (;})2 : (44)

The following amplitude at two-loop order was obtained

Als t,u) = E[—(4m)” + (47m)%5]
+E2[by + boB + b5 + by(f — U) ]

[
+&FV(3) + GV (5,1) + GV (5,1)]
+&3[bs3° + be3(E — 1))
+EFP(s) + G (5,1) + GV (5,1)]
+0(&h, (45)
where the coefficients b; for 2 = 1, - - -, 6 include the renormalized couplings [ for: =1,---,4
and r] for 1 = 1,---,6 from £, and Lg, respectively. The coefficients and the functions

GW,G® FO) and F® are given in appendix A. Here 3,7,7 are the Mandelstam variables
normalized by the physical pion mass squared m?,

_ S — i . Uu
82—2, t:—2, U:—2 (46)
m’ﬂ' m’ﬂ' m’ﬂ'
From the expression for the scattering amplitude in eq.(45), it is straightforward to evaluate

the scattering length al. Using the parameter £ and the coefficients b;, one finds

Tm; 3
7045 21572 192
+ 100y + 24by + 96b3 + 640, + —b 48
§[63 126 1 1 2409 + 9003 + 6404 + - 5]} (48)
m? 262 2272

In order to obtain the Values of the scattering lengths, Bijnens et al. [33] used [} estimated
from the scale independent couplings /;. The [; was evaluated by the experimental inputs as

i = —-17+£1.0 K. decay and 77 scattering [36]

ZZ = 6.1+0.5 K. decay and 7 scattering [36] (50)
ls = 29+24 wu,d,sSU(3) symmetry breaking [32]

Iy = 4340.9 pion scalar radius (r?), [32],
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The scalar radius related to {4, shows up in the scalar form factor
! — ]_ !
(e (9 fmuu -+ madd|r(p)) = o (14 <02 +0Y)) s a=p =0, ()

where o, is the pion o-term related to a derivative of m2 with respect to quark mass m =
(my +mgq)/2, or = 1 - Om?2 /0. The effective coupling [, is strongly constrained, because

I4 is almost determined by only (r?) at one loop order [32],

3 - 13
2 2
= (1- —) 0(€2). 52
): = goaga (= 13) + 0(€) (52
The low energy constants [; were evaluated at ;4 = 1 GeV from these values.

The couplings 77 were estimated by Bijnens et al. [33] from the vector meson resonance,
the scalar meson resonance and the K meson and the eta meson contributions. They obtained
the following numerical estimates,

rro= —0.6-10"*
rpo=  13-107
ro= —1.7-107
7= —1.0-107 (53)
ro= 1.1-10°
rro= 0.3-10°%

They ignored the scale dependence of these couplings.
Using the center values for these couplings the scattering lengths were obtained at two-
loop order [33] as

agm; = 0.217 (54)
agm,; = —0.0417. (55)

They also obtained the scattering phase shifts. In Fig. 1 the results for the scattering
phase difference §) — 4} and the I = 2 scattering phase 2 are presented. In the figure the
result with the parameters eq.(50) is denoted as set I, and the one with [; = —1.5 and
I, = 4.5 (I3,l4 unchanged) is denoted as set II.

2.1.5 Result with phenomenological representation

Colangelo et al. [25] utilized the scattering amplitude at the two-loop order of ChPT,
which is different from eq.(49) in the two loop part, and the phenomenological representation
based on the Roy equation [37]. The phenomenological representation is obtained from the
available experimental information.

The two loop representation of the scattering amplitude is denoted with the chiral ex-
pansion of the partial waves by

ti(s) =t/ (s)2 + t{(5)s + 1] (s)s + O(P"), (56)
where t/(s), is obtained from the effective Lagrangian L£,. For I = 0,2 at the leading
order S-wave amplitudes t{(s) are presented above eq.(39). Since inelastic reactions start to
contribute only at O(p®), the optical theorem reads,

2
4mz

Imt; (s) = o(s)[t; (s)|* + O(p°), o(s) =4/1~ (57)

S
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Figure 1: Scattering phase shifts [33] at lowest, one-loop and two-loop order in ChPT. The
data points are from Ref. [41]. The set I uses I, =—-17,1,=6.1,l3 = 2.9 and I;, = 4.3, while
the set II uses [y = —1.5,15 = 4.5 and [3, 14 unchanged.

This unitarity condition leads the following relation between the two loop imaginary ampli-
tude and the real part of the lowest and one loop amplitude as,

Imt] (s) = o(s)t{ (s)2 (# (5)2 + 2Ret{ (s)4) + O(p®). (58)
From the discussion the scattering amplitude is given by three functions, U’ (s) for I =0, 1,2,
describing the unitary correction [25],
3

5(5 —u)U(s) + g(s — ) U (u)

FUH0) + 50 (w) - 3U7(6)) + 0. (59)

A(s,t,u) = C(s,t,u)+ 327 (%UU(S) +

The first term is a crossing symmetric polynomial
C(s,t,u) = ¢ + scy + s*cz + (t — u)’cs + s°c5 + s(t — u)’cs, (60)

where the parameters ¢; are constructed by the effective couplings ; and r; which appear in
L, and Lg, respectively. The ¢; are given in appendix B.1. The functions U%(s), Ul(s) and
U?(s) are written by dispersion integrals in the form,

4 oo t3(s")2 + 2Ret] (s’

v = L[ as ( (s + 2Refies) (1)
7 Jam2 s (s —3)
3 00 (t 2 + QRGZ&% (S,)4)

Ut _ 5 ds’ 2

(s) 7 Jam2 3'3 ( 4m2) (8" —s) ’ (62)

4 oo t2(s") + 2Ret2 (s’

02s) = =7 a5l (£)2 (1) ol )4). (63)

7 Jamz st (s —s)

While the phenomenological representation [25] was obtained in the same manner, the
representation includes only two uncertainties, aJ and a2, and other quantities are described
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by the experimental information. The phenomenological amplitude takes the form,

4 —
A(s,t,u) = 16ma; + #(2@8 — 5ag) + P(s,t,u)

™

327 <%W°(s) + g(s — )W (s) + %(s — AW ()

+%W2(t) + %WQ(u) - %W2(8)> +0(p%), (64)

where the three functions are given by

4 0,
0 st oo Imtg(s)
Wo(s) = T Jmz ds (5 —s) (65)
§3 o Imt!(s")
Wis) = — [ d - 66
(s) T Jam2 P (s —4m2) (s' —s)’ (66)
4o Imit3(s
W2s) = = ds Amig(s) (67)

T Jamz (s — )
The crossing symmetry polynomial P(s,t,u) is defined by
P(s,t,u) =Py + 5Py + B3 + (t — )Py + 5°P5 + s(t — u) Pg- (68)

These parameters P, can be explained by the integrations of the imaginary part of the partial
wave [25], and presented in appendix B.2.

The chiral and phenomenological representations have the same structure. The polyno-
mial C(s,t,u) and the functions U’(s) in the chiral representation, however, involve uncer-
tainties at higher loop order. This implies that the difference from these representations
starts showing up at three loop O(p®). We show the differences of the functions U’ (s) and
W(s) as,

Whs) = U%s)+ 00", (69)
Wis) = U'(s)+ 00", (70)
W2(s) = U?(s)+O0(p®). (71)

The two polynomials C(s,t,u) and P(s,t,u) also agree up to O(p®),

4 —
C(s,t,u) = 16m%agm, + %(%8 — 5a3)s + P(s,t,u) + O(p®). (72)

™

This leads the relation of the coefficients ¢; and p;,

4
c1 = 167%a2 +p, + O(p®), co = W(%g — 5a§) + Dy + O(pG),
¢ =By + 00, ¢ =i+ O, (73)
¢s = D5 + O(p?), s = Pg + O(p?).

The coefficients ¢; in the chiral representation are written by the effective couplings
of ChPT, while the p; are experimentally determined but the scattering lengths aJ, a? are
unknown constants. From the above relations eq.(73) we can determine the scattering lengths

12



in terms of the coefficients ¢;. In order to determine the scattering lengths, Colangelo et
al. [25] defined the quantities

2

C, = f? (02 + 4m?2 (3 — 04)) , Oy = % (—01 + 4m(cs — 04)) ) (74)

These combinations include only two effective couplings I3, 1, up to the one loop order [25],
- 887 [ - 18

01:1+§<2l4—EO> +O(€2)7 02:1+§<§3+214_7> "‘0(52): (75)

where £ = (m, /47 f;)?. Substituting ¢; in eq.(73) into C; and Cs, one finds the relation for
the scattering lengths,

Tm? 5 3m? 3m?
0 . = s o = = (= = O 2 76
e = goesCo= (goom+ S+ Mg o)) v0@, (o)
2 4
2 _ mﬂ' ]‘ — m7r — — 2
e = —poesCa— (- ey 7)) +0(€) (7
where () is given by the following combination,
1
Co = ?(1201 — 5C%). (78)

It is noted that the relation for the scattering lengths are different from the expression of
ChPT at two loop eq.(49), because this form includes the phenomenological coefficients p;.

The four variables al, a2, l; and I, can be determined through the coefficients p,, - -,p,,
when [3, [, and the coupling constants i, - - -, 74 from Lg are treated as known. Colangelo et
al. [25] obtained the following results for the scattering lengths,

agm; = 0.220 £ 0.05 (79)
am; = —0.0444 +0.0010. (80)

While [, is strongly constrained by the experimental data of the scalar radius eq.(51), [3 is
not strongly constrained as shown eq.(50). Hence both scattering lengths are approximately
controlled by I5. This causes the correlation between the scattering lengths. From the
correlation a? can be determined as a function of ag [25],

agm, = —0.0444 4 0.0008 + 0.236A¢ — 0.61A3 — 9.9A7, (81)

where Ay = adm, — 0.22.

The scattering phase shifts for / = 0,1 and 2 were also obtained from the framework of
the two representations. The results are displayed in Fig. 2. In the figures the central curves
are described by the simple parametrization of the phase shift eq.(17) given by,

4m2 p? P2 Pt » Am2 — ¢l
I s I I I I T l
tan5l— 1— p m—72rl Al+Blm—72r+Clm—;lr+Dlm—76r 3—73{ s (82)
where s = 4(m?2 + p?). The values of the coefficients are tabulated in following,
A9 = 0.220, Al =0379-1071, AZ=—0444-10"",
BY = 0.268, Bi =0.140-107%, B2 =-0.857-10"1,

C0=—-0139-10"!, C} =—0.673-10"%, C2=—0.221-10"2 (83)

DY =—0.139-10"2, D!=0.163-10"7, DZ=—0.129-1073.
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Figure 2: Scattering phase shift in [ = 0,1,2 channels obtained from analysis with chiral
and phenomenological representations [25]. Solid lines are center value, and shaded regions
correspond to uncertainties. In the ) figure dotted lines indicate region allowed if constrains
imposed by chiral symmetry are ignored [40].

The constants A) and A2 show the scattering lengths aj m. for each isospin. The parameters
sl specify the value of s where ¢/ passes through 90°, and are given by,

sy = 36.7Tm2, s} =30.72m2, s5 = —21.62m2. (84)

The corresponding energies for I = 0,1 are 846 MeV and 774 MeV, respectively. In the
I = 2 channel there are no such resonance particles, so that an exotic negative s2 is applied.
These results are compared with the experimental data, which are given by Hyams et al. [38],
Protopopescu et al. [39], Hoogland et al.(ACM) [23] and Losty et al. [24].

In our analysis these results for the scattering length a2 and the scattering phase shift 67
are referred for comparing with our results. In the following we call them the predictions of
ChPT.
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2.2 Experimental results

For the determination of the scattering lengths, because of the experimental intractability
of a direct determination of the 7wr scattering lengths through measurements of 77 scatter-
ing, indirect techniques have been utilized. The reactions that have been most extensively
investigated include the K., K meson decays (K — ntn~e*1,) which are sensitive to the
isospin I = 0 with angular momentum [ = 0 scattering length a, and pion-induced pion
production reactions such as (mp — w7wn) which are sensitive to both the I = 0, 2 scattering
lengths a) and a?. An interesting experiment have begun, which is based on the fact that

77~ atoms decay into a pair of neutral pions, through the strong transition 7t7~ — 7070,

The experiment is sensitive to the difference a) — a?.

We list the properties and the recent results for each experiment in the following.

2.2.1 K.4 decay

Among the long list of possible charged K meson decay the rare K., decay K+ —
ntm"e*1,(V,.) has received particular attention because it could provide important infor-
mation on the structure of the weak hadronic currents and also on 77 scattering at low
energies. What made this four-body semileptonic decay attractive despite its low branching
ratio, which is of order 1072, is that the two pions are the only hadrons in the final states.
Thus experimental studies of the K4 decay are seen as the cleanest method to determine ag.
The phase shift difference d) —d; could be extracted from the experiments. The experiments
of the K meson decay have been carried out assuming that the AT = 1/2 rule suppresses
the I = 2 and [ = 0 partial wave.

The Geneva-Saclay Collaboration [41] gathered about 30,000 events, and provided its
final results in 1977. The results are the often quoted values adm, = 0.26(5) and aim, =
—0.028(12) [42, 43].

Recently a new measurement has been published by the E865 Collaboration [44] at
Brookhaven who collected 400,000 K,.4 events, and the statistics improved by more than
a factor of 10. From the analysis [45] the scattering lengths are reported with a smaller
uncertainty

+

agmy; = 0.216 4 0.013 £ 0.004 + 0.002, (85)
agm; = —0.0454 £ 0.0031 % 0.0010 4 0.0008, (86)

where the first, second and third errors correspond to statistical, systematic and theoretical
errors, respectively. The aZm, is determined by the correlation between a2 and af) eq.(81) [25].

Similar experiments are proposed by the NA48 Collaboration at CERN[46] and the KLOE
Collaboration at DAONE[47].

2.2.2 (7,2r) reaction

The Am — A'2r reactions are sensitive to 77 scattering because one pion exchange is
dominant mechanism, although additional sizable backgrounds from other processes also con-
tribute. There is least one other hadron present in the final state. However, the experiment
is sensitive to both the I = 0,2 S-wave scattering lengths aJ and a2. The 77p — 7~ 7tn
reaction involves both the I = 0,2 77 interaction amplitudes, while the 7tp — 7F7™n
reaction involves only I = 2.

In 1974, Aachen-Cern-Munich Collaboration [23] reported an experiment on the 7Fp —
7wt n reaction and Losty et al. [24] on the 7~p — AT 7~ 7~ reaction. Both collaborations
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focused on the I = 2 channel. In 1978, Kravtsov et al. [48] obtained information on the
7tp — w7t n reaction from measurements of the charge symmetric reaction extracted from
the more complex 7~d — w7 pp reaction. In 1989, Sevior et al. [49] determined the energy
dependence of the total cross section for 7*p — 777+ n reaction in the threshold region.
They provided better data for evaluating the I = 2 scattering length,

aZmy = —0.040 % 0.001 = 0.003. (87)

At the same time the OMICRON Collaboration [50] reported the result that is in disagree-
ment with the results of Kravtsov et al. and Sevior et al. near the threshold.

Recently the experiment on 7 p — 7 7n and 7*p — 777+ n reactions were reported
by Lange et al. [51]. They obtained the I = 0,2 scattering length,

agm; = 0.2340.08, (88)
agm,; = —0.03140.008. (89)

The CHAOS Collaboration [52] proposed a similar experiment on the 7+ A4 — 7F7t A’
reactions for several nuclei.

2.2.3 Lifetime of 777~ atom

An experiment is under way by the DIRAC Collaboration [53] at CERN, which is based
on the fact that 777~ atoms decay into a pair of neutral pions, through the strong transition
atn~ — 7%7% Since the momentum transfer nearly vanishes, only the scattering lengths

are relevant. The ground state lifetime 7 is related to the I = 0,2 S-wave scattering length
difference [54]

1 2
= = ca™y/mz —mZ, — a?m2/4ja§ - a3[*(1 +9), (90)

where « is the fine structure constant, m, the mass of the charged pion, m o the mass of neu-
tral pion and § the next-to-leading order correction (6 = 0.058). The DIRAC Collaboration
reported recently a preliminary result,

7= (31707 £ 1.0) x 107 "%s, (91)

where the first and second error correspond to the statistical and a rough estimated system-
atic errors, respectively.
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3 Lattice QCD

In this section we describe formulations of lattice QCD. We also introduce improvements
of action which are employed in this work.

3.1 Standard action

3.1.1 Gauge action

On the lattice the gauge action is constructed by the link variable U, , = '@944(®) where
a is the lattice spacing, g is the bare coupling and A, (z) is the gauge field. The simplest
gauge invariant quantity constructed by the links is 1 x 1 Wilson loop “plaquette”,

P (z) = Tr[Up yUpyq UL, UE L (92)

T+o,u T

Here /i denotes a unit vector in p-direction. Using the plaquette the standard action S, is
given by

S,=5 % (1= sRelPul)]). (93)

xT,u>v

Since in the continuum limit @ — 0, the S, should reconstruct the continuum gauge action
in Fuclidean space-time,

a0 1 .
S, 7 / A2 F o Fre +0(a?), Fue=0,A, — 0,4, +ig[A,, A (94)

The coefficient § in eq.(93) is determined by the normalization in the continuum limit as
B=6/g%
3.1.2 Quark action

In the free case the quark action is constructed in terms of the quark field v, as,

S;laive — Z E:pDnalved)y, (95)
x,y
where 1
Dy = 2a > VulOotiy = Ouyra) +mbay. (%6)
w

This action is called the naive quark action. In the continuum limit S’f;ai"e reconstructs the
continuum quark action in Euclidean space-time,

graive 030 / d* 1 (z) (8,7, + m) () + O(a?). (97)

However, the action produces a physical pole and unphysical fifteen poles in the free quark
propagator. This is the well-known doubling problem.

To avoid the problem Wilson [55] proposed to add a Laplacean term, which is called the
Wilson term, as,

aive r—
SW = S(I; - a§'§/)xmm,ywya (98)

q
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where 7 is the Wilson coefficient usually chosen as r = 1, and the Laplacean O, , is given by

1
D:L‘,y = Z E (5w+ﬂ,y + 5m,y+ﬂ - 251‘,3/) : (99)

7

This term breaks chiral symmetry even when m = 0 at a finite lattice spacing. However, the
unphysical poles decouple from the physical one, since their masses diverge in the continuum
limit. This action is called Wilson quark action. In actual calculations the quark field is
rescaled by

1
¥ — V2ka™3?) where k = 9o £ 8 with r =1, (100)
ma

for simplicity.
Gauge symmetry requires that the quark bilinear fields v,1, should be connect by the
link variable as

E;ﬂ/)mm — E;pUm,uwarﬂ- (101)

Considering the connection and the normalization eq.(100), Wilson action with interaction
is written by

Sy = Y 4,Dl

T,y

Dg[,/y = - K Z { — V) U0y + (1 + ’Vu)U;,u(S:v,erﬂ)} . (102)

Here k is called hopping parameter. The quark mass is then defined by
1/1 1
ma = — <— — —> , (103)

where . = 1/8 + O(g?). The Wilson action deviates from the continuum action by O(a)
due to the Wilson term.

3.2 Continuum limit

Lattice QCD allows construction of the continuum theory of QCD in the continuum limit.
In order to compare a physical quantity calculated in lattice QCD with the experimental
value, we need the continuum extrapolation. The extrapolation requires calculations at
several different lattice spacings. The lattice spacing a is a function of the bare coupling ¢.
From the renormalization group argument, the relation between a and ¢? is given by

L= (ﬁog2)*ﬁ1/2ﬂ§e*1/25092, 92 = 0. (104)

Here Ay, is a scale and ; for ¢ = 0,1 are defined by

502(4;2) (1n1-5%). = (471r) (102 - ). (105)

where Ny is the number of quark flavor. Therefore the continuum limit @ — 0 is understood
as g2 — 0 or B — 0.
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3.3 Improvement

In order to extract physical quantities near the continuum limit from calculations carried
out at coarse lattice spacings, some improvement methods of the action have been proposed.
Since the lattice action reproduces the continuum action in the continuum limit, one can
add higher order terms of the lattice spacing to the standard lattice actions egs.(93) and
(102), to reduce effects of a finite lattice spacing. In this section we present the improvement
methods employed in this work.

3.3.1 Renormalization group improvement

In principle we can add infinite terms with dimensional couplings to the lattice action,
since such actions reproduce the same continuum physics as the standard action eq.(93).
From the renormalization group argument, there is the renormalized trajectory (RT) in
infinite dimensional coupling parameter space. The actions on the RT, which are called
perfect action, give the same physics at the continuum limit. If an infinite number of coupling
parameters are admitted, a perfect action is achieved. But such the action is not acceptable
for numerical calculations. It is necessary to truncate the action to a small numbers of
couplings.

Iwasaki [56] applied the block spin renormalization group analysis in perturbation theory
to survey the parameter space, and proposed a renormalization group gauge improved action
which adds only one term to the standard action eq.(93). This improved action is written

in terms of the parts of the 1 x 1 and 1 x 2 Wilson loops W;* and W%,

Syf == (co Yo W) 4 Y, WP (x ) (106)

x,u<v T,V

The coefficient ¢; = —0.331 is fixed by the block spin renormalization group analysis, and
co = 1 — 8c; = 3.648 by the normalization condition in the continuum limit.

3.3.2 Clover action

The Wilson action deviates from the continuum quark action by O(a) due to the Wil-
son term in eq.(98). Sheikholeslami and Wohlert [57] proposed an improved quark action,
which is called SW/clover quark action, to reduce O(a) errors for on-shell quantities with-
out spoiling Wilson’s resolution of doublers. The clover quark action is constructed by the
quark bilinear fields which are invariant under gauge, discrete rotations, parity and charge
conjugation transformations. The explicit form of the action is written by the Wilson quark
action and the clover term with a coefficient cqw as,

SSW - S;/V_CSVV/"? Z ENWFWT/)Q:, (107)

x,u<v

where & is the hopping parameter and F),, is the standard lattice discretization of the field
strength. At tree level Sheikholeslami and Wohlert [57] derived csw = 1. Tuning the
clover coefficient cgw appropriately, one can reduce the discretization error for the on-shell
quantities.
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3.3.3 Tadpole improvement

The expansion of the link variable is given by
- a2
Upp = 9% =1 4 jagA,(v) — TAu(x) + - (108)

The first two terms contribute to the continuum action, but other higher terms are lattice
artifacts. On a finite lattice spacing, the third term in eq.(108) gives rise to the tadpole
diagram. Since the diagram generates ultraviolet divergence O(1/a?) that is canceled out
by the coefficient factor a?, the contribution is suppressed by powers of only ¢?. This causes
a poor match between short distance quantities and their perturbative estimates, and large
coefficients in the perturbative lattice expansions.

To avoid the difficulties, Lepage and Mackenzie [58] proposed tadpole improvement, which
replaces the link variable by its mean value uy and fluctuation U,

Upp = uUs - (109)

The uy is almost dominated by the tadpole contribution. This rescaling of all links by uy < 1
keeps the theory gauge invariant. Under this rescaling the bare coupling in the standard
gauge action eq.(93) is replaced by

BB =puy, or ¢* =g =g*/us, (110)

to keep the original form of the action. For the clover action eq.(107) the rescaling keeping
the action of the same form corresponds to

K — R = Kug, Csw — Csw = Cswil. (111)
At tree level the tadpole improved clover coefficient gives
ésw = 1 corresponding to csw = 1/uj. (112)

This choice of cgw is called tadpole (a mean field) improved choice.

There are two choices of the tadpole factor uy. The first is that the fourth root of the
plaquette value P4 and the second is that the expectation value of the link in Landau
gauge. In this work we employ the first choice.
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4 Previous results for 77 scattering

In this section we review the results of the previous lattice calculations for the S-wave
w7 scattering. We describe several results of the scattering length for the isospin I = 0, 2
channels. We then present the two pioneering results for the I = 2 w7 scattering phase
shift, one used the effective potential [18], and the other calculated directly [19] through the
finite volume method proposed by Liischer [5, 6]. All previous works employed quenched
approximation.

4.1 Scattering length

Kuramashi et al. [12] calculated the scattering length in I = 0, 2 channels. Since the I =0
scattering length is much more difficult due to the presence of box and disconnected contri-
butions, there have been no other calculations of the I = 0 channel so far. The calculation
was carried out using the standard gauge action. For quark action they used the Kogut-
Susskind quark action, which has U(1) axial symmetry, and Wilson quark action described
in Sec. 3.1.2. As shown in Fig. 3 they compared the dimensionless ratio 327 (f!%)2/m, - a}
for I = 0,2, where f!% is measured for each pion mass on the lattice, with the prediction of
current, algebra eq.(1),

327 f2 32m f2
a, =1,

My My

ag = —2, (113)

where a! is the scattering length for isospin I with angular momentum I, and f, = 93
MeV. In the figure the I = 2 results of Refs. [11, 12] with Wilson and Kogut-Susskind
quark actions are also plotted. They observed an agreement of lattice results with current
algebra predictions up to quite heavy quark masses (m,/m, ~ 0.7-0.8) for both I = 0 and
2 channels.

The most recent calculation was carried out by BGR Collaboration [17]. They explored
the calculation of I = 2 scattering length in small pion mass region, m,/m, ~ 0.35 and m, ~
0.3 GeV, with fixed point gauge action [59] and chirality improved quark action [60]. The
calculation was carried out on three physical volumes, L ~ 1.2,1.8 and 2.4 fm. Cutoff effects
were studied in smaller volumes with several lattice spacings. Their results are compared
with the results of other groups and the prediction for the mass dependence of the quenched
ChPT, as shown in Fig. 4. It was pointed out by Barnard and Golterman [21], and by
Colangelo and Pallante [22], that the scattering length ag/m, in quenched theory diverges
as 62/m?2 in the chiral limit. From the figure BGR Collaboration concluded that the effect
of the §2/m?2 term is still not entirely visible at the pion mass region they examined.

JLQCD Collaboration [14] and Liu et al. [15] obtained the I = 2 scattering length in the
continuum limit. JLQCD Collaboration employed the standard gauge action and Wilson
quark action at § = 5.9,6.1 and 6.3, corresponding to the lattice spacings a ~ 0.10,0.07 and
0.06 fm. Since the relation of the energy shift and the pion four-point function is not simple
due to effects from intermediate off-shell two-pion states [11] and quenching effects [21], they
used several analyses to extract the energy shift which is related to the scattering length
through the finite volume formula [5, 6]. The continuum extrapolations for the two results
are shown in Fig. 5. The figure shows that the difference of the results vanishes in the
continuum limit.

Liu et al. [15] calculated with a tadpole improved gauge and clover quark actions on
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coarse anisotropic lattice. The spatial lattice spacing is roughly between 0.18 and 0.39 fm
where the physical size of the lattice range from 0.7 to 3.2 fm. They extrapolated the
dimensionless combination aomz/m7r to the physical pion mass and the infinite volume. It
was argued in Refs [11, 13, 21] that in a quenched calculation the form of the finite volume
formula is invalidated. Therefore they carried out two infinite volume extrapolations calling
them scheme I (extrapolating according to 1/L?) and scheme II (extrapolating according to
1/L?), respectively. The continuum extrapolations of these results are also shown in Fig. 5.
The results for both schemes are consistent in the continuum limit.

We summarize the result of the I = 2 scattering length in the continuum limit as follows.
JLQCD Collaboration obtained the results as,

—0.0409(68) (Ex
ofhn = { —0.0405%47; ELinI;) ’ (114)

where (Exp) and (Lin) corresponds to those in Fig. 5, and Liu et al. obtained,

| —0.0342(75) (scheme I)
domm = { —0.0459(91) (schem II) (115)
All results are consistent with the prediction of ChPT [25],
agm., = —0.0444(10). (116)
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Figure 3: I = 0 and 2 S-wave 77 scattering lengths a} from Ref. [13]. Closed and open
symbols denote Wilson and Kogut-Susskind results. Triangles are the results with Coulomb
gauge fixing. Squares and diamonds for I = 2 are the results from Refs. [11, 12]. Dotted
lines indicated predictions of current algebra eq.(113).
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Figure 4: Results of the isospin I = 2 scattering length ag/m, GeV~2 for BGR Collab-
oration [17] and other groups. The down triangle is the prediction of ChPT [25]. The
spread in the quenched ChPT calculation [21, 22] corresponds to the range 0.10 < § < 0.20.
The cross, diamond and up triangle symbols denote the results of CP-PACS [19], JLQCD
Collaborations [14] and Liu et al. [15].
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Figure 5: Continuum extrapolation for the isospin I = 2 scattering length ag/m, GeV 2
obtained by JLQCD Collaboration [14] and Liu et al. [15]. Data denoted by JLQCD (LIN)
and JLQCD (EXP) were extracted by different analyses. Difference of Scheme I and II is

also analysis method.
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Figure 6: Effective potential (left figure) of the isospin I = 2 77 scattering, and phase shift
(right figure) evaluated by the potential [18]. The k4, denotes energy state cut-off. In order
to estimate error of non-relativistic potential, they compared phase shifts estimated with m,

and m,(p) = /m2 + p?. Triangle symbols in right figure are experiment [23].

4.2 Scattering phase shift

Fiebig et al. [18] and CP-PACS Collaboration [19] carried out a pioneering study for the
I = 2 77 scattering phase shift. Fiebig et al. used effective potential for 77 scattering, and
CP-PACS Collaboration employed finite volume method in the center of mass system which

is described in Sec. 5.1.

4.2.1 Effective potential

Fiebig et al. [18] estimated the phase shift through the effective potential of 77 scattering
obtained from the pion four-point function. The simulation was carried out with a tree level
O(a) tadpole improved action in quenched approximation. The lattice size L* x T employed
was 9% x 13, and the lattice spacing was about 0.4 fm.

An example of the obtained effective potential is shown in Fig. 6. The k. in the figure
is the cut-off of the energy state. The short distance region r < 1 for k., > 2 is an
attractive potential. Since the experiment shows that the I = 2 7r scattering is repulsive,
this is a strange result. A possible reason of the behavior is that they employed a naive
single exponential fit for the extraction of the two-pion energy even for higher states. They
evaluated the potential from Fourier transformation of two-pion energy. As mentioned in
Sec. 1 there is a difficulty to extract the two-pion energy for higher states, so that one needs
some method, such as the diagonalization method described in Sec. 6.1, to solve the difficulty.
Their results for k. > 2 may include such a higher state effect.

They estimated the scattering phase shift from the effective potential. The result obtained
with kpax = 3 is shown in Fig. 6. The upper solid curve is evaluated with the physical reduced
mass of m,/2. In order to estimate the magnitude of the error due to the non-relativistic

potential scattering theory they used the relativistic dispersion relation m,(p) = \/m2 + p2.
This result is also plotted in the figure. The results were compared with the experimental
result [23]. As well as the effective potential, the phase shift in the high energy region (small
distance region) has a strange behavior.

24



4.2.2 Finite volume method

CP-PACS Collaboration [19] carried out a direct calculation for the phase shift at one
lattice spacing (8 = 5.90), and three physical volumes of about 2.4, 3.2 and 4.8 fm. The
collaboration used the standard gauge and Wilson quark actions. They employed the diag-
onalization method [7] to extract the energy shift for the momentum excited states, and the
finite volume method in the center of mass system [5, 6] to obtain the scattering phase shift
from the energy shift. These finite volume and diagonalization methods are described in
Sec. 5.1 and Sec. 6.1, respectively. This is the first study to apply the finite volume method
to lattice QCD.

The result for the phase shift 6(p) at the physical pion mass m, = 0.14 GeV is shown
in Fig. 7. In the figure the experimental data [23, 24] and the curve [25] parametrized by
experimental input are also presented. The values of the phase shift at several momenta are
tabulated in Table I.

o (deg.) at m =0.140 GeV
7T

0F e ACM(A)
C R m  ACM(B)
S B + Losty p
A N Lat. (B=5.9) ]
10 :
15t -f
2t :
i
30 [ :
.35 E Loy .
0.00 0.08 0.16 0.24 0.32

p*(GeV?)

Figure 7: Scattering phase shift in the isospin I = 2 system obtained by CP-PACS Collabo-
ration [19]. The symbols, ACM(A) and ACM(B) [23] and Losty [24], are experimental data.
The solid curve [25] is parametrized by the experimental inputs.

p* [GeV?] /s [GeV] 6(p) [deg.]

0.02 040  -2.71(12)
0.07 0.60  -8.09(59)
0.14 080  -14.8(12)
0.23 1.00  -22.0(20)
0.34 120 -28.6(31)

Table I: Result for the isospin I = 2 77 scattering phase shift [19] at the physical pion mass
m,; = 0.14 GeV.
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5 Finite volume method

We describe here the finite volume method proposed by Liischer [5, 6] in the center
of mass system, and its extension proposed by Rummukainen and Gottlieb [8] in general
systems, where the total momentum of two particles is not constrained. The method relates
the scattering phase shift in the infinite volume to the two-particle energy on a finite volume
with periodic boundary condition. Liischer derived the method in the center of mass system
by the framework of all orders perturbation theory, and the two-particle wave function.
Rummukainen and Gottlieb extended the discussion of the wave function to general systems.
We explain both methods from the discussion of the wave function. Here we focus only on
a scattering of two spinless bosons, such as pions.

5.1 Center of mass system

At first Liischer derived the finite volume formula in quantum mechanics, and later he
discussed the extension of quantum field theory. We describe here the derivation only in
quantum mechanics, and a brief discussion of the extension.

5.1.1 Wave function in a box

We now consider that two particles are enclosed in a box of size L? with the periodic
boundary conditions, and the total momentum of two particles is zero. The states are
described by wave function ¢ (r) satisfying

Y(r+nL) =(r) forallne Z° (117)

Here r is the relative coordinate of two particles. The symmetry of the two spinless bosons
constrains the wave function as ¢(r) = ¢(—r). The Hamiltonian operator, defined by

H= —ivuvp_b,(r), Von(r) = 3 V(Jr 4+ nL)), (118)

neZz3

takes into account interactions “around the world” and thus respects the periodicity of the
wave functions. Here r = |r| and g = m/2 is the reduced mass of the system. The potential
V'(r) is assumed to be effective in a finite range R,

V(r) =0 for r > R, (119)

where L/2 > R.
Suppose now that ¢ (r) is such an eigenfunction with energy F = p?/2pu,

Hip(r) = Ei(r). (120)

The two-particle energy on the finite volume is shifted by O(1/L3) [5] due to the potential
V(r). This means that the momentum is also shifted by O(1/L3) from p?> = (2r/L)* - n
where n is an integer. In follows we denote the shifted momentum as p. In the exterior
region |r+nL| > R for all n € Z?, it is obvious that 1(r) is a periodic solution of the
Helmholtz equation

(V2 +p%)(r) = 0. (121)
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It is possible to expand #(r) by the spherical harmonics

l

e =§: S Vi (0, 6) (1), (122)

!
m=—I

where r = r(sin 6 cos ¢, sin f sin ¢, cosf). The expansion is rapidly convergent. Furthermore

the spherical components ¢, (r) are regular solutions of the radial Schrédinger equation

<d2 2d  U(1+2)
— 4=

—2 -
drz " rdr 2 TP - 2“Vp~b-(7")> Ui (1) = 0. (123)

Since there is only one such solution for fixed p and [, ¢y, (r
spherical Bessel function j;(pr) and Noeman function n;(pr)

Ui (1) = bim (1 (D)1 (Pr) + Bi(P)ru(pr)) (124)

for some constants by, and all R < r < L/2. In the limit pr — 0 these functions have the
asymptotic behaviors as

) is a linear combination of the
1

1

Ji(pr) m(@“)l (125)
n(pr) — (20— )(pr) " (126)
For real p > 0 and angular momentum [, the associated scattering phase shift ¢;(p) is given
by
5i(p)
tan o 127
l( ) Oél(p) ( )

We introduce an angular momentum cut-off A on the interaction. This is a reason that
in the actual calculation we cannot consider scattering phase shifts for all angular momenta.
A modified Hamiltonian is defined by

1
Hy = —ZW + QaVpp. (1), (128)
where
Qa(r Z Z Yim (0, @) him(r) (129)
=0 m=-1

denotes the projector on the space of wave functions with angular momenta [ < A. For all
[ < A, the scattering phases of the modified system are equal to those of the original system,
while for all [ > A the scattering phases are equal to zero.

5.1.2 Definition

We consider that a function (r) is called a singular periodic solution of the Helmholtz
equation if it has the following properties.

(i) The ¢(r) is a smooth function defined for all r # 0 (mod L), and satisfies the Helmholtz
equation eq.(121) for some value of 7.

LAll conventions regarding Legendre polynomials, spherical harmonics and spherical Bessel and Noeman
functions are as in Ref. [6]. Another convention of ., (r) is Yim(r) « a(D)ji(Br) — Bi(B)n(pr) with
no(pr) o< — cos(pr).
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(ii) The ¢ (r) is periodic with period L, in other words it satisfies eq.(117).
(iii)Near the origin, 1 (r) is bounded by a power of 1/r. That is

sup |ry(r)] < oo (130)
0<r<L/2
for some integer A.
For values of p in the set
2
p= i%|n| for some n € Z?, (131)

the Helmholtz equation has periodic plane wave solutions, and these tend to complicate the
situation. In these cases a different treatment is needed. We do not describe the treatment,
while it is discussed in Ref. [6].

From eq.(126) and the condition (iii), We can show that ¢(r) is written by

(r) = ZZ: Z:_l cimYim (0, 9)9™ ' ru(pr) + 1) (x), (132)

where the remainder 1/3(1') is a smooth solution of the Helmholtz equation in an open neigh-
borhood of the origin r = 0.

5.1.3 General solution

Liischer found that a solution of the Helmholtz equation on the finite periodic box L3 is
given by the Green function

G(r;p°) =LY 55—, 133
7)== 17 Y (133)

where the summation is carried out in k = (27/L) - n for some n € Z3. The Green function
is obviously periodic, and it has the property

(V> +p°)G(r;p*) = — > 6(r+nl). (134)

neZz3

To determine the singularity of G(r;p?) at the origin explicitly, first note that

4
(V2 +P*)no(pr) = ——6(x). (135)
Using eq.(134) the Green function is written by
G(r;p%) = ﬁno(ﬁr) + regular part of a function. (136)

47

Further singular solutions can be generated from the Green function by differentiating
with respect to r. This can be achieved by introducing the harmonic polynomials

Vin(r) = 1'Yin (0, ) (137)

and defining
G (1;7%) = Vi (V)G(r; 77). (138)
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It is trivial that these functions are singular periodic solutions of the Helmholtz equation of
degree [.
We determine their singularities precisely. The crucial identity is

Vim(V)no(0r) = (—D)'Yim (0, ¢)ru(pr), (139)

which is described in appendix B of Ref. [6]. From eq.(136) we find that the singular part
can be expressed by the spherical Noeman function n;(pr). The regular part is written by
a summation of the spherical Bessel function j;(pr), because j;(pr) is regular at the origin.
We then conclude that

Glm(“;ﬁ2>2(2—%”1{W9,¢>m@r>+i > Mlm,ymfmw,as)jlf(z—m}. (140)

U'=0m'==1'

We need the explicit expression of the matrix M,,, - to obtain the scattering phase.
To this end it is useful to start with the simplest case,

l

) = Lo+ 3 S gunYin (0. 8)ii(pr). (141)

4w [=0 m=—1

The simple relation between the coefficients g;,, and the spherical zeta function Z,,(s;7),
which is discussed in appendix D of Ref. [6], is given by

'l

Jim — 7'('L_l/2 Zlm(l TL) (142)
where
Zim(s;7) Z Vim(n)(n* — 1), (143)
neZz3

and p?> = (L/2m)? -m. The calculation method of Z,,(1;7) at [ = 0 is explained in ap-
pendix C.1.

To obtain the expansion in the spherical harmonics of Gy, (r;P?), we apply differential
operator YV, (V) to the series eq.(141). The action of this operator on the singular term is
given by eq.(139). The corresponding identity for the regular terms reads

—l J+l !

ylm( ) (9 ¢)]J (p?“ \/_ Z_ Z Clm NER U'm Y’ m' (97 ¢)jl' (ﬁ?”), (144)

where the tensor C),, .., is related to the Wigner 3j-symbols through

m

Comjsiim' = (_1)m' i+l \/(21 +1)(25+ D)2 +1)

150 1l
X(OOO)(msm,) (145)

The Wigner 3j-symbols are related to the Clebsch-Gordan coefficients (Im, js|l' —m') as

m s m

( A ) = (=0 1) 2 (m, sl — m)). (146)
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The proof of these formulae is given in appendix B of Ref. [6]. We collect all contributions
and obtain the final result

1 l+l J
3/2 Z Z ]-1-1 /2 ]5 1 n)Clm,js,l'm" (147)

j=ll— I |5——]

Mlm,l'm'

5.1.4 Matching of wave function and Green function

The expansion of the energy eigenfunction ¢ (r) with degree A is written by

A l

S V(0 Dncn(B)yF) 4SS Vi oGy Fr).  (148)

[=0 m=—I 1=0 m=—1

On the other hand, ¥(r) is expanded by the spherical component of the Green function
Gim(r;P?) given by eq.(140) as

A l
=3 UmGim(r; D) (149)
=0 m=—1

with arbitrary coefficient vy,,. Using the explicit expression of Gy, (r;p?) given in eq.(140),
we obtain the following equations

3 A ! 1)! —l,+1
blmal(p) = Z Z — P Ml'm',lm (150)
'=0m' =—1
1 [
blmﬁl(z_’) - Ulm(47r) 2_717 (151)

where we use the identity M, .- = M/ .. 'The second equation can be used to eliminate
Um- After that one is left with a homogeneous linear system for the coefficients b,. Since
the number of equations is equal to the number of unknowns, a non-zero solution exists if
and only if the associated determinant vanishes. This will happen for a discrete set of values
of P, corresponding to the eigenvalues of Hy,.

Let Ha be the space of complex vectors v with components vy,. The matrix M, .-

can be regarded as a linear operator M in H,. Two further operators A and B may be
defined through

[Av]lm - al(z_))'ulma [Bv]lm = Bl(p)vlma (152)
and from these one obtains the matrix
=(A+iB)/(A—iB). (153)

The condition for the existence of a non-zero solution of the linear equations eqs.(150)
and (151) can now be written in the closed form

det[A — BM] = 0. (154)
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The determinant det[(A —iB)(M —i)] is well defined and non-zero, because M is hermitian

and because the eigenvalues of A —iB do not vanish. It is clear then that eq.(154) may be
divided by the factor without affecting the set of solutions,

—i2det[A — BM] = det[(A+iB)(M —i) — (A —iB)(M +1i)] (155)

= det[(A —iB)(M — i)]det[e** — U], (156)

where U = (M +14)/(M —i). We thus show that eq.(154) is equivalent to

det[e*” — U] = 0. (157)

5.1.5 Finite volume formula in A representation

In follows we focus on states in A representation. The states correspond to S-wave
states in the continuum, ignoring effects from states with angular momentum [ > 4. For

A < 4 eq.(157) reduces to
2iso _ Moo0 +1

e = —————— 158
Moo,oo —1 ( )

where )
Moo,00 = oy —75Z00(1;7), (159)

which is obtained from eq.(147). This formula is rewritten by

3/2\/_

tanég( ) ZOO(]_ n)

(160)

which is the finite volume formula for S-wave [ = 0 in the center of mass system.

5.1.6 Large-L expansion

The previous works for the S-wave scattering lengths [10, 11, 12, 13, 14, 15, 17] and
scattering phase shift [19] employed the expansion of eq.(160) by a power series of 1/L. We
show the expansion in this section.

In general the solutions of eq.(160) satisfy

L—oo 9 L—oo 2m\ 2 3
72 04 0(1/L), or P2 (f) n+O0(1/1%), (161)
where n is some integer. We expand the zeta function Zy(1;7) in eq.(160) around 7 = n.
To expand the zeta function, we define the subtracted zeta function through
758 (s;7m) = lim {\/ 200 (s;7) — vp(n — ﬁ)_s}, (162)

n—n

where v, = 37,0, ». Using this function, the zeta function is denoted as

V 47TZ00(1,W) ==
n j—

o0 (1;7). (163)
Since Z34(1;m) is not singular at @ = n, we can expand it as,

Z3(m) =S (m—n)' Z5 (1 + 1;n). (164)
=0
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Now it is obvious from eq.(160) that
n—-mn=t (l/n +(n =71 Z5(1;n) — (n —7)2Z580(2;m) + - - ) ; (165)

where the expansion parameter ¢ occurring here is defined by

t = {M} ‘ (166)
TLP ) p—onsryen

In order to solve the equation by a recursive procedure we obtain the final expression
7 =n—vat {1+ 225" (1n) + £ [ 235" (1;0)? — v Z3g"(2;m)| } + O(1/LY). (167)

In particular the equation in the n = 0 case was used in many works for the scattering
length. In this case the expansion parameter is given by t = ao/m L, where ay is the scattering
length, and eq.(167) becomes the relation of ay and the momentum p* = (27/L)% -7

Y

—2 2
D dmag 6
m  mL? (1 Cl L 02L2> O@1/L7%, (168)

where ¢; = Z§0(1;0) /7 and ¢ = (Z58°(1;0)% — Z54*(2;0))/72. The values of the coefficients
¢ and ¢y are known such that ¢; = —2.837297 and ¢, = 6.315183_[5]. In the actual calculat_ion
the left hand side is approximated by the energy shift AE = E — 2m =~ p?/m, where F is

the two-particle energy in the interacting case, given by E = 4(m? + p?).
5.1.7 Relativistic case

We note here the extension of eq.(160) toward quantum field theory briefly. In quantum
field theory Liischer derived the relation between the momentum in a finite volume and the
scattering amplitude in the framework of the Feynman diagram expansion [5]. The crucial
observation is that the effective Schrodinger equation can be derived, which reads

——v%/; /d% Un(r,r) = Ev(r), (169)

where the parameter E = p?/2u is related to the true energy E of the system through

E =2y/m? +p°. (170)

The effective potential Ug(r,r') is the Fourier transformation of the modified Bethe-Salpeter
(or two-particle irreducible) kernel Ug(k, k') introduced in Ref. [5]. It depends on E and
is a smooth function of the coordinates r and r’, decaying exponentially in all directions.
When the potential is rotationally invariant, one can pass to the radial effective Schrodinger
equation. The corresponding regular solution behaves exactly same as in quantum mechan-
ics, except that the large r form eq.(124) only holds up to exponentially small correction,
because the potential does not strictly vanish for r greater than some radius R.

If we assume that the potential vanishes, in the framework of the relativistic quantum
mechanics the derivation of the Helmholtz equation eq.(121) in the center of mass system
is not so difficult from the Klein-Gordon equation. This is described in Ref. [8] and also in
Sec. 5.2.1.
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5.2 General system

We consider general systems where two particles have any total momentum. We first
derive the Helmholtz equation from the Klein-Gordon equation in the center of mass system.
We then describe solutions of the Helmholtz equation and the finite volume formulae in the
general systems. We shall call the system with non-zero total momentum as the laboratory
system.

5.2.1 Lorentz transformation of wave function

Let us consider a two-particle wave function in the infinite volume. The state of the
system is described by the scalar wave function W(ry,75), where r; = (r?,r;) are the four-
dimensional Minkowski space-time coordinates of the i-th particle. The wave function trans-
forms in the Lorentz transformations as

U(ry, ) = U(ry,ry) = U(Ary, Ary), (171)

where r; = AMVTV denotes the Lorentz transformation of the four-vector r. It is convenient
to consider only the case 70 = rJ.
Let us first consider the free case. In this case the wave function satisfies the Klein-Gordon

equations,

(DipDi — m?)U(ry,12) =0, i=1,2, (172)
where p;, = —id/0r!. The above equations can be transformed with the change of variables
X =(ri+1)/2, r=r—re (173)

into the form

[4(pp* — m?) + P,P"U(X,r) = 0, (174)
P P"U(X,7r) = 0, (175)

where p = (p; — p2)/2, and P = Py + Py is the total four-momentum operator.
In the absent of external potentials, the total momentum is conserved even when the two-
particle interaction is turned on, so that we can write the wave function as an eigenfunction

of the total momentum P, .
U(X,7) = e PuX"(r). (176)

In the center of mass system the total momentum vanishes P = 0. We shall focus only
on the positive energy solution Py = E. From eq.(175) it follows that

Potp(r) =0, (177)

so that the wave function depends only on the time variable X° = ¢ and the relative sepa-
ration of the two particles r = r; — ry:

Uen(t,r) = e Flpon(r). (178)

From eqs.(174) and (178) we note that the wave function in the center of mass system
satisfies the Helmholtz equation

(V2 +p")¢eu(r) =0, (179)
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where p?> = E?/4—m?. Therefore we can derived the Helmholtz equation from the relativistic
formulation.

Let us now consider the situation in the laboratory system where P # 0. The transforma-
tion from the laboratory system to the center of mass system can be written as r* = AlrY,
where r is any four-vector and a quantity with (;) refers to the laboratory system. The
transformation is written by

rt o= y(rp+v ), (180)

r = Y(rp+vrd), (181)

where v = P/E} is the center of mass three-velocity in the laboratory system with PY = Ep,
and v = 1/v/1 —v? is the Lorentz boost factor. Here yr = ~yr| + r, where r| and r;
are components of r parallel and perpendicular to the velocity v: ry = (r-v)v/v? and
r, =r —r). Using the transformation eq.(171), the identity P, X} = P,X* and eq.(176),
the laboratory system wave function can be written as Wy (X, r,) = e FsXzepy (L), where

Ur(rl,rn) = om(y(ry +v 1), J(r, + vr})). (182)

In the center of mass system the wave function has the complicated coordinates. However,
we are interested in the case where both of the particles have equal time coordinate, i.e.
r? = 0. (More specifically, on the lattice all two-particle operators act on single spacelike
hyperplane.) Since from eq.(177) we know the wave function in the center of mass system
is independent of 79, the relation in eq.(182) becomes simple

YL(0,rr) = Yem(YrL). (183)
In the laboratory system the relation is transformed as
U (0,rp,t, X)) = e Felet®Xey, (0, r1) = e Flpon(Fry). (184)
The total energies in the two systems are related by E? = E? 4 P2

5.2.2 boundary condition of wave function

Let us now consider the laboratory system in a box of size L? with periodic boundary
conditions. Since in this discussion the time is not important, we take the time direction of
the box is infinite.

The wave function Wy, in the laboratory systems is periodic with respect to the position
of either of the particles

Uy (r,ry) = Uy (r; +nl,ry + mL) foralln,me 75 (185)

From the boundary condition and the form of the wave function given by eq.(184) we yield
the result
Yu(rr) = (=1)"¢p(r, +nL), (186)
where d = PL/2r and d,n € Z?. The periodicity of the wave function depends on the
direction and the value of d.
We can use eq.(183) to obtain the corresponding periodicity rule for the center of mass
wave function. For fixed vector d,

Yeu(r) = (=1)*™poym(r +vnL) for all n € Z°. (187)
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The energy E7, and the box size L determine the boost factor ¥ = d/\/(LEL/27r)2 —d2. We
shall call the functions obeying the rule eq.(187) d-periodic functions. The eq.(187) has an
simple interpretation: the center of mass system sees the laboratory system torus expanded
by the boost factor v to the direction of the total momentum, while the length scales to the
perpendicular directions are preserved.

5.2.3 Scattering interaction

In the center of mass system, the interaction has the same period as the wave function
but without the antiperiodicity

Vo (Itl) = >~ V(Ir +ynLj). (188)

neZz3

We assume that a potential V' (|r|) has a finite range
V(|r]) =0 for all |r+4nL| > R. (189)

We consider that the potential is expanded by v in the laboratory system, but if R exists in
center of mass system, there is the zero potential region in also the laboratory system. Then
the Klein-Gordon equations (172) hold when |r| > R, and in this region ¢ cy(r) satisfies the
Helmholtz equation eq.(179).

5.2.4 Singular d-periodic solutions

Our task is now to obtain solutions of the Helmholtz equation with d-periodic boundary
condition in the center of mass system, when the interaction turns on. The strategy is same
as in Sec. 5.1.3 — 5.1.4, expanding general solutions of the Helmholtz equation in terms of
the spherical harmonics and the Bessel and Noeman functions in the region R < |r| < L/2,
and extracting the relation between the scattering phase shift and the expansion coefficients.

In the following we shall call a function ¢(r) in the center of mass system a singular
d-periodic solution of the Helmholtz equation, when it satisfies the following conditions.

() The % (r) is a smooth function defined for all r # 0 (mod YnL, n € Z3), and it satisfies
the Helmholtz equation eq.(179)

(V2 +7")¢(r) =0, (190)
for some value of p > 0. Here p is the center of mass momentum given by
p>=E/4—m2, where E =E; — P2 (191)

We denote quantities in the interacting case with the overline.
(ii) The (r) obeys the d-periodicity rule

P(r) = (=1)*™(r + ynL) for all n € Z°. (192)
(iii) We also require that the function is bounded by a power of 1/|r| near the origin
A
i 11| < (193)

for some positive integer A which called the degree of ¢ (r).

35



In this discussion we also assume that the value of p is not singular,

2 Lp\®
P# \/%%W*l(n +d/2)| forallme Z° m= (2_10) . (194)
m

We can define the Green function

ik-r
_ e
Gd( ) =7 1L Z k2 _27 (195)
kelg
where the sum is over the momentum lattice
21 3
Ty — {k =5 (n+d/2) forallneZ } . (196)

We can show that the Green function satisfies the d-periodicity rule using
k-(r+9mL)=k-r+7d-m+27n-m for alln,m € Z°. (197)

The d-periodicity arises from the second term in the right hand side. The Green function
also satisfies the equation

(V+7)G(577) = = 3 (=1)*"9(r +7nL). (198)

neZz3

Thus, the Green function G4(r;p?) is an example of singular d-periodic solutions of the
Helmholtz equation. Further solutions can be obtained by differentiating G¢(r;p?) with
respect to r as well as eq.(138),

G (157°) = Vim (V)G (3 7°), (199)

where Y, (r) is defined by eq.(137). Since Y, (V) commutes with V2, the functions G§ (r; p?)
are also singular d-periodic solutions of the Helmholtz equation. As well as in Sec. 5.1.4 the

singular d-periodic solution of degree A is given by a linear combination of the functions
G (r;p?) with [ <A,

A [
= > umGi,(r;P). (200)
=0 m=—1

The expansion of G (r;p?) by the spherical Bessel and Noeman functions is straight-
forward with the same way in Sec. 5.1.3, and we obtain the form by changing G, (r; p?) —
G, (r;p°) and M, 0 — M mt €. (140). We need the explicit form of the matrix

./\/l;i /., to obtain the final formula The form is given by
m,l'm
4 ( I+l J
Mlm I'm' — Z Z ]+1 /2 1 n)Clm,js,l'm'a (201)
it s==3 "
where the tensor €y, ..y, is given by eq.(145). Here the generalized spherical zeta function
d (1.7 ;
Z5,(1;m) is defined by
Zp(sim) = 3 Vi(r)(x* — 1), (202)
rePgy
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where 7 = (Lp/27)? and the summation is over the set
Py={r=9"(n+d/2) forallne 2%} (203)

We show the calculation of the zeta function Zg2 (s;7) in the [ = 0 case in appendix C.1.

5.2.5 Generalized finite volume formula in A] representation

As well as in Sec. 5.1.5 we restrict ourselves to the state in A] representation. For angular
momentum cut-off A = 0 we can obtain the simple finite volume formula

tan (50 (ﬁ)

L _omPVe <@>2. (204)

= = , n =
Modo,oo Z§(1;7) 2m
Substituting |d| = 0 and v = 1, eq.(204) is transformed to the relation in the center of mass

system eq.(160). For other value of A the formula becomes a complicated form depending
on the direction d. In |d| = 1, 2 systems the same form is obtained in the case of A <1 [8].
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6 Extraction of two-particle energy

In this section we introduce extraction methods of two-particle energies on lattice. In
Sec. 5 we show that the scattering phase shift in the infinite volume can be evaluated from
two-particle energy on a finite box. However, there is a problem to calculate such energies
from a two-particle four-point function. We first explain the problem considering in a simple
model, and later describe a method to solve it, which was proposed by Liischer and Wolff [7].
This method succeeded in many works with effective theory [7, 8, 9]. After that we present
another method with the maximum entropy method [61], and its application to O(4) ¢*
theory [62].

In this section the discussion is only in the center of mass system, although the extension
to general systems is straightforward.

6.1 Diagonalization method

6.1.1 Simple model and definition

Let us consider for simplicity a lattice theory of a single scalar field ¢(x), such as the
¢*-theory in two-dimension (¢, ). Suppose ¢ — —¢ is an unbroken symmetry of the system
and that the particle spectrum consists of a single massive particle, which has odd parity
under this symmetry, in other words the particle is spinless. The two-particle states live in
the sector with even parity, zero total momentum and energies 0 < E < 4m, where E is the
two-particle energy with the interaction.

We define the two-particle operator

Z Pz, 1) (y, 1) (205)

where p = (2r/L) - n and n is an integer. We now construct four-point function by the
operator as

Grm () = (0[€27, (£)2,,(0)]0) — (0[€2,(2)[0)(0]€2,,,(0)0). (206)
The general form of the spectral decomposition of Gy, (t) is, for t > 0,

Z Ve P Vi = (00| (0)]0), (207)

where [2,) is the interacting two-particle state with the energy F, > 0. We note that n, m
label the operator and « label the two-particle state. The label is ordered by the two-particle
levels. We assume for simplicity that £y < E; < --- < E4 < 4m and E, > 4m for a > A.

6.1.2 Difficulty of two-particle state on lattice

The traditional analysis method to extract the energy is a single exponential fit of the
correlation function with assuming the asymptotic behavior for large time. Since the only
ground state contribution in G, (t) remains in the large time region, G, (t) behaves in this
region as

Gm(t) = VEVome POt — o, (208)

for any n, m. The extraction of the contribution for the ground state o = 0 is easy. However,
we cannot obtain other state contributions by the single exponential analysis. This is the
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serious problem to calculate the scattering phase shift, because we need the two-particle
energy for also a # 0 states to evaluate the phase shift through the finite volume method as
shown in Sec. 5.

This is related to a problem of calculation of the weak matrix element for the K meson
non-leptonic decay K — wm. The problem is so called Maiani-Testa problem [27]. In the
calculation we need the amplitude

(K|Hw|Q,) at mg = F, = 2y/m2 + D2, (209)

where p, # 0. Here Hy is an effective weak interaction operator. From above argument
we cannot the on-shell amplitude by the single exponential analysis. So far to avoid the
problem various methods were proposed [29].

6.1.3 Diagonalization method

Since in the actual numerical simulation we cannot calculate all components of G,,,,(t),
we introduce a cut-off NV for the operator number, and for the state.

The matrix V,, is assumed to be linearly independent because we assume the two-particle
energy is not degenerate. The linear independence of the two-particle operator is guaranteed
when we choose 0 < n < L/2.

The eigenvalues A\, (t) of G(t) are ordered such that \g > A; > --- > A\4. Liischer and
Wolff discussed in Ref.[7] that A, (t) for all « = 0,---, A are given by

alt) = cae Bt [L+0(e 2B, 3> 1, (210)

where ¢, > 0 and AE, = min,,s|E, — Fs|. In principle it is possible to extract the
eigenvalues by the diagonalization of the matrix G(¢) at large time region, but G(t) cannot
usually be determined very accurately at this region. Hence it may not be possible to
guarantee that the error term in eq.(210) is negligible.

Let us now consider the generalized eigenvalue problem

G(t)w = A(t, t0)G (to)w, (211)

where t; is fixed and may be chosen as small. This problem is well posed if G(ty) is
non-singular. This is guaranteed in the case, because the two-particle operator ,(¢),
n=0,---,N, are linearly independent. Thus, there are N independent solutions to eq.(211),
and the corresponding eigenvalues A\, (¢, %), o = 0, - - -, A, are different from that in eq.(210).
More precisely we can expect that the coefficients are given by ¢, ~ ef=% and that the sub-
leading coefficients in eq.(210) are suppressed, so that the leading term in eq.(210) dominates
at moderately large values of .

To see this, by appropriate selection of the state |[Q,) with a = 0,---, N, the truncated
four-point function matrix

N _
Gom(t) = 3 Vo Vame™ e (212)
a=0

can be expected to approximate G(t) rather well. It is not difficult to show that the spectrum
of the eigenvalues N (¢,q) of the associated modified eigenvalue problem is exactly given by

X (t, 1) = e Paltt0) foralla=1,---, N. (213)
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The proof is given by rewriting eq.(211) in the truncated case as
Vw = A@) T\ (t, ) A(to) V, (214)

where we use G°(t) = VTA(t)V and A, (t) = e P, Thus, we obtain A2 (¢, ) = A(t)A(ty) L.
Now we consider full G(t). At least the larger eigenvalues (o = 0,-- -, N states) should not
be strongly affected by the lower eigenvalues (o > N states), and the larger ones are ap-
proximately equal to A% (%, ).

Finally we can extract the eigenvalues of G(t) to solve the eigenvalue problem

M(t, to)w = \t, to)w (215)

where M(t,tg) = G '%(to)G(t)G Y?(ty) and w' = G'?(t;)w with the eigenvector w in
eq.(211). The two-particle energies are possible to be obtained from A,(t,%y) by a single
exponential fit.

6.1.4 Extraction of spectral amplitude

It is useful for calculating physical quantities, e.g., K — nm weak matrix element, to
determine the spectral amplitude V,,. It is obtained from the equation

V = A2 (1) w TGY3(ty). (216)

We show the derivation of the equation briefly in the following.
The eigenvalue problem eq.(215) is rewritten by

X (to) A() X (to) = A(1), (217)

where X (to) = VG~2(to)w A'?(ty). When we assume that the two-particle is not degen-
erate, the following condition is derived as

X(ty) = 1. (218)

Thus we can obtain the equation eq.(216).

6.2 Maximum entropy method

In this section we show a method to extract two-particle energy using the maximum
entropy method [61] (MEM). The MEM can decompose states contributing to a correlation
function through the spectral function. This method has been applied to lattice QCD to
obtain the excited state mass [63], to study the properties of the spectral function in a finite
temperature [64], and to investigate the theta term [65]. Applications of the MEM to an
unstable particle system have been carried out by Allton et al. [66] in the three-dimensional
four-fermion model, and by us [62] in the four-dimension O(4) ¢* theory. We focus on the
later work here.

6.2.1 Spectral function

The spectral function is defined through a correlation function as
G(t) = (0]0"(1)0(0)[0) = /dwf(w)e’“’t, (219)
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where O is an operator, such as €, in eq.(206), and f(w) is the spectral function. In a finite
volume the energy states are discretized, so that the spectral function is written by

flw) = iﬂC&(w — Ea), Ca=1[(0]0(0)|0)[, (220)

where |O,) is a state has same quantum numbers with operator O, and F|, is its energy. In
the case O = Q,, the coefficient C,, = |V,,,|>. From f(w) we can extract the energy for each
state.

Furthermore if the system includes 0 — 77 decay, in other words the o particle has the
same quantum number with the 77 state, f(w) includes the contribution from the o state,
such as C,.

If one could reconstruct f(w) directly from G(t) using data at all ¢, information of various
states would be extracted from one correlation function. Since the number of data for
G(t) with a discrete set of time ¢ is much smaller than the number of degree of freedom
necessary for the reconstruction of f(w) in general, however, the standard x? fit is ill-posed
for this problem. In condensed matter physics, the reconstruction of the spectral function in
quantum Monte Carlo simulations has been attempted with the MEM[61]. The MEM can
numerically reconstruct the most probable spectral function, using the Bayes’s theorem in
probability theory, without any strong constraints on its form.

6.2.2 Results of decomposition

We show here the result of an exploring study for the MEM [62] in the four-dimensional
O(4) ¢* theory, which contains the pion and the o particle. For m, > 2m,, the o particle is
unstable and can decay to the I = 0 mr state. We decomposed the o and 77 states with the
zero momentum contributed to the pion four-point function, such as Gy in eq.(206), and o
correlation function. Numerical simulations were carried out for several spatial lattice sizes
in the range 10 — 283 to investigate the volume dependence of the spectral functions and
the energies.

The results of the spectral functions are shown in Fig. 8. We denote the spectral functions
extracted from the o correlation function and the pion four-point function as f,(w) and
frn(w), respectively. The sharp peaks are observed in both the spectral functions, which
can be identified as the 77 state at the first peak and the o state at the second peak. The
decrease of the peak height for the 77 state in f,(w) and for the o state in f,(w) agrees
with the perturbation theory [62].

The o mass m, and the 77 state energy F,, were obtained from the peak positions of
the spectral functions. The results are shown in Figs. 9 by circles. These energies were also
obtained by the diagonalization method for the comparisons. The results are plotted by
cross symbols in Fig. 9. These are consistent with those with the MEM, while the statistical
error with the diagonalization method is much smaller.

It is an advantage of MEM that only the single particle correlation function of the unstable
particle is needed to analyze both the particle itself and the multi-particle decaying states.
Furthermore it works even when the dominant states in the correlation functions are not
known, but the diagonalization does not work in such case.

The isospin I = 2 S-wave 77 scattering system includes only two-pion states, however.
Since we know all states contributed to the pion four-point functions, in this thesis we employ
the diagonalization method.
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Figure 8: Spectral functions reconstructed from the o (left line) and 77 (right line) correla-
tion functions in O(4) ¢* theory [62]. First and second peaks correspond to 77 and o states,
respectively.
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Figure 9: Energies for o (top figure) and 77 (bottom figure) states with MEM and diago-
nalization in O(4) ¢* theory [62]. Closed and open circles are the results obtained from o
and 77 correlation functions, respectively. Cross symbols denote result with diagonalization
method.
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7 Calculation method

Following sections are based on our original works. In this section and next section we
describe the calculation of the isospin I = 2 S-wave 77 scattering phase shift, which is
the main work in this thesis. We first explain the outline of the actual analysis with the
finite volume methods, described in Sec. 5, and fix the notations. We then briefly describe
the calculation of the pion four-point functions, and the extraction of the two-pion energy
eigenvalues by the diagonalization method, discussed in Sec. 6.1. Finally the parameters for
the configuration [2] and for the calculation of the pion four-point function are given.

7.1 Finite volume method

We employ the finite volume method, described in Sec. 5, proposed by Liischer [5, 6] in
the center of mass system, and proposed by Rummukainen and Gottlieb [8] in the system
with the non-zero total momentum to evaluate the scattering phase shift. We explain the
methods used in the actual analysis here.

7.1.1 Center of mass system

In the center of mass system the energy eigenvalue of two-pion on a finite periodic box
L? without the two-pion interaction is given by,

E, =2\/m2+p2, p’=2r/L)*n, necZ (221)

In the interacting case the energy eigenvalue of the n-th state is given by,

B,=2/m2+7, .= @r/L)7m, n¢Z. (222)

Since the interaction shifts the two-pion energy on L3, @ is not an integer. The momentum
P, satisfies the relation eq.(160),

3/2 /=
tan d(p,) = M

 Zp(1;7m)’ (223)

where §(p,) is the phase shift in the infinite volume and Zyy(1;7) is the spherical zeta
function [5, 6] defined by

Zy(s;m) = L > (n*—m)". (224)

47 nez?

The calculation method of Zy,(s;7) is explained in appendix C.1.

7.1.2 Laboratory system

Here let us consider a two-pion system in a periodic box L3, where two pions have
momenta p; and ps with the non-zero total momentum P = p; + ps # 0. We shall call the
system as the laboratory system in following.

In the laboratory system the energy eigenvalue for the n-th energy state E, without the
interaction is given by

Eyp = \/m2 +pi, +/m2 + D}, (225)
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where p; ,, is the i-th pion momentum of the n-th energy state. These momenta take discrete
values due to a finite volume with the periodic boundary condition. The two-pion interaction
shifts E, 1 to E, 1 also in this system, where F, 1 is the interacting two-pion energy in the
laboratory system. The quantity in the laboratory system can be transformed to the one in
the center of mass system by the Lorentz transformation, for example,

E,=v"'E,L, (226)

where E, is the center of mass two-pion energy and the Lorentz boost factor v is given by
v = Fn,L/\/EZ,L — P2. It is noted that the total momentum P is conserved even when the

interaction exists. The center of mass momentum p, is determined from E,, as
~F “JA—m2 = 2r/L)Y7m, mé¢Z (227)
The momentum p,, is related to the phase shift in the infinite volume through the relation

eq.(204),

R IERVaT
Zsh(1;m)’
where the spherical zeta function Z§ (1;7) [8] in the system with d = (L/27)P is given by

r°—m)"°, 229
\/E rgf;d ( )
with P, = {r = ¥ '(n +d/2),n € Z*}. Here ¥"'n = 77'n; + n, where n and n,
are components of n parallel and perpendicular to the direction d: n; = (n-d)d/d* and
n; = n—n;. The calculation of Z§(s;7) is also given in appendix C.1. Therefore the
phase shift is extracted by the two-pion energy eigenvalue calculated from lattice simulation
in both the center of mass and laboratory systems.

tan 6(p,) = (228)

Z(‘)io(s )

7.2 Extraction of two-pion energy eigenvalue

We describe here the actual calculations for the pion four-point function matrix and the
diagonalization method which is discussed in Sec. 6.

In this work we consider 77" scattering, which is one of the I = 2 scattering. The 7+
operator is defined by

m(x,t) = —d(x,t)ysu(x,t), (230)
and the pion operator with the momentum p is given by
m(p,t) = m(x,t)e®>. (231)

X

To extract the two-pion energy eigenvalues we construct the pion four-point function
matrix in each system with P

Gl () = (0 ()2 () [0), (232)

nm

where tg is the source point. We omit labels of the systems, such as P. The Q,(t) is a
two-pion operator at time ¢, which is coupled to the n-th energy eigenstate, and is given by,

=N Z 7(p1,t)7 (P, )6<E}f—\/m%+p%—\/m%+p%>5<P—p1—pz>, (233)

” P1,P2
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where pi, p2 are the lattice momenta. Here the number N, is the degeneracy of the n-th

energy as,
No= > 5<E5—\/m%JrP%—\/mi+p3>5<P—p1—p2>.

P1,P2

(234)

The only states with the same total momentum P are coupled to the operator €, () which
belongs to the system with P. This is the reason that we do not write a label for the system
explicitly in G, (t) and €2, (t). In all systems the operator numbers increase with the energy
levels.

In Table IT we compile the degeneracy N, for three systems as, the center of mass system
and two laboratory systems with the total momentum as |(L/27)P| = |d| = 1 and 2, so
that we denote them as CM, L1 and L2 systems, respectively. For concreteness, we choose
the direction of the non-zero total momentum in the L1 and L2 systems as d = (1,0, 0) and
(1,1,0). To calculate the n-th two-pion energy E¥ in eqs.(233) and (234), we use a typical
momentum set pi ,, P2, Which is also tabulated in Table II.

The summation over the momenta py, po in the operators enhances their coupling to the
states which belong to the A" representation of the cubic (|d| = 0), tetragonal (|d| = 1)
and orthorhombic (|d| = 2) groups. The states in A* representation correspond to S-wave
states in the continuum, ignoring the effects from states with angular momentum [ > 4 in
the CM system and [ > 2 in both the 1.1 and L2 systems.

For the source we use the different operator Q(V2)(¢) as

Ngr
A1) = <= > 7D 1, )1 (D 1), (235)
R j=1
where .
"0.0.6) = 45 [T 0] [Satvng] (236)

Here pi ,, p3, are the n-th energy state momenta. Since we cannot carry out summations
of the momenta in the operator Q("#)(¢), we choose a typical momentum set in the actual

CMP=(0,0,00) n=0 n=1 n=2 n=23
Pin (0,0,0) (1,0,0) (LLO) (LLD
P2y (0,0,0) (-1,0,0) (-1-1,0) (-1,-1,-1)
N, 1 6 12 8

LI1P=(1,0,0) n =20 n=1 n=2 n=3
D1 (1,0,0) (L1L,0) (20,0 (L1L1
P2 (0,0,0) (0-1,0) (-1,0,0) (0,-1,-1)
N, 2 8 2 8

2P =(1,1,0) n=2>0 n=1 n=2 n=23
Pin (1,1,0) (1,0,0) (1,1,1) (1,0,1)
P2 (0,0,0) (0,1,0) (0,0-1) (0,1,-1)
N, 2 2 1 1

Table II: Typical momentum assignment. Here p;, is the i-th pion momentum of the n
state in 27/L unit, P is the total momentum of two pions P = p;, + p2,, and N, is the

degeneracy of the n-th state.
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Figure 10: Contributions for the isospin I = 2 7w four-point function. The left and right
figures are direct (D) and cross (C) diagrams, respectively. Straight line denotes sink time,
and wave line denotes source time.

calculation, for example, which is tabulated in Table II. The function §;(x) is complex
random numbers in the three-dimensional space and has the property

lim — Z €l(x = L3,y (237)
The pion propagator is also calculated with the function of the random number

1 M=

GE(0) = 5 3 Ol (P O7(-Pas . E)10) (28)

When the numbers of Ng or the gauge configurations are large, the pion four-point function
matrix GV (t) and the pion propagator GTVr)(t) are expected to become

Gt (t) = Gum(t) = (0]2(8)Qu(ts)]0), (239)
GR(t) = Gr(t) = (07 (Pu, )T (~Pn, 5)[0). (240)

In particular Gy, (t) is symmetric under the exchange of the sink and the source indices
n < m. We fix N = 2 in all calculations and the number of the gauge configurations are
from 380 to 725.

In order to calculate the pion four-point function G(t), we evaluate two diagrams which
are the direct (D) and cross (C) diagrams as shown in Fig. 10. The G(t) is constructed by
the two diagram contributions G” and G¢ as

G(t) = Re[GP () — GC(1)]. (241)

The four-point function matrix is expanded by the energy eigenstate [€2,) as well as
eq.(207)
ZVT Vame P01 Vo = (04| (0)[0), (242)

where E, is the energy eigenvalues with the interaction, and [Q,) is coupled to only the
two-pion operator €2, (t) with the same P. Since the four-point functions are constructed
by a multi-exponential, it is difficult to extract the two-pion energy eigenvalues with a # 0.
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In order to extract the energy eigenvalues we employ the diagonalization method [7] of
the matrix M (¢, o) eq.(215) which is constructed by G(t) as,

M(t, to) = G(to) V2G(t)G(ty) Y2, (243)
where ¢, is a reference time. The eigenvalues of M(¢,t,) are given by
An(t, to) = e~ Fnlt=to), (244)

We then can obtain the two-pion energy eigenvalue by a single exponential fit.

The pion four-point function matrix is calculated as assuming systems contained only
the two-pion states and ignoring an effect of the four-pion states. Our analysis loses its
validity when the two-pion energy is over the inelastic limit, e.g. in the center of mass case
E, > 4m,.

Since we cannot calculate all components of the four-point function matrix, a cut-off
of the state N is introduced in the actual calculation. We expect that the components of
Gpm(t) for n,m < k are dominate for the k-th eigenvalue A () in the large ¢ and ¢, region,
while the components n,m > k are less important. We set ¢ and ¢, are large and check the
dependence of the cut-off N by varying N later.

7.3 Parameters

We calculate the scattering phase shift on the gauge configuration, previously generated
with two flavors dynamical quarks effect for the study of the light hadron spectrum [2].
The configuration generation was carried out with an renormalization group improved gauge
action [56] described in Sec. 3.3.1 and clover quark action [57] described in Sec. 3.3.2 with a
tadpole improved clover coefficient csw. The tadpole improvement is explained in Sec. 3.3.3.
In this simulation a mean-field improved clover coefficient cgyy = (P)~3/* was adopted, where
the plaquette value P =1 — 0.84123! is determined by one-loop perturbation theory [56].

The parameters for the configuration generation and the number of configurations are
summarized in Table III. The configuration generation was performed at 5 = 1.80,1.95 and
2.10, corresponding to the lattice spacings a = 0.2150(22), 0.1555(17) and 0.1076(13) fm
respectively, which are determined by m, at the physical quark mass. The periodic boundary
condition is imposed in both the spatial and time directions. The lattice size L? x T at each
[ is 123 x 24, 163 x 32 and 243 x 48, where the spatial size corresponds to about 2.5 fm3.
Since the volume dependence was not seen in the scattering length calculated on the physical
volume about 2.4, 3.2 and 4.8 fm with quenched approximation in Ref. [19], we assume that
the dependence of the phase shift is also small in this full QCD case with the volume 2.5 fm.

In the calculation of the quark propagator we employ the same clover action as the
configuration generation. The quark propagators are calculated with the periodic boundary
condition in the spatial direction and the Dirichlet boundary condition in the temporal
direction. For the chiral extrapolation we choose four hopping parameters x, corresponding
to m./m, = 0.6-0.8 in each lattice spacing. The source operator QN%)(t) is set at ts = 4
(8 = 1.80,1.95) and tg = 6 (5 = 2.10) to reduce effects from the temporal boundary. To
avoid effects from excited states the reference time for the diagonalization is fixed large value
as to = 10,12 and 16 at § = 1.80,1.95 and 2.10, respectively.

We estimate the errors of the four-point functions and pion propagators by the jackknife
method. In our study of the light hadron spectrum [2], we have shown that the separation
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Figure 11: Center of mass energy of two-pion calculated for each system, which is evaluated
with m,/m, ~ 0.6 at § = 2.10 without the interaction. We measure the scattering phase
shifts at the momentum state with the closed symbols. The open symbols are used only to
examine the effect of the state cut-off for the diagonalization.

of 50 trajectories covers all the autocorrelations of the configuration, so that in the present
analysis we also use bins of 50 trajectories in the jackknife method. In the actual analysis
bin size of 5 or 10 (5 = 2.10 at the lightest quark mass) measurements are employed, because
we skip 10 or 5 trajectories between two measurements.

At = 1.80 for the lightest quark mass to reduce the statistical error we calculate extra
measurements with the same configurations where the temporal origin is shifted to ¢t = T'/2.
At this parameter we use the averaged value of the normal and extra measurements for the
analysis.

To extract the phase shift in various momenta we choose the center of mass system and
two laboratory systems denoted as CM, L1 and L2, respectively. These systems are described
in Sec. 7.2. The total momentum P and the momentum set for the pion four-point function
are summarized in Table III. The cut-off of the state N for the pion four-point function is
chosen as N = 2 in the CM system and N = 3 in the two laboratory systems.

In Fig. 11 we display the center of mass energy without the interaction for the smallest
pion mass at 5 = 2.10 in the three systems. As shown in the figure we know that the energies
of the n = 2 and n = 3 states in both the laboratory systems are very close. This is the
reason that we choose the cut-off N = 3 in both the laboratory systems. It is noted that
in the L2 system the energies for the ground and first excited states are also close. In all
systems the phase shift is obtained from the ground and first excited states, and other higher
states are used to investigate the effects of V.

48



B L*xT cgw a [fm] La [fm] K mps/my  Nraj Nskip  Nueas
180 12°x24 1.60 0.2150(22) 2.580(26) 0.1409 0.807(1) 6530 10 _ 645

0.1430 0.753(1) 5240 10 520
0.1445 0.694(2) 7350 10 725
0.1464 0.547(4) 5250 10 405
1.95 16 x 32 1.53 0.1555(17) 2.489(27) 0.1375 0.804(1) 7000 10 595
0.1390  0.752(1) 7000 10 690
0.1400 0.690(1) 7000 10 685
0.1410 0.582(3) 5000 10 495
2.10 243 x 48 1.47 0.1076(13) 2.583(31) 0.1357 0.806(1) 4000 10 395
0.1367 0.755(2) 4000 10 390
0.1374 0.691(3) 4000 10 380
0.1382 0.576(3) 4000 5 640

Table III: Simulation parameters. The dagger symbol denotes that we average two measure-
ments on the same configuration, where one is calculated with the temporal origin located
at t = 0 and the other located at t = T/2. The lattice spacing a is fixed by the vector
meson mass at the physical pion mass and m, = 768.4 MeV. The Nry,j is the number of all
trajectories, Nskip is the number of separation between two measurements and Nyes is the
number of the configurations used the measurements.

49



8 Results

In this section we present the result of the isospin I = 2 S-wave 77 scattering phase shift
calculated by the finite volume and the diagonalization methods, which are described the
above sections. We examine the effect of the diagonalization by comparing the pion four-
point functions before and after the diagonalization. We present the result of the scattering
length, which is defined by the phase shift at the threshold, and that of the phase shift at
each lattice spacing and in the continuum limit.

8.1 Effect of diagonalization

In Fig. 12 we display the several pion four-point functions defined by eq.(232) in each
system. The figure shows the data at 5 = 2.10 for m,/m, ~ 0.6. The open symbols refer to
the data of a negative value. In all systems the off-diagonal parts G,,,(t) (n # m) are not
negligible comparing with the diagonal parts Gy, (t) (n = m). The pion four-point functions
in the CM and L1 systems have similar behaviors. In the L2 system Gog(t) is almost overlaid
by G11(t) for all ¢, because these energies are very close. The figure also shows that the off-
diagonal parts are symmetric under the exchange of the indices in each system, so that we
employ the averaged value of the symmetric four-point functions for the diagonalization.

In order to investigate the effect of the diagonalization we define the two ratios R, (t)
and D, (t) in each system as follows

Dult) = Mltto) i;gg;) (246)

where G7,(t) is the i-th pion propagator for the n-th energy state, and A,(t,%) is the n-
th eigenvalue obtained by the diagonalization of the matrix M (t,ty) given in eq.(243). If
the pion four-point function is constructed by a single exponential function, the ratio R, (¢)
behaves as

Ry (1) = A-exp(=AE, (t — ts)), (247)

where A is a constant and AE. = E. — EP, E, and EP are the two-pion energy with
and without the interaction in the system with the total momentum P, respectively. If the
cut-off of the state for the diagonalization is sufficiently large, the ratio D, (¢) behaves as

Dy (1) = exp(—AE, (t — ty)). (248)

In these cases we expect to extract the n-th energy shift AEE from the ratios R, (t) and
D, (t) by a single exponential fit.

First we focus on the results in the CM system. For the ground state n = 0 the ratios
Ry(t) and Dy(t) at all g for all m,/m, are presented in Fig. 13. In the following figures the
ratio D, (t) is normalized by D, (ts) for comparing with R, (t). The cut-off of the state N for
the diagonalization is chosen as N = 2. The diagonalization does not affect the result of the
ground state, so that we can extract the two-pion energy shift without the diagonalization.
We also check that the result is independent of the choice of N =1 and 2.
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In contrast to the case of the ground state the diagonalization is very effective for the
first excited state n = 1 as shown in Fig. 14. The ratio R;(¢) rapidly increases at large ¢,
while the behavior cannot be shown in D;(¢). Hence we can obtain the two-pion energy shift
from D (t) by a single exponential fit. We confirm that the cut-off N dependence of D () is
negligible by comparing with N =1 and N = 2 in the figure. For the smaller pion mass the
diagonalization effect is larger, and D;(t) is noisier. We also observe that some data of D (t)
have strange behaviors at large £. We consider that the behavior is caused by the statistics,
and larger statistics are needed to reduce the behavior.

The behaviors of the ratios in the L1 system are similar to those in the CM system as
shown in Figs. 15 and 16 for the ground n = 0 and first excited n = 1 states, respectively.
For the ground state Ry(t) agrees with Dy(¢) with NV = 3. This indicates that the phase shift
with p # 0 can be extracted without the diagonalization from the calculation of the ground
state. On the other hand the diagonalization is effective for the first excited state . We also
show that the independence of the cut-off for D;(¢) in Fig. 16. Since D;(t) at § = 1.95 and
2.10 for m;/m, ~ 0.6 do not show good exponential behaviors, the phase shifts extracted
from these states are excluded from the final extrapolations.

Finally we focus on the L2 system. The results in this system are essentially different
from those in the other systems. The ratios R, (t) and D,,(¢) for the ground n = 0 and first
excited n = 1 states are shown in Figs. 17 and 18, respectively. Since the n = 0 and 1 states
have the similar energies in the non-interacting case as shown in Fig. 11, not only the result
of the n = 1 state but also that of the n = 0 state are affected by the diagonalization. In
each figure we also show that the results for both the states are unchanged with the cut-off
N =1 and 2. Since D,(t) for the n = 0, 1 states at 5 = 1.95 in m,/m, ~ 0.6 are not clear
exponential behavior, the results for these states are dropped from the final extrapolations.

In order to show the effect of the diagonalization in the L2 system clearly, we gather
the ratios R, (t) and D,(t) for the n = 0,1 states to Fig. 19. The data at § = 2.10 for
my/m, =~ 0.6 is shown in the figure. Before the diagonalization the ratios R, (¢) have almost
same shapes, while after the diagonalization the ratio D, (¢) for the n = 0 state increases
and the one for the n = 1 state decreases. The behavior can be understood by considering
a simple eigenvalue problem of two degenerate states. We consider that the two states
correspond to the n = 0, 1 states in the L2 system, and we approximate that both the states
have the same energy Ej in the non-interacting case. The Hamiltonian H is changed by the

two-pion interaction as,
Ey+ A B
H = 24
( 5 Ep+A > ! (249)

where H,,,,, = (,|H|Q,,) with the n-th non-interacting two-pion state |{2,), and A and J are
the interaction effects. The A corresponds to the slopes of R, (t) in Fig. 19. The eigenvalues
E of H are given by
E=FE+A+3. (250)
Therefore the energy eigenvalues split. The A + /3 correspond to the slopes of D, (t) for the
n = 0,1 states in the figure.
Tn the CM system we determine the two-pion energy E, from the energy shift AE.

extracted by a single exponential fit for D, (t) with E,, = AEE + E,, where E,, is the two-
pion energy in the free case. We evaluate the center of mass momentum p? using F,. In
the same manner, we can determine the two-pion energy F, j in the laboratory systems

from the energy shift AES extracted from D, (t) with E,, ; = AES + E, 1. Using E, 1, we
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evaluate the center of mass momentum as p> = (EiL — P?%)/4 — m2. We then can obtain
the phase shift §(p,) by substituting p? in the finite volume formulae eqs.(223) and (228).
The results for AF:, P2, 8(p,), and the fitting ranges in all systems for the n = 0, 1 states
are summarized in Appendix D. To extrapolate the phase shift from the calculating points
to the physical pion mass m, = 0.14 GeV, we define the ’scattering amplitude’ as,

A(mz,p) = (251)

tan 0(p) E
P2

The A(m,,p) is normalized by

%%A(mmi_?) = QoM (252)

where a is the scattering length. In the tables we also list the results of the amplitudes.
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Figure 12: Typical pion four-point function Gy, (t) at the center of mass system CM and
two laboratory systems L1 and L2 at g = 2.10 for m,/m, =~ 0.6. Filled symbols denote
positive values, while open symbols denote negative ones. Triangle symbol almost overlays
with the diamond one.
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8.2 Result for scattering length

Since in the CM system the momentum p? of the ground state is approximately zero,
the scattering length ag is evaluated from the scattering amplitude defined by eq.(251) for
the ground state in the CM system as A(m,,p) =~ agm,. We plot ag/m, as a function of
m? at each 8 in Fig. 20. These values are tabulated in Appendix D. In the figure the large
curvature exists at large 5. The curvature has not been observed clearly in the previous
quenched works [14, 19], as shown in Fig. 21. Due to the curvature it is not sufficient to
assume a linear function for the chiral extrapolation, so that we try to fit the data with
various fitting assumptions to extrapolate the scattering length to the physical pion mass
m,; = 0.14 GeV.

The prediction of chiral perturbation theory (ChPT) for the scattering length at one loop
order is given by Gasser and Leutwyler [32] as

ag 1 m2 m?
D= - B L) - Cplog E 2
167 F { 1672 F? l (k) = Crlog ,ﬂ”’ (253)

My

where F'is the pseudoscalar decay constant in the chiral limit, L(p) is a low energy constant
at a scale p, and C, = 7/2. The scale u is fixed at 1 GeV for simplicity. When we choose
F' as the value in the chiral limit calculated on lattice [2], which is tabulated in Table IV,
the fit with one free parameter L(u) gives much large x?/d.o.f. at all 3. We consider that
the failure of the fit is caused by the data with m, > 0.5 GeV and a finite lattice spacing
effect in our simulation, because eq.(253) is the prediction in a small pion mass region and
in the continuum limit. We also attempt to fit the data with the three parameters F, L(u)
and Cr. The results are summarized in Table V. While the values of C; differ from the
prediction of ChPT, Cp, = 7/2, the values of F are reasonably consistent with the measured
decay constants in the chiral limit at all 3.

We also note about the chirality breaking effect in the scattering length with Wilson type
quark action. The breaking effect causes a divergence in the chiral limit for the scattering
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length [67]. The chirality breaking effect depends on the lattice spacing and should vanish in
the continuum limit. We employ an improved Wilson quark action in this work and expect
that the effect is small at our simulation parameters. In order to check this expectation we
attempt to fit with

ap Ago

— =+ Ao + Ayym?. 254

= A+ A (254)
We tabulate the fit results in Table VI. The coefficient of the divergent term Ay increases as
B increases against our expectation. We consider that the effect of the chiral breaking is not
completely separated from the physical m2 dependence with the fitting form in this work, if
the effect exists. More detailed investigation of the effect is an important future work.

We fit the data by assuming a polynomial function in m?

a()/’I”I”L7r = AIO + 14207713r + Agomi. (255)

The fit result is also shown in Fig. 20 and summarized in Table VII. At 8 = 2.10 x?/d.o.f.

takes the large value. This means that higher order terms, such as A4mS, are needed to

obtain a more reasonable fit result at § = 2.10. Since we calculate the scattering length at

only the four points for the pion mass, such a fitting cannot be carried out in this work.
For the following analysis we define the quantity

. — <£>2 o (256)

My fr ) mg

where f!% is the pseudoscalar decay constant at each m, measured on lattice, and f, = 93
MeV. In Refs. [11, 12, 13] the authors found that the m, dependence for aj/m, is small.
In order to check the independence we plot ag/m7r in Fig. 22. The values are tabulated in
Appendix D denoted as A (m,,p)/m2. In the evaluation only the center value of fl* is
employed and its error is ignored, which are compiled in Table IV. We find that ag /my is
almost independent of m2. This implies the strong correlation between the scattering length
and decay constant measured on lattice. We carry out a constant fit for a{; /m. The results
are also plotted in the figure and compiled in Table VIII. The fit gives reasonable values of
x?/d.o.f. at all 8 in contrast to the polynomial fit eq.(255).

For the continuum extrapolation, we employ agm, at the physical pion mass for the
polynomial fit eq.(255) and a /m,. The fitting results are shown in Fig. 23 and tabulated in
Table IX. In the continuum limit the results are compared with the prediction of ChPT [25]:
apm, = —0.0444(10) denoted by the star symbol in the figure. We can show that the O(a)
effects are large in both the results, and the difference of them becomes to be smaller with
the lattice spacing decreasing. The O(a) effect of agm7r is opposite to that of agm, due to
the large O(a) effect of (flat)2.

As shown in Fig. 23 a{;rn?T in the continuum limit is closer to the prediction of ChPT
than the other. But we should note about the decay constant which is introduced to can-
cel out the m, dependence of the scattering length. From the values of f'¢ tabulated in
Table IV, the decay constant in the continuum limit does not seem to be consistent with
the experiment f, = 93 MeV. This causes the large uncertainty for the scattering length
evaluated from a{; in the continuum limit. One of the possible reasons for the inconsistency is
the renormalization factor of the axial vector current evaluated with perturbation theory, so
that a way of avoiding the uncertainty the determination of the renormalization factor with
non-perturbative method. Another way to obtain a reliable scattering length is calculation
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in closer to the physical pion mass. These are important future works. Here we present on
following two results estimated by ay and a{; as our results of scattering length.

Figure 20: I = 2 7 scattering length ag/m, GeV—2

polynomial form.
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3 =180 B=1.9 B =210
mz [GeV?]  fi*' [GeV]  m2 [GeV?]  fr' [GeV] mi [GeV?] fi' [GeV]
1.128(1)  0.2516(11) 1.287(1) 0.2190(16) 1.331(2)  0.1959(19)
0.814(1)  0.2279(14)  0.857(1)  0.1908(15)  0.896(1)  0.1739(21)
0.571(1)  0.1999(11)  0.573(1)  0.1650(14)  0.605(2)  0.1540(22)
0.238(1)  0.1613(15)  0.291(2)  0.1381(21)  0.291(1)  0.1214(19)
(mPhu$)2 0.1287(33)  (mPv#)2  0.1054(47)  (mP'5)2  0.0895(45)
chiral limit  0.1260(31) chiral limit 0.1032(47) chiral limit 0.0869(46)

Table IV: Pseudoscalar decay constant f!4 measured on lattice [2].

Here mPhs = 0.14 GeV.

B F[GeV] L) Cr X?/d.of. m; =0.14 [GeV]
180 0.135(20) 1.74(15) 0.70(77) _ 0.04 ~1.04(40)
1.95 0.1036(59) 1.199(72) 0.765(85)  1.55 ~1.76(20)
210 0.0009(24) 0.963(28) 0.702(29)  4.78 ~2.26(11)

Table V: Results of the fit for the scattering length ag/m, with eq.(253). The results at the
physical pion mass are also displayed.

B AOO Al() []_/GGVQ] A20 [1/GeV4] XZ/dOf
1.80 —0.033(89)  —0.78(29) 0.37(20) 0.09
1.95 —0.184(57) —0.63(18) 0.26(12) 0.53
210 —0.273(35)  —0.55(12) 0.169(83) 0.55

Table VI: Results of the fit for the scattering length ag/m, with a divergent form Agy/m?2 +
Ao + Aggm?.

B Al() []_/GGVZ] A20 [1/G€V4] A30 [I/Ge\/ﬁ] XQ/dOf mqy = 0.14 [GGV]
1.80 —1.01(29) 0.79(76) —0.20(46) 0.02 —0.99(28)
1.95  —1.57(14) 1.58(33) —0.54(18) 2.1 —1.54(13)
2.10  —1.975(82) 2.18(20) —0.82(11) 8.2 —1.932(78)

Table VII: Results of the polynomial fit for the scattering length ay/m,. The results at the
physical pion mass are also displayed.

B al/my [1/GeV?] y%/d.of.

1.80  —2.83(13) 0.27
1.95  —2.543(73) 0.92
210  —2.449(40) 0.54

Table VIIL: Results of a constant fit for aj/my; = (f'/f.)%ay/mx, where fl is the pseu-
doscalar decay constant at each m, measured on lattice, and f,; = 93 MeV.
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A

B [GeV]

x*/d.o.f.

agm, —0.0558(56)  0.0328(86)
alm, —0.0413(28) —0.0119(43)

0.02
0.65

Table IX: Results of the continuum extrapolations for the two scattering lengths as a function

A+ aB. Here f; =93 MeV.
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Figure 22: Scattering length af /m, = (fY/f:)2ao/m, with f, = 93 MeV at each § and

results of a constant fit (dashed lines).
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8.3 Result for scattering phase shift

In order to obtain the phase shift in the continuum limit at the physical pion mass
m; = 0.14 GeV, we extrapolate the scattering amplitude A(m,,p) defined by eq.(251). The
amplitude is plotted in Fig. 24 and tabulated in Appendix D. The CM,, in the top left figure
refers to the amplitude obtained from the n-th state in the CM system, and the L1,, and L2,
to those in each laboratory system. The ordering of the amplitude, CMy, L1y, L2y, - - -, CM;
and L1, in the other figures is same as that in the top left figure. Note that we have three
points between the two CM data. This shows the improvement of the momentum sampling
without changing the lattice size. The open symbols in the figures are excluded from the
following analysis, since D, (t) does not show a good exponential behavior as discussed in
Sec. 8.1.

The statistical error of the amplitude is larger for the larger momentum, except for the
L2 system. This is because in the L2 system the error of the energy shift AEE for the ground
state is larger than that for the first excited state as shown in Appendix D.

We extrapolate the amplitude A(m,D) to the physical pion mass by a polynomial fit of
m? and p? at fixed /3 as

A(my,P) = Aigm? + Aggm? + Azpm® + A p® + Aym2p® + Apymip®. (259)

Here the momentum independent terms correspond to the scattering length agm,. The fit
results are also displayed in Fig. 24 and Table X. We find a reasonable fit to the data for
both the CM and two laboratory systems. We also find that x?/d.o.f. at 8 = 2.10 is not so
large in contrast to the polynomial fit for the scattering length in Sec. 8.2.

In order to check the reliability of the result, we also analyze the amplitude normalized
by the pseudoscalar decay constant measured on lattice fl%* as

f7lrat
Ja

The values of A/(m,,p) are also presented in appendix D. For the calculation of A/ (m,,p)
we use fr = 93 MeV and only the center value of f!4 which is tabulated in Table IV. Since
as shown in Fig. 22 the normalization decreases the pion mass dependence of the scattering
length, we employ the fit function eq.(259) with Ayy = A3y = Ay = 0 for the extrapolation
of A/(m,,p). The results are tabulated in Table XI. We find that x?/d.o.f. is reasonable at
all 3, and the error of the parameter is reasonable small.

In order to obtain the amplitudes at several momenta p in the continuum limit, we
employ the following procedure: At first we get the amplitudes at the physical pion mass
A(p) = A(mP™s . p) and A/(p) for each P using the fit results, later the linear fit for the
lattice spacing a at fixed p is carried out. Then we obtain the scattering amplitudes in the
continuum limit at several momenta.

The extrapolations of both the amplitudes at several momenta are displayed in Fig. 25
for p> = 0, 0.06 and 0.26 GeV? which roughly correspond to the momenta obtained from
CMy, L1y and CM; respectively. The figures show the large O(a) effect at each momentum.
In the amplitudes we can show the tendency that the difference of A(p) and A/(p) is smaller
as going to the continuum limit, and they agree in the continuum limit. The result at p*> = 0
gives the scattering length agm,. In the continuum limit we obtain the scattering length
agmy = —0.0484(49) from A(p) and alm, = —0.0404(24) from Af(p). This values are

W) = ( ) (o). (260)
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slightly different from those in Sec. 8.2, since the result is affected by the amplitude at the
non-zero momentum part. For the comparison of the result from the amplitude with that
from the scattering length analysis, we also display the result obtained from the scattering
length analysis denoted by the open symbols in the figure of p* = 0.

In Fig. 26 the phase shift in the continuum limit is presented with dashed line, associated
by a band of error bars. We denote the phase shift obtained from A/ (p) as §/(p). The §/(p)
is defined by -

W) = 22D
D 2
where we assume f/ = f. =93 MeV. As discussed in Sec. 8.2, this assumption is not valid
in the decay constant, so that the result 6/(p) includes the uncertainty. The values of the
phase shift at several momenta are tabulated in Table XII. The result is compared to the
experimental results [23, 24], and the solid curve [25] estimated with the experimental input.
Both the results in the continuum limit agree with the experiments, albeit the errors of
our results are large. The large error comes from the chiral extrapolation with the data for
far from the physical pion mass, and the continuum extrapolation with the data including
the large O(a) effect. In order to obtain a more precise result it is important to calculate
the phase shift with a smaller pion mass for the chiral extrapolation, and near zero lattice
spacing for the continuum extrapolation.

(261)

A3 1.80 1.95 2.10
Ay [1/GeV?] —1.33(21) —1.52(12) —1.899(84)
Ago [1/GeV?]  1.62(53)  1.51(29)  2.00(20)
Ago [1/GeVE]  —0.69(31) —0.52(16) —0.73(11)
Agi [1/GeV?] —0.83(44) —1.18(47) —1.43(40)
An [ ]
[ ]

L [1/GeVY  1.4(12)  1.9(11)  2.48(95)
Ay [1/GeV®]  —0.46(83) —0.65(61) —1.04(52)
¥?/d.o.f. 0.90 0.64 1.33

Table X: Results of a polynomial fit of m2 and p? for the scattering amplitude defined by
A(my,p) = tand(p) - E/2p.

3 1.80 1.95 2.10
Al [1/GeV?] —2.84(10) —2.546(59) —2.438(38)
Al [1/GeV?] —2.78(59) —2.84(44)  —2.14(37)
Al [1/GeV?Y]  3.67(76)  3.36(49) 2.05(43)
x%/d.o.f. 0.77 0.50 0.75

Table XI: Results of the global fit for the normalized scattering amplitude defined by
Al (myg, p) = (flat/ f)?tan 6(p) - E/2p with a polynomial assumption. Here f, = 93 MeV.
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Figure 24: Measured scattering amplitudes defined by A(m,,p) = tand(p)- E/2p and fitting
lines. The CM,, refers to the amplitude obtained from the n-th state in the center of mass
system, and the L1, and L2, to those in the laboratory systems. In the figures the open
symbols are excluded from the global fit. The m,/m, increases from top to bottom, while
[ increases from left to right.
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Figure 25: Continuum extrapolations of the scattering amplitudes A(p) = tand(p) - E/2p
and A/ (p) = tan 6/ (p) - E//2p at several momenta for the physical pion mass m, = 0.14 GeV.
The results for the A7(p) are slightly shifted to smaller a. In the p? = 0 figure open symbols
are obtained from analysis of scattering length agm,, which are same as in Fig. 23. These
values are also slightly moved to larger a than the corresponding closed symbols.

P* [GeV?] /5 [GeV]

0(p) [deg.] ¢/(p) [deg.]

0.020 0.40
0.072 0.60
0.140 0.80
0.232 1.00

—350(64) —2.82(77)
~9.5(30)  —T7.4(34)

~16.9(64) —13.0(70)
—25(10)  —20(11)

Table XII: Scattering phase shifts 6(p) and 6/ (p) in the continuum limit at the physical pion
mass m, = 0.14 GeV.
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Figure 26: Scattering phase shifts obtained from the scattering amplitude A(p) = tand(p) -
E/2p (top figure) and from A/ (p) = tan 6/ (p) - E/2p (bottom figure) in the continuum limit
denoted by dashed line and a band of error bars. Symbols represent data of Aachen-Cern-
Munich Collaboration [23] and one of Losty et al. [24]. Solid line [25] is estimated with
experimental inputs.
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9 Two-pion wave function in box

In this section we present an exploring work for the two-pion wave function, which con-
tains various information about the scattering. The purposes of this work are the following
two points. First is to estimate the interaction range R, where the scattering effective po-
tential V'(r) vanishes at 7 > R. It is possible to extract the effective potential from the wave
function, so that we can estimate the interaction range R. Since the existence of R is an
important assumption in the finite volume method, this purpose is related to the reliability
check of results evaluated through this method. Second is to extract the scattering phase
shift from the wave function. Since the finite volume formulae are derived from the wave
function on a finite box L? in Sec. 5, it is also possible to obtain the phase shift from the
wave function directly. In this study we treat only the ground state of the I = 2 77 scatter-
ing in the center of mass system, so that we focus on the scattering length rather than the
scattering phase shift.

9.1 Definition
We define the two-pion wave function on a box L? with periodic boundary condition as,

w(r)= 3 (Oln(Rlr] +x)m(x)[), (262)

X,REO},

where R is elements of cubic group, and [Qg) is the two-pion ground state appeared in
eq.(207). The wave function is extracted from the pion four-point function G(r,t) given by,

G(r,t)= ) (0|7 (R[x] + x, t)m(x, t)W (t1)W (t5)]0), (263)

ReOh,x

where the wall source operator W (t) is given by W (t) = >, m(x,t), and ¢y, t are the source
points. In ¢ > ty, 15, only the ground state contribution remains, and we can obtain the
wave function as,

G(r,t) = C-ap(r) - e ¥, (264)

where E = 24/m2 + p?. We can obtain E from the time correlator
Glr) = Y 6(r.1). (265)

by a single exponential fit in the large time region ¢t > ty, 5.

9.2 Analysis method

When we obtain the wave function, it is straightforward to estimate the interaction range
R by the effective potential V' (r) given by

V*(r)
i(r)

where V(1) corresponds to 2uV (r) for the definition of eq.(119). In the r > R region the ef-
fective potential vanishes and the left hand side of eq.(266) becomes a constant corresponding

=V(r)—-p% r=|r|, (266)
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to —p®. We can estimate the interaction range R through the flat region of (V?¢(r))/v(r),
and also determine the momentum p? at the region.

According to finite volume method, explained in Sec. 5.1, the wave function is written
by the Green function eq.(133),

P(r) =C- Ek:k?i—z‘??’ (267)

where the summation is carried out in k = (27/L) - n for some n € Z3. Here we assume the

angular momentum cut-off A < 4, and in > R. Since the momentum can be determined

by a fit with two free parameters C' and p?, we can obtain the scattering phase shift by

substituting p* to the finite volume formula eq.(160). In this case we can also estimate the

interaction range from the deviation of the measured wave function ¢ (r) and the fit results
Y/ (r) as

[¢(r) — ¢/ (x)]

i)

The deviation approximately implies the existence of the effective potential, since in the non-

zero deviation region the measured wave function does not satisfy the Helmholtz equation
eq.(121).

(268)

9.3 Parameters

Our simulation is carried out with quenched approximation employing an renormalization
group improved gauge action [56], described in Sec. 3.3.1, with periodic boundary condition
for the spatial and temporal directions, and clover quark action [57], described in Sec. 3.3.2,
with a tadpole improved coefficient csw = (P)~%/* which is the same choice as in Sec. 7.3.
The bare coupling and the clover coefficient are chosen as f = 2.334 and cgw = 1.398
corresponding to a = 0.1632(16) fm, which is determined by m, at the physical pion mass.
We choose five point pion masses tabulated in Table XIII.

In order to examine the interaction range, simulations are carried out for three lattice
sizes, . = 16,20 and 24, with a fixed temporal size T' = 80. The number of configurations
and the physical volumes are tabulated in Table XIV.

The configurations are generated with the five-hit heat bath algorithm and the over-
relaxation algorithm mixed in the ratio of 1 : 4. The combination is called a sweep and
we skip 200 sweeps between measurements of the physical quantities. Using the Coulomb
gauge fixing configuration, the quark propagators are solved with periodic boundary condi-
tion imposed in the spatial direction and the Dirichlet boundary condition in the temporal
direction. The source operators are set at t; = 12 and ¢, = 13 to avoid effects from the
temporal boundary. In the actual calculation measurements of the wave function are carried
out at every four time steps from ¢t = 16. In the following analysis we focus on the result at
t = 52, which is sufficiently large to obtain the contribution of the two-pion ground state.

We estimate the statistical errors for the four-point function, the wave function and the
physical quantities by the one elimination jackknife method.

70



K 0.1340  0.1349  0.1358  0.1364  0.1369
m, |GeV] 0.8577(2) 0.7667(2) 0.6664(2) 0.5920(3) 0.5228(3)

Table XIII: Simulation parameter for quark mass used in the study for the isospin I = 2 77
scattering wave function, and corresponding pion masses.

L  La [fm]  Nyjeas
16 2.61 1200
20 3.26 1000
24 3.92 506

Table XIV: Simulation parameter used in the study for the isospin [ = 2 w7 scattering wave
function. Lattice size, corresponding physical volume, and number of configuration using
measurements Nyeas-

9.4 Result

9.4.1 Result for interaction range

In Fig. 27 we show the measured wave function in a function of r at L = 24 for m, = 0.52
GeV. The wave function is normalized by the value of ¢ (rg) at ro = 9. The figure shows
that the I = 2 nr interaction is a repulsive force since the wave function decreases near the
origin. This is consistent with the experiment.

The effective potential V' (r) is obtained from the derivative of ¢ (r) eq.(266). A typical
V(r) is shown in Fig. 28. The effective potential is also the repulsive force, and strongly
localized near the origin. In large r we can show the flat region, where V' (r) vanishes.

In order to investigate the interaction range precisely, we compile the effective potential
at all volumes in Fig. 29. The all effective potential vanishes in large r region, and the flat
region starts almost from r &~ 9. This means that in L = 16 the effective potential V' (r) does
not satisfy the assumption of the interaction range 0 < R < L/2, in other words, V (r) in
L = 16 may be transformed by a boundary effect. The height of the flat region corresponds
to the momentum —p?, of which volume dependence is generally given by p* = O(1/L3).
The p? decreases with the volume as expected.

Since we can show that the effective potential vanishes in the region r > 9 from Fig. 29,
the general solution of the Helmholtz equation eq.(267) is acceptable at this region. We try
to fit the wave function in » > 9 with the fitting assumption eq.(267). We use the large L
expansion form of the wave function. The calculation method of the form is described in
appendix C.2. The fit result at L = 24 for m, = 0.52 GeV is shown in Fig. 30. The fit
is very well, and also can be explained the branch appeared in the wave function. The all
results are tabulated in Table XV.

We estimate the interaction range from the deviation of the measured wave function ¢ (r)
and the fit result 1/ (r) eq.(268). In Fig. 31 we present the deviation at all volumes for all
pion masses. The figure shows that in large r region () is consistent with ¢/ (r) at r > 9.
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This means that the interaction range is estimated as I ~ 9, which is the consistent result
in the effective potential analysis. Therefore we conclude that the interaction range of the
isospin I = 2 77 scattering with p? ~ 0 is

R ~ 9 corresponding to Ra ~ 1.46 fm. (269)
11 — T T T T T
o /g“’_" |
yd
/
09 I £ -
08 I

P(r)/g(r,) at t=52

07t ]

06 | | 1

05

Figure 27: Wave functions ¢ (r) in the isospin I = 2 7 system, which is normalized by
P(ro) at 7y = 9. Data is obtained at L = 24 volume for the lightest pion mass m, = 0.52
GeV The time is fixed at ¢ = 52. The horizontal axis is relative length in lattice units.
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Figure 28: Effective potential of the isospin I = 2 77 scattering defined by eq.(266). Data
is obtained at L = 24 volume for the lightest pion mass m, = 0.52 GeV. The time is fixed
at t = 52. The horizontal axis is relative length in lattice units. Dotted line is a guide.
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Figure 29: Effective potential V(r) — p* in the isospin I = 2 77 scattering system at all
volumes. The horizontal axis is relative length in lattice units. The m, increases from top
to bottom, while the volume L decreases from left to right. Solid line is a guide.
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Figure 30: Fit result denoted by cross symbols. Measured wave function ¢(r) denoted by
dot symbol is at L = 24 for m, = 0.52 GeV, and normalized by ¢ (ry) at ry = 9. The
horizontal axis is relative length in lattice units.

L =24
my |GeV] 0.52 0.59 0.67 0.77 0.86
P2 [x1073 GeV?Z]  1.46(3)  1.52(3) 1.57(3) 1.58(3)  1.56(3)
C [x1072] ~1.47(3) —1.53(3) —1.58(3) —1.60(3) —1.58(3)
¥?/d.o.f 0.19 0.13 0.16 0.18 0.19
L =20
my |GeV] 0.52 0.59 0.67 0.77 0.86
P2 [x1073 GeV?Z]  2.67(8)  2.74(7) 2.77(7)  2.76(6)  2.73(6)
C [x1072] —1.84(6) —1.89(5) —1.91(4) —1.90(5) —1.88(6)
x?/d.o.f 0.09 0.08 0.07 0.12 0.20
L=16
My [GeV] 0.52 0.59 0.67 0.77 0.86
P2 [x107° GeVZ] 5.12(24) 5.27(21) 5.41(18) 5.55(16) 5.55(14)
C [x1072] —2.22(10) —2.28(9) —2.34(8) —2.38(7) —2.40(6)
x?/d.o.f 0.04 0.04 0.09 0.08 0.07

Table XV: Fit results of the isospin I = 2 7w wave function at all volumes. The time is fixed
at t = 52.
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Figure 31: Deviation of measured wave function 1 (r) and fit result 1/(r). The horizontal
axis is relative length in lattice units. The m, increases from top to bottom, while the
volume L decreases from left to right.
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9.4.2 Result for scattering length

Now we can determine the momentum p? with three analyses to obtain the scattering
length. The first is the fit result of the wave function eq.(267), the second is a constant fit of
V(r) — p? in the flat region r > 9, and the last is the traditional method with the two-pion
energy obtained from the time correlator. Using these momenta we determine the scattering
length at each volume. The results are shown in Fig. 32 and tabulated in Table XVI. The
consistency of the results obtained from the different analysis is very well at all volumes.
In the volumes L = 24, the two results obtained from the effective potential and the wave
function have smaller errors than that from the time correlator. This is the reason that the
number of points in the exterior region of the interaction range R is larger in a larger volume,
while it becomes more difficult to determine the momentum from the time correlator due to
the volume dependence of the momentum p? = O(1/L3). In contrast to the large volume
case, the result from the time correlator does not have so larger error than the other results
in the small volume L = 16.

From the results we cannot observe the clear volume dependence for the scattering length,
even in the L = 16 case. This is a surprising result because we conclude in the above section
that the assumption of the finite volume formula is not satisfied in the L = 16 case. At
present it is not understood well why the results are same. The investigation of this reason
is a future work.

L=24
m, [GeV] 0.52 0.59 0.67 0.77 0.86
W(r)  —1.575(35) —1.441(29) —1.315(25) —1.153(21) —1.019(18)
V(r)—p? —1.581(20) —1.433(17) —1.295(14) —1.130(12) —1.003(10)
G(t)  —1.595(60) —1.448(52) —1.301(45) —1.121(38) —0.978(34)
L =20
my [GeV] 0.52 0.59 0.67 0.77 0.86
w(r)  —1.622(48) —1.466(37) —1.313(29) —1.136(24) —1.005(21)
V(r)—p? —1.584(24) —1.420(18) —1.271(14) —1.107(11) —0.984(10)
G(t)  —1.597(44) —1.462(36) —1.323(32) —1.115(28) —1.015(25)
L=16
my [GeV] 0.52 0.59 0.67 0.77 0.86
o(r)  —1.551(67) —1.403(51) —1.271(39) —1.121(29) —1.005(23)
V(r)—p® —1525(51) —1.368(37) —1.226(28) —1.074(20) —0.963(16)
G(t)  —1.536(44) —1.413(36) —1.287(31) —1.135(27) —1.014(23)

Table XVI: Isospin I = 2 77 scattering length ag/m, GeV~2 obtained from three analyses,
using wave function t(r), effective potential V(r) — p* and time correlator G(t).
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Figure 32: Scattering lengths ag/m, GeV~2 of the isospin I = 2 77 system obtained from
wave function t(r), effective potential V (r) —p? and time correlator for all pion masses. The
results for ¢(r) and V(r) — p? are obtained at ¢ = 52.

9.4.3 Time dependence for results

In Fig. 33 we show the time dependence for the scattering length obtained from (r) and
V(r) —p* at all volumes. The time dependence is larger as the pion mass is smaller. In the
case of the lightest pion mass at L = 16 we cannot observe a clear plateau in the figure. We
consider that a constant fit is needed to determine the value of the scattering length from
the results in L = 16.

In the figure we also show that the large time, such as ¢t = 50, is needed to obtain the
plateau. This time ¢ is much larger than in the case of the effective pion mass and the
effective two-pion energy as shown in Fig. 34. The reason is not understood at present. It
is an important future work to investigate the time dependence.

77



°
. a/m [1/GeV’] at L=24 M a/m [1/GeV’] at L=20 . a/m [1/GeV’] at L=16
n
~08 : e N from Y(r) 1 08[® o @ from y(r) 1 -o08 Y 4 . from V(r)—p2 ]
n ° A L4 °
<«* '_.°°ooo.oooo <0...'0000000000 A -.'°'°0'.'°:’°
Ao L] e mgmma® Lo l...-...-... * g R NNy "
-12 | 14 -12 * 1 -12 4 * * * b
< A PP . ¢ - ‘AA - set ot A 0,,0A'A0¢¢¢++
‘. Aa,atr,a B Adaad 4 A #A*A4*444
«

s “* « 4 *«««,_16 Rl R ###*#***,_15, PR P +++++ ]
2422 a0 s a6 54 62 70 78 ‘14 22 30 38 46 54 62 70 78 ‘14 22 30 38 46 54 62 70 78
t t t

-0.4 -0.4 -0.4
M a/m [1/GeV’] at L=24 . a/m [1/GeV’] at L=20 . a/m [1/GeV’] at L=16
Y .. n
osfe 4o from V(r)-p* 08ty o from V(r)-p* 1 0sf, ® from y(r) ]
° ° o
Ao -...000000000 A‘-_°°000000.ooo A .'oooo.o’oo",
<« o ""a i agagmmnasnm L N e E . l...-..ttﬁ**
-2f AT e ] 2[4 . 1 o2 LI
A, LR R R . * . oy, A 0“0“§§¢+++
<
< Aaaata, 4. L . A «AAAA‘ Ak g t
-«
16 L « 4 « « 1 - 4« « « « 1 1 16l
16 AR R R 16 “ « «, 16 4***# +++ ++ i
2422 a0 s a6 54 62 70 78 ‘14 22 30 38 46 54 62 70 78 ‘14 22 30 3B 46 54 62 70 78

Figure 33: Time dependence of the isospin I = 2 77 scattering length ag/m, GeV 2 obtained
from wave function t(r) and effective potential V' (r) — p?, which are shown in the top and
bottom lines respectively. Circle, square, diamond, triangle up and triangle left denote the
data for m, = 0.52,0.59,0.67,0.77 and 0.86 GeV, respectively.
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Figure 34: Effective pion mass (left figure) and effective two-pion energy (right figure). Circle,
square, diamond, triangle up and triangle left denote the data for m, = 0.52,0.59, 0.67,0.77
and 0.86 GeV, respectively.
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10 Conclusion

In this thesis we have presented the calculation of the isospin I = 2 S-wave 77 scattering
phase shift in the continuum limit with two flavor dynamical quark effect. The phase shift
is evaluated with the finite volume method not only in the center of mass but also in two
non-rest systems. By considering the systems we have obtained energy states at various
momenta without changing the lattice size. We have demonstrated that the calculations of
the phase shift is possible even in full QCD for various lattice spacings and for non-zero total
momentum systems.

For the scattering length ao we have found that the O(a) effect is large, and the curvature
exists in ag/m, as a function of m2. Tt is hard to extrapolate the scattering length to the
physical pion mass due to the curvature. We have also found a correlation of the pion mass
dependence of the scattering length and the pseudoscalar decay constant measured on lattice.
We use the correlation to obtain a reliable result in the chiral extrapolation. In fact this
extrapolation is more reasonable than that directly with the scattering length. However,
in the continuum limit the decay constant used in this work does not seem to agree the
experiment. Therefore the result with the decay constant includes an uncertainty. We have
presented the two values as our results: agm, = —0.0558(56) and ajm, = —0.0413(28),
where a{; is obtained from the analysis with the decay constant.

In the scattering phase shift the large O(a) effect is also seen. In this analysis we find
that the difficulty of the chiral extrapolation does not occur. In order to check the reliability
we also made analysis with the decay constant. The difference of results becomes smaller
as the lattice spacing goes to zero, and they agree in the continuum limit. The results
of the phase shift in the continuum limit also agrees with the experimental results. We

have also evaluated the scattering length in the continuum limit agm, = —0.0484(49) and
almy = —0.0404(24) from each phase shift at the zero momentum.

The large errors of the result in the continuum limit arise from the chiral extrapolation
and the continuum extrapolation. To obtain precise results it is very important to calculate
with a smaller pion mass for the chiral extrapolation, and a smaller lattice spacing for the
continuum extrapolation. Other future works for the chiral extrapolation are investigations
of the curvature in the scattering length, the correlation of the scattering length and the
decay constant measured on lattice, and effects of chiral symmetry breaking of the quark
action.

A future extension of this work is calculation of other scattering processes. Since the
calculation method is independent of scattering processes, it is possible to apply the method
for scattering with baryons. A more interesting study is a resonance scattering phase shift.
From the point of calculation it is more difficult, but it is more important for understanding
hadron dynamics to investigate a decay of an unstable hadron.

Since in the finite volume method it is an assumption that the two-pion interaction range
is contained in a periodic box, the validity of the results may be lost if the physical volume
is smaller than the interaction range. To check the reliability of the results we also need to
examine the physical volume dependence of the phase shift or the interaction range directly
which we have not done in this work.

In order to examine the interaction range directly, we have made an exploring work for
the isospin [ = 2 77 wave function. We have determined the interaction range R in the
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scattering system from the wave function, and concluded that
Ra =~ 9, corresponding to R ~ 1.46 fm. (270)

This result leads to the condition that we need a physical volume larger than about 2.9 fm
to obtain a reliable scattering length through the finite volume method. However, in the
actual analysis we have obtained consistent results for the scattering length in the volume
range from 2.6 to 3.9 fm. It is a future work to understand the reason.

We have also attempted two new analyses to determine the scattering length. The results
for the scattering length obtained from the constant fit of V(r) — p? and the fit of the wave
function agree well with the result from the time correlator. Furthermore the errors for the
new analyses are smaller than that from the time correlator in the large volume. This is
an advantage to determine the precise scattering length on a large volume, since in such a
volume the momentum may not be determined clearly from the time correlator.

In order to check the reliability for the scattering phase shift, we need the calculation of
the wave function for the momentum excited states, and in the non-rest system. These are
important future problems.
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11 Future problems

In this section we present some future problems related to this thesis, which are cal-
culation of the unstable hadron decay p — 7, calculation of the weak matrix element of
the K — 7w decay, and extensions of the study of the two-pion wave function. These are
important to understand the hadron dynamics.

11.1 p — 7 decay

We describe here calculation of hadronic decay process. We focus on the p — 77 decay
which is an important example in QCD.

The p meson is a vector particle with the isospin I = 1. The Bose statistics constrains
the two-pion state to have the symmetry I +.J = even, J is total angular momentum. Hence
the two-pion state coupled to the p meson should have non-zero momentum, and at least
J =1 angular momentum. In an effective theory the vector coupling of the decay process is
given by

Gprr Py - TO'T, (271)

where ¢, is a coupling constant. This means that the p meson cannot decay unless the
momentum of the two-pion is non-zero. This is a different situation from the I = 0 and 2 77
scattering system, and o particle decay in ¢* theory, while the main strategy is same as the
calculation of the I = 2 77 scattering phase shift: At first we extract the energy eigenvalue
for the two-pion and p states by the diagonalization method, and later the phase shift is
evaluated through the finite volume method.

11.1.1 Center of mass system

First we consider in the center of mass system. We choose the two-pion operator €2, (¢)
with I =1and J =1 as

Q1) = X fix,y) (7 (6 0 (38) — 7 (x, O (v, ) P W, (o)
Y
where p2 = (27r/L)? - n, and the projection function is given by
fi(xa Y) = H for x 7é Y, and fi(Xa X) = 07 (273)

+

and the pion operators 7= are given by

7wt (x,t) = uysd(x,t), 7 (x,t) = dysu(x,t). (274)
Using the two-pion operator, the pion four-point functions is calculated in the same way as

the I = 2 w7 scattering case,

Grn(t) = (012512 (15)[0), (275)

=1

where tg is the source point. After the wick contraction one finds only two diagrams, the
direct diagram (D) and the rectangular diagram (R) shown in Fig. 35, are needed to calculate

Grm(1),
G(t) = 2Im[GP(t) — GE(1)]. (276)
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ls
(D) (R)

Figure 35: Diagrams contributed to the isospin I = 1 two-pion four-point function. The left
and right figures are direct (D) and rectangular (R) diagrams. Straight line denotes sink
time, and wave line denotes source time.

To evaluate the energy eigenvalues with the diagonalization method, we need to calculate
the p meson propagator and the p-m7 three-point function as

3

Gﬂ(t) = Z<O|pi(07t)pi(07tS)|0>7 (277)
Gom(t) = ;<0|pz-(0,t)%(ts)l0>, (278)

where the p meson operator is given by
pi(p,t) =Y pi(x,t)e®™. (279)

In order to extract the energy eigenvalues for the two-pion and p meson states, the
diagonalization is carried out with the correlation function matrix

Gu(t) -+ Gin(t) | Gip(?)
M =1 G0 - G| Gult) | (280)
Gpl(t) GpN(t) ‘ Gp(t)

where we assume the pion four-point function matrix G(¢) is N x N matrix. It is noted that
Goo(t) = 0 due to the constraint of the symmetry discussed above. We then can evaluate
the energy eigenvalues E.

In this case to obtain the resonance phase shift, we need to modify the finite volume
formula eq.(160) to the one in angular momentum [ = 1 case. But when we assume the
cut-off of angular momentum A < 3, the modification is not needed. Therefore the finite
volume formula of [ =1 in the center of mass system is given by

7.‘.3/2\/%
N ZOO(]-a ﬁ) ’

where p = m and p* = (27/L)* - 7.

tan 8, (p) (281)
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11.1.2 Laboratory system

We can obtain the resonance scattering phase shift by eq.(281), but in order to investigate
the detailed structure of the resonance phase shift we need results near the zero-momentum.
To do this, we need a calculation with a large lattice size in the center of mass system, it
is hard with present computing resources. By considering the laboratory system, however,
the center of mass momentum can be decreased than the case considering only the center of
mass system.

In this section we consider the system with the total momentum P = (0,0,27/L). The
calculation method is almost same as in Sec. 11.1.1, but several modifications are needed.

The [ = 1 representation in the tetragonal group is reduced into two irreducible represen-
tations A, and E~, and each eigenstate splits into two states with non-degenerate energies.
The state with angular momentum which is parallel to P belongs to the A, representation,
and the one with perpendicular to the £~ representation.

The two-pion operator is modified to belong to the laboratory system as

() = 3 fix, ) (7 (x, )y (39,8) — 77 (3, )7 (3, 1)) €PLotpaas) (289)
X7y
where the j-th pion momenta p;, satisfy py ,+p2,, = P, and the projection function f;(x,y)
is defined in eq.(273). In this case the operator Q22 (¢) belongs to the A, representation, and
Qi (t) for i = 1,2 belong to the E~ representation. The pion four-point functions in each
representation are given as same as eq.(275) by

2

Gra(t) = (I (1), (£5)[0), Gy (1) = D (016, (1), (25)[0) (283)

=1
The p meson propagators and the p-m7 three point functions are also given by
A5 Ay
Gp* (1) = <(2)|p3(P,t)p3(P,ts)l0>, G (t) = <2|p3(P,t)Q?n(ts)l0>,
Gy () = D_(0lpi(P, )pi(P. t5)[0), G () = D_(01pi(P, )2, (t5)[0).-

=1 i=1

(284)

Since the operators belonging to the A, representation decouple from eigenstates which
belong to the E~ representation, and vice versa, we need the diagonalizations with the
correlation function matrices M“2 and MP  to extract the energy eigenvalues E, in each
representation.

From the momentum p? evaluated by E;, as

p* = (B, — P?)/4—m2, (285)

the phase shift is calculated through the finite volume formulae in each representation,

-1
2
tand, (p) = y7/2V/m (Zgo(l;ﬁ) +%ﬁ_1Z§0(l;ﬁ)> Aj representation, (286)
—1
1
tandy(p) = /@ <Z§0(1;ﬁ) - ﬁﬁlZgo(l;ﬁ)> E~ representation, (287)

where d = (0,0, 1) and the spherical zeta function with the d system Zg (s;7) is defined in
eq.(202).
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11.2 K — mm weak matrix element

Calculation of the K — w7 weak matrix element has various problems. We focus on
two problems of them, the first is the extraction of the on-shell amplitude, and the second
is the relation of the matrix element on lattice, or a finite volume, and that in the infinite
volume. In this section we show methods to solve the two problems, respectively, and restrict
ourselves to the center of mass system.

11.2.1 Final state interaction

In order to calculate the matrix element we need the amplitude discussed in Sec. 6.1.2
as,

Af o = (K|Hw[Q) at mg = Eq = 2¢/m2 + P2, (288)

where |Q,) is the a-th two-pion state with the two-pion interaction, and Hy, is effective
weak interaction operator. The three-point function provides the amplitude as

Gulti, ) = (O[K(t1)Hw (t0)S2n(t2)[0) (289)
— (0K (0)|K) > Ak 5+ Vi - e mx(iio) = Hs(tot2), (290)
E

fOI‘ tl > to > t2,

where Vg, = (Q5]€2,(0)|0). Since the amplitude is contained in the summation of the two-
pion state, this is a serious problem to obtain the amplitude eq.(288).

To solve the problem we introduce a method with the spectral amplitude V. The V can
be extracted from the diagonalization method of the pion four-point function. The method
is explained in Sec. 6.1.4. We can solve the problem by defining the new correlation function
as

Ga (tl, tg) = Z Gn (tl, tz) . Vn_al (291)

— (O] (0)|K) - Af,, - e7mic(mto)g=Faltomta), (202)
for tl > t[) > tg.

We expect the correlation function behaves as the single exponential e~ Falto=t2), By dividing

the normalization (0| (0)|K) using the K meson propagator, we can extract the amplitude
Af(,a on a finite volume by a single exponential fit.

11.2.2 Relation to the infinite volume

Even if we succeed in the extraction of the K — 77 decay amplitude A* by lattice
simulation, another problem remains. The A" is the amplitude for two-pion energy eigenstate
on a finite Euclidean space-time, but not in the infinite Minkowski space-time. We can relate
A% to the physical amplitude A" in the infinite volume using some effective theory, but a
calculation using such an effective theory causes large uncertainties of lattice predictions.
Recently Lellouch and Liischer [28] derived a relation between AL and A" at two-pion
energy & = my, which is called LL-formula. Here we show a brief explanation of the
LL-formula.

The two-pion energy E on lattice satisfies the finite volume formula eq.(160). Introducing

a weak interaction H" = mrnK - A", the energy is further shifted from E to E on finite
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volumes, which also satisfies the finite volume formula, i.e.,

¢(q) = nm—4(p) (293)
$¢) = nr—3 (D), (294)
where n € Z and ¢(q) is given by
w32
tan ¢(q) = " Zw(L ) (295)

where we use here the quantity ¢? which is same as 7 in before section. The momentum p
is extracted from the two-pion energy F

p=VE/4—m2, (296)

and ¢ = (pL/27). The quantities with the prime (') are also given as the same way.

The energy shift E —F can be estimated by perturbation theory for the weak interaction
on a finite volume. In the case of ' = mg, one finds

E - = +|AXE)|, (297)

where it should be noted that the energy shift is first order in the weak interaction. This
is because the energy is degenerate at H" = 0. We can also estimate the difference of the

phase shifts at 2 by the perturbation theory in the infinite volume, which yields
1P ATE)P
32r F PE4+mik’

!

0'(p)—o(p) =7 (298)

where the denominator corresponds to the s-channel K meson propagator with four-momentum
Px = (iE,0). Substituting eq.(298) into the relation eq.(294), and expanding around
E = F by using eq.(297), we obtain the equation at first order,

99(q) _ 94 (p) p|A™Y(E)?
A {a—p} = A {a—p} " Sonn AL ()] (299)

where Ap = mg|A¥(E)|/4p. One then finds the following LL-formula at E = my as,

2 0 ) m3; —\ 12
— 87 {q (‘;E]q) +p a(;) }p:ﬁ-ﬁ-m%m . (300)

A™(E)

From the formula we find the normalization condition in the non-interacting case 6(p) = 0
as,
— 4 —
[A™NE)|* = —(mgL)*|A* ()P, (301)
Vn
where v, = 37,/ 9, .. This is easy to check by using the expansion form of the spherical
zeta function eq.(163). The proof is described in appendix. C.3.

85



11.3 Wave function

In this section calculation methods of the two-pion wave functions for higher states and
in the laboratory system are briefly described.

11.3.1 Wave function for higher states

There is a problem to extract the wave function for higher states, which is a similar
problem to the calculation of the weak matrix element discussed in Sec. 11.2.1. In this
section we focus only on the center of mass system and lattice size L3.

In order to calculate the wave function for higher states we need the pion four-point
functions

Gum(r,t) = Z <0|7T(R[I‘] + x, t)m(x, t)eip"'R[r}Qm(tS)m), p2 = (2r/L)* - n, (302)

RGOh,X

where R is elements of cubic group and Q,(ts) = m(Pn, ts)T(—pPn, ts). By expanding in the
two-pion state |Q,) the four-point functions are rewritten by

Grm(r, 1) = S Pns(r) - Vi, - e P80t8), (303)
B

where V,,, = (Q4]Q,(0)|0), and E,, is the two-pion energy for the « state. Here the wave
function for the « state with the n-th operator is given by

Una(r) = 3 Olr(Rx] +x, )7 (x, )™ FH[Q,). (304)

ReOh , X

Since the four-point function G, (r,t) is not constructed by a single exponential function,
it is difficult to extract the wave function 1),,(r) except for the ground state.
To solve the difficulty we use the same method described in Sec. 11.2.1. Using the inverse

of the spectral amplitude V!, we construct a pion four-point function as

éna(t) = Z Gnm(ra t) ’ Vrr:ct' (305)

We expect the four-point function behaves as a single exponential. We then can extract the
« state wave function in ¢ > tg as

Grat) = tpa(r)e PoUts) 4> g (306)

The above discussion is valid not only in the center of mass system but in the laboratory
system.

11.3.2 Wave function in laboratory system

In this section we consider a box L? with periodic boundary condition in the laboratory
system, where the total momentum P # 0. As discussed in Sec. 5.2, the center of mass wave
function ey, which satisfies the Helmholtz equation, is obtained by the Lorentz transfor-
mation of the wave function ¢, in the laboratory system. We show a method to calculate
the wave function oy from lattice calculation in the laboratory system. In this section we
assume that ¢;, can be obtained without the diagonalization method. In the case that the
diagonalization is needed, we can extract ¢, by the method described in Sec. 11.3.1.
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We define the two-pion wave function in the laboratory system as,

UL (Xp,rr) = Y (Olm(xp)e® > Em(y,)ePYE[Q)o(r, — (x — yi)), (307)

XLsYL

where X, = (x.+y1)/2, |) is the two-pion state in the laboratory system and p; +p, = P.
The U (X, ry) is extracted from the pion four-point function G(Xp,ry,t1) given by,

G(XL, I'L,tL) = Z <0|7T(XL,tL)6ipl.XL7T(yL, tL)GiPQ'YLQ(t5)|O>(5(I‘L — (XL — yL)), (308)

XLYL

where (tg) is the two-pion operator with total momentum P at ¢s. In follows we assume
ts = 0 for simplicity. In ¢ — oo we can obtain Wy, (X, r) as

G(XL, I'L,tL) - (- \I/L(XL, I'L) . G_ELtL, (309)

where E, is the two-pion energy in the laboratory system.
From W, (X, ry) we can extract the wave function ¢, (rz) in eq.(184) as

drr) =Y e PFUL (X, 1 ). (310)

XL

The 1, (ry) satisfies the d-periodic boundary condition eq.(186) as,

Yu(ry) = (=1)4¢y(r + nl), (311)

where d = PL/27 and d,n € Z3. The wave function in the center of mass system tcy is
related to ¢, (ry) as eq.(183)

Yr(rr) = Yem(re), (312)

where v = E/\/E, — P2, and satisfies the Helmholtz equation eq.(179) in the exterior
region of the interaction range, r > R,

(VEZ+7")¢eu(r) =0, (313)

where 7 = (E;, — P?)/4 — m2.

The interaction range R in the center of mass system can be estimated to use the same
way with the effective potential given by eq.(266), when the Lorentz boost factor v or the
two-pion energy E, is given. It is also possible to extract the center of mass momentum p?
in the region r > R.

Assuming the angular momentum cutoff A = 0, the center of mass wave function 1oy (r)
is written by the d-periodic Green function eq.(195),

€

ik-r
Yom(r) =C- Y —— (314)
kely
where the sum is over the momentum
2
[q= {k: %Vfl(n—l—d/Q) for all n € Z3}. (315)

Since this function depends on not only the momentum p? but also the Lorentz boost factor
7, we need the three parameters C, p? and 7 to fit the measured wave function.
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A Coefficients and functions in A(s,t,u) of ChPT

In this appendix we show the coefficients b; and the functions G, F', which are appeared
in the scattering amplitude at two loop [33] eq.(45) in chiral perturbation theory.

A.1 Coefficient b;

We define the coefficients b; as

b; = 16720, (A.1)
where the b; is appeared in eq.(45). The coefficients b; stand for
_ 7 1 13
by = 8I'+205—2I"+—-L -
! e M R T ET
56 80 26 47 17 1 3509
S 4+ =+ —L— — 4 —
+§{ gt gl T T g ek T 56t 1602 1296
1
1677 {6(4’“ + 98Ky — By + 13ky) + (3207 + 1205 — 5017 — 8(I5) + rﬂ } ,
_ 2 1 2
by = —8I'+2i—-L——2=
2 N R TTT
166 8 203 317 1 1789
oAl — —— 1 — 181 — =1 — = —
+§{ g2 379 50" 3156 1672 432
1
+1677 {—6(5%1 + 62k + 15ks + 10ky) — (3207 + 47, — 5)17 + r;] } ,
_ 1 1 1 7
by = 24+ -l5—-L— ———
K B R TR D)
+§{1—ml’"+§lr—zl’"—@L— s1L 1 7063
9 17 3% 3% 216 6912 1672 864
1
+1677 {8(3%1 + 30k — 3k) + (I + 205)15 + 7"4 } ,
_ 1 1 1 5
by = =lj——-L— =
! 22 6 167236

e[+ Gl = Sl oL b
9t 92 9% 216 3456 1672 2592

1
+1672 {—é(lsl + ko + ky) + 20505 + rg] } ,
_ 31 145 625 7 1 66029 21 107
by = ——I] — —I5+— — — —— 4+ 16 2{——1: ——k ”}
i 61 362 283 T34 167220736 AT
- 7 35 257 1 1 11375 5 25
bg = ——li——=lI,+—L+—————-+16 2[——k - —k ’"}. A2
° 130 362  seal T 132 " Torzaomas T 0T [Tish T gghe T (A2
where
1 m?2
L = —=
1672 p?’
; 1 2 1
ki = (4] —vL)L; N=T3 T3 BT g Y4 = 2. (A.3)
The [} and r] are the renormalized couplings from £4 and Lg, respectively. The parameter
¢ is given by
m2 '\’
= . A4
= () (A4
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A.2 Functions GV, F @ g

We use the definition of the coefficients b; eq.(A.1), and the normalized Mandelstam
variables eq.(46)

The functions in eq.(45) are defined by
(1) (= 1+ =2
FU3) = §J( S)(5° — 1),
_ 1
GY(s5,7) = M- 45 — 107 + 5T + 2°),
_ 503_, 929, 887_ 140
s - J—{ (- e e 1)
) i 108" 54”7 T 217 9
b ( 3)+b2(s + 45— 4)
E by
§(85 — 215° + 485 — 32) + 3 —(165* — 7152 4+ 1125 — 48)}
]_ _ _3 _92 - 9 2 (—
+— K, (5) {205 — 1195 + 2105 — 135 — —72(5 — 4)}
18 16
1 g Lo (o o
+5512(5) {m%5— 24} + 5K (3) {35 — 175 + 9},
_ _ 1 /412 5 267, 727_ 1571
0)(5,7) = {—(———t Pl [—tQ——t —D
GOGY = T6) (5m a7 a1 [F 5T +199) 7 |5567 — 10+ Tog

b (T—2)+ %(t —4)(2T+5—5) — b—g(z_ 4)*(3T 4 25 — 8)
+%4 (25(3F — 4)(F — 4) — 32 + 40F° — 11%3)}

1 ) ) I
+35 K1 (0) {174+ 85 — 107° + 721" — 1851 — 71r—6(t — 4)(35 — 8)}

2

1 _ T

“Ky(f) {1445+ —1(35 —

+3 Z(t){ + s+64t(3s 8)}

1. N S L

+5Ks(0) {1435t —5+3F - 97 + S0 {4-25 -1} (A.6)

The loop functions J and K; are given by

J 0 0 z —4C h?
K, | 0 z 0 0 h?
Ky, | 0 22 0 8 h ’ (A7)
K3 Czs™' 0 #*Cs)~' n=? (2C?)
and (2 )
L1 _ 1 _ 1—-,_ 7 —6)3
K4(S) = = <2K1(S)+ K3(8)+CJ(S)+ 1202 ) , (A 8)
where . Vi
L z— ., 4 _ a2
h(s) N In SR z=1 , C =167 (A.9)



B Coefficients ¢; and p;

B.1 Coefficients in C(s,t,u)

We show the forms of the coefficients ¢; [25] in eq.(60). In this appendix the coefficients
b; given in appendix. A.1 are also used.
The coefficients ¢; are given by

me [ < 68 ) e ((Bh 32y AG4by  3824b  GOIm’ 17947
g 105 63 315 ' 315 945 = 2835

1 323 110, 211b, | 628bs  5164b,  5237x% 3977
@ = f_g{ §<b2 1260) 3 (70 315 T35 T 315 7560 630)}
1 1 18b,  59b  731by  3601b, 53877 19121
“ T 16n2fl {b3 4_+5< 35 105 315 | 315 15120 _ 7560)}
_ 1,3 43b by 23by 997b, 467r’ 63829
“ = 167r2f;%{ t 2520 6(420 63 63 315 7560 45360)}
1 137 b 379h, 25bs 731, 26972 61673
S T 16r2)2Sfe {1680§ 16 T 1650 28 1s0 T 1120 18144}
1 31 b1 ATb,  65b3 54T, 72 44287
g = - +— - - + bg + +
(167r2)2f7§{ 16806 ' 112 1680 252 420 15120 92720}
(B.1)
where a2
¢ = (47%) . (B.2)

B.2 Coefficients in P(s,t,u)

The coefficients p; [25] in the polynomial term P(s,t,u) are expressed in terms of the
following integrals over the imaginary parts of the partial waves Imt/

7 i(2l+1) A:; et (s) (B.3)

= 7 gnt2 (s —4m2)’

>0 1 2Imt} (s) + 4Imt7 (s)
H = 20+ DI(l+1)— d
% * * )7r 4m2 9s3(s — 4m2)

The explicit expressions of p; are

Dy = —1287rm [ +I —|—2m[ —|—2m[ +8m [
1
64 0 o - _ - _
P, = — gmﬂ (2Ty — 6Ty — 2Ty — 15m2T, — 3m2T; — 36m;§I§ +6m2H),
8 — _ _ i — _ _
Py = g (475 — 9Ty — Ty — 16m2T) — 42m2T, + 22m2T, — 72miT, + 24m2H) ,

Py = 8rm (Té + 73 + Qm?ji + Qmin - 24mi7§) ,
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4 - — — - —
Py = ?” (8T, + 9T, — 117, — 32m2T, + 44m2T, — 6H)

s = A4 (I) =31, +12m2T, + 2H). (B.5)

C Spherical zeta function

C.1 Calculation method of zeta function

In this section we present the numerical method of the spherical zeta function, which is
introduced in the formulae eqs.(160) and (204) in the center of mass and laboratory systems,
respectively.

The calculation has been described by Liischer in Appendix A of Ref. [5] and in Appendix
C of Ref. [6] for the center of mass system, and by Rummukainen and Gottlieb in Sec. 5.2
of Ref. [8] for general systems.

We present the calculation method of the spherical zeta function in the d system Z§ (s; )
with d = (L/27)P where P is the total momentum of the two pions. The ZZ (s;7) is defined
by

Z[‘)io(s )

o > (" —n)7, (C.1)
I'GPd

where P; = {r = ¥ '(n+d/2),n € Z°}, ¥7'n = y"'n| + n; where n; and n, are
components of n parallel and perpendicular to the direction d, i.e., nj = (n-d)d/d* and
n; =n —ny. Here v is the Lorentz boost factor defined by v = E/\/E} — P? where Ey, is
the two-pion energy in the d system. We can obtain the one in the center of mass system
Zoo(s;m) by taking |d| = 0 in the representation of Z3 (s;m).

The zeta function Z3 (s;7m) takes a finite value in Res > 3/2, so that Z5(1;7) in the
formula eq.(204) is defined by the analytic continuation from Re s > 3/2.

The summation in Z$ (s;7) is divided by the two parts as,

Yr'-m) = Y -0+ Y (P-n)", (C.2)

r r2<m r2>n

where the summation of r is carried out with r € Py. The second term is written by the
integral form as follows,

Y = F(ls > / dt o1t (C.3)

r’>n
1 s—1 7t (r2—m) / s—1 7t(r n):|
= A4
F(s / dt + [ dtt (C.4)
— dtt5~ 1 tn —tr? . 1'2 ")
T(s) / Z r;ﬁ )
DR 4 )
+ .
j=1 (s =)t 5 (x2 —m)i
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The second term is canceled out with the first term in eq.(C.2). We rewrite the first term
in eq.(C.5) by the Poisson’s summation formula,

S f(n) = / &1 f (x)eiZmmx, (C.6)
neZz3 neZz3
By integrating for x we obtain the following formula as,

(D)5 e (5P ey

neZ3

—tr?

In s =1, the |n| = 0 part of the integration of the right hand side in eq.(C.7) diverges, while
other parts of the integration give finite values. We divide the integrand to the divergent part
(|n| = 0) and the finite part (|n| # 0). The divergent part can be evaluated in Re s > 3/2 as

1 s\ 3/2 -
dt 1=t (—) R D — .
/0 “\7 §s+l—3/2l! (C€8)

The final expression is finite at s = 1.
In s =1 using eq.(C.8) the all parts of the spherical zeta function takes finite values, so
that we can calculate the value of Z&(1;7) as follows,

_ 1 e (M)
Zgo(l§”) = \/E{Z 2 _ —

— r’—n

L rr\3/2 ,(ﬂwm?) o 13/2 gl
tn {7 -1 n-d t v ‘
+ flare™ () 2 (21 X pn (©9

where Elnezzs is the summation without |n| = 0 case. This is the integral representation of
the spherical zeta function in the d system introduced in eq.(204).

Substituting |d| = 0 and v = 1 in the above expression, we obtain the representation of
the zeta function in the center of mass system appeared in eq.(160),

2
neZ3 n ncz3

e~ (n*-7) TN\3/2 2,2 o 13/2 ml
Zoo(l;ﬁ):\/%{z 7_n+/dtet” <?> S (=), Z 7 zv} (C.10)

C.2 Calculation method of wave function

We explain calculation of the wave function in the center of mass system eq.(267)

o
ein

ik-r , in-r 2
w(r)ZC'Zr_pz:C D e k=<%>n, (C.11)

where C ' = C- (L/27)?, ¥ =r-(27/L) and 7* = (27/L)? - . We restrict the region of
the wave function in r # 0, since in the actual analysis we use the form only in the exterior
region of the interaction range R, i.e., r > R. For the wave function analysis the expansion
form of the wave function is useful. In this section we show the form.
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We omit the over all constant C', and define an integer n' as n’ — 7 = O(1/L). In free
case n' =m. Using n’ we expand 1(r) around 7 = n’ and find

’QZ)(I‘) e _% 2”: 6in~r’ n Z As—lzsub(s’ 7’L,7 r/)7 (012)
=1 s=1

_ ’
where v,y = 32,0,/ 2, A=T—n, and

Z(s,n'r) = Y e ay (C.13)

n2#n’

We can obtain the integral expression of eq.(C.13) in the same manner in appendix. C.1:
The summation is divided by two parts, and we use the Poisson’s summation formula
eq.(C.6). We then find

’ - 2 ! s — '
Z*(s,m 1) = —{ 3 eimrln *n). L ,(S 1; (C.14)

1 ! 3/2 2 1
+/ dttlem G) S e tmor/2 —}. (C.15)
0

Substituting the integral expression into eq.(C.12), we obtain the wave function for desired
precision.

C.3 Property of zeta function in free case

In this section first we prove the equation

4 2.3
9lg))  _4rq (C.16)
9 |poop  Vn
where v, = Y1, 0nm2. Here ¢(q) is defined by eq.(295)
/2
tan ¢(q) = — —— L C.17

where 7 in the above sections corresponds to ¢? in this section. Substituting the large-L
expansion form of the spherical zeta function eq.(163) into eq.(C.17) we find

2 2 A Zsub 1: 2
tan¢(q) — ™q (1—|—AM+O(A2)>, A:q2—n, (C.IS)

Un Un,

where the subtracted spherical zeta function Z§¥°(1;¢?) is defined in eq.(162). Since tan ¢(q)
is O(A) as shown in eq.(C.18), we can show ¢(¢) =0 at A =0.
The derivative of tan ¢(q) up to O(A?) is given by

1 0¢(q) 4n’¢? 1 Z5 (15 %)
o2 (60) 0 (1”(2712” o >> (C.19)

Hence at A = 0 we can show the equation eq.(C.16).
Substituting eq.(C.16) and §(p) = 0 to eq.(300) and using the relation p = (27/L)q, we
can show eq.(301).
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D Table for Results of scattering length and scattering
phase shift

In Tables XVII — XXII we tabulate fitting ranges, energy shift AE, , center of mass
momentum p?, Lorentz boost factor 7, scattering phase shift §(p), and scattering amplitudes,

A(my,p) = tang(z_’)g, (D.1)
A (mpp) = (ff) - A(ms, D), (D.2)

where fl¢ is the pseudoscalar decay constant for each pion mass measured on lattice and
fr = 93 MeV, in each system for the ground n = 0 and first excited n = 1 states. In the
center of mass system for the ground state, the values

A D f D
(mga p) and A (m;, p)
m?T m?T

(D.3)

are also listed, which may be approximated the scattering length ao/m, and a(’; /M.
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3=1.80 K 0.1464 0.1445 0.1430 0.1409
a”t = 0.9176(93)[GeV] m,/m, 0.547(4) 0.694(2) 0.753(1) 0.807(1)
m2 [GeV?| 0.238(1) 0.571(1) 0.814(1) 1.128(1)
Fitting Range 10 - 20 12-20 12 - 20 12-20
AEL [x10=* GeV]  46.1(98) 36.2(39) 28.4(37) 21.7(14)
P [x107* GeV?]  24.5(52) 29.9(32) 27.9(37) 25.1(17)
5(p,,) [degrees] —1.13(34) —1.49(22) —1.36(25) —1.17(11)
A(m,,7,) —0.196(38) —0.362(35) —0.406(49) —0.434(26)
A(my,p,)/m? [1/GeV? —0.82(16) —0.633(62) —0.499(60) —0.384(23)
Al (mz,p,) —0.59(11)  —1.66(16)  —2.44(29)  —3.17(19)
Al (my,B,)/m2 [1/GeV? —2.47(48)  —2.91(28) —3.02(33) —2.83(17)
B=1.95 K 0.1410 0.1400 0.1390 0.1375
a~t = 1.268(13)[GeV] m,/m, 0.582(3) 0.690(1) 0.752(1) 0.804(1)
m2 [GeV?| 0.291(2) 0.573(1) 0.857(1) 1.287(1)
Fitting Range 12-23 13-25 13- 25 13-25
AEL [x107* GeV]  109.5(73)  68.9(69) 57.4(30) 38.6(23)
A [x10~* GeV?]  46.7(31) 41.2(41) 41.9(22) 34.5(21)
3(P,) [degrees| —2.50(23) —2.10(29) —2.16(15) —1.65(14)
A(my,Dy) —0.348(20) —0.436(38) —0.540(25) —0.557(30)
A(my,p,)/m? [1/GeV?  —1.195(70) —0.759(67) —0.630(29) —0.433(23)
Al (m,,D,) —0.769(45) —1.37(12) —2.27(10)  —3.09(17)
Al (my,D,) /m2 [1/GeV?] —2.63(15) —2.39(21)  —2.65(12)  —2.40(13)
3 =210 K 0.1382 0.1374 0.1367 0.1357
a”! = 1.833(22)[GeV] m,/m, 0.576(3) 0.691(3) 0.755(2) 0.806(1)
m2 [GeV?] 0.291(1) 0.605(2) 0.896(1) 1.331(2)
Fitting Range 18 - 35 18 - 35 18 - 35 18 - 35
AE, [x107* GeV]  173.3(54)  104.8(42)  84.9(32) 61.6(30)
P [x10~* GeV?]  51.3(16) 44.6(17) 44.0(16) 38.9(19)
5(p,) [degrees] —3.17(13)  —2.62(14) —2.57(13)  —2.17(14)
A(my,D,) —0.421(12)  —0.536(18) —0.643(20) —7.04(30)
A(my,B,)/m? [1/GeV?]  —1.444(38) —0.885(31) —0.718(23) —0.528(23)
Al (mz,p,) —0.718(20) —1.471(49) —2.251(72) —3.12(13)
Al (my,B,)/m2 [1/GeV?]  —2.462(66) —2.429(85) —2.512(82) —2.34(10)

Table XVII: Result for n = 0 state in the center of mass system CM with energy state cut-off
N = 2. The A(m,,p,) and A/ (m,,p,) are defined by eqs.(D.1) and (D.2), respectively. The
values for A(my,,p)/m2 and A7 (m,,p)/m?2 are approximated the scattering length ag/m,

and a(’; /M, respectively.
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g =1.80 K 0.1464 0.1445 0.1430 0.1409
a=! = 0.9176(93)[GeV] my/m, 0.547(4)  0.694(2)  0.753(1)  0.807(1)
m2 [GeV?]  0.238(1)  0.571(1)  0.814(1)  1.128(1)
Fitting Range 10 - 18 12 - 18 12 - 20 12 - 20
AEY [x10~3 GeV]  22.5(34)  13.2(12)  11.42(70)  8.78(40)
7 [x10~2 GeV?]  24.80(26)  24.40(12)  24.380(78) 24.222(51)
5(p,) [degrees] —14.1(22) —10.7(10) —10.59(66) —9.25(43)
A(mn, ) —0.353(57) —0.348(33) —0.389(24) —0.387(18)
Af (ms, ) ~1.06(17)  —1.59(15) —2.34(14) —2.83(13)
g =1.95 K 0.1410 0.1400 0.1390 0.1375
o~ = 1.268(13)[GeV] ma/m, 0.582(3)  0.690(1)  0.752(1)  0.804(1)
m2 [GeVZ]  0.201(2)  0.573(1)  0.857(1)  1.287(1)
Fitting Range 12 - 23 13 - 25 13- 25 13 - 25
AEY [x107% GeV]  45.7(51)  20.9(20)  22.70(95)  15.50(49)
7 [x10°2 GeV?]  27.55(30)  27.02(14)  26.761(79)  26.389(48)
5(p,) [degrees] —20.9(24) —16.7(11) —14.63(63) —11.70(38)
A(ma, P, _0.549(68) —0.531(38) —0.535(23) —0.502(16)
Al (ms, ) ~1.21(15)  —1.67(12) —2.225(99) —2.787(91)
g =210 K 0.1382 0.1374 0.1367 0.1357
o' = 1.833(22)[GeV] my/m, 0.576(3)  0.691(3)  0.755(2)  0.806(1)
m2 [GeV?  0.201(1)  0.605(2)  0.896(1)  1.331(2)
Fitting Range 18 — 35 18 — 35 18 — 35 18 — 35
AEY [x10~% GeV]  58.8(69)  44.1(25)  34.6(14)  26.80(78)
o [x10°2 GeV?]  25.30(28)  25.17(13)  24.969(84) 24.789(53)
3(P,) [degrees| —19.8(24) —18.7(11) —16.99(73) —15.44(46)
A(ma, P, 0.530(69) —0.626(39) —0.654(28) —0.697(21)
A (e, By) —0.90(11)  —1.71(10)  —2.29(10) —3.097(94)

Table XVIII: Result for n = 1 state in the center of mass system CM with energy state cut-

off N = 2. The A(m,,p,) and A/(m,,p,) are defined by eqs.(D.1) and (D.2), respectively.
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g =1.80 K 0.1464 0.1445 0.1430 0.1409

a~! =0.9176(93)[GeV] m,/m, 0.547(4) 0.694(2) 0.753(1) 0.807(1)
m? [GeV?] 0.238(1) 0.571(1) 0.814(1) 1.128(1)
Fitting Range 10 - 18 12 -20 12 -20 12 -20
AEY [x1073 GeV] 9.5(10) 6.72(50) 4.65(43) 3.70(19)
P’ [x107% GeV?]  54.16(69)  58.93(46) 59.04(45) 59.56(23)
v 1.09436(62) 1.04481(11) 1.032523(71) 1.024028(25)
5(p,,) [degrees] —7.03(76)  —7.14(52) = —5.81(52) —5.36(27)
A(mz, Dy) —0.286(30) —0.409(28) —0.391(34)  —0.419(20)
Al (my,D,) —0.862(91) —1.88(13)  —2.35(20) —3.07(15)
B=1.95 K 0.1410 0.1400 0.1390 0.1375
a”t = 1.268(13)[GeV] m,/m, 0.582(3) 0.690(1) 0.752(1) 0.804(1)
m? [GeV?] 0.291(2) 0.573(1) 0.857(1) 1.287(1)
Fitting Range 12 -23 13-25 13 - 25 13-25
AEY [x107% GeV]  17.3(11) 11.99(55) 9.62(35) 6.92(30)
P’ [x1073 GeV?]  61.40(58)  64.47(36) 65.73(28) 65.91(28)
v 1.08447(51) 1.04758(13) 1.033120(56) 1.022720(32)
5(p,) [degrees] —9.29(59)  —8.55(38) —8.20(29) —7.12(30)
A(my,B,,) —0.392(24) —0.473(20)  —0.540(18)  —0.566(23)
Al (Mg, Py,) —0.865(53) —1.491(63) —2.276(79)  —3.14(12)
B =210 K 0.1382 0.1374 0.1367 0.1357
a~! = 1.833(22)[GeV] m,/m, 0.576(3) 0.691(3) 0.755(2) 0.806(1)
m? [GeV?] 0.291(1) 0.605(2) 0.896(1) 1.331(2)
Fitting Range 18 - 35 18 - 35 18 - 35 18 - 35
AEY [x107% GeV]  27.8(12) 17.7(65) 14.75(48) 10.45(38)
P [x1073 GeV?]  58.78(42)  61.02(29) 62.22(26) 61.97(25)
v 1.07874(41) 1.04214(13) 1.029504(58) 1.020373(39)
5(p,,) [degrees] —11.09(46)  —9.66(33)  —9.55(29) —8.16(28)
A(My, Dy) —0.478(19) —0.563(18)  —0.660(19)  —0.680(23)
Al (m,, P,) —0.816(32) —1.544(50) —2.311(68)  —3.02(10)

Table XIX: Result for n = 0 state in the laboratory system L1 with energy state cut-off
N = 3. The A(m,,p,) and A/ (m,,p,) are defined by eqs.(D.1) and (D.2), respectively.
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g =1.80 K 0.1464 0.1445 0.1430 0.1409

a~t = 0.9176(93)[GeV] m,/m, 0.547(4) 0.694(2) 0.753(1) 0.807(1)
m? [GeV? 0.238(1) 0.571(1) 0.814(1) 1.128(1)
Fitting Range 10 — 18 12 - 18 12 — 20 12 - 20
AEY [x107% GeV]  28.70(63)  18.1(26) 14.6(12) 10.62(59)
P2 [x1072 GeV?]  30.65(53)  30.41(27)  30.31(14)  30.006(79)
v 1.05169(54) 1.03245(10) 1.025510(52) 1.020014(19)
3(P,) [degrees] —16.9(39) —13.4(20) —12.1(10) —9.86(56)
A(m,Dp,) —0.405(98) —0.406(61) —0.412(35)  —0.379(21)
Al (m,,p,) —~1.22(29)  —1.86(28)  —2.47(21)  —2.77(15)
B=1.95 K 0.1410 0.1400 0.1390 0.1375
a™' = 1.268(13)[GeV] my/m, 0.582(3) 0.690(1) 0.752(1) 0.804(1)
m? [GeV?] 0.291(2) 0.573(1) 0.857(1) 1.287(1)
Fitting Range 12 - 16 13— 20 13— 20 13- 25
AEY [x103 GeV] 57(10) 34.0(37) 28.3(16) 18.98(79)
P2 [x1072 GeV?]  34.21(67)  33.30(28)  33.26(14)  32.788(81)
v 1.04789(53) 1.03371(12) 1.025787(45) 1.019069(26)
5(p,) [degrees] —25.0(47)  —17.3(19)  —16.35(99)  —12.59(53)
A(my,p,) —0.63(13)  —0.516(60) —0.555(34)  —0.495(21)
Al (my,D,) ~1.40(29) —1.62(19)  —2.33(14)  —2.75(11)
B =210 K 0.1382 0.1374 0.1367 0.1357
a”! =1.833(22)[GeV] my,/m, 0.576(3) 0.691(3) 0.755(2) 0.806(1)
m? [GeV? 0.291(1) 0.605(2) 0.896(1) 1.331(2)
Fitting Range 18 — 22 18 - 35 18 - 35 18 - 35
AEY [x1073 GeV]  68(13) 53.9(48) 39.3(24) 32.4(12)
P2 [x1072 GeV?]  31.16(58)  31.23(24)  30.82(14)  30.798(89)
v 1.04646(43) 1.03077(10) 1.023545(48) 1.017343(30)
3(P,) [degrees| —21.8(43)  —20.7(19) —17.1(10) —16.32(64)
A(mz,D,) —0.55(12)  —0.651(63) —0.608(39)  —0.675(27)
Al (m,, P,) —0.95(20)  —1.78(17)  —2.13(13) —3.00(12)

Table XX: Result for n = 1 state in the laboratory system L1 with energy state cut-off
N = 3. The A(m,,p,) and A/ (m,,p,) are defined by eqgs.(D.1) and (D.2), respectively.
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g =1.80 K 0.1464 0.1445 0.1430 0.1409

a' = 0.9176(93)[GeV] my/m, 0.547(4)  0.694(2)  0.753(1) 0.807(1)
m2 [GeV?]  0.238(1)  0571(1)  0.814(1) 1.128(1)
Fitting Range 10 - 18 12 - 18 12 - 18 12 - 20
AEY [x10~% GeV]  72(21) 47.9(84)  38.1(50) 20.3(27)
7 [x1072 GeV?]  9.03(15)  10.316(82) 10.682(57)  10.820(34)
~ 1.1626(11)  1.08224(20) 1.06082(12) 1.045678(45)
3(P,) [degrees] —9.7(33) —11.4(32)  —12.6(37) —6.5(14)
A(m,B,) —0.32(11)  —0.51(15)  —0.65(19)  —0.387(86)
Al (ma,B,) —0.98(34)  —2.37(69)  —3.9(11)  —2.83(63)
g =195 K 0.1410 0.1400 0.1390 0.1375
a~! = 1.268(13)[GeV] mx/m, 0.582(3)  0.690(1)  0.752(1) 0.804(1)
m2 [GeV?  0.291(2)  0.573(1)  0.857(1) 1.287(1)
Fitting Range 12 - 16 13 - 20 13- 25 13- 25
AEY [x107% GeV]  15.5(25) 7.5(10) 5.49(71) 3.12(37)
7 [x10~2 GeV?]  10.28(14)  11.043(77) 11.473(59)  11.726(36)
v 1.14682(99) 1.08709(25) 1.06202(10) 1.043336(60)
5(,) [degrees] —18.3(46)  —12.1(20) —12.2(32)  —8.0(18)
A(ma, P,) —0.64(17)  —0.53(13)  —0.63(17)  —0.48(11)
A (ma,B,) —1.42(38)  —1.69(41)  —2.66(73)  —2.70(62)
g =210 K 0.1382 0.1374 0.1367 0.1357
a~! =1.833(22)[GeV] m,/m, 0.576(3) 0.691(3) 0.755(2) 0.806(1)
m?2 [GeV?] 0.291(1) 0.605(2) 0.896(1) 1.331(2)
Fitting Range 18 — 30 18 — 35 18 — 35 18 — 35
AE" [x1073 GeV]  17.5(35) 0.3(15) 7.83(88) 4.45(61)
7 [x1072 GeV?]  9.48(13)  10.332(76)  10.746(50)  10.932(42)
y 1.13877(72)  1.07789(27) 1.05563(10) 1.039047(74)
3(P,) [degrees] —14.5(41)  —12.0(33) —17.3(56) —10.9(40)
A(ma, ) —0.52(15)  —0.55(16)  —0.95(33)  —0.70(26)
Al (mx,D,) —0.89(26)  —1.53(44)  —3.3(11) —3.1(11)

Table XXI: Result for n = 0 state in the laboratory system L2 with energy state cut-off
N = 3. The A(m,,p,) and A/ (m,,p,) are defined by eqs.(D.1) and (D.2), respectively.
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g =1.80 K 0.1464 0.1445 0.1430 0.1409

a~! =0.9176(93)[GeV] m,/m, 0.547(4) 0.694(2) 0.753(1) 0.807(1)
m? [GeV?] 0.238(1) 0.571(1) 0.814(1) 1.128(1)
Fitting Range 10 - 18 1218 12 -20 12 -20
AEY [x10~* GeV] 95(18) 68.0(73) 53.8(44) 44.7(24)
P’ [x1072 GeV?]  12.26(13)  12.217(71)  12.152(49)  12.120(30)
v 1.14900(84) 1.08007(19) 1.05990(11)  1.045213(44)
3(P,) [degrees] —11.3(18)  —9.36(82) —8.12(54) —7.35(32)
A(mz, Dy) —0.329(55) —0.393(34) —0.397(24)  —0.413(18)
Al (m,,D,) —1.03(16)  —1.80(15)  —2.37(15) —3.03(13)
B=1.95 K 0.1410 0.1400 0.1390 0.1375
a”t = 1.268(13)[GeV] m,/m, 0.582(3) 0.690(1) 0.752(1) 0.804(1)
m? [GeV?] 0.291(2) 0.573(1) 0.857(1) 1.287(1)
Fitting Range 1216 13-25 13 - 25 13-25
AEY [x107% GeV]  18.2(26) 13.6(11) 10.81(61) 8.71(41)
P’ [x1072 GeV?]  13.49(15)  13.415(83)  13.333(51)  13.288(40)
v 1.13642(69) 1.08428(22) 1.060890(97) 1.042870(58)
5(p,) [degrees] —14.4(16)  —12.20(83) —10.63(48) —9.51(36)
A(my,B,,) —0.459(53)  —0.496(33) —0.511(23)  —0.547(20)
Al (my,D,) —1.01(11)  —1.56(10)  —2.156(98)  —3.04(11)
B =210 K 0.1382 0.1374 0.1367 0.1357
a~! = 1.833(22)[GeV] m,/m, 0.576(3) 0.691(3) 0.755(2) 0.806(1)
m? [GeV?] 0.291(1) 0.605(2) 0.896(1) 1.331(2)
Fitting Range 18 - 30 18 - 35 18 - 35 18 - 35
AEY [x107% GeV]  31.5(32) 21.2(12) 17.99(92) 15.12(66)
P [x1072 GeV?]  12.72(13)  12.542(63)  12.522(53)  12.511(45)
v 1.12865(64) 1.07562(21)  1.05469(10)  1.038631(69)
5(p,,) [degrees] —17.4(14) —13.61(65) —12.56(52) —11.68(42)
A(My, Dy) —0.568(48) —0.584(27) —0.636(26)  —0.705(24)
Al (m,, P,) —0.969(81) —1.603(75) —2.226(91)  —3.13(11)

Table XXII: Result for n = 1 state in the laboratory system L2 with energy state cut-off
N = 3. The A(m,,p,) and A/ (m,,p,) are defined by eqs.(D.1) and (D.2), respectively.
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