Chapter 4

Numerical Method for SHF
plus RPA approach in
three-dimensional Cartesian
mesh representation

In this chapter, we explain the numerical solution of Skyrme Hartree-Fock
(SHF) plus random phase approximation (RPA) approach in three-dimensional
(3D) Cartesian mesh representation and we examine the numerical accuracy
of our formulation. We simply call the three-dimensional (3D) Cartesian
mesh representation the “mesh representation” in this chapter.

Our numerical procedure consists of two steps: First, we solve the SHF
equation in order to obtain the single-particle wave functions and single-
particle energies. Second, we solve the RPA equation, which is constructed
from the obtained single-particle wave functions and single-particle energies,
in order to obtain the RPA wave function and excitation energies. We per-
form the 3D Cartesian mesh calculation when we solve the SHF equation
and the RPA equation.

In section 4.1, we explain the techniques made use of in solving the SHI'
equation in the mesh representation. The various techniques used in the SHF
calculation are almost entirely applied to the RPA calculation. In section 4.2,
we explain the techniques to solve the RPA equation in the mesh represen-
tation. The RPA calculation in the mesh representation is almost analogous
to the SHF calculation in the mesh representation, In section 4.3, we present
the method for obtaining the accurate results. In section 4.4, we propose a
method for obtaining the RPA correlation energy of spurious mode in terms
of our formulation. In section 4.5, we compare our results with the ones by
other’s calculations. In section 4.6, we make comment on the instability due
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to the 5+ AAs terms in Skyrme energy functional.

4.1 Skyrme Hartree-Fock calculation in the
mesh representation

In this section, we explain the techniques employed in solving the SHF equa-
tion in the mesh representation. We restrict ourselves to the case for even-
even triaxial nuclei. We assume the time-reversal invariance of the density
and the HF hamiltonian. Then, we can construct the time-reversal pair of
the single-particle wave functions in Eq. (3.62). The SHF equations (3.69)
for such time-reversal pair of the single-particle wave functions are already
introduced in section 3.4. The SHF equation is solved for one member of
the pair. Since we can impose the symmetries with respect to reflection in
# =0, ¥y = 0 and =z = O-planes on the density, we can also impose the spatial
symmetries on the single-particle wave function. It enables us to carry out
the calculations in one eighth of the total mesh space when the SHF equation
is solved.,

In subsection 4.1.1, we explain the treatment of the Skyrme energy func-
tional in the variational formulation. From the Skyrme energy functional the
HF equation and the RPA equation are derived through variation with re-
spect to density matrix. In subsection 4.1.2, we briefly explain the Lagrange
mesh method, which is used in order to approximate the differential oper-
ators in the mesh calculation. In subsection 4.1.3, we explain the iterative
solution of Hartree-Fock equation in the mesh representation, In subsection
4.1.4, we explain how we impose the spatial symmetry on the single-particle
wave functions. In subsection 4.1.5, we introduce the method for calculating
the Coulomb potential in Ref. [24].

4.1.1 Treatment of the Skyrme energy functional

In this section, we explain the treatment of the center of mass correction
for the spurious motion in Eq. (3.2). We also explain the removed terms in
energy functional for each of the Skyrme force used in our calculation.

The center of mass correction for the spurious motion is necessary to
evaluate the binding energy of nucleus. There are two types of ways of
corrections. One of them is the variation after projection (VAP) and the
other is the projection after variation (PAV) (cf. [57]). The center of mass
energy is given as )

(HF| B2, |HF)
2Am ’

Ec.m. - (41)
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where f:’c_m, = Y. P; 1s total momentum. In the case of VAP, the variation
involving the center of mass correction §( By — Eem.) is done and the bind-
ing energy is ' = £ — E.,,. Because the variation dE. ., Is numerically
complicated, the center of mass energy is approximated by

2

R bp
Eem, = —2;1m Z/d‘r’cﬁf(?u“r)&qﬁi(rafr) = Z/:.m fdr'r(r). (4.2)

iL,oT

Then, we can put the center of mass correction into the kinetic energy func-

tional &y in Eq. (3.3):

h* 1
8|{in = 2—'7’; (1 — 71') T. (4.3)

Thus, the VAP becomes a simple variation 6 £ = & Eiy.

In the case of PAV, a variation 8E, is done and the binding energy
is E = En — Eem.. PAV is appropriate to the Skyrme-Hartree-Fock plus
RPA approach because the center of mass energy E.m, of Eq. (4.2) coincides
with the RPA correlation energy for the spurious center of mass vibration in
Eq. (2.22). Getting together the above two handling method in terms of a
switching parameter 8, ., the kinetic energy functional can be written as

h? 1
= (1) "

Then a va.riation can be Wl‘ittel’l as 5Eint; 'dlld the billdil'l ENner caln be iven
) Yy
s

(HF|P2 [HF)

E = Einh + gc.m. (45)

2Am ’
where switching parameter 8§, is defined as
_ {0 (for VAP)
Yom. = {1 (for PAV) ° (14.6)

For several Skyrme forces (for example, SIII, SkI4, and so on), the 72
terms in the Skyrme energy functional are neglected in the procedure of
determining the parameter set. Because of the gauge invariance [58], the

time-odd s - T terms are combined with the time-even (?2 terms. So, if the

2 terms are neglected, then the s -7 terms must be removed. Therefore,
the coefficients C7 of (st Ty - (?f) term in Eq. (3.29) is changed in terms
of a switching parameter 82 into

Cq =0p [t (F~21) +§t2 (5 +22)] 5
CT = 05 [—11—6'&1 + 11—612] ;
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where 8;2 = 0 or 1.

For Skyrme SkX forces, the exchange contribution of Coulomb interaction
is neglected. We introduce switching parameter f¢ ., as

2 1/3
ECDULEX(T) = _HC,GX% (%) péfs(r)a (47)
where g =0 or 1

For several Skyrme forces (for example, Skl4, SkO and so on), there occurs
the instability for RPA calculation by 5-As term in Skyrme energy functional
(see section 4.7). In order to avoid this instability, the coeflicients Cf}‘ ? of
8; - A8, term in Eq. (3.29) is changed in terms of a switching parameter 04,
into

5" = Oas (g5t (5 — 21) + g5ta (5 + )],
CP? = bas [+ arta)
where 85, =0 or 1.

Table 4.1 shows additional parameters of Skyrme forces used in this thesis.

Table 4.1: Additional parameters of Skyrme forces used in this thesis. The
values of the mass of the nucleon is referred to Ref. [59)].

Force ﬁz/Zm gc.m. BJ"Z gc,ex 9&,
STI,..SV [8] 20.73553
SkM* [9]  20.7525
SCGII[18]  20.7525
Zq [11] 20.7525
Skid [12]  20.7525
SkO (23]  20.73553
SkX [14]  20.73

— == SO D
|l - R o N Y e N s Y s
O = = e
[ T e T e BT S S Y

4.1.2 Lagrange mesh method

The Lagrange mesh method is proposed by Baye and Heenen [27). In the
method, quantities are expressed on discretized spatial mesh. This method
is suitable for variational calculations in a high accuracy.

In 3D mesh calculation, the mesh sizes and the number of the mesh points
for each of the direction are given at the beginning in order to determine the
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mesh space used in the calculation. In this thesis, we use the same mesh
size h given in fm and the number of mesh points n for all of the directions,
that is, we perform the calculation in the cubic box, where the length of the
side of the cubic box is L = n x A, We take the intervals of z, y and z as
(—L/2,L/2). Then, the position of the mesh point is expressed as

oy = 3(2k —n — 1)h, k=1,...,n, (4.8a)
y = 22l —n —1)A, i=1,...,n, (4.8b)
Zm = 3(2m —n — 1)h, m=1,...,n. (4.8¢)

According to the Lagrange mesh method, the single-particle wave function
in Eq. (3.69) is represented as

qb,-(:v,y,z,a q ZZZ‘fk fl J)fm )ﬁbt(mkthzmua (I): (49)

k=1 I=1 m=1

with the Lagrange function given as

1 sinfr(z — =)/ h]

fu(z) = Esin[:rr(a: —xp) /L] (4.10)
The Lagrange function fi(x) has the two properties:
filme) = b, (4.11)
and
L2
fk(m)fkr( )dz = héw. (4.12)

The single-particle wave functlon di(rog) can be expanded in terms of the
orthogonal basis function fr,(2,y,2) = fi(2)fily)fm(2) with the expansion
coefficient ¢i{z, yt, 2m, 0, q), which is the values of the single-particle wave
function at the mesh point (g, ¥, 2m). That is, the single-particle wave
function at a mesh point is the expansion coefficient in a orthogonal basis
functions. Therefore, the equation for the single-particle wave furniction in the
mesh representation is expressed as the equation for the expansion coefficient
in a basis function fry,(z,y,2).
The inner product of the single-particle wave functions is given by

Li2 pLj2 pL2
/ f $; (2,9, 2,0, 9)¢;(2,y, 2,0, q)dzdydz

L2 Lf2 J-L/j2 ‘
- Z Z (b?(mk: Y, 2my 7, Q)¢j(mk} Yty 2y T,y Q)h'a' (413)
ag kim '
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5o, we can see that the mid-point rule of integration is exact for the product
of the two wave functions. We approximate the expectation values of local
quantity F(r) as

L/2 pLf2 pLf?
) f B2, 2,0,0) P, 1, 2) (s, 2, o, gyl
ion J-Lp2J-Lpp oL

" Z Z qb:(?:;” Wiy Zm, O, q)F(mk} Yy Zm)(f){(:b‘k, Yy 2, Ty Q)ha- (414)

ieq klm

Thus, the product of the local quantity F(r) and the single-particle wave
function ¢;(roq) is approximated by

F(:’E,y, z)ﬁbi(mayrzaas f_)') ~ th(q:)fl(y)fm(z)F(mkv i, zm)qbf(mka i, 2, 0, Q)-
klm
(4.15)

The v-th order derivative of the single-particle wave function with respect
to z is given as

av
Freti@ 0. 2.0.0) = Y0 @A () bilon s 2y 0, 0) (416)

kim

Then, the first and the second-order derivatives of the single-particle wave
function with respect to @ at the position (w4, y, 2, ) are given as

aii
'a_ﬂ;éi(m:yhzma a, Q)

= Z D,E,';c),rb,r(:ska,y;,zm,d, q), v =12, (4.17)

B=ay k!

with the matrices Dm approximating the differential operator

(1) U; k= krﬁ

Dkk’ _ k——k’ T 1 ? (4.18&)
-1 Z ;
(-1) Lsin[n(zr — 2p) /L]’ k7K,
2

Tl L , k=K,
Dij) = 2 Soimtel I (4.18b)

(—1)k_kr+1 ™ Cos[ﬂ-(a‘k - :Lk")/ ] k ?{__ kl’.

L? sin®{n(wp — ape)/ L]

The numerical error of the derivative of the function in Eq. (4.18) is much
smaller than those of the finite difference formulae [27, 60). In section 4.3,
we display the difference between the numerical results using Eq. (4.18) and
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those using 9-point formula of finite difference method in the SHF plus RPA
calculation.

In terms of Eqs. (4.15) and (4.17), we can discretise the SHF equation
(3.73):

Z hg(Prtm @ Pt 0 )PP it 0'q) = €30:(P im0 q),

kflimtg?

Eim=1...,n, (4.19)

where the position vector vy, represents (zy,y, 2z ). Since the local single-
particle hamiltonian hy(roe’) involves the differential operator, the discre-
tised single-particle hamiltonian becomes the non-local matrix form. Eq.
(4.19) is a result of the variational equation of the energy functional ex-
pressed in the orthogonal basis functions fi,(x,y, z). Thus, it provides the
upper bound of the total binding energy.

4.1.3 Solution of HF equation in mesh representation

In this subsection, we explain the iterative solution of SHF equation (3.73) in
the mesh representation. Usually the SHI' equation in the mesh representa-
tion is solved in terms of the imaginary time step method (ITSM) [61]. The
ITSM is a powerful tool for solving non-linear differential equation such as
HF equation. However, it costs rather long computational time to converge
a set of occupied single-particle wave functions at enough precision. In order
to make the computational time short, we solve the SHF equation with the
technique combining the conjugate gradient method (CGM) {62], which is
the iterative method for solving the generalized eigenvalue equation, with
the ITSM.

Imaginary time step method (ITSM)

First, we briefly explain the algorithm of the ITSM. The ITSM is the iterative
method for solving Hartree-Fock equations

h'gb,) = ei|¢'i)’ L= 1)" . ,A, (420)

where & is the single-particle hamiltonian and ¢; is the single-particle energy
and [t;) is the single-particle wave function. Note that the single-particle
hamiltonian depends on the single particle wave functions, that is, Eq. (4.20)
is a non-linear differential equation. Its algorithm is the followings:

1. Select the arbitrary initial occupied single particle wave functions |¢SG)),
for example, like harmonic oscillator wave functions.
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2. According as n = 0,1,..., following iteration are repeated until an
appropriate convergence criterion is satisfied,

(a) Construct the single-particle hamiltonian £ from the single-
particle wave functions |¢En)).

(b) Generate the new single-particle wave functions defined by

") = exp [-AR®] g™ (4.21a)
~ [1— 2] g™y, (4.21h)
where A is a positive small parameter.

(c) Since the set of obtained single-particle wave functions |'¢v§"+1))
is not orthogonal to each other, obtain a new set of orthonor-
mal single-particle wave functions |¢§n+1}) from the single-particle
wave functions |v,b§”+1}) by means of the following Schmidt’s or-
thogonalization method:

1. Normalize |,) and obtatin |¢;).

1
R — Y 4.92
|é1) (%I%)M) (4.22)

1. For 1 =2,...,A, obtain |¢;).
i-1
) = I} = D la) (slid, (4.23a)
J=1

1
|#3) = —mz| i) (4.23b)
VA&l
As a convergence criterion of I'TSM, we can consider the two cases: One
is the difference between the total binding energy of the (n — 1)-th step and
the ones of the n-th step:

AE® = g0 _ g0 < ep (4.24)

where E®™ is the total energy of the n-th time step and ¢g is a parameter
to determine the convergence criterion, e.g. eg = 107% MeV. The other is
the root mean deviations of the single-particle hamiltonian for each single-
particle wave function:

A = \/ [(# 192167 — (P72 < e,
i=1,...,A, (4.25)
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where €, is a parameter to determine the convergence criterion, e.g. ¢, =
10=® MeV. The convergence criterion with the root mean deviations of the
single-particle hamiltonian in Eq. (4.25) is more strict than those with the
energy difference in Eq. (4.24) because the convergence criterion with the
root mean deviations of the single-particle hamiltonian assure that the all
of the occupied single-particle wave functions are the eigenfunctions of the
single-particle hamiltonian.

Since the RPA equations (3.73) are based on the HF ground state, it is
essential that we solve the HF equations as accurately as possible. Thus, in

this thesis, we use the convergence criterion of Eq. (4.25) when we solve the
SHF equation {3.69).

Conjugate gradient method (CGM)

Secondly, we explain the algorithm of the CGM [62]. The CGM is the it-
erative method for obtaining the eigenvector with lowest eigenvalue of the
generalized eigenvalue equation:

Ce = kDux, (4.26)

where the matrices C and D are hermitian and k% is real eigenvalue'. Note
that the matrices ' and D are fixed as given matrices, that is, for exam-
ple, Eq. (4.26) is regarded as the linear differential equation in the mesh
representation. Its algorithm is the following:

1. Select the arbitrary initial vector x, and calculate the following quan-

tities:
(wo, Ca‘-o)
= 4.27a
fo (mU')DmO) ( )
2(05!30 - ngwg)
= 4.27b
gU (a}(],. Dwo) ( 7 )
Po= —fo (4'276)

2. According as £ = 0,1,..., the following procedures of iteration are

n the original paper [62], the C and D are real symmetric matrices. We expand the
solution of cigenvalue equation with the real matrices into the one of the hermitian matrix
in this subsection, where we make use of the [act that the hermitian matrix equation is
rewritten into the real symmetric matrix equation with same eigenvalne. Therefore, the
eigenvalue k is real.
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repeated until an appropriate convergence criterion is satisfied:

ar = Re((py, Cpp)(@r, Dpy) — (=1, ) (Prs D1, (4.28a)
br = Re[(py, Opp)(®s, Day) — (24, Cwp)(py, Dpy)l, (4.28b)
= Re[(@y, Opi)(@s, Dy — (o, Cas)(en, Dpy)],  (4:28¢)

—by + /bt — darep
oy = ok T V0 —Aaker (4.284)
2ay

Bryl = Lp -+ apPy, (4.286)

(mk+1,cmk+1)
= , 4.28f

T (®k+1, D2pgr) ( )

2(Capyy — fk+1D$k+1)
] = , 4.28

[ O] (mk+1>Dﬂ3k+1) ( g)
(gka gk)

Pry1 = =G + BiPr (4.281)

Note that the quantities fry, and F, are real. And, it is demanded
that the quantity o is real in each iteration step.

3. Combining Schmidt’s orthogonalization method with the above itera-
tion process, the eigenvectors are obtained in order of increasing eigen-
values.

The CGM can be efficiently used in order to obtain the unoccupied single-
particle wave functions. Now, the occupied single-particle wave functions of
the ground state and the HF hamiltonian hyp are obtained already. Then,
the IIF equation for the unoccupied single-particle wave function is given by

h’HF|¢m> - Emlfﬁm), m = A-l— 1, e (429)

Note that Eq. (4.29) is a linear differential equation. Substituting the HF
hamiltonian Agp and the unit matrix for C' and £ in Eq. (4.20) respectively,
the CGM can be applied to Eq. (4.29). Using Schmidt’s orthogonalization
method, an unoccupied single-particle wave function is obtained in order
of increasing eigenvalue. As a convergence criterion of CGM, we use the
following one:

Aelf) = \/ |(¢£f;‘)|h%m|¢£3:’> — (% |hurl¢)?| < €. (4.30)
Note that the single-particle hamiltonian fyp is fixed in the iteration process.
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ITSM plus CGM

At the last, we explain the technique combining the CGM with the ITSM,
which is used when we solve the SHF equation (3.69) for occupied single-
particle wave functions in actual numerical calculation. Here, we call the
technique combining the CGM with the ITSM “ITSM plus CGM”.

In Fig. 4.1, we show how the convergence criterion {4.25) is satisfied in
the iteration process when the SHF equation is solved. The calculations are
for the 8-particle 8-hole state (superdeformed state) of *°Ca. The results of
the two methods, ITSM and ITSM plus CGM, are displayed in Fig. 4.1.

We can see in Fig. 4.1 that the root mean deviations Aegn) with the
ITSM take varied values from orbital to orbital in the iteration process, that
is, the degree of convergence for each of the single-particle wave functions
is different. Thus, we make use of the CGM in order to arrange root mean
deviations Aegn) in (4.25) into the same size.

The algorithm of I'TSM plus CGM used in the actual numerical calcula-
tion is the followings:

1. Select the arbitrary initial occupied single-particle wave functions and
start the I'TSM.

2. Accordingas A = 1,...,12, initialize a parameter r into zero and repeat
the following iteration until the convergence criterion defined as

|E(—10) _ g < 107 MeV (4.31)
is satisfied:

(a) Proceed the ten iterations of I'TSM. Put present number of iter-

. " . " . n .
ations into n. Arrange the single-particle wave functions qbg ) in
order of increasing eigenvalue.

(b) Perform the CGM if the following condition is satisfied:

1< 2
5 Z (Ae'{n)) > 107‘AE(N)1 (4.32)

=1
where AL is defined by Eq. (4.24) and Aesn) is defined by Eq.
(4.25). The procedure when CGM is performed is the followings:

i. Put a set of the occupied single-particle wave functions qbf-’”
into ;.
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ii. Solve the following linear differential equation by means of
CGM:

AP ehyy = A |4hy) (4.33)

where 2 is a fixed single-particle hamiltonian in the itera-
tion process of CGM. The convergence criterion of CGM is
given by

(il |y — (ilh® )| <10TAEM,  i=1,..., A
(4.34)
iii. Using Schmidt’s orthogonalization method, obtain the subse-
quent eigenstate with larger eigenvalues in order of increasing
eigenvalue.
iv. Put ¥; into ¢§”).
v. Add one to the parameter r if the total binding energy rises
after CGM.

Note that unit of the left-hand side in Eqs. (4.32) and (4.34) is different
from the one of the right-hand side. Here, we empirically determine the
condition (4.32). The parameter r is necessary to avoid divergence,

The iteration process of the I'TSM is different from the one of the CGM.
In one iteration of the ITSM, a set of operations of multiplying the single-
particle hamiltonian on a set of the occupied single particle wave functions
is needed. So, we readjust the number of iterations in the iteration process
of the CGM in terms of the number of such operation in Fig. 4.1.

We can see in Fig. 4.1 that the convergence of ITSM plus CGM is about
ten-times faster than the ones of the ITSM when we solve the Hartree-Fock
equation (3.73) under convergence criterion (4.25).

4.1.4 Spatial symmetry of the single-particle wave func-
tion

In the case of spherical, axial and triaxial nuclei, we can impose the symmetry

with respect to reflection in @ = 0, y = 0 and z = 0-plane on the density

pe(r) in Eq. (3.63a). In order to impose such symmetries on the density, we
impose the following spatial symmetries on the single-particle wave functions

$i(roq) in Eq. (3.62) [26, 63]:
o Parity
qu,-(a:, 2,0, Q) = (,ﬁ,'(“‘ﬂi, —Y,—%,0, Q')
= piqbi(ms Yy 2,0, Q): pi=*£1 (4-35&)
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Figure 4.1: The mean square deviation of single particle hamlltonlan for each
of the occupied single-particle wave functions at n-th iteration, Ae ), defined
by Eq. (4.25). The calculation is for the 8p8h state of s “ITSM” are
calculated with imaginary time step method. “ITSM+CGM” are calculated
by means of the technique combined the conjugate gradient method with the
imaginary time step method (see text).

* z-signature

-Rz(;f’i(m1 Y, z,ad, Q) = ei?r(jz_uz}ﬁbi(m: Y,2,0, QJ
= 20’@5{(-3}, —Y, 2,0, Q)
= Tiqsi(w:yazaaa Q): v =1, (43513)

o 2-T-simplex

ST¢ilz,y, z,0,q) = Pem™=1AT ¢(2,y,2,0,q)
= ‘20’1;'5:(—;3, Y, 2,4, Q)
= s,-qb;(a:,y,z,a, ‘I)s 5; = l: (435{‘,)

Where the subscript 7 runs over from 1 to A/2. The operators 13, R, and g’f
are parity, z-signeture and z-7T-simplex operator respectively, and p;, r; and
3; are their eigenvalues respectively. The parity, z-signature and z-T-simplex
quantum numbers for the time reversed state ¢; are give by

P = Piy r; =—1, 5 =-1. (4.36)
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Note that z-signature and z-T-simplex operators are different from usual
ones by the phase [63]. We can rewrite Eq. (4.35) into

iz, y,2,0,¢) = 205;¢; (—x,y, %,0,9) = 20¢; (—2,¥,2,0,q), (4.37a)
bi(z,y,2,0,q) = risidi(z, ~y, 2,0,q9) = ¢z, —y, z,0,q), (4.37Dh)
¢i(@,y,2,0,9) = 2opridi(x,y,—2,0,9) = 20pdi(m, ¥, —2,0,¢).  (4.37c)
Then, we can see that the single-particle wave functions have symmetries

with respect to the z = 0, ¥y = 0 and z = 0 plane. Table 4.2 represents
spatial symmetries of single particle wave functions defined by

Pia(rg) = Reldi(r+q)], (4.38a)
Pi2(rq) = Imlgi(r+q)], (4.38b)
Pia(rq) = Relgi(r—q)], (4.38¢)
Pia(rg) = Im(gi(r—q)]. (4.38d)

Then, we can solve the SHF equation on one eighth of the mesh space.

Table 4.2: Symmetry properties of components of single particle wave func-
tion ; in Eq. (4.38) with respect to the 2 = 0, y = 0, and z = 0 plane.

x Y z
i1 -+ + +p;
Wi - - +pi
i3 - + —p;
Pia + — —Pi

4.1.5 Calculation of the Coulomb potential

The Coulomb potential is necessary for the SHF caleulation and used in the

single-particle hamiltonian. The Coulomb potential in Eq. (3.7) is solved

in terms of the conjugate gradient method (CGM) [24]. The CGM used in

this subsection is the iterative method for solving a inhomogeneous linear

equations and different form the CGM used when the HF equation is solved.
The Coulomb potential in Eq. (3.7) is given by

B(r)=e j ap L) (4.39)

lr— 7|
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The Coulomb potential i1s the solution of the Poisson equation:
AD(r) = —dmep,(r) (4.40)

We discretise the Poisson equation on the 3D Cartesian mesh and approx-
imate the Laplacian operator in terms of 9-point formula with finite differ-
ence method?. We solve the Poisson equation in the mesh representation by
means of the CGM in order to obtain the Coulomb potential. Then, we must
consider the boundary condition because the Coulomb force is a long range
force.

CGM for solving the inhomogeneous linear equations
Here, we explain the CGM for solving the inhomogeneous linear equations:
Ax = b, (4.41)

where A is positive definite symmetric matrix of order n, and = and b are
vectors of order n. Its algorithm is the following:

1. Select the arbitrary initial vector xg.

ro = b — Amg (4.42a)
Pog =To (4.42b)

2. According as & = 0,1,..., following iterations are repeated until the
appropriate convergence criterion is satisfied:

(pka T"k)
ap = PRk (4.43a)
(pkv Apk)
Lry1 — T} + P, (4.431))
P41 =Tk — CEkAPk (4.43C)
If %i‘—‘ < g, then iteration is finished. (4.43d)
(Pe+1, Thtr)
= 2 STl 4.43e
fgk (Tkg Tk) ( )
Pri1 = PrtL + PePy (4.43f)

2We do not use the approximated form of differential operator with Lagrange mesh
method in Eq. {4.18).
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Boundary condition

Performing a multipole expansion of the Coulomb potential, we calculate the
Coulomb potential over the box. Substituting the Coulomb potential over
the box for Eq. (4.40), we estimate the contribution of the Coulomb potential
over the box to the proton density in the box. We subtract this contribution
from the proton density in the box. We consider the boundary condition in
terms of such technique. Then, we solve the Poisson equation by means of

the CGM.

The multipole expansion of the Coulomb potential is given by

o {
1 4 R * ra
d(r)=e) ,mm > Tlem(T)fd'-"’Pp(T’)r”m(r’), (4.44)
=0 m=-1

where r > /. In actual numerical calculation, we expand until { = 4. We
change the spherical harmonics Y, into the following ones:

~ 4ar
—_ Mk Ve =0 4,45
-~ 4qr

A+ 1 \/‘ Vi + Yiegmi] (m #0) (4.45b)

—~ T m+1
Yicjmy = 1/ 2;:_ 175 == Vi) = Vil {m #£0) (4.45¢)
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Then, the rf i;;m are given by

Yoo =1
7"?10 =z,
T'i;ll =Y,
~ 1
r2Y20 = 5(322 — 'F'2),
rzi;gl = \/gyz,

V3

72V = —é-‘(y2 —2%),

o~ 1
Y = \/;z(ﬁzz — 3r?),
317 3 2 2
T }/—31 = gy(5z - 7T ),

~ V15

Yoy = 5 2(y* — =%,
= 5]
°Yas = gy(yz - 32%),

~ 1
'1"4 40 = §(35Z4

~ 5
P = \/;(w — 3r%)yz,

Y

'r'4 g = _4_:_(y2-_ :172)(722 . 7‘2),
-~ 35

Y = E(y2 —3z")yz
- 35

r Yy = —8—\/_( z'y® 4+ yt),

— 30r*z* 4 3r),

r¥it =a,

233
r YZ—]. = \/?;ZCE,

Tzi;?-»? = \/?;;m 3

""3?3—1 = -\/-g:.":(ﬁzf‘2 —r?),

Tsi‘;g_.g = \/Ea:yz,

-~ 5
Yy = ‘\/-é-a:(Byz ~ z?),
417 5 2 2
Yy = §(72 - 3r)zz,

=~ 5
Y = £(722 — %)y,

4Y4—-3—\/ (3y — z*

Vi = ——(J - 2%)ay.

In terms of #! i;}m, the multipole expansion of the Coulomb potential in Eq.

(4.42) is given hy

n Tha .
q)('r 41[‘6 E T21+1 Z fm r ‘/-d-r"pp(.r’),rd' l}[-m(rl),

izm—|

(4.46)

For triaxial nuclei, it is necessary to include only the following components
in the multipole expansion up to ! = 4:

1 217 2/ ey 417 457
Yoo, 7Ya, v Yo, Y, Y, Vi (4.47)
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4.1.6 Deformation parameter

The mass-quadrupole mements is given as

Vo (7)o(r)dr

/ Pp(rydr

Then, 3 and y-deformation parameter is defined as

Qo = [3 cosy, trge = [siny. (4.49)

4.2 RPA calculation in the mesh representa-
tion

In this section, we explain the techniques employed in solving the RPA equa-
tion in the mesh representation. The RPA equations (3.72) for the time-
reversal pair of the RPA wave functions in Eq. (3.64) are made of the
single-particle wave functions in Eq. (3.62), which are obtained in the SHF
calculation in section 4.1. The RPA equation is solved for one member of
the pair.

In subsection 4.2.1, we explain the iferative solution of RPA equation
in the mesh representation. In subsection 4.2.2, we explain how we impose
the spatial symmetry on the single-particle wave functions and introduce the
quantum number related with the spatial symmetry. In subsection 4.2.3,

we explain the excited state with quantum number introduced in subsection
4.2.2.

4.2.1 Solution of RPA equation in mesh representation

First, in this subsection, we explain the solution method of the RPA equation
(2.34) for the RPA wave functions X(z) and Y*(2) in the mesh representa-
tion, which is explained in Ref. [29]. Secondly, we also explain the solution
method of the RPA equations (2.47) for the RPA wave functions qbf-i})\(w) in
the mesh representation. At the end of this subsection, we explain how we
use the above two solution methods in the actual numerical calculation.

We briefly rewrite Eq. (2.34) in the mesh representation as the matrix
form

SX* = o IX* (4.50)
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where

S = (;‘* f) , (4.51a)
[= (é _01) (4.51b)
X = (?,) R (4.51¢)

And we also rewrite Eq. (2.47) in the mesh representation as the matrix
form

2
S = A g (4.52a)
Y
TH = filw, |t (4.52b)
where
A -B
T =181 (_ e A*) , (4.53a)
s B+
PN = <¢(+)* K (4.53h)
_ )
'’ = (¢(_)* . (4.53c)
If Awy > 0, then Eqs. (4.52) are written as
S = R, (4.54a)
TP = huy @, (4.54b)

Solution of RPA equation for the wave functions X}(2) and Y(z)

According to Ref. [29], we can solve the RPA equation by means of the CGM,
which is explained in the subsection 4.1.3.% Eq. (4.50) satisfies the necessary
condition for applying the CGM: The matrices in both sides of Eq. (4.50),
S and [/, are hermitian. Then, we can obtain the RPA wave functions X7 (z)
and Y () with the lowest real eigenvalue iw, by means of the CGM. Making
use of the Schmidt orthogonalization method, we can obtain the solutions in
order of increasing eigenvalue.

3The algorithm of CGM used in our thesis is somewhat different from the ones in Ref.
(29]
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One might wonder why the lowest eigenvalue of the RPA equation is not
negative. The reason is that the norm of the eigenvector of Eq. (4.50) is
fixed to 1 in iteration process of the CGM. Remember that the eigenvalues
with positive (negative) norm is positive (negative) (see section 2.1.1).

There always exist the translational spurious solutions with the zero-
eigenvalues of the RPA equation and the rotational spurious solutions of the
RPA equation for the deformed nuclei. It is well known that the norm of
the spurious state with the RPA amplitude X, and Y.}, is vanishing, that
is, the one with the RPA wave funciions X}(2) and Y*(z) is vanishing,
However, in actual numerical calculation, the eigenvalues of the spurious
states are almost never vanishing because of truncation in the calculation and
numerical ervors., Such eigenvalues are not so small in 3D Cartesian mesh
calculation (see section 4.3). Therefore, we can numerically treat the spurious
state as the one with non-vanishing eigenvalue. All of the eigenvalues of the
computational spurious states should be real if the HI' equation is solved
without constraint and symmetry restriction [49]. This is just the reason we
can solve Eq. {4.50) for the RPA wave function X}(z) and Y;*(2) by means
of the CGM and can obtain the spurious states with non-zero eigenvalue.

Solution of RPA equations for the wave functions ¢{™*(z)

If the HI' equation is solved with constraint or symmetry restriction, then the
eigenvalues of the computational spurious state are not always real. There is
possibility of pure imaginary eigenvalue. On that occasion, we can no longer
use the CGM in solving Eq. (4.50) because one of the condition to use CGM
that all of the eigenvalues are real is not satisfied. In actual numerical calcu-
lation, the constraint or symmetry restriction is usually imposed. Therefore,
we develop the method for calculating the computational spurious state with
the pure imaginary eigenvalue.

The norm of the RPA amplitude X}, and ¥}, with the pure imaginary

mi mi
eigenvalue 1s vanishing (see subsection 2.1.3). Therefore, the RPA equations

(4.52) for the wave functions qbgi)'\ is more appropriate for handling the pure
imaginary eigenvalue. In order to apply CGM, we rewrite Eqs. (4.52) into
the single equation for the RPA wave function ¢{~)

ST = (huwy )P, (4.55)

The eigenvalue (fwy)? of Bq. (4.55) is real even though /uwy is pure imaginary.
Acting the matrix T' of Eq. (4.53a) on both sides of Eq. (4.55), we obtain
the following equation:

TST P = (hw,)? T, (4.56)
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Eq. (4.56) satisfies the necessary condition for applying the CGM: The ma-
trices in both sides of Eq. (4.56), T'ST and T', are hermitian. Then, we
obtain the RPA wave function f;&t(-_)’\ with lowest eigenvalue (Awy)? by means
of CGM. Putting the RPA wave function ng‘)" and the root of absolute eigen-
value fi|w,| into Eq. (4.52b), the RPA wave function qSEH’\(:L') is obtained.
If the eigenvalue of Eq. (4.58), {fuwy)?, is negative, the eigenvalue of the
RPA equation, fiwy, is pure imaginary. Using the Schmidt orthogonaliza-
tion method, we can obtain the eigenstates in order of increasing eigenvalue
(hwy)?. Incidentally, even if the eigenvalue of computational spurious state
is vanishing, we can solve the lq. (4.56) by the CGM just as in the case
where the eigenvalue is not vanishing,.

In actual numerical calculation, we do not just apply the CGM to Eq.
(4.56) in order to accelerate convergence. We assume that the matrix T is
positive definite, Then, Eq. {4.56) is changed nto

Ry = ky, (4.57)
where
R=+TSVT, y=+Tz, =2=¢"  k=(hn)’ (458)

Thus, we can apply the CGM to Eq. (4.57). Using S, T and 2 = $P, the
algorithm of CGM is modified into the following one:

1. Select the arbitrary initial vector .

. (Tﬂ:o,STﬂlg)
Jo= (Two me) (4.59a)
_ 2(ST®g — fozo)
9o = (Tze, 20) (4.59b)
Po = —do (4.59c)

2. Starting with & = 0, the following iteration procedures for k= 1,2,...
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are repeated until convergence criterion is satisfied.

ar = Re[(Tpy, STpy)(Ter, pr) — (Tos, STp )Ty pi)]  (4.60a)
b = Re[(Tpy, ST T, 24) — (Tws, STa)(Tp,,p,)]  (4.60b)
cp = Re|(Tag, STp) (T, x1) — (Ter, ST2y)(Ter, p,)]  (4.60¢)

—by + 4/ bi — dagcy
2&];

Tpt1 = Tp + OgPy (4.60e)
. (ka-i-h Ska+1)

ay =

(4.60d)

= 4.60f
s (T@pp1, @rey1) ( )
25T ®xy1 — feq1@rp1)
1l (4.60
gk+l (ka+lsmk+l) ( g)
(Tgk+1sgk+1)
By = —pt—— 4,60h
(Tgr, gn) ( )
Pii1 = —Grp T BePs (4.60i)

A quantity renewed with above algorithm is ¢(=*. So, we can regard the
above algorithm as iterative solution of Eq. (4.56).

Procedure of actual numerical caleulation

For actual numerical calculation, we solve Fiq. (4.56) for spurious state and
Eq. (4.50) for physical states in order to accelerate convergence. Then, it
is necessary to orthonormalize the RPA wave functions X2(z) and ¥*{z) in
terms of the RPA wave functions ¢ (2). So, the wave function &) () must
be changed into X7(z) and Y ()

Xi(@) = 5 [#@) + 4] (4612)
YA(w) = 5 [69 () ~ ()] (461b)

Here, we assume that all of the eigenvalues of computational spurious states
are non-vanishing. Then, we can apply the Schmidt orthonormalization
method to the RPA wave functions X (z) and ¥*(«) with higher excitation
energy in terms of not only the orthonormalization relations in Eq. (2.39a)
but also those in q. (2.39h)

In our computational code, we calculate Eq. {3.73) instead of Eq. (2.34)
or Eq. (2.47). It is because we just use the HF computational code in several
parts of RPA calculation and make use of the time-reversal properties. In
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the case of the calculation of spurious state, we directly calculate Eq. (3.73)

instead of Eq. (2.47). In the case of the calculation of physical state, we
make use of the following relation:

SX* = St gt (4.62)

We change the RPA wave functions X{z) and Y;*(z) into the RPA wave

functions gbgi)’\(ﬂ:). Then, we calculate the first term and the second term
of the right-hand side of Eq. (4.62) in terms of Eq. (3.73) respectively.
Adding the first term and the second term, we obtain the quantity SX* in
the left-hand side of Eq. (4.62).

In the case of the calculation of the spurious state, we use the following
convergence criterion:

{ () 11 e {(Bwy)* 3 < 10710 MeV?, (4.63)

where the label (n) represent the number of the iteration. In the case of the
calculation of the physical state, we use the following convergence criterion:

™™ — hol™ < 1071° MeV. (4.64)

4,2.2 Spatial symmetry

In subsection 4.1.4, we imposed the symmetry with respect to reflection in

2 =0,y = 0 and z = 0-plane on the density p,(r) in Eq. (3.63a). Then,

we can impose the same symmetries on the transition density pgﬂ)‘(r) in Eq.

(3.65a). In order to impose such symmetries on the transition density, we im-

pose the following spatial syrnmetries on the RPA wave functions gbgip‘('rcrq)
in Eq. (3.64):

o Parity
qu}gi))\(:ﬂ, Y2y 0, Q) = (/f’:('i)A(“ics —¥ %0, Q')
= p N2y, 2,000),  pt =p"/p;, (4.65a)
® z-gsignature

fiz‘ﬁgip\(% Yy, 2,0, Q) = 2J§b£i)A(—m> -, %, 0, Q)
A

= Tilxqb@(i))'(m:y:z}ay Q)s TiA - TA/T{ =r,
(4.65b)
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o z-T-simplex

A ESPY *
SL 6™ (a,y, 2,0, 9) = 206 (—2,y, 2,5, 9)

= SiA(IBEi)A(.’L‘,t ,Z, 0, Q): SEA — S{\/S; — SA,
(4.65¢)

where the subscript ¢ runs over from 1 to A/2. The values of parameters p*,

r* and s are given by

pt = +1, rt = 41, st = +1. (4.66)

The parameters p*, r* and s* determine the spatial symmetry of the transi-
tion density, that is, the parameters is considered as the quantum number.
We classify the excited state into eight groups in terms of the parameters
(P, 7, ).

We define the simplex operator 5} as

S, ot 2y, )51 = pP (—a,y, 2) = 2Pz, 9, 2), (4.67a)
Syp P (2,y, 2) 88 = pN (@, —y, 2) = spp Nz, y, 2), (4.67b)
5.0 M2, y, )8 = pt @,y —2) = 526Nz, 9, 2), (4.67c)

where the parameters (s,,s,, s.) are given by
s) = st 3;,\ = ris?, sy = prh, (4.68)

So, the parameters (s, s,,s;) are also quantum numbers. We can use the
quantum number (sg, s, s,) instead of the quantum number (p*,r*,s*). Ta-

ble 4.3 represents spatial symmetries of RPA single particle wave functions
defined by

(i)’\(fq) Re[¢!™*(r+q)], (4.692)
¥ (rq) = Im[¢ (r+9)], (4.69h)
B (rg) = RelgP (r—g)), (4.69¢)
i (rg) = Im[gf M (r—q)}. (4.694)

Then, we can solve the RPA equation in one eighth of the mesh space.

4.2.3 Quantum number

In the previous subsection, we classified the excited state under the quan-

tum number (s,s},s)) or (p},r*,s*). Then, we can calculate each state

Y Cyrvz
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Table 4.3: Symmetry properties of the zbfi)’\ with respect tothez =0,y = 0,
and z = 0 plane in the case of p; = 1, where p; is the parity of single-particle
wave function ¢;(roqg). In the case of p; = —1, all of the signs of the column
of z are changed into the opposite ones.

(pA1TA:'54\) (+a+5+) (+1—‘1+) (+)_=_') (+1+7_)
(Siv‘{";}:'s;\) (+++) [ (=) [ (=+H) | (== +)

vy 2 Ty z Ty z Ty oz
3 D o EE e I ———
P ——4 | o~ | == |
i —+= | =+ | | A=
i +-= | 44+ | —=+ | —+-
(p)\trlisl\) ( » 1) ) (_ — '—) (— —1+) (_:+>+)
(32,33,82) (== =) [ =+ ) | (s 1) L {4+, -)
Y z x Yy z ry oz T Yz

Wi ——= | =+ | +=+ | ++-
i t= | b=t | — | -
P +—+ | ++- | == ] =+
g | | o= | - | -

independently. It enable us to calculate the stable excited states other than
unstable states. (See section 6.2.) In this subsection, We consider the case
of a state with quantum number (s}, s;,s?). If there exists no spurious state
for the given quantum number, we solve the RPA equation (4.50) from the
beginning. The transition Coulomb potential in Eq. (3.66) is calculated with

the CGM in subsection 4.1.5.
e (3233313? = (_1+s+)

— There exists a spurious state of the translation for a-direction.

— The following modified spherical harmonies in Eq. (445} are
used in the calculation of multipole expansion of the transition
Coulomb potential and the reduced transition probability of the
natural parity state.

~ 5 ay
Tlfl.,.'—'l} T Y:'i,—-la ! Yi3,—-3-
A oA gAYy —
. (Smrsyssz “‘“’('l'ﬂ_%—l')
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o (s

e (s

o (s

e (s

— There exists a spurious state of the translation for y-direction.

— The following modified spherical harmonics are used in the calcu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity state.

~ . 4
TYl,l, r Ya,b r Ys,a-

J\S)\Sz\),,_(_i__'__)

e yrCz S T ) 1

— There exists a spurious state of the translation for z-direction.

— The following modified spherical harmonics are used in the calcu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity siate.

~ 3 373
T}‘fl.ﬂa r }{3,0} T Y:'j,?-

T T _)

— There exists no spurious state.

A ot @AY
m)sy:‘sz _(

— The following modified spherical harmonics is used in the calcu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity state.

)

A oA GAY
xasyasz) =(+ =)
~ There exists a spurious state of the rotation around z-axis when

the nucleus is the non-axial symmetric shape around z-axis.

— The following modified spherical harmonics are used in the caleu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity state.

247 417 417

T Yé‘b T Y:i,h r }r‘l,S-
Ah Ay
w!sy’sz) = (—+,—)

— There exists a spurious state of the rotation around y-axis when
the nucleus is the non-axial symmetric shape around y-axis.

-~ The following modified spherical harmonics are used in the calcu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity state.

257 457 437
r Yz,—la T Y:t,—u r i4,—3-
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b (3;\:3;}13?) = (- +)

— There exists a spurious state of the rotation around z-axis when
the nucleus is the non-axial symmetric shape around z-axis.

— The following modified spherical harmonics are used in the calcu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity state.

27 LR 417
r‘Ys_q, r° Yy, Yy 4.

. (323 ‘33! 52) = (+1 +, +)
— There exists no spurious state,

— The following modified spherical harmonics are used in the calcu-
lation of multipole expansion of the transition Coulomb potential
and the reduced transition probability of the natural parity state.

01~ 2y ELY. 437 EEY,
r K),o, 7 Ya&,m r Yq,m r 1/4,2, r le,d-

The Table 4.4 shows the lowest three excitation energies with each guan-
fum number (s2,s),s}) for odd parity state of '®0. The employed interac-
tion is SIII. The three excitation energies, hw, of (—,+,4), (+,—,+) and
(+,+,—), are those of the spurious states and are pure imaginary in this
calculation. The seven excitation energies, fiwy of (—,+,+), (-+,—,+) and
(+, +, =), and fiws of (—,+, +), (+, —, +) and (+, +, —) and hiw, of (—, —, —),
are those of the 37 state. The two excitation energies, fiwg of (—, —,—) and
Bws of (—,—,—) are those of the 27 state. We can see that in the case of
(— +,+), (+,—,+) and (+, 4, —), we have the same excitation energies. We
can see that the excitation energies of 37 state split into the three groups.
It is numerical error due to the symmetries with 3D Cartesian mesh. The
numerical error is less than 0.1 keV. That is, in our calculation for spheri-
cal nuclei, the excitation energies with quantum number (—, +, ), (+,—, +)
and (++,+,—) are same and the excitation energies with quantum number
(+,—,—), (—,+,—) and (—,—,+) are same. Similarly, in our calculation
for the deformed nuclei which shape is axial symmetric around z-axis, the
excitation energies with quantum number (—,+,+) and (4, —, +) are same
and the excitation energies with quantum number (4, —, =) and (—, +,—)
are same. Therefore, we calculate only one of those for each case.
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Table 4.4: The lowest three excitation energies (in MeV) with quantum num-
bers (s}, s}, s3) for odd parity states of **0. The employed interaction is SIII.
Parentheses in the second, third and forth column represent the number of
iterations. The mesh size is 1.0 fm and the number of mesh points is 20 for

one direction in the calculation.

(3273333;\) rwl ru""2 hw:i
(—,+,+) 0.51982602: (290) 6.46756432 (205) 6.52047684 (169)
(+,—+) 0.51982602¢ (290) 6.46756433 (196) 6.52047683 (143)
(140)
(256)

(4+,+,—) 0.519826157 (290) 6.46756432 (272) 6.52047684 (140
(=, —,—) 6.52563533 (200) 8.19526708 (189) 8.19526708 (256

4.3 Method for accurately calculating in the
mesh representation

In this section, we explain that we can obtain accurate numerical results even
if a rather coarse mesh is used in the calculation [33].

We perform the HF plus RPA calculations on the two types of 3D Carte-
sian meshes with even and odd number of mesh points in one-direction (see
Fig. 4.2). Then, we take an average of the numerical results obtained on
each of two types of meshes. This procedure provides us with the accurate
results even when rather coarse mesh size is employed.

In both meshes of Figs. 4.2 (a) and (b), we employ poinis inside a cube.
When we impose the spatial symmetries on the wave functions in terms of Eq.
(4.35), the possible mesh is one of the who meshes provided that the center
of the nucleus coincide with the center of the cubic mesh space. Hereafter,
we call the mesh in Fig. 4.2 (a) the even-mesh and the mesh in Fig. 4.2 (b)
the odd-mesh.

As illustrative examples, the method is applied to 0 in HF and RPA
calculations, where the number of mesh points is fixed to 30® in even-mesh
calculation and 317 in odd-mesh calculation. The calculations are carried
out with the mesh size being changed from 1.0 fm to 0.6 fm by step-size 0.02
fm. Also numerical results by means of Lagrange mesh (LM) method and
9-point formula of finite-difference (FD)} method which are used in order to
approximate differential operators, are compared, The employed interaction
is SIIT except 8,2 = 1 (see Table 4.1}, that is, the 7% terms in Skyrme energy
functional are included in the calculation.

Fig 4.3 shows rnesh size dependence of total binding energy of 1°0. Fig 4.3
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(a) even {b) odd

Figure 4.2: Schematic illustration of two ways of setting the mesh on space.
The intersection points of dotted lines represent mesh points. Each circle
represents a nucleus, whose center of mass is marked by a cross (x), The
center of mass of a nucleus is located at the middle point of the mesh points
in (a) and coincides with a mesh point (the origin) in (b).

1280 — . . . T -128,180 — T v i T
BV} —+—
-128.1 (2) . (b FD tav} e
U -128.185 | 1
E‘ 28,2 Wmmmﬂ : ‘—EE: st ,
2 e 1
B 1eea .----H'""i B o
5 Pt B -126:200
o 1284 o LM (30} —— 1 &
o LM {31} —e—
@ -128.5 s FD {30y -~0— E
= ) goor FD {31} -~ B 128205 | 3
286 | F ! {/"L
“zay L . . L . {28210 L= - . L .
1.0 0.90 080 0.70 060 1.00 0.90 0.80 0.70 [1=]
mesh size {Im) mash size [fm]

Figure 4.3: Mesh size dependence of total energy of 0. Open (filled) circles
in (a) denote numerical results with the even-mesh (odd-mesh) calculation
where 30 (31?) mesh points are used. Plus signs in (b) are averages of the
even-mesh and the odd-mesh calculations at each mesh size. Lines (dotted
lines) represent the calculation with Lagrange mesh method (9-point formula
of finite difference method).

(a} represents numerical results with even-mesh and odd-mesh calculations
and Fig. 4.3 (b} is for the averages of both results. LM (FD) stands for
Lagrange mesh (finite difference) method. In [ig 4.3 (a), it is seen that the
total binding energy of each case converges to a value-128.2 MeV as the mesh
size goes smaller. The results with LM method are better than that with
FD method at each mesh size. In Fig 4.3 (b}, we can see that the deviation
of the averages with Lagrange mesh method is within 10 keV at each mesh
size.
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Figure 4.4: Deviation of the total energy of O from the average. The
notations are the same as in Fig. 4.3,

Fig 4.4 shows the mesh size dependence of a deviation of the total energy
of 180 from the average. The left figure of Fig. 4.4 is with Lagrange mesh
method and the right figure with finite difference (FD) method. We can
see that the results with LM method is similar to that with FD method.
Therefore, difference of the averages of LM method and FD method in Fig
4.3 mainly originates from a numerical error due to the approximation of the
differential operator.
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Figure 4.5: Squared energy for spurious state of 0. The notations are the
same as in Fig. 4.3.

Fig. 4.5 shows mesh size dependence of the squared energies (fwy)? for
spurious state of 50, The left figure of Fig. 4.5 is with LM method and the
right figure with FD method. We can see that the results with LM method
is similar to that with FD method. We can also see that the results in Fig.
4,5 is similar to that in Fig. 4.4 except sign. When the total energy with one
mesh is lower (higher) than the average of total energy with the even-mesh
and the odd-mesh, the squared energy of computational spurious state is
positive (negative) for both LM and F'D cases. We can not predict which of
the squared energy is positive or negative when we determine the number of
mesh points. The average of the results of the two mesh calculations is close
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to the converged value, that is, zero for all over the mesh point in both LM
and FD cases.
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Figure 4.6: Excitation energy for 37 of 0. The notations are the same as
in Fig. 4.3. See the text for the meaning of the panels from (a) to (h).

In Figs. 4.6 and 4.7, we show the excitation energies and the reduced
electric-octupole transition probabilities for first 37 state of 0. As explained
in the Table 4.4, the seven degenerate excitation energies split into three
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Figure 4.7: Reduced transition probability B(E3) for 37 of Q. The notations
are the same as in Fig. 4.6,
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groups: In the first group, there are three components, where each transition
amplitude is proportional to Yapp* ~ z(5z% — 3r)p* and its permutations
of 2, y and z, i.e., a(5z® — 3r?)p* and y(5y* — 3r?)p*. In the second group,
there are three components, where each transition amplitude is proportional
to Yappt ~ z(y? — 2%)p* and its permutations of 2, y and z, i.e., z(2? — y*)p*
and y(z? — 2%)p*. In the third group, there is one component, where the
transition amplitude is proportional to ?3410'\ ~ ayzp®. Here, we use the
modified spherical harmonics Y, in Eqs. (4.45) and transition density p*(r)
in Eq. (3.18a). The (a) and (e) in the Figs. 4.6 and 4.7 are the results
of the first group with LM and FD method. The (b) and (f) in the Figs.
4.6 and 4.7 are the results of the second group with LM and FD method.
The (c) and (g) in the Figs. 4.6 and 4.7 are the results of the third group
with LM and FD method. The {d) and (f) in the Figs. 4.6 and 4.7 are the
results of the average of the even-mesh and odd-mesh calculations for each
of the three groups with LM and FD method. In Fig. 4.6 (4.7), as the mesh
size goes smaller, excitation energies (reduced transition probabilities) with
the even-mesh and odd-mesh converge to a value 6.752 MeV (6.93 Weisskopf
unit}, The excitation energies with LM method is better than those with FD
method. However,the transition probability with LM method is similar to
those with FD) method. The average of excitation energies (reduced transition
probability) of even-mesh and odd-mesh calculations with Lagrange mesh is
within 10 keV (0.04 W.u.) for all of the displayed mesh size.

In Table 4.5 shows squared energies of spurious state of rotation on the
top of triaxial superdeformed state of “®Ca, which is explained in chapter 6.
The Lagrange mesh method is used in the calculations. We can see that the
average of even-mesh and odd-mesh calculations is very close to zero. That
is, we can calculate the accurate results in the case of triaxial nuclei.

Thus, we can obtain the accurate results of excitation energies and re-
duced transition probabilities by means of the above averaging method and
Lagrange mesh method.

4.4 Correlation energy of spurious motion

In this section, we explain that the correction energy due to the spurious
vibration can be approximately calculated in terms of the computational
spurious states. According te our formulation of SHI plus RPA, we can
obtain the computational spurious state with finite eigenvalue.

Using the wave function qbgi)'\(:c) in Eq. (2.45), the correlation energy of
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Table 4.5: Squared energies of spurious state of rotation on the top of su-
perdeformed state of “°Ca. First row represent quantum number in Eq.
(4.68). The squared energies is given in MeV?, The numbers in parenthe-
ses of second column represent the number of mesh points in one-direction.
The “av” in parentheses of second coliimn represent average of the values of

(25) and (26). “0.8 fm” in second column represent mesh size used in the
calculation.

(Sa:’sy:‘sp') (+1_:’_) (_1'[':_) (_a_>+)

0.8 fm (25) 0.07107  -0.03451 0.03640

SII 0.8 fm (26)  -0.06862 0.03676  -0.03535
0.8 fm (av) 0.00122 0.00112 0.00052

0.8 fm (25) 0.02148  -0.01301 0.00114

7. 0.8fm (26)  -0.02142 0.01406  -0.00093

0.8 fm (av) 0.00003 0.00053 0.00010

0.8 fm (25) 0.09372  -0.02998 0.01070

SkX 0.8 fm (26)  -0.09147 0.03334  -0.01361
0.8 fm (av)  0.00113 0.00168  -0.00145

0.8 fm (25)  0.00445  -0.00910  -0.00215

SkI4 0.8 fn (26)  -0.00556 0.01031 0.00490
0.8 fm (av)  -0.00056 0.00060 0.00137

0.8 fm (25)  0.04346  -0.01738 0.00866

SkO 0.8 fm (26)  -0.04299 0.01859  -0.00992
0.8 fm (av)  0.00024 0.00061  -0.00063

certain mode A in Eq. (2.44) is written for the physical mode as

s W@ = ghon L[ o) - oMo

) (4.70)
and written for the spurious mode as

L Ar 2 1 ()0, 2
YR ;ipf @) = ;L‘VMAIngﬁ; (fb)‘ : (4.71)

For the case of the pure imaginary eigenvalue, we assume the corrvelation
energy of Eq. (4.70) to becoine the following equation:

a3 |¥P ()] =

c,‘b( )\( )2

(4.72)
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Since computational spurious state has finite eigenvalue, in order to evaluate
the correlation energy of the spurious state in terms of the wave function
qb,(-i)’\(m), one may expect the correlation energy of Fq. (4.72) is better than
the ones of Eq. (4.71) at least for the real eigenvalue. However, the fact is

the opposite,
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Figure 4.8: Correlation energy corresponding to the center-of-mass spurious
vibration for 0. The transition density has odd symmetry with respect to
the z = O-plane. The used Skyrme interaction is Z,. The number in the
parenthesis represents the number of mesh points for one direction used in
the calculation. |P[* represents the results with the right-hand-side of Eq.
(4.71) and |Y]? represents the results with the left-hand-side of Eq. {4.70).

In Fig. 4.8, we show the correlation energy corresponding to the center-
of-mass spurious vibration for 0. The transition density has odd symmetry
with respect to the z = 0-plane. We can see that the correlation energy of
Eq. (4.70) converges only in the small mesh size region except for the 0.86
fm, and the correlation energy of Eq. (4.71) converges for all of the displayed
mesh size region. Rewriting Eq. (4.72) into

ol IR = et 3[4 + 47

] ], (4.73)

the differences between Eq. (4.71) and Eq. (4.72) are the second term and
the third term in the right-hand side of Eq. (4.73). We confirm the second
term is much smaller than the third term for all of the displayed mesh size
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region. In other words, the differences between Eq. (4.71) and Eq. (4.72) just
coincide with the absolute value of the excitation energy of the computational
spurious state. Thus, if the excitation energy of computational spurious state
is very small, then the corrclation energy in Eq. (4.72) gives the accurate
values. After all, we should use Eq. (4.71) in order to evaluate the correlation
energy.

9795 T ——— T
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9.785

9.780

9.775

8.770

Correlation Energy [MeV]

9.765 e L N 1 B —tt s 7
.00 0.90 0.80 0.70 0.60 0.50
mesh size [fm]

Figure 4.9: RPA correlation energy of the center-of-mass vibration for 60,
The number “30” and “31” represents the number of mesh points for one-
direction used in the calculation. The “av.” represents the average of the
results of “30” and “31".

The RPA correlation energy of the center-of-mass vibration coincides with
the HI' expectation value of the center of mass motion:

>3 JZ| 1(HFI . [HF), (4.74)

A€ecm.

where the label “c.m.” in summation represents the summation over spuricus
center of mass vibration., We show the RPA correlation energy of the center-
of-mass vibration calculated with the right-hand-side of Eq. (4.71) in Fig.
4.9. We also show the HI' expectation value of the center of mass motion
calculated with the right-hand side of Eq. (4.74) in Fig. 4.10. We can see in
both figures that the influence of the box size used in the calculation is not
ignored in the region where the mesh size is smaller than 0.6 fm. Though, the
values labelled “av” in both figure are almost constant for all of the mesh size
region. The difference between the values labelled “av.” in IFig. 4.9 and those
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Figure 4.10: The HF expectation value of the center-of-mass motion for ¥0.
The labels are the same as Fig. 4.9,

in Fig. 4.10 is within a few keV for all of the mesh size region. Furthermore,
the situation is all the same in the deformed nuclear case. For example, the
difference between RPA correlation energy of the center-of-mass vibration
and the HI expectation value of the center-of-mass motion is 3 keV for the
8p-8h superdeformed state of °Ca, where the mesh size of 0.8 fm and 25
and 26 mesh points are used in the calculations. Therefore, in onr numerical
calculation, we can assert that the the RPA correlation energy of the center-
of-mass vibration coincides with the HF expectation value of the center of
mass motion.,

The same argument can be applied to the case of the spurious rotational
motion. Then, the RPA correlation energy of spurious rotational motion
coincides with the HF expectation value of rotational motion:

gl 2|7

where the J, is total angular momentum operator around v-axis and the 7,
is the moment of inertia around wv-axis, which corresponds to the Thouless-

Valatin formula for moment of inertia [64] (cf. [47]). ¢!P” is the RPA wave

1
function, which is following state with the quantum number (s3,s3, 52):

= L(HFU;?[I—IF),

X (4.75)

¢ v = 3 — spurious state with the quantum number (+, -, )

e v =y — spurious state with the quantum number (—, +, —)
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® 1 = z — spurious state with the guantum number (—, —, 4)

Of course, these states do not exist when the nuclear shape is axial around

v-axis. Then, the RPA correlation energy of spurious rotational motion does
not exist.

4.5 Comparison with other calculations

In this section, we compare our numerical results with those by other groups.
We perform the three-dimensional Cartesian mesh calculation with Lagrange
mesh method, and our results in this section are obtained by the averaging
method explained in previous section 4.3.

4,5.1 HF calculations

Since the RPA calculation are based on the HF single-particle states, we
start with confirming the accuracy of our HF calculation with Lagrange mesh
method.

Table 4.6: Binding energies (in MeV) of several spherical nuclei. The used nu-
merical method are a spherical oscillator basis (SHOB) [8], a spherical radial
mesh (RM) [26], a three-dimensional Cartesian mesh with finite difference
approximation (3DM) [26], and a three-dimensional Cartesian mesh with the
Lagrange mesh method (3DLM). Our results are shown in the last two rows.
The Skyrme SIII force is used in all of the calculations. Parentheses in first
column represents a mesh size used in each calculation.

160 400& BOZI. 20‘81:)1)
SHOB 128.21 341.85 782.66  1636.61
RM (0.1 fm)  128.27 34192 78273  1636.61
3DM (0.8 fm) 128.26 341.86 783.12  1638.43
3DM (1.0 fm)  128.74 34332 786.14  1645.19
3DLM (0.8 fm) 128.202 341.849 782.566 1636.372
3DLM (1.0 fin) 128.212 341.851 782.571 1636.379

Table 4.6 shows the binding energies of several spherical nuclei calculated
with four types of numerical methods. It is pointed out in Ref. [26] that the
relative error of binding energy in three-dimensional Cartesian mesh calcu-
lation using coarse mesh size (1.0 fm), where finite difference formula is used
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to approximate differential operator, is about 0.5% and cannot be negligible
for medium and heavy nuclei. So, one should correct the binding energy for
this small numerical inaccuracy in the case of the usual 3D mesh calculation.
One can see that the relative error of the binding energy is very small of the
order of keV even if coarse mesh size (1.0 fm)} is used when the 3D Cartesian
mesh calculation with Lagrange mesh is employed. Thus it is not necessary
to mind numerical error in the case of the 3D Cartesian mesh calculation
with Lagrange mesh.

4.5.2 RPA calculations
Spherical nuclei

In order to demonstrate our RPA calculation is correct, we compare our cal-
culations with the ones of Refs. [19, 20, 65]. In Refs. [19, 20], the calculation
was performed with the spherical harmonic oscillator basis and the Coulomb
interaction was neglected in the RPA calculation. In Ref. [65], the calcula-

tion was performed using the response function method (continunm RPA)
(17, 32].

Table 4.7: The excitation energies for 37 states of doubly magic nuclei with
Skyrme SIII force. Our calculation is performed with the original Skyrme
parameters SIII except €72 = 1. The energies are given in MeV. The last row
with Exp shows the experimental values.

160 4(}Ca BOZI. QOSPb
our results 6.75 2.49 1.07 2.24
Blaizot and Gogny [19] 6.77 2.76 1.57 2.82
Krewald ef al. [20] 7.04 _ — 3.33
Abbas et al. {65] 6.86 3.90 1.59 2.98
Exp [66] 6.13 3.74 2,75 2.62

In Table 4.7, we show our numerical results of the excitation energies for
the 37 states of spherical nuclei with Skyrme SIII force. As a comparison,
the numerical results of other groups’ [19, 20, 65] and experimental values
[66] are also listed. In each case of the listed nuclei, our excitation energy is
smaller than the others’. Because our calculation is considered as continuum
RPA calculation, our numerical results should be lower than those of Refs.
[19, 20], whose calculations are carried out with the truncated harmonic
oscillator basis and do not include the continuum effect. On the other hand,
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in Ref. [65], the response function method is employed and the continuum is
properly treated in the calculations. From the viewpoint of the continuum
RPA, our method of calculation is essentially the same as the one in Ref. [65],
since the RPA equations are formulated and solved in the mixed configuration
space of coordinate and hole orbitals. But the difference between our results
and those of Ref. [65] is not small. The results of Ref. [65] are a bit larger
than those of Ref. [19] for °0, ®Zr, 2°®Ph, and somewhat larger for “°Ca,
If the same interaction is used, the results of Ref. [65] should be smaller
than those of Ref. [19]. Therefore, the interaction used in Ref. [65] may be
different from that used in Ref. [19], for example, in the treatment of the
Coulomb interaction, the spurious state, and {o - o) terms or (o - &)(7 - T)
terms and so on.

In Table 4.8, we compare our results and the ones by Blaizot and Gogny
in detail with respect to the properties of 37 states of the spherical nuclei. In
the table, label “BG” is used for the numerical results by Blaizot and Gogny
[19]. Our caleulations are performed in three cases, (i), (ii) and (iii), for each
of the Skyrme parameters SIII and SIV. A case (i) is the same as original
Skyrme parameters. A case (ii) is the same as original Skyrme parameters
except @52 = 1. A case (iii) is the same as the case (ii) but the Coulomb
interaction is neglected in the RPA calculation.

One can confirm that the effect of the parameter #;2 by comparing the
results of (i) and (ii). It is clear that the effect of this parameter is not neg-
ligible for the excitation energy and the reduced transition probability. One
can also confirm the contribution of the Coulomb interaction by comparing
the results of (ii) and (iii). The RPA calculation with the case (iii) is not
selfconsistent because of the removal of Coulomb interaction in the RPA cal-
culation. It is seen that the contribution of the Coulornb force to the reduced
transition probability is large in heavy nuclei, in which the Coulomb force is
large.

Seeing the binding energy and the single particle gap in the Table 4.8, it
is clear that the calculations by Blaizot and Gogny were performed in the
case (ii) (or {iii), where the binding energy and the single-particle gap are
equal to the ones in the case (ii})). For 60, the excitation energies of the case
(ii), whose values are 6.75 MeV for SHI and 8.88 MeV for SIV, agree with
the results of BG, whose values are 6.77 MeV for SIII and 8.9 MeV for SIV.
The excitation energies of the case (iii), whose values are 6.74 MeV for SIII
and 8.87 MeV for S1V, also coincide with those of BG too. The excitation
energies of the other nuclei in the case (ii) are smaller than those of BG
respectively, and the reduced transition probability B(E3) of all nuclei in the
case (i1) are larger than those of BG respectively, These tendencies are larger
for the case (iii). We do not understand the origin of these discrepancy. One

90



Table 4.8: Comparison of properties of the low-lying collective 3; states
for doubly magic nuclei between our results and the ones by Blaizot and
Gogny [19]. Our calculations are performed for three different cases: The
case (i) is the same as the original Skyrme parameters. The case (i) is the
same as the original Skyrme parameters except 62 = 1. The case (iii) is
the same as the case (ii) but the Coulomb contribution is neglected in the
RPA calculation. The “BG” represents the results by Blaizot and CGogny.
E[A is binding energy per nucleon. A, is the average single particle gap:
Agp = (AR 4 Aprotons) - | (37) is excitation energy given in MeV and
B(E3) is reduced transition probability in Weisskopf units for 37 states.

160 4oca

E[A A, B.37) B} | EJA A, I,(3) B(E3)

(i) {|-801 761 649  6.67 |-855 5.5 2.39  31.0

grpp | () |[-801  7.65 675 693 |-855 554 249 287
(ii1) || -8.01  7.65  6.74 6.98 |-8.55 5.54 2.40 30.6

BG || -8.00 7.7 6.77 6.23 |-8583 5.61 276 22.7

() [[-8.03 11.11 860 109 |-854 855 293  49.7

STV (ii} || -8.03 11.20 8.88 11.2 |-854 859 3.15 46.5
(iii) || -8.03 11.20  8.87 11.2 | -8.54 859 3.00 49.7

BG || -8.02 11.2 8.9 10.1 |-8.52 8.65 3.48 38.4

Ql]zr 208Pb

EJA A, E,3;) B(E3) | EJA A, E.(3;) B(E3)

(i) | -8.70 348 0.97 485 |-7.87 3.63 244 43.9

grp | () || -866 324 107 452 |-784 328 224 44l
(i) || -8.66 3.24 0.86  60.6 |-7.84 3.28 2.04 528

BG || -8.64 3.21 1.57 28 -7.80 3.39 2.82 33

(i) |)-8.69 573 230 56.1 |-7.87 §&.52 3.10 49.4

gry | (i) |[-864 539 234 567 }-783 503 286 512
(i1i) || -8.64 5.39  2.08 66.7 |-7.83 5.03 2.6l 59.6

BG || -8.62 533 2381 45 -7.80 5.15 348 44
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of the possible origin is the fact that our caleulation does not impose any
truncation on the particle orbitals, whereas Blaizot and Gogny did.

Table 4.9: Comparison of properties of spurious, 37 and 2] state for 60
between our results and the ones by Krewald et al. [19]. Our calculations
are performed in three cases: The case (i) is the same as the original Skyrme
parameters except d;2 = 1. The case (ii) is the same as the original Skyrme
parameters except ;2 = 1 and 8¢ = 1. The case (iii) is the same as the
case (i) but the Coulomb interaction is neglected in the RPA calculation,
The rows labeled “Kir” show the results by Krewald et al.. E,p, is the energy
of spurious state. £,(37) is excitation energy and B{£3) reduced transition
probability for 37 states. E,(2]) is excitation energy and B(M2) reduced
transition probability for 27 states. ?rdg,/gpl“flg and desfgp:;/lz are particle-
hole energy for proton respectively. The energies are given in MeV, and the
reduced transition probabilities are given in Weisskopf units.

LTy
Epu | E=(37) B(E3) | E.(27) B(M2) ?Tds/gpl_/lg ﬂdslgp;;?
(1) || 0.02: | 9.54 9.13 12.12 0.203 11.29 16.60
o | () [00n| 951 933 | 1207 0264 | 1123 1650
(iii) || 2.32¢ | 9.45 0.52 12.07 (.264 11.23 16.50
IKr [ 1.80 9.82 8.90 12.15 0.159 11.24 16.51
(i) || 0.07¢ | 6.75 6.93 8.35 0.326 7.58 13.49
STII (ii) || 0.07¢ | 6.74 7.09 8.33 0.373 7.56 13.43
(iii) |} 2.312 | 6.71 7.25 8.33 0.373 7.56 13.43
Kr || 2.60 7.04 6.38 8.39 0.306 7.54 13.45
(i) [| 0.05: | 1054 12,74 | 1527  0.334 13.76 21.69
qy (i) || 0.05¢ | 10.50  13.01 15.17 0.508 13.65 21.52
(i) || 2.35¢ | 10.47  13.30 15.17 0.508 13.65 21.52
Kr || 0.50 10.86  13.1 15.3 0.242 13.67 21.54

Table 4.9 shows comparison of properties for spurious, 3] and 2 states
of 180 between our results and the ones by Krewald et al. [20]. Our calcula-
tions are performed with three cases, (1), (i) and (iii), for each of the Skyrme
parameters, SII, SIII and SV. A case (i) is the same as original Skyrme
parameters except 02 = 1. A case (ii) is the same as original Skyrme pa-
rameters except #;2 = 1 and ¢, = 1. A case (iii) is the same as the case
(ii) but the Coulomb interaction is neglected in the RPA calculation.
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Comparing the results of (ii) and (iii), we can see that the removal of
the Coulomb force in the RPA calculation strongly affects spurious states
and weakly affects 37 state and do not affects 2] state. The reason that
the removal of the Coulomb force has no influence on 2y state is that the
27 state 1s one-particle one-hole excitation and has little dependence on the
residual interaction of RPA,

Seeing the particle-hole energies for proton, T{‘ds/gpl_;z and mdssop,. !12, in the
Table 4.9, it is clear that the calculations by Krewald et al. were performed
for the case (ii) (or (ii1)). For each of the Skyrme parameters, the excitation
energies and the reduced transition probabilities of 37 state for the case (ii)
are rather close to those of Krewald el o/ and the excitation energies of
2] state for the case (ii) are coincident with those of Krewald et al.. The
reduced transition probabilities of 2] state of (ii) are roughly equal to those
of Krewald et al.. The energy of the spurious state of (iii) is different from
those of Krewald ef al. in that our results are pure imaginary in contrast
with the real values of Krewald et al., We don’t clearly know the reason
of discrepancy. For the similar calculation by Blaizot and Gogny [19], the
excitation energy of spurious state for *°Ca with Skyrme SIV force is 1.7:
MeV. Maybe Krewald et al. did not use the diagonalization method which
enables them to treat imaginary eigenvalue. Anyway, the removal of the
Coulomb interaction strongly influences spurious state. In our self-consistent
SHT plus RPA calculation, the Coulomb interaction is properly included.

Deformed nuelei

There has probably been no calculation of low-lying excited state without
charge exchange for deformed nuclei with SHF+RPA. So, in this subsection,
we compare our numerical results of the low-lying states of the light deformed
nuclei with those by Takami et al. [67, 68], where the parity-projected Skyrme
Hartree-Fock method is used.

In Fig. 4.11, we show low-lying isoscalar odd-parity states for *Ne
and “Mg with our calculation (SHF+RPA) and parity-projected Skyrme-
Hartree-Fock method (PPSHY) [67, 68]. We can see that our results com-
paratively coincide with those by Takami et el even though the results are
calculated by completely different formulation,
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Figure 4.11: Comparison of low-lying isoscalar odd-parity states for 2*Ne
and Mg between our calculation (SHF+RPA) and parity-projected Skyrme-
Hartree-Fock method (PPSHF) [67, 68]. Each of the levels are labeled by
K™, Skyrme SGII force is used in both of the methods.

In Ne, several rotational bands are observed [69}): One with K™ = 2~
built on the the excited J* = 2~ state at 4.97 MeV, one with K™ = 0~ built
on the excited J™ = 1~ state at 5,79 MeV, and the one with K™ = 1~ built
on the excited J™ = 1~ state at 8.85 MeV. In Mg, several rotational bands
are observed [70]: One with K™ = 07 built on the the excited J" =1~ state
at 7.56 MeV, one with K™ = 3~ built on the excited J™ = 3~ state at 7.62
MeV, and the one with ™ = 1~ built on the excited J™ = 17 state at 8.44
MeV. (K™ for Mg is taken {rom Ref. [71].) We suppose that our results
correspond to the band heads of those rotational bands except the K™ = 37
for °Ne and the K™ = 2~ for **Mg. Thus, in the case of deformed nuclei,
our self-consistent SHF plus RPA calculation gives us a firm basis on which
we can investigate the low-lying excited state.
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4.6 Instability by s« As term

In this section, we study an unknown instability which occurs in the RPA
calculation, induced by s - As terms in Skyrme energy functional.

It is known instability brought by the three-body term depending on
spin density in the Skyrme energy functional [72, 73]. We can explain this
ingtability in terms of the Landau parameters [73], which provides a stabil-
ity criterion for symmetric unpolarized infinite nuclear matter. The Landau
parameters are represented by the coefficients C7 in the Skyrme energy func-
tional (3.29) [23]. However, the coefficients C* are not connected with
Landau parameters. Therefore, we do not clearly know the mechanism of
the instability induced by the s- As terms. So, we examine the variation of
the excitation energy when €' is varied.
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Figure 4.12: Variation of the excitation energy for 0 when C° is var-
ied. The coefficient C2° dependence on the excitation spectra for 0. The
Skyrme SIII force is used but we fix C2° to zero in the calculation. The
original parameter for SIII is Cp* = C'&° = 17.03125 MeV fm®.

In Fig. 4.12, we show the variation of the excitation energy for 'O when
CE* is varied. We can see that the excitation energies of the isovector mode
do not vary but those of the isoscalar mode come down when CH* increase.
The rate of the fall of the excitation energies is largest for isoscalar 17 state.
If C2* = 35, then the instability occurs and we can no longer solve the RPA
equation numerically.

In Fig. 4.13, we show the variation of the excitation energy for '*0 when
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Figure 4.13: Variation of the excitation energy for '*0 when C? is var-
ied. The coefficient C{** dependence on the excitation spectra for 0. The
Skyrme SIII force is used but we fix C2** to zero in the caleulation.

CP* is varied. In contrast with the case in Fig. 4.12, we can see that the
excitation energies of the isoscalar mode do not vary but those of the isovector
mode come down when C'°° increase. For all excitation spectra, the rate of
decrease of the excitation energies is much smaller than those in Fig, 4.12.

It is probably that the instability induced with the Cc?ssm - Asgp term
in the Skyrme energy functional occurs when the isoscalar coefficients C¢
has large value. In some Skyrme interaction, e.g. SLyz, Sklz, and SkO and
so on, such instability actually occurs in our RPA calculation. Therefore,
in such case, we remove the s, - Asy,, terms in the RPA calculation (see
section 4.1.1).
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