Chapter 2
RPA

In this chapter, we outline the random phase approximation (RPA). In the
RPA, l-particle 1-hole excitations and collective excitations are described.
Furthermore, the ground state correlations and the collective mass are con-
sidered. The RPA is valid for the description of a vibrational mode such as
a glant resonance of nuclei. In section 2.1, the RPA equations in the stan-
dard particle-hole configuration space are explained (cf. [46, 47, 48]). In
section 2.2, the RPA equations in mixed configuration space of coordinates
and hole orbitals are introduced and the relation between the particle-hole
configuration space formalism and the mixed configuration space formalism
is explained. In section 2.3, we study the relation between RPA in the mixed
configuration space and time-dependent Hartree-Fock (TDHF) in coordinate
representation, We derive relations among the single-particle density ma-
trices under the time-reversal operation. We also derive a relation of time
reversal pair in the RPA wave function.

2.1 RPA in particle-hole configuration space

2.1.1 X-Y representation

Here we derive RPA equations starting with equations of motion method
[46] (See [47]). Using hamiltonian H and phonon operators O, equations of
motion for the aperators O:{ are

[H,01]10) = (£ — Eo)O}[0) = fuwn O} 0), (2.1)
where [0) is a ground state defined by

O,\lO) = U, (2_2)



and &£, (fwy ) is the energy (the excitation energy) for excited state |A)
defined by
Ay = O]J0). (2.3)

Acting an arbitrary state (0|60 on Eq. (2.1) from the left and making use
of the fact (O|[H,01] = 0, we get

(0l{50, [#,0{11l0) = (0[50, O[]j0). (24)
We use an approximation
0) ~ [HF}, (2.5)

where |HF) is Hartree-Fock ground state. We approximate an phonon oper-
ator as

0 = 3" Xiahos — Yalam, (2.
mi

where al is creation operator of unoccupied (particle) state and a; is an-
nihilation operator of occupied (hole) state. The indices ¢ and j stand for
the occupied (hole) states in HF basis and indices m and n stand for the
unoccupied (particle) states. X3, and Y, are RPA amplitudes which are
determined below. The arbitrary operator §O belongs to a space spanned by
the set of particle-hole al a; and hole-particle a:-ram operators. Putting Eq.
(2.5) and Eq. (2.6) into Fq. (2.4), we have RPA equations in particle-hole
configuration space

D " Aming X0yt Bunini Yoy = huon Xoh,
o * A * A A (2.7)
Z Bmian'n.j + Aminjynj = _ﬁ’wkymii
nj

where hwy is the excitation energy of RPA mode A, We will also use indices

k and { to indicate any state of HF basis. Matrices Ann; and B, are

defined as
Amiﬂj = (I‘IFHCLIGm, [H1 a‘JLG‘J]] |:E[F>’ (2 8)
Bonin = —(HF|[a}am, [, ala,])|HIF). '

In the case of the density dependent interaction such as Skyrme interaction,
matrices Apn; and Bpin; take the following forms [19]:

52E
Aping = (em — €)0malij + T
p . 8B '
minj inm 5Pjn’
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where [[p] is HF energy and is considered as a functional of the single particle
density matrix p. e, (e;) is single-particle energy of particle (hole) state, We
write Eq. (2.7) in a matrix form:

(nfg,‘ _i*) (f)A = @’),\ (2.10)

This is an eigenvalue equation for non-Hermitian matrix because matrix A is
Hermitian and matrix B is symmetric. Though eigenvalues of non-Hermitian
matrix may Dbe generally complex number, we can only consider the case
of real eigenvalues. This is fbecause, in the case of HF local minimum,
cigenvalues of stability matrix are vanishing or positive, and then eigenvalues
of RPA matrix are all real [49]. In this subsection, we assume that fwy is
real and positive. In the following subsections, we consider the case with
vanishing and pure imaginary eigenvalues.
From complex conjugation of Eq. (2.10), we have also

(_’}} __’i*) G/f);\ = —hw), G/f),\ (2.11)

v

Therefore we consider that (1 ,) is an eigenvector with positive eigenvalue
A

y Yy . . . L -
fiwy, and ( x*) san eigenvector with negative cigenvalue —lw,.
A

We assume the following orthogonalization among the operators O and

0.

(HF|[O,, Ol JHF) = 4,2, (2.12a)
(HT|[O,, O:]|HF) = (HF|[O, O1]|HF) =0, (2.12h)

Then, orthonormalization relations of the eigenvectors of RPA equations are
given as follows:

o (o 2) (5), = 5 e - vva] =60, (2130)
A mi

o (L0 () 5 bt ) o o
A

mi

Y X), (é _01) (g)/\ =Y [V X~ XE Y] = 0. (2.13¢)

mi



The matrix elements for a Hermitian one-body operator F' are given by

ID|‘F|)\> Z F‘ileiL‘l: + Fmiyf;ii' (2'14)

This equation is necessary for the calculation of the reduced transition prob-
abilities.

2.1.2 P-() representation

In this subsection, with the aim of dealing with vanishing eigenvalues of RPA
equations, we introduce P-Q representation [46, 47]. We introduce a set of
hermitian operators @, and P, in terms of the phonon operators O} and O,
in Eq. (2.6)

7
_ |
Q= Moo (O,\ + O,\) , (2.15a)
b [,
Py= /= (0a-0f), (2.15b)

where w) and M) are positive. Then, Eq. (2.4) is replaced by the corre-
sponding equations

th

(HF|[50, [H, Q,]]|HF) = mm&(nm[ao Py [HFY, (2.16a)
(HF|[80, [H, PA]||HF) = ihw? My\(HF|[80, Q)]|HF). (2.16b)

From the expression in Eq. (2.6) and Eq. (2.15), we have

ZQW + Qialan, (2.172)

Py = Z + PXdlam, (2.17D)

where the relation between { i3 ,m} and {Q2;, ’\i} is given by

7
Ao Ay 2,18
mi \/2M,\w (Xme = Yai), (2.18a)

P,ﬁt.:iﬁﬁ/M;}" XM +YN). (2.18D)
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Substituting Eq. (2.17) for Eq. (2.16), we have RPA equations in the P-Q

representation as coupled equations

( ; f) (f;) = ihus? M, ( 3)/\ (2.19a)

(DG, e

From Eq. (2.12), expectation values of commutation relations among the
operators @ and P become

(HF|[Qu, PAJJIHE) = ihd,y, (2.20a)
(HF|[Q., @.]|[HF) = (HF|[P,, P,]][HF} = 0. (2.20b)
Therefore orthogonalization among the operators @ and P are
P .
(@ Q). (__ P*) = ihdyy, (2.21a)
A

(P P), (—};’*L = (@ Q). (_%*)A =0. (2.21b)

Taking into account the RPA ground state correlations, we have a binding
energy Erpa which is shifted from the HF energy Egr by a correction term

[47]:

Erpa= Eyr— ) ﬁw)\2| - >, 2M > (HF{P3|HE)
,(ﬁw;\;éﬂ) (ﬁw,\—-O)
S SIS 2T S Y
M{wx£0) Mlwp=0) © A

There exist spurious modes of motion of translation for all nuclei and of
rotation for deformed nuclei. The operator P in Hq. (2.15b} is the momentum
of cenfer of mass P.,, for translation and the total angular momentum J;
for rotation around the axes perpendicular to the symmetry axis: ¢ is 2 and
y for nuclei whose shape has axial deformation around z-axis and ¢ is z, y
and z for triaxially-deformed nuclei.

2.1.3 Treatment of pure imaginary eigenvalues of RPA
equations

We consider the case where RPA equations have pure imaginary eigenval-
ues. According to ref. [50], RPA equations (2.19) in the @-P representation
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involve solution with both real and pure imaginary eigenvalues. We define
again hermitian operators P, and Q) as

[k
= f
= STYAPN (O,\ + O/\) , (2.23a)

b My |w, ;
Pr= /= (00~ 0, (2.23b)
where we assume that M) is positive. Then, Eq. (2.16) becomes
(01160, [H, O11]|0) = Ajw, (0[50, O]l0), wf >0, (2.24a)
(©Ol30,[H,04]1|0} = —Alwp|(0][50,04]I0),  w} <0, (2.24Db)

Eq. (2.24a) is equivalent to Eq. (2.4). Substituting Eq. (2.6) for Eq. (2.24b),

we have A B ¥ y
¢ BE) (), e

Taking complex conjugation of eq. (2.25), we have also

(g* ﬁ‘) ()};’) = el (fy)A (2.26)

Defining X ,,; and Y ,,; through the relations

Xy + Y =X +7

) AT (2.27)
A;\ﬁ — Y'n'/:t s ) (X,m," — Ymi) 3

we get the equations for X and Y as

A B\ (X . X
( B A*) (7*)\ = —iljwy]| (JF*) R (2.28a)

(§ f) (??)A = il (_?;)A (2:28b)

Then, we can see that Eqs, (2.28) are RPA equations with imaginary eigen-
values Fifi|wal|.

2.1.4 Simple form of P-() representation

We consider the case where RPA equations have real or pure imaginary eigen-
values and no vanishing eigenvalues.
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In order to express the RPA equations in a simple form in P-Q represen-
tation, we rewrite relations between X-Y and P-Q as

oM
o) = /2 ’}‘Jw"l = (X2, — V), (2.29a)

— ; f 2h A A Ax
‘?5 - r JW\ILU,\|PmI - (Ami + Ymi) - (2291))

Then, we rewrite RPA equations (2.19) as
A B) <¢(+)) w3 (4,(—))
v ax .| =h— B , 2.30a
(B A Ht) R PNRCR \ ( )
A —B) (qs(-)) (¢(+))
. TV(25)) =Rl ) (2.30b)
(—~B A ) N Pt \

Note that both matrices of left-hand sides of Eq. (2.30) are hermitian. Ox-
thonormalization relations (2.21) are rewritten as

)
(gb( b qb( )) <¢(+)*> “QanA (2.318,)
e gy (27 ) e gty [ ) =0  (2.31b
@ 00, (Ben) =@ e (%) 0 o)

2.2 RPA in coordinate and hole configuration
space

2.2.1 X-Y representation

We explain the RPA equations in the mixed configuration space of coordi-
nates and occupied orbitals, which was first derived from equations of motion
method [46] in the mixed configuration space by Lemmer and Vénéroni [30].

Here, starting with the RPA equations in a particle-hole configuration
space, we derive the ones in a mixed configuration space of coordinates and
occupied orbitals. We define the transformation from the matrix elements
Aping and By in Eq. (2.8) to a set of new quantities A;j(z, 2') and By;(=, 2')
as

V= b2 Amini (),

(2.32a)
Bij(2,2) = ), $un(#)Brinidu(x),
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and from the amplitude X}; and Y2, to XMx) and V) (2) as
- Z A
=D Vo)

In Eq. (2.32),  represents a set of space coordinate r, spin coordinate
¢ = +1 and isospin coordinate 7 = +1, where 7 = = +7 = n represents a
neutron and 7 = —z = p represents a proton. We use abbreviations as
Yo = Dopr J dr and b4 = (v — 7)8,008,1s. The wave function ¢;(z) is a
single-particle wave function in coordinate representation.

Inverse transformations of Eqs. (2. 32) are

minj‘ E‘#b tJ £, z' ¢n(m)

(2.32b)

B

(2.332)
'mmJ E‘}b ag 33'; Qs*(’ri)a
and
Xow =Y dn(z)X}
i (2.33b)

=Y fn(2)V (=

Substituting Eqs. (2.33) for Eq. (2.7}, the RPA equations in the mixed
configuration space is given as

> Ayl@,2) XMa') + Bijlz, 2 )Y (&) = oy X} ()
Jz!

E Bii(x :E')X (2') + Aj(2,2) Y} (=) = ~hun Y M=),

Ja!

(2.34)

Defining an operator P(z,z') as
= D (@) = bowr = 3 dil)i ("), (2:35)
m ¢
which is a projection operator removing occupied {hole) states in the Hartree-

Fock basis from any state, the following relations for the quantities X;(x) and
Yi(z) are derived from the transformation Eq. (2.32b):

Y P(z,2")Xi(z") = Xi(=), (2.36a)
Y P(e,2)Yi(a') = Yi(e). (2.36Db)
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Similarly, there holds the following relations for the matrix elements Ay (x, )
and Bi(z,z'):

Z Pz, 2")A; (2", 2" = ZA.ij(w,m”)P(:c”m') = Ai(z, 2'), (2.37a)

Z P(x,a")B;j(a",2') = Z Bi;(z,2")P*(a"a") = Bij(z,z").  (2.37h)

Putting Eq. (2.33a) into Eq. (2.9), we cbtain

Ai(z,a) = ) Plz,a")Ay(",a") P(a", "),

pHptt

~ 2.38a
B,‘j(&l, CB’) — Z P(:I:,:::")B,-j(m",m"’)‘P*(a:'", :EI)’ ( )
where A;j(z,2') and §,-j(:r;,:c’) are defined as
Az, ) = [A(z,2") — e:8(x, 2")] &;;
I AL
=TT T 0p(at, 2)dp(at Y (2.38b)
Bylee) = X 6" (") 5
PRI e P (e, ) 0p(w, @)

The single-particle hamiltonian A(z,2') is defined in Eq. (2.53).
The orthonormalization relations for the amplitudes X;{z) and Y;(X) are

D XF (@)X @) = Y (@)Y (@) = b, (2.390)
DY (@)X(z) — XF ()Y (#) = 0. (2.39b)

and the matrix elements of a hermitian one-body operator F' is expressed as

(O1F1N) = S 3 $i(2) Fle, ') XA(a") + YA(2) Pz, a)i(a).  (2.40)

i ox

2.2.2 P-() representation

Corresponding to subsection 2.1.2, we write down the RPA equations in the
P-Q) representation and the mixed space configuration of coordinate and hole
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orbitals

Y Az, 2)PMa') — Bijlz, o) PM(2f) = ihw? M, Q1 (x), (2.41a)

i
Z Ai.’i(wv ﬂ'f)Q:\(ml) - Bt’j(:va :L")Q;-\* (:L ) Tﬂ; P ('L) (241'3)

with
Z o ibm(z) = ik ME)}?'\ (X (=) + Y (2)], (2.42a}
h .

Z Qm: 2[‘/{,\&),\ [ IA YA ( )] (2‘4213)
Then, from Eq. (2.21) orthonormalization relations for P}(2) and @}(z) are
3 QF(E)PA@) - Q) PN(a) = ifb, (2:430)
> Pr(@)P(e) - PHa)PM(2) =0, (2.43b)
> (@)QNz) - Q@)@ (@) = 0. (2.43¢)

The RPA ground state energy Frps in Eq. (2.22) can be written as the
form in the mixed configuration space:

ERPA E}:{p—- Z: fiwAZ|Y’\2:)l — Z “"ATZIRA(:C)F

A(Hwr0) M(hay=0) “A T

(2.44)
2.2.3 RPA equations suitable for Skyrme -type inter-
action

With the purpose of obtaining a suitable form of RPA equations for the
numerical calculations, we define the new amplitude qb ( z) as

3P @) =Y ¢ ula), (2.45)
M) = 222 gaa) - (x2@) - (), (2.460)

#(z) = “%\/ TP = (R +¥w).  (2aeh)



Then, the RPA equations {2.30) in the mixed configuration space become

S il )8 @) + Byl )6 (o) = BEA 6 (),

so! PN

A.. N — B (—)As (+)A (2:47)
2 Al )87 M6 = By, )M (@) = P |6 (@).

Putting Eq. (2.38) into Eq. (2.47), assuming real eigenvalues, the RPA
equations are given as

(e, ) = e 6P+ Pla, 2 )AEN o, ) (a”) = haosd™ ()

¢

z iz

(2.48)

with the hamiltonian

Sh(z, z")
()¢ (£)A
W, 2" E pENa! | &™) 5,9(1:’ R (2.49)

P mm

where densities are defined as

P (e,a") = 3 5 (2" (@) £ 4 (@), (250)

The density p)* (p(=3)) is the (anti-)hermitian part of the general tran-
sition density matrix p*(z,2'), which is explained next section. Similarly,
the hamiltonian h(*)* (A(-)}) is the (anti-)hermitian part of the transition
hamiltonian, which is defined next section.
From Eq. (2.31), the orthonormalization relations among the RPA wave
. ()2 .
functions ¢;~'"(z) are given by

S H7 @) (@) + @) () = 200, (2.51a)
S (@) gt (@) + ¢ (@) (@) = 0, (2.51b)
DT (@) (@) + ()BT () = 0. (2.51c)

e

The RPA equations (2.48) correspond to one in Ref. [51]. The form of
the RPA equations (2.48) is similar to the Hartree-Fock equation. In truth,
we can directly take advantage of the Skyrme-Hartree-Fock method in grid
representation. First, we can make use of the tlme—revelsal properties of
the density p()* and the single-particle wave function ¢\ £)(z) for even-even
nuclei (see next section). Second, we can impose spatial symmetry in the
wave function for triaxial nuclei (see section 4.2.2). So, the equation (2.48)
is very suitable for numerical calculation (see section 4.2).
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2.3 Time reversal in RPA
2.3.1 Relation between RPA and TDHF

Hartree-Fock equation for the single-particle wave function ¢;(z) with the
single-particle energy e; is written as [10]

ST ROz, #)i(e") = eidi(e), (2.52)

where the single-particle hamiltonian A (2,2} = A[p™(z, z')] is defined as
.o 9Fl] .

h[p(l, & )] - 8;)(.1'", $) (2‘)3)

The energy E[p] is the expectation value of the total hamiltonian with respect
to Slater determinant constructed with the single-particle wave functions and
expressed as a function of the single-particle density matrix p. The single-
particle density matrix p®(z,2') for the HF ground state is defined as

A
POz, ') = Z &tz i(z), (2.54)

where A is a nucleon number.
The TDHEF equation for the single-particle wave function #;(z,1) is writ-
ten as

ih%¢g($,t) = ; hz, @', (', t), (2.55)

with the single-particle hamiltonian A(z,2',t) = h{p(z,2',#)]. The single-
particle density matrix p(z,2',1) is defined as

A

plz, 2, t) = Z ¥ (', t)ehi(x, t). (2.56)

i=1

It is well known that the RPA equation is a small amplitude limit of
the TDHF equation. The single-particle wave function ;(z,t) is expanded
around the HI' ground state solution ¢;(2) in terms of the wave function

X3 (2) and Y (2) or th(i)’\(m), which is defined as Eq. (2.45) [52, 53, 29]:

hi(e,t) = [i(z) + edpi(a, 1)] e~ /R, (2.57a)
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with

Sthi(, 1) = X} () e ™M 4 Y™ (2) et (2.57h)
) cos(wat) — 1t () sin(wat), (2.57c)

where ¢ is small parameter.

Combining the expansion form (2.57a) with the orthogenalization relation
for the single-particle wave function ;(x, ¢), the following relation is derived:;

> [8905 (2, ):l2) + $(@)otpile, 1)) =0 (fori#j).  (2.58)

lh

In order to satisfy the relation (2.58), we demand the following condition:

D Pla,a)dpia’ 1) = Shi(a, 1), (2.59)

where operator P(z,2’), which is defined by Eq. (2.35), is a projection
operator removing hole orbitals of the HF basis from any state.

Putting Eq. (2.57a) into Eq. (2.56), the single-particle density matrix
p(z,2’,1) is divided into stationary part p{®(z, 2/} in Eq. (2.54) and dynam-
ical part:

p(z, 2’ t) = pO(z, ") + edp(z, o', ) + O(e%), (2.60a)

where the dynamical part of the single-particle density matrix is defined as
A

Sp(m,a',1) = > ¢i(@)opu(, 2) + Spf(a, )i (). (2.60b)
i=1

Substituting Eq. (2.57b) and Eq. (2.57¢) for Eq. (2.60b), the dynamical
part of the single-particle density matrix is given as

Sp(z, 2’ 1) = p™(x,2’) e 4 pM(a, 2") eFient (2.61a)
= p(z, 2') cos(wat) — ipP(, 2') sin{wyt) (2.61h)

with
) = S HEKIE) + VP, (2.6%)
P ) = DA @) & 6T ) (2.62b)

19



The density p* is defined as p* (2, ') = p**(a’,2). The relations among p*
and p*) are given as

pHa,a’) = p 2, 2") + o 2,0) (2.63)

and
pEN (@, 2') = L [pMa, ") £ pM(2,2)] . (2.64)

We call p* the general transition density matriz. The density p(+)> (p1) is
the (anti-)}hermitian part of the general transition density matrix.

Putting Eq. (2.60a) into the single-particle hamiltonian A(xz,2’,t), the
single-particle hamiltonian is divided into the stationary part A (z,2") in
Eq. (2.52) and the dynamical part:

h(z, 2’ 1) = RO (2, 2') + edh(z, 2/, t) + O(e?) (2.65a)

with

, Oh(x,z',1) ,
(Sh(ﬂl',.‘ﬂ ?t) _ E [m] o 5,()(33 'L'H ,t)
p=p

zt _,LNF

Il

ORO (z, ")
Z ap(ﬂ)(m.n ’E”’ ap(m”’mm’t)

H Hl

agE[P(O)] "
- Z E)p(") ;1, :L)ap(o)(a,n m,u.r)(sp(m o, t) (2.65]))

ﬂ.T” e

Substituting Egs. (2.61) for Eq. (2.65b), the dynamical part of the single-
particle hamiltonian is given as

Shiz,a’ t) = b (z,z') e” ¥ 4 pM (2, o) etint (2.66a)
= KU (@) 2") cos(wyt) — th ™z, ') sinfwyt) (2.66b)
with
PE
Mz, z") = ;,, B 2) 00 (2 ar;m)p’\(:f:",:1,'""), (2.67a)
e .
RER (@, 2) Z P (@ ™y, (2.67h)

ap(o) (ﬂ:r 8[}(0) (,Lr.r ;17’”)

The relations among A* and A are given as
fz‘\(m, 2y = M)z, 2') + A7) (2, 2") (2.68)

20



and

h(i]'(a:,a:') = % [h’\(m,:ﬂ') -4 h”(:ﬂ,a:')] . (2.69)

We call h* the transition hamiltonian. The hamiltonian AH* (A(=)*) is the
(anti-Jhermitian part of the transition hamiltonian.

Putting Eq. (2.57a) and Eq. (2.62a) into the TDHF equation Eq. (2.553),
the first order in & of the TDHF equation is given as

ih%&bi(x,i) =3 [2Na,2") ~ eibunr] S, £) + Sh(z, o, 1) ().
) (2.70)
In general, the wave function dy;(z,t) in Eq. (2.70) does not satisfy the
condition (2.59). So, we rewrite Eq. (2.70) as

L0 !
zﬁé"{&‘b‘(w’t) = Z (£ @, 2) — ei6,0r] Sps(a’, t)

1]

+ Y Pz, @)5h(x!, 2", 1) (2"), (2.71)

Fe Ll 1ohd

with the condition (2.59).

Putting Eq. (2.57b} and Eq. (2.66a) into Eq. (2.71), then the RPA
equation for the wave function X#(z) and Y**() is derived as

uoa XP2) =Y (RO (z,a") — eibnr] XM ')

!

+ 3 Pla,a )2, 2" (), (2.72a)

atatt

—liw, Y M (2) = Z [h(o)(w, z') — ey Y (')

z!

+ > Pla,ayhM (e, 26 ("), (2.72b)

with the condition
> Pz, o)X ') = X)), (2.73a)
> Pz, )Y (') = Y M(2). (2.73b)

!

Putting Eq. (2.57c) and Eq. (2.66b) into Eq. (2.71), then the RPA
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equation for the wave function ¢§*”‘ (z) is also derived as

™) =3 (e ') — eud] 40

+ Z P(mﬂ T )’l(:b)’\(m ,.’B”)qﬁg(ff”), (2'74)
with the condition
Z Pz, ") () = 6 N2). (2.75)

We can see that Eq. (2.74} is exactly equivalent with the RPA equations in
Eq. (2.48).

The RPA equations are also expressed in terms of the equations of motion
of the density matrix. The TDHF equation for the density matrix p(z,2’,1)
is given as

zﬁﬁp(m z',t) = [h,pllz, 2', 1), (2.76)
where

[ha P] (IE, 33,: t) = Z h(ﬂ,‘, 3:”7 t)p(ﬂ:”, xjs t) - P(wi l‘”'f t)h(.’[t", 37!1 t)' (277)

3.7"

Putting Eq. (2.60a) and Eq. (2.65a) into Eq. (2.76), the first order in £ of
the TDHF equation is given as

iﬁ%ép(w, 2, t) = (b9, 6p)(z, o, £) + [k, pO)(2, 2", 1), (2.78)

where

[, 8p)(z, 2', t) = E RO (&, 2")8p(a", &', t) — p(z, 2", RO (2", "),

(2.79a)
[6"13 P(O)](mi a",, i) = E 6]1'('1;’ 3"”? t)p(O)(m”’ .'L") - p(O) (m'l ﬂ:”)é-h(ﬂ,‘”, m” t)'
(2.79h)

Putting Eq. (2.61a) and Eq. (2.66a) into Eq. (2.78), then the RPA equation

for the general transition density matrix p*(z,2") is given as

fwsp 2, ) = [0, p(w, ') + (B, 4Oz, ). (2.80)
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Equivalently, putting Eq. (2.61b) and Eq. (2.66b) into Eq. (2.78), then
the RPA equations for the hermitian and anti-hermitian part of the general
transition density matrix p(£1* (2, 2') are given as

huos gz, ') = [, pH (o) + (B, ) (z,a7). (2.81)

2.3.2 Timereversal symmetry of general transition den-
sity matrix

In this and following subsections, we only consider the case for even-even
nuclei.

A time-reversal state of a single-particle wave function ¢;{z) is defined as
[54]
¢:(ror) = Téi(ror) = —20¢i(r—o7) (2.82)
with time reversal operator 7 defined as

T = —io, Ko, (2.83)

where o, is the y-component of Pauli spin matrix and & is complex con-
jugation operator. Then, a time-reversal of time-depending single-particle
wave function ;(2, 1) is also written as

Yr(ror,t) = Tei(ror,t) = 20 (r—oT,t). (2.84)
The time-reversal of Eq. (2.57a) is given as
¥i(2,2) = [da(e) + Sepu(w, 1)) €7H/%, (2.85)
and the time reversal of Eq. (2.57b) and Eq. (2.57¢) is given as

Shi(m,t) = XM (x) ePrt 4 VM (a) e, (2.86a)
= qﬂ{ﬁ')’\(m) cos(wyt) + z'qb%—)’\(:n) sin(wat), (2.86b)

where Xi{z) = T Xi(z), Yi(z) = TYi(z) and P (z) = T ().
The time-reversal of Eq. (2.60) is given as

p7(2,2',1) = pO7(2,2') + €6 (v, 2',1) + O(?)  (2.87a)
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with

A
pl(x, 2! 1) = Z Pz iz, t), (2.87h)
i=1
A
PO 0') = ) di(he), (287)
(z,2',t) = Z &3 (2") 03 (, 1) + 897 (', t)a (). (2.87d)
The time-reversal of Eq. {2.61) and Eq. (2.62) is also given as
6p7 (z,2',1) = p*T (=, 2"} Pt o pMT (g o) e, (2.88a)
= pWT (2, &) cos(wyt) 4 1pC1T (2, ') sin(wyt) (2.88Db)
with
A
(o, = 3 4 + V) (2:3%0)
PP (2,2 = Zcﬁ‘ $7 (2) £ 67 (2 )n(). (2.89b)

If the single-particle density matrix p(z,2',1) is a dynamical solution of
the TDHF equation (2.76), then the density matrix p7(2,2’, —t) is also a
solution to the TDHF equation:

it o7 (2,0, 1) = 7,7, 1), (290)

where AT = h[pT]. In terms of Eqs. (2.87a), (2.88) and (2.90), the time rever-
sal of RPA equations for the general transition density matrix p**(z,2’, —t)
is given as

g (2, 2) = 1, 07 )(a,0') + [T, 0O (2, 2"), (290

and for the hermitian and anti-hermitian part of the general transition den-
sity matrix pET (z, !, —t) are given as

eonp N (a, ) = [, o9 (z, ) + BB, 0O 2,af),  (292)

where the relations pT = p(® and AOT = A are used. Comparing Eq.
(2.80) and Eq. (2.91), it is clear that, if the density matrix p*(w,2’) is the
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solution of the RPA equation (2.80), the density matrix p*7 (2, 2) is also the
solution of the RPA equation with same eigenvalue. Thus, there holds the
relation

p'\(m,:v') = PAT(msm’)) (2.93)

and for the hermitian and anti-hermitian part p&}(2,2"), the following rela-
tions hold:
P (4, %) = pEIT (g, o) (2.94)

Furthermore, putting Eq. (2.82) for Eq. (2.87c), the relations between

the single-particle density matrix and the time-reversal of that are given as

P (ror, v'd'T") = dad' pO* (p—or, v —0'T'). (2.95)

Similarly, the relations between the general transition density matrices and
the time-reversal of those are given as

Mipgr,r'a't") = doo'p™ (r—ar,v'—0'7'), (2.96a)

EN (por, po'r') = 400’ (1 —ar, v —o'r). (2.96b)

P
P

2.3.3 Time reversal property of RPA wave function

In the case of the even-even nuclei, the single-particle wave functions of
HF ground state are a set of the time reversal pairs of the single-particle
wave functions {¢;(x), d(x);i =1,...,A/2}, where the subscript 7 indicates
the time reversed states of i. Then, it is sufficient to solve the HF equa-
tion for one member of the pair. Just as in the HF case, the RPA wave
functions X;(z) and Y;{(z) can be made of a set of the time reversal pairs
{Xi(z), X3(z), Yi(2), Ys(z);i = 1,...,A/2}. Therefore, it is sufficient to solve
the RPA equations for one member of the pair. In this subsection, we derive
the above relation of the time reversal pair in the RPA wave functions.

In terms of a set of the time reversal pair of the single-particle wave
function {¢;, ¢}, we can rewrite the general transition density in Eq. (2.62a)
into

Afz
Pz, @) = Y [$1(a)XM @) + V(') dil=)]
i=1

Af?
+ 3 [N @) + Yiaph(@)]  @97)
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and the time reversal of the general transition density matrix in Eq. (2.89a)
into

Alz

Tz,2') = Z[cfﬁ‘( NXHMz) + ¥ (2" )n(e)]
A/Z

-2 [ + @) 0

7

Comparing p* with p*” in terms of the Eq. (2.93), we can suppose the
following relations:

Xian(@) = X (2), Yiap@)=¥'(=), i=1,...,4/2. (299

We confirm the above relation in terms of the RPA equation (2.34). We
rewrite the RPA equation (2.34) as the matrix form

Al A2 B]. Bg Xl Xl
A3 A4 B3 B‘; X2 _ X2
Bf B; A,{ A; Yl = ﬁl.-dA "'Y‘.l (2.100)
B: By A3 A3 \%/, -v;/
with
{Akis = Ay, {Az}i; = A, {As}is = Ay, {Addy = Ai_j
{Bi}ij = Bij,  {Bu.}i; = By, {Bs}ij = By, {Bitij= :J

{Xi}i = X:'Av {Xa}i = ’1+Af2> it = }:'I\! {Y2}i = :+A/2:

where 4, 7 run over from 1 to A/2 and coordinates z, 2’ is omitted. Now,
time reversed equations of the RPA equations is written as

Ay —As By -8B\ [TX TX,
Ay A —-By, B TX: | . TX, )
B —-B: A —a||l7v| =™y | (2.101)

—B: By —-A; A ) \TY —TY,

A A

where we use transformation 7 {¢:, ¢} — {d7;, —¢:}. Replacing the column
matrices and the row matrices appropriately, we can rewrite above equation
into

A Ay B B\ [-TX; ~TX,

A_?, A4 Ba B4 TX1 _ TXI

B B A a4l | -7v =ho| F ) (2.102)
B} By Ay A} ™ /, ~TY/,

26



If the eigenvalues is not degenerate, then

X —TX,

Xl TX,

Y, =a 7Y, (2.103)
Yo/ ™ /|

Thus, we can obtain the relation in Eq. (2.99) when a = 1. Finally, we can
write down the RPA wave function as

X1 X

X2 _ TXl

v =l vl (2.104)
v.), \T%/,

We can use (2.104) for the case where eigenvalues are degenerate: If there
are m-fold degenerate solutions of Eq. {2.100), it is clear that there are also
the m-fold degenerate solutions of Eq. (2.102). We simply write down each
solutions as z; and y; respectively. Then, the vector g, can be transformed
into the vector @; under the following transformation:

w' = ET'.JyJ’ j = 1, e ,m. (2.105)
i=1

We diagonalize the matrix T:
T = U'TU, (2.108)

where U is unitary matrix and T is diagonal matrix. We define new vectors
as

533' — ﬁ:i Ul'ja}ja ﬂi = \/ﬁi Uijj? j = ].,. ..y 1. (2107)

Jj=1 i=l
Therefore, we obtain the relation

&; = ¥ J=1,...,m. (2.108)
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