Appendix B

PSEUDO-POTENTIAL

Since the electronic structures of solids were calculated by the DET, a number of efforts to reduce
the computational time has been performed, The pseudo-potential method is one of such efforts.
This method replace core electrons and a strong Coulomb potential of an atomic nucleus by an
effective pseudo-potential, The core electron wave functions of an atom are not changed essentially
if the atom is placed different chemical environment. On the ather hand, the physical and chemical
properties of solids and molecules depend on the valence electrons to a much greater extent than on
the core electrons. In this sense, the core electrons, the valence electrons and the strong Coulomb
potential of the atom are replaced by the weaker pseudo-potential and the pseudo valence electrons.
The pseudo valence electrons experience the true potential outside the core region and experience
the weaker pseudo-potential inside the core region. The fact that the pseudo-potential is weaker
than the true potential inside the core region is crucial for the calculation with a plane wave basis
set. Expanding the wave functions into plane waves is one of the simple formalisms to calculate the
electronic structures. The enormous number of plane waves is required to expand the tightly bound
core wave functions or the valence wave functions in the core region, which oscillate rapidly, This is
an obstacle to increase the computational efficiency. For this reason, the plane wave basis formalism
is not suitable for the all-electron calculations. Therefore, the planc wave basis set calculation is
usually performed in combination with the pseudo-potential. Introducing the pseudo-potential,
the core electrons are removed. In addition, the pseudo-potential is constructed in such a way
that the radial part of the psendo wave function does not have the node inside the core region.

Consequently, the number of the plane waves to expand the wave function is sufficiently reduced.

B.1 Hydrogen Atom

At Arst, we investigate the electron in the central force field: The hydrogen atom. The Schridinger
equation for the radial part of the wave function is derived. The Schridinger equation of the one-

glectron in the central force potential V(r) is

[_%vﬂ + V(T):I ®(r) = E'(I)(r), . (B.1)

81



In the spherical coordinates, the Laplacian becomes

18 3] 1 g2 28 1
2 =~ = [ —A e D4 = .
V=as (r 5‘1") tEb=gE g et (B2)
where LB 5 L g
= ——— [sginf— | + —— . B.
A sin & 8@ (Smgaﬂ) + sin’ § Bp? (B:3)

When we write the wave function @ as a product of the radial part and the angular part:
®(r, 0,) = R(r)Y (0, ¢), (B4)

the angular part does not depend on the V() and represented by the spherical harmonics, which

satisfies
AYHE(Q: (P) = —g(e + E)Yﬂf(gn (P)' (BE)
On the other hand, the equation for the radial part is
1 1d  L+9)
—E — ——— = . B.6
[ 2dr2  rdr + 22 + V(T)] Bne(r) Bne(r) (B.6)
Setting Rnelr) = X%('r)’ we can eliminate the term of the first derivative, e
1d? e+ 9)
—_—— =TT o B.
32+ 8220 4 v0)] xat) = Bt ®.)
1d? e+ 8) _
= [—EF + o2 + V(T)] rRue(r) = ErRpe(r). (B.8)

This is the Schridinger equation for the radial part.

B.2 Pseuodo-Potential

In this next subsection, the KXohn-Sham equation for the radial part is considered and the con-
struction scheme of the pseudo-potential is given.

Within the DFT, assuming a spherical sereening, the Kohn-Sham equation for the radial part is

142 4+

2 dr? 292

+ Vet (T)} TR?l-f(T) = EnETRnE(T)a (BQ)

where the vyp(r) is the one-electron effective potential:

vor{r) = v(r) + f

p(_r?,ldr' + VUge (7). (B.10)

Ir
The density is obtained by a surnmation of the sguares of occupied wave [unctions.

The pseudo potential is constructed in order to satisfy following conditions [93].
(I} The psendo valence wave functions are generated by the pseudo-potential in such a way that
the pseudo wave function has no node in the core region.
(I1) The pseudo wave function RS (r) and the true all-electron wave function RAF(r) must be

identical beyond the cut-off radius of the pseudo-potential ree:
REF(r)= REP(r) (r27er). (B.11)
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(IL1) The norms of the RET(r) and the RAP(r) in the range of 0 < r < ree must be equal [97].
(norm conservation)

. Tet
fu | REE () [ rdr :f IR,'EE(T)[B ridr, (B.12)
0
(IV) The R}7(r) and the RAF(r) yield the same eigenvalues.

Ent = Ent (B.13)

The pseudo-potential constructed to satisfy all conditions mentioned above is termed as the
norm-conserving pseudo-potential,
When the pseude wave functions is calculated, the screened pseudo-potential is obtained by

solving Eq. (1B.9) inversely:

P £(0 +1) 1

= — PP
scr, n.‘!(?} Ene ] QPR[]P(‘;‘)d?2 [TRnE (T ] (B'l‘l)

It is required that the REY (r) has no node in order that the pseudo-potential has any singular
point except at the origin. Furthermore, the REF () and its first and second derivatives with respect
to r must be continuous at r.¢ to ensure the pseudo-potential to be continuous. To eliminate the
singularity of the pseudo-potential at the origin, the v¢ behavior is required to the pseudo wave

function. When we substitute rf into the L} () in Eq. (B.14), we find,

£(e+1) 1 o2

— R4
scrnf('r) = Eal — 072 2‘.7‘!52—[?"-? ]
e+ 1) 1 -1
Eﬂ£~—'§7'_.2—+2‘8+1 L+ L)
=  E&nt. (B.15)

The term of =2 is eliminated, followed by that the divergence at the origin is avoided.

This pseudo-potential containg the contribution from the valence electrons which depend on
the environment, Eliminating this effect of the valence electrons from the pseudo-potential, we
can generate an ionic pseudo-potential an ae(r} which is not affected by the environment. The
vbr

ton.ne(T) is obtained by subtracting the Hartree term VEP(r) and the exch‘mge—correlation term

VEP(r) caleulated from the pseudo valence wave functions from the VST . (r):

VD e (1) = Vil o(r) = VEF (r) — VET (). (B.16)

B.3 Norm-Conservation Condition

The pseudo-potential is constructed to satisfy the norm-conservation condition (norm-conserving

pseudo-potential) [97]:

el

ot e
f |REE ()] r2dr = f |RAE(G)]" rdr. (B.17)
0 0

This condition guarantees that. the electrostatic potentials derived from the true electrons and

pseudo electrons inside the core region are identical. Turther, the norm-conservation condition
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also assures that the scattering properties for the pseudo wave functions are identical to those of
the ion and the core electrons for the true valence wave functions, This is because the norm within
the core region can be written as [97)

1 8 a
~ 205 5 2 Fnelr)] s [T'Rng(?‘ / R} o(r)ridr. (B.18)

The norm-conservation condition is equivalent to that the energy derivative of the logarithmic

derivative at ree of both the pseudo wave functions and true wave functions are identical. The
phase shift of scattering is derived from the logarithmic derivative of the wave function. 'Therefore,
if the logarithmic derivative of the pseudo wave function and the true wave function are identical
at 7c¢,! the phase shift of the scattering by the pseudo-potential is correct. Furthermore, from Eq.
{B.18), the first-order energy dependence of the phase shift is also correct. The noi-m—conserving
pseudo-potential is capable ob describing the scattering properties of the ion in a variety atomic

configuratians,

The derivation of Eq. (13.18) is following,
The Schrédinger equation for the radial wave function is

1d2  ee+e
[_§F + (—2:5“1 +0(r)| TRae(r) = ener Rne(r), (B.19)

where the v{r) is the spherical potential. We define the logarithmie derivative of the rR,¢(r} as
D(r):

D) = 2 in{rBuelr)} = {?’Rf'f((’"))} (B.20)

The prime indicates the derivation w1th respect to the r. Thus, the Schrddinger equation (B.19)

can be written as

D) + D) = 2 |o(r) + g(’“;f;l) —ene| . (B.21)
Differentiating this formula with respect to the g,¢, we obtain,
aD'(ry  6D*(r) _
et oe, =% (B.22)
Using the relation valid for any function f(r),
1
! A r —_—
110 +2D0)0) = sy e Lo Rue@P 0] (B.23)
the left hand side of Eq. (B.22} becomes
anmy aD(r) 1 d [ ‘ 26D(r)]
{ Aene } +2D(r) Oene  {rRue(r)}2 dr {rfne(r)} dene | (B.24)
Thus, Eq. (B.22) can be written as,
1 d 28D(7) ]
- = N = 2
{rRpe(r)}? dr [{TR e(r)} Oene
d 2 BD(T)] __ 2
= -CE [{TRnE(T)} 6€ng = 2{7‘Rnf(r)} . (B.25)

1The pseudo wave functions are constructed to satisfy this condition.
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Integrating this formula from () to ree, we obtain

fumd, [{Rn()}gaD(’)] =2 [ R

fe,,

b Tet
=+ {reeRne(ree)}’ —BE,(;Z—) = -2 A Ry (r)rdr
r=Tee
aD(r) _ 2 a2
= Pent e = —{f'c.eRne(Tce)}2 /n. RZ,(r)redr. (B.26)
Further, the energy derivative in the left hand side are,
a 8 {rfla(n)}
D) =
Bene (?) agnf TI?an(T)
d 0
{66‘-—3‘ (arl)’} iy — (TRH-E)’{ a Enmf (T'Rni)}
mn
{?‘Rng}2
' BR:LE . OR.e
—_ Ozne Dege né Dene
7,
9 [R,1_ 8 @
= = ﬂ] = o e I el (B.27)
Therefore, Eq. (B.26} can be written as
1 8 r’) 1 Tot
ln Ruelr = -~«~——f R? % dy. B.28
2 36 [ nE( )] reres [Tan(?‘)]2 0 ﬂe ( )

Thus, Eq. (B.18) is derived.

B.4 Construction of Pseudo-Potentials

We discuss here the pseudo-potential construction procedure. At first, we must define the analytic
function for the pseudo wave function inside the cut-off rqe. This function must behave as »% near

the origin as mentioned above. Along this line, Kerker introduced the pseudo wave function as [08]

AR .
Ry ={ fm ) 2 (8.29)

where the p(r) is a polynomial of r:
p(?") = gy -+ 627‘2 + 637‘3 + C4T4. (B.30)

The term of the first order which of 7 is not contained te avoid the singularity of the Vice ne(r) at
the origin.

Inserting Eq. (B.29) into Eq. (B.14), we obtain the screened psevdo-potential as

[ Vae(r) o T B.31)
%cr,ﬂf(r): n£+€ P( )_'__ﬂiQ“[EEIlL (T“('rcﬂ) ‘ (B
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where the Vag(r) is the all-electron atomic screened potential. The p’(r) and p"(r) indicate the
first and second derivatives with respect to r, respectively. If the p(r) has the first power of r, the
E+1 ,, . . .
term —— P (r) in the Vierne(r) diverge at the origin.
The derivation of Eq. (B.31) is following,.
We can obtain Eq. (B.31) by simply inserting Eq. (B.29) into Eq. (B.14). Only the case of
T < Tg is discussed, The derivation in the case of » > r.¢ is obvious. At first, we differentiate

twice the RLF (r) with respect to 7:
d*  opp a?
ZalrRae (] = e
d .
= _Ei,;[(g -+ 1)1‘861)(7) + Te+lp’(T‘)6P(r)]
= pb-lgnlr} [E(E-l- D+ 208+ p'(r) +¢2 {[p’(r)]2 +p" (1')}] . (B.32)

Substituting Eqgs. (B.32) and (B.29) into Eq. (B.14), we obtain,

Vsl;ljné(r) = Eng— E(eg:_zl)
+mwe"‘ef’m [ee+1)+ 2(£ + 1)rp'(r) + 72 {[p' (")) + 0" (1) }]
= o= TN L L e 20+ D)+ (WO + 0 00)]

RO (B33

= Ene-t e—_:ﬁ}-p'(r)

Thus Eq. (B.31) is derived in the case of r < 1.
Troullier and Martins generalized this procedure by increasing the order of p{r) to investigate
the pseudo-potential smoothness [93]. Furthermore, they proposed the additional condition that

the second derivative of the Vier ne(r) must be zero at the origin:
Verne(0) = 0. ' (B.34)

The Vierne{r) with this condition becomes flat near the origin, Troullier and Martins calculated
the total energy of the diamond with the plane wave basis set. Among three cases that V;_ ,(0) is
positive, zero and negative, they compare the convergence of the total energy with respect to the
cut-off energy of the plane wave basis set. It has been shown that the pseudo-potential satisfying
Eq. (B.34) has good convergence properties.

The construction procedures of the pseudo-potential presented by Troullier and Martins is fol-

lowings. They have increased the order of the p(r) in Eq. (B.29):
p(r) = co + car® + eqr? + cor® + es® + 107! + cror'? (B.35)

The 7 coeflicients are determined from following 7 conditions (I)~(VII).

(I) The norm within the cut-off 7, must be conserved:

Tat Tet
In [f |r£e”(’")|21'2dr] =In [-[ |R2?(r)|2r2dr]
0 0

Tt Tet
&= 2c0+In [f r2(£+1)62(p(r)“c")dT] =In [f |Rﬁf(7‘)|27"2d7“] - (B.36)
0 0

86



The REJ (r) and its first four derivatives must be continuous at 7¢¢. These conditions are imposed
for continuity of the Veer ne(r) and its first two derivatives at roe. These conditions are represented

explicitly as followings.

(I1)
P
p(re) = In l (;jrf , (B.37)
Tee
where P(r) = rRAF(r).
(I11)
Pllree) €£+1
(ree) = 2L B.38
p( Cf) P(‘I‘cg) Top ( )
(Iv)
2(6+1
0" (ree) = 2Vag(ree) — 2ene — (r )p’(rc.g) — [p'(ree)) 2 (B.39)
Ci
We used Eq. (B.31) to derive this condition.
) 2(¢ -I— 1) 2(6+1) '
P ra) = 2Whutree) + 2 ) - Dy . (B0
ol Tet
(VD)
4(2 + 1 4 €+ 1
) = 2Vhlree) = 2 ) + g
(‘8 cE
2(¢+1
2D 0 rer) — 2 re)? — 20/ et o) (B.41)
[
The p3)(7) and p*Y (7) indicate the third and forth derivatives with respect to r.
{VII) The second derivative of the Ve ne(7) is zero at the origin. This condition yields
¢ +eq(28+5) = 0. (B.42)

From these 7 conditions, we can obtain the pseudo wave function. Finally, the screened pseudo-
potential is derived from the pseudo wave function by using Eq. (B.31).
The derivations of Eqs. (B.37)-(B.42) are followings.

Equation (B.37) is derived from the continuity condition of RE} (r) at re, d.e.

Ry (ree) = rhee?Te) = RIF (ree). {B.43)
Therefore, we obtain B
PR P
p(rﬂf) — h']_ Rﬂe £(1 CZ) — ln (;.:f) . (B.44)
¢t Tep

where P(r) = rRAF(r).
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Differentiating Eq. (B.44) with respect to r, we obtain

4. [ (T)]
dr pét1 o

Pr(Tcg)/,r,E-i-l (f + 1) (Tcg)/T8+2
P(ree)/ris’
Pllrg) (+1

T Plre) e (5.45)

' (ree)

Thus, Eq. (B.38) is derived.

Equation (B.39) is calculated from Eq. (B.31). Since the Vicrne(r) is also continuous at e, we

obtain

4
Eng + +
(14

Equation (B.39) is derived by solving this formula with respect to the p” (rqe).
Equations (B.40) and (B.41) are derived by differentiating Eq. (B.39) once and twice with

) p"(ree) +2[P'(Tce)]2

1
' (ree = Vag(ree)- (B.46)

respect to 7, respectively. .
Equation {B.42) is derived from the condition that the second derivatives of the pseudo-potential
must be zero at the origin, Using Eq. (B.31), we calculate the V7, ,(0). Differentiating the

Vaer,ne (1) with respect r, we obtain

vy = -l e+ {p(ﬁ)(v)wp(r)p"(r)}
Vi) = “1 - “1“()+ =590)
+5 {p(‘“ () + 20" (r)]? + 2 (r)p(s)(r)} . (B.47)

From Eq. (B.30), the following formulae are derived:

p'(r) = 2cor+ degr + 6egr® - -+, (B.48)
p'(r) = 2+ 12c47% + 30cgr? -+, (B.49)
P = 2deyr 4+ 120egr -, (B.50)
p = 24cy + 360cer2 - . (B.51)

Inserting these formulae into Eq. (B.47) and set r = 0, the V"{r) becomes

Vir=0) = [“’1 P -2 ) + £ pm(r)]

p=0
4580 = 0)+p"(r = OF +5'(r = 0)pV(r = 0)
2 2
= (£+1) [;;d-(QCp,r + degrd + Begr® o) — -?3(202 + 12¢47% + 30cgr* -+ 1)

1
+%(24C4fr + 120cg7° - )] ~(24eq) + [2¢2)*
1'=D

I\J

1
= (€+1)[8ecs] + 5(24c,,) + [2e2)*
= 8fcy + 20cs + dc3. (B.52)
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Therefore, the condition V. ,(0) = 0 yields Eq. (B.42):

szr,ne(o) =0
= 4[(20+58)ea+c3] =0
= A+ (20+5)c1=0 (B.53)
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