Appendix A

DENSITY FUNCTIONAL
THEORY

The density functional theory {DFT) is one of the methods to derive properties of the interacting
many-electron system such as solids and molecules. The DFT has been developed by Hohenberg
and Kohn [89], and Kohn and Sham [90]. Within the DFT, the properties of the ground state are
obtained only by a density distribution of etectrons p(r}, Hohenberg and Kohn have shown that
the total energy of many-electron system, including the exchange-correlation energy, is expressed
as a functional of the electron density. The minimum value of the total energy functional is the
energy of the ground state and the electron density which yields this total energy minimum is the
exact singte-particle ground state density.

However, this discussion is still in the level of the general theory. For the practical calculations,
Kohn and Sham have introduced a set of the self-consistent one-electron equations (Kohn-Sham
equations) which is equivalent to the many-electron problem. IKohn and Sham have also shown that
the local density epprozimation (LDA) can be used to describe the exchange-correlation energy.
The DIFT is free from the empirical parameters. The great pragress of the computational powers
spreads the fields of DFT applications. Recently, the DET becomes one of the major methods to

describe the properties of the solids and molecules,

A.1 Hohenberg-Kohn Theorem

Hohenberg and Kohn have demonstrated that the ground state properties of the interacting many-
electron system are expressed as functionals of the ground state electron density p(r). The ground
state is determined by the total number of the electrons N and the externa;l potential v{r). The
first theorem of Hohenberg and Kohn states that the w(r) is determined uniquely by the density
p{r}. The p(r) yields the total number of the electrons N. The N and u(r) fix the Hamiltonian
of the system. Therefore, the p(r) which yields the N and #(r) determines the ground state wave
function ¥ and properties of the system,

We show how the v(r) is determined uniquely by the p(r). Here we prepare two different external
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potentials v(r) and #’(r). It is assumed that these two potentials give the same ground state density
p(r). From the two potential v(r} and v'(r), we would have two different Hamiltonian H and H'.
These two Hamiltonians yield the same ground state densities. However, corresponding wave

function ¥ and ¥ are different. The eigenvalue equations are
HU = ET, (A1)

H'Y = E\, (A.2)

where Fy and E§ are the ground state energy for the H and H’, respectively. We would have by
definition of the Eg and .

Eo < {W|H|TY = (V|H'|¥)+(V|H - H|¥)
= Bp+ [ po)ot) - v, (A.3)
and
Ehy < (O|H'|¥) = (U|H|T)+ (Y| — HT)
= - [ plotw) - o). (8.4)

Adding Egs. (A.3) and (A.4), we obtain
Ey + E\ < B, + By, (A.5)

This is contradiction. Therefore, the assumption that there are two different potentials that yield
the same p(r) is wrong. Thus, it is found that the p(r) determines the v(r) uniquely.

As discussed above, since both the N and v(r) are determined by the p(r}, it is followed that the
properties of the ground state are derived from the p(r). We represent the total energy functional
Ey[p] as a summation of the kinetic energy T[p], the potential energy Vyelp] and the electron-

electron repulsion energy Veofp], i.e.

Bulel = Tl + Vaelpl + Vee[o]
= [ e + Flo, (A6)
where
Flp) = Tlp] + Veelo]. (A7)

The second theorem of Hohenberg and Kohn states that the total energy of the ground state
of the system Ey is obtained by minimization of the total energy functional £, [p] with respect to
the density p(r) (the variational principle). For the trial density j(r) which satisfies 3(r) > 0 and
[a=n.

Ey € Elp(r)]. {A.8)

We define a density to be v-representable il the density p(r) uniquely determines the external

potential v(r). We discussed so far with assumption that the density is v-representable. However,
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it is known that some reasonable electron density is not v-representable. Fortunately, the DFT can
be formulated by the similar way with the weaker condition, that is N-representable. We define
a density to be N-representable if the density can be obtained from some anti-symmetric wave

funetion.

A.2 Levy Formalism

In this subsection, the DFT is formulated by using the N-representable density (Levy formalis-
m} [96]. We define the Hamiltonian of the system as

N
H=T+ Vet Z'ont(ri): (A_Q)

where the 7" is the kinetic enegy, V. is the interelectronic potential and the vex(r) is the external
field. The functional F{p] of the N-representable p is defined as

Flol = min(@|T + Veelh). (A.10)

The minimization is taken with respect to the ¢ that gives p. This functional does not depend
on the external field that specify the system. The total energy, wave function and density of the
ground state of the system are denoted here by Fgg, ¥og and pos, respectively. Then the basic

theorem in the DFT is
Bl = [ plr)oner)dr + Plal 2 Bos. (A1)

(The variational principle: The total energy of the ground state is the minimum value of the

functional E[p].} In addition, this Fag is expressed by the pgs as

f P () texe (1)dr + Flpas] = Fas. (A.12)

We prove these two theorems in followings.
When we denote the wave function such that gives the p{r) and minimizes the {)|T -+ Ve |¢) as
Ph i we obtain from the definition of Fip] (Eq. (A.10)),

Fip] = @il T + Vesl¥hin)- (A.13)

Defining V = Y text (r;), we obtain
i

[ P (e)de = Gl V- (A14
Since the ground state should give the minimum total energy, we find
fP(l‘)vexL(T)dT +Flpl = @RV +T + Vool
> FEas. (A.15)

Thus, the first theorem (A.11) is proved.
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On the other hand, the Egg is represented by iqs as

Egs = (vas|H|das)
= {(Yas|V + T+ Veeltbas). (A.16)
Therefore, we obtain
{as|V +T + Veolthas) = Eas < (WASRIV -+ T + Vee[1533). (A.17)

Since the ¥gg and ¢453 yield the same density pgs, the term of the external field can be rewritten

as
(Yas|Vas) = / pas (£)vext (r)dr = (YOS |V |hss). (A.18)
When we subtract the external field from Eq. (A.17), we find,
(Yas|T + Veolhas) < WIAAIT + Veelthhoin)- (A.19)
However, the right hand side of this equation is F[pas] and we have from the definition of 9253,

{(bas|T + Veeldas) 2 WESSIT + Vee|95S58). (A.20)

This relation is just inverse of Eq. {A.19), Therefore, the possible relation is
(Yos|T + Veeldas) = (pinlT + Vee|thiaa)- {A.21)
Then, from the discussion above, we obtain

Eas (Pas|V 4 T + Vee|thas)

j pas(r)Vore (F)dr + (s + Vaolbos)

It

jp%&wmaﬂmwwwmmT+vaW$ﬂ,

f Pas(r)vexe (r)dr + Flpgg). (A.22)

Thus, the theorem (A.12) is also proved.

A.3 Kohn-Sham Equation

Within the DFT, the total energy functional E[p] is considered. The E(p] is defined as

mmr[pmwnm+Fm, (A.23)

where v(r) is an external field { The subscript “ext” is omitted for simplicity) and F[p] is represented

by a summation of the kinetic cnergy T(o] and the electron-electron repulsive energy Vyo[p|:

Flp] = Tlp] + Veelo). (A.24)
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The total energy of the ground state is the minimum value of the functional E[p]. Further, the
density that yields the minimum value of E[p] is the ground state density.
The ground state density that minimizes the total energy functional satisfies the Euler-Lagrange

equation under the constraint that the total number of the electrons is kept constant:

fp(r)dr = N. {A.25)

Using the Lagrange mutiplier 1 associated with this constraint, the Euler-Lagrange equation is,

o { B~ ([ oy =) } =0 (A.26)

= o= w[p] ()+'§F[‘°} (A.27)

These discussions are the general theory of the DET and do not show the scheme of practical
calculations. To apply the DI'T to the real system, the method developed by Kohn and Sham [90] is
used. They have praovided the set of self-consistent one-electron equations (Kohn-Sham equation).

At first, they have considered a hypothetical N-electron system without the electron-electron

interactions, The Hamiltonian of this system Hj is

N N
1
Hy =) (5 Vi) + D vars). (A.28)
i i
The ground state of this non-interacting system ¥, is given by the Slater determinant, i.e.
1
T, = —det , A.29
e = 7w [y - ¥n) (A.29)
where the ; are the N lowest eigenstates of one-electron Hamiltonian £ = —%Vz + w(rk:
hatn = eithy, (A.30)
The density in this system is obtained by
N
plr) =3 (wu(r)*. (A.81)
i

The total energy of the non-interacting system Hy is represented by the functional:
Bl = [ ptemtedas + £l
= [ peduntadae + Tl (A.32)

Since the there is no interaction between the electrons, F'[p] is equal to the kinetic energy Talol:

Lle] = <W|Z( Lo,

Z(wsl — QV?Iwi)- | (A.33)
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In this system, the Euler-Lagrange equation (A.27) becomes
§Ts[p]
dp

Keeping this discussion of the non-interacting system in mind, we get back to the general N-

U= 'Us(l') + (A.34)

electron system with the electron-electron interactions. We divide the functional Fp] = T(p] +

Veolp) as following:

Flo = Tulo] + f f ”(r)p(r PPE) b’ + B, (A.35)

where the Tg[p] in the right hand side is the kinetic energy of the non-interacting system, the
second term is the classical Coulomb interaction for the electrons and the third term is referred as
the exchange-correlation energy, which can be represented as,
r)p(r
Exlp) = 715 =2} + (vl - 5 [ [ 0 davar | (A39
All the many-body effects are contained in this term.

From Eq. {A.35), the Euler-Lagrange equation is rewritten as,

umvm+%?
= o)+ — [T le) + f f plx) p(r L dedr + Exc[p]}
p(r’) 6'11; [l
= o) + f I?:—ITIdr'+vxc(r)+ 2, (A.37)
where the vy (r} is referred as the exchange-correlation poiential, which is defined as
JE
Vo (1) = "“l”] (A.38)
8p
By setting
varr (1) = v(r) + f 2 dr (1), (A.30)
the Buler-Lagrange equation (A.37) becomes
&1,
= van(e) + T (A0

Comparing with Eq. (A.34), it is found that this system corresponds the non-interacting system

with the external potential veg(r). Therefore, if ver(r) is given, by simply solving the Schrédinger

equation
1
[‘§V2 + vore|ihs = €itpi, (A1)

the density of the ground state is obtained as

N
) = Y I (At2)

However, since the uer(r) depends on the p(r), the Eqs. (A,39), (A.41) and (A.42) should be solved

self-consistently. The set of these equations is termed as the Kohn-Sham equations.
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A.4 Local Density Approximation

In the previous subsection, it is shown that the total energy of the interacting electrons system in the
external field is derived by solving the single-particle equations, {.e. the Kohn-Sham equations. To
solve the Kohn-Sham equations, we must know the exchange-correlation energy E[p]. However,
because of the many-body effects, the Fyc[p] cannot be derived exactly. Therefore, a certain
approximations are required for the Fye[p]. The local density approxzimation (L.LDA) is one of such
approximations. The LDA has been proposed by Kohn and Sham [90]. Within the LDA, the
exchange-correlation energy at r is replaced by the exchange-correlation energy of a homogeneous
clectron gas of the density p(r) i.e. exc{p(r)). Therefore, the exchange-correlation energy and the

exchange-correlation potential become

EMPMp) = f p(r)exe (p(r)) (A.43)
and b (
8K, Bexelp)
VDA () = T2 = e (p(r) + plr) TP , A.dd
op dp p=p(T) ( )
respectively.

For the exchange-correlation energy £,.{p(r)), we can use the results by Coperley and Alder [91].
Their results are based on Monte Carlo calculations of the interacting electron gas, Further, these
results are parametrized in the low-density and high-density limit by Perdew and Zunger [92]. For

the unporalized electron gas, the exchange-correlation energy is represented as

Exe = Ex-tEc (A45)
0.4582
T ’ (A.46)
Ta
1+1 052_90.14320 3334 (rs > 1)
Eg = + L \/T_S—I- ' T , (A.47)

—0.0480 + 0.03111In+s — 0.01167 + 0.0020rg Inrs  {rs < 1)
where the r, is the average distance between the electrons and calculated by

1 d7 q

- = —75 : A48

S=3 (A.48)
The large (small) 75 corresponds to the low (high) density.

We can calculate the exchange-correlation potential v.e from these parametrized representations:
exe
dp
dry dege
xe + dp drse

s Exe A4
Exe ™ g dry ( )

We must obtain the derivative of £, with respect to the ry:

Uge = Exctp

= &

dexe _ dox | dec (A.50)
dre  dry  drg
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Inserting Eqs. (A.46) and {A.47) into the right hand side, we find

dey 0.4582
oo b (A.51)
0.1432 (2028, /r, + 0.3334) (re> 1)
de, ) (14105207 +0.3334r,)’ T (A52)
ary 0.0311 | |
o —00116+0.0020(nrs +1) (ra < 1)

Therefore, we obtain following results for the exchange-correlation potential,

Ts dExe
Uge = Exc"g"“&;__
8
= e To dex) o, Te de
- * 3 dre ¢ 3 dr,
_ 4 04582 re dee

— B, == A.53
3 s tee 3 drg ( )

Consequently, the vgg in the Kohn-Sham equation can be calculated approximately.
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