Chapter 2

ENERGETICS AND
ADSORPTIONS ON THE
NANOTUBE EDGE

—Tight-Binding Approaches

2.1 Introduction

The energetics and kinetics are in general two important factors in growth phenomena: Products
during atomic reactions evolve into thermodynamically stable forms of N'Ts, whereas the evolution
could be hindered by energy barriers inherent to each atomic reaction. When the energetics is
relatively important, the abundant N'T's should be thermodynamically stable tubes, On the other
hand, when kinetic hindrance is more important, metastable NTs could be abundant.

In this chapter, we discuss those two aspects. First, we determine stable radius and shapes of
carbon N'T's with finite length, In this task we calculate stable structures of edges and corresponding
cdge energies. The strain energies of NTs are obtained by the total energy comparison between the
graphite sheet and the NT with infinite length. The obtained edge and strain energies are combined
to provide the total energy of the finite-length NT as a function of carbon atoms involved. The
obtained structural characieristics of the NT' edges are principal in discussing atomic reactions
during the NT growth.

Second, toward understanding of kinetics such as the adatom diffusion near edges, we here search
stable adsorption structures for a single and several carbon adatoms near edges of NT's. These
results are fundamental in clarifying growth mechanisms, in particular open growth mechanisms
where edges of NTs are open during the growth. Also, energetics in formation of pentagon and
hexagon carbon networks at the edges is clarified for a wide range of tube radii. This is important
because the pentagon formation is likely to induce closure of open ends of NTs. We find a crossover
at some radius: It is shown that for the (5,5)-tube formation of a pair of pentagons is energetically
favorable, whereas the hexagon formation is for the (10,10)-tube.

All calculations are performed using a transferable tight-binding ('TTB) model proposed hy Ho
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and coworkers [72, 73]. More accurate calculations based on the density functional theory might
be plausible. Yet we arve here interested in stable forms of NTs consisting of hundreds of atoms
so that the density functional calculations are formidable. On the other hand, the TTB model
provides generally reasonable results in particular for carbon systems (74, 75, 76, 77, 78, 79| since

the parameters are fitted so as to reproduce several key results from the density functional theory.

2.2 Methods of Calculations

A single wall carbon NT is simulated by a supercell model in which the NT is arranged periodically
with a sufficiently large separation of 5.3 A. To treat a finite-length NT, we place the tube with
edges of both sides in a center of a unit cell in the supercell model. When we calculate adsorption
of carbon adatoms at an edge of the NT, we terminate the other edge by hydrogen atoms. A
geometrical optimization is performed by the conjugate gradient (CG) minimization of the total
energy of the system Eio¢ with respect to the atomic configuration,

We use in this chapter the transferable tight-binding model proposed by Ho and his collabora-
tor [72, 73]. In the case of the carbon atom, the atomic orbitals to be considered are 2s, 2pz, 2py

and 2p,. In this madel, the total energy of the system Ei is
Etot = B + Erepa (2'1)

where the By, is the energy of the electrons that is the summation of the eigenvalues of the occupied
states and the Eyqp is the ionic repulsive energy. The electronic eigenvalues are obtained by solving
the tight-binding Hamiltonian Hrp.

The tight-binding paramecters are determined in order to reproduce structural properties of
several carbon polymorphs obtained from the density functional calculations {72): The energy-
volume curves are almost identical to these from the density functional calculations for diamond
and graphite, and for other polymorphs. The agreement is satisfactory; The calculated elastic
congtants and phonon frequencies agree with the experimental values within the error of typically
5%. We adopt the functional forms and the parameters determined in the original work [72]: It
has been also established that the present model is capable of deseribing structural properties of
fullerenes and liquid and amorphous carbons quantitatively [74, 75, 76, 77, 78, 79].

Horsfield et al. have introduced the parameters for carbon-hydrogen and hydrogen-hydrogen
interactions (the ionic repulsions and the electronic hoppings) [80]. They have used the functional
forms and the parameters for the carbon-carbon interactions proposed by Ho. The parameters
for the carbon-hydrogen and hydrogen-hydrogen interactions have been determined in order that
the mode! is capable of describing bond lengths and total energy differences of hydrocarbons,
hydrogenated amorphous carbon systems and hydrogen terminated diamond (100) surfaces. The
resuits obtained by this model agrees satisfactorily with both experimental and ab initio results {80,
81). The parameters for carbon-hydrogen and hydrogen-hydrogen interactions in this thesis are

adopted from the work by Horsfield et al [80]. (The functional forms of the By and Firep, and the
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tight-binding parameters are given in Appendix C.) -

2.3 Energetics of Nanotubes
2.3.1 Strain energy

First we calculate strain energy of the (m,n)-tube, Eéf:az;) {m = n for armchair and n = 0 for

zigzag). This energy is an energy cost to roll a single graphite sheet into a tubular shape. It is

defined as,

) pinE(m, hit

B = B — Bgonie, (2.2)
inf(rm, i . e

where 210" and EEPN are total cnergies per an atom of an infinite-length (m, n)-type NT

and a single graphite sheet, respectively. We choose 14 armchair tubes (n = 4 ~ 13,15, 18,20, 24)
and 14 zigzag tubes {m = 6,8 ~ 13,15, 18,20, 24,30, 36,40). Figure 2.1 shows calculated E&™™

strain
for a variety of NTs. The calculated strain energies are well fitted to a single line defined as
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Figure 2.1: Strain energles per atom of the geometrically optimized armchair and zigzag N'Ts. The
energy reference (zero energy) is the energy of a single graphite sheet. Open and solid squares

indicate the Egﬂlﬁ) of the armchair N'Ts and the zigzag NTs, respectively. The solid lines are

least-square fitted curves with the form of A x (radius)~2.

A+ R~? where R is a radius of the N'T. The coeflicient A is obtained as A=1.79 eV A®/atom for
the armehair NTs and and A=1.84 ¢V A%/atom for the zigzag NTs. The values of the coefficients
are in agreement with previous values obtained by the LDA calculations for thinner tubes with

the radii of 7 A or less [82). We have found a general trend that the strain energy of the armchair
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NT is lower than that of the zigzag NT at the same radiug. This is interpreted as follows. For the
armchair NT, the {n,n)-tube has N4 = 2n atoms on the periphery and the peripheral length is
L=v3an= -\é—ﬁaN A, where o is the lattice constant of a graphite honeycomb structure. Thus the

radius of the armchair NT is related to N4 as

4
Ny = —R, 2.3
A \/gd ( )
Similarly, for the zigzag NT, a number of atoms Nz on the periphery is
Nz = %:—T-R. (2.4)

Accordingly Ny is larger than Nz at the same radius. If the strain energy depends only on the
radius of NT, the strain energy per atom of the armchair NT is smaller than that of the zigzag
NT. Yet the energy difference is very small and the strain energies for both the armchair and the

zigzag NTs become zero in the large radius limit.

2.3.2 KEdge energy

A NT with finite length has the edge on one end or both ends, In this subsection the edge energy

(m,n)

E™™ which is an energy cost for the edge formation is calculated. This E, is defined as

edge edge
B = [Bige ™™ - Nt — gilma) . ytmam)) /o), (2:5)
where EPntm™) and N0nn) are a total energy per an atom and a number of atoms of the

(m,n)-tube with finite length !, respectively, and Ng;f} is a number of atoms on the edges of
the (m,n)-tube with finite length. The edge is regarded as a “surface” of NTs. Some dangling
bonds (DB) appear and “surface relaxation” oceurs to lower the edge energy. Only Aat edges are
considered in this subsection. Effects of atomic steps at the edges are considered in the following
chapter. We use an armchair tube with the length of 10 atomic rows (This tube is termed as the
“10-row-length armchair tube” in short.) and a 12-row-length zigzag tube. Fig, 2.2, These two
tubes are representatives for the two types of NTs and are used to evaluate the edge energies.
At these sizes of the N'Ts, Eg;’é‘;") and an edge bond length are converged in 0.05 eV and 0.05 A,
regpectively, with respect to a number of rows. This dependence of E(E[T;‘;L ) and the bond length
with respect to a number of rows are checked with (5,5)- and (9,0)-tubes. Calculated edge energics
per edge atom both for the armchair NTs and the zigzag N'T's are shown in Fig. 2.3. (There are 4n
edge atams in the (n,n)-tube, whereas 2n edge atoms in the (n, 0)-tube.) It is found that the edge
energies of the armchair NTs are substantially lower than those of the zigzag NTs for any value
of the tube radius. The energy difference is ~ 0.5 eV /edge atom. When we neglect relaxation of
atoms near the edge, the edge energy may be roughly proportional to the number of DBs generated

at the edge. Hence the edge energy per edge atom, which is the same to the edge energy per DB

MIn this subsection, a fixed number of N{™®) i5 used to ealculate the Efo“r_lm(m’") and Eé;';’ﬂ“). This N(mn) i

sufficiently large to calculates the Egg:;':’). (See text.) In §2.3.3, this number of atoms is used as a variable,
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Figure 2.2: Side views of NTs with finite length used for calculations of edge formation energies.
(a) An armchair N'T is constructed from. 10 rows. The (n,n)-tube here has 20n atoms in total and
4n atoms on the edge. (b) A zigzag NT is constructed from 12 rows. The (n, 0)-tube here has 12n
atoms in total and 2n atoms on the edge. Atoms on the edge are depicted by lighter spheres.
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Figure 2.3: Edge formation energy per edge atom of the geometrically optimized armchair and
zigzag NTs with finite lengths, Open and solid squares indicate the Eédmg';l) of the armchair and
zigzag N'Ts, respectively.
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at the unrelaxed edge, is ingensitive to the structure of NT. The energy difference of 0.5 eV that
we have found is therefore purely due to the relaxation of edge atoms. For the armchair NT, the
DBs are stabilized by the 7 interaction with adjacent DBs. In fact, we have found that the bond
length at the edge is substantially shortened and is ~1.2 A that is close to the length of the triple
bond in acetylene. This triple bond formation is “a surface relaxation” of the armchair NT, On
the other hand, for the zigzag NT the interaction between DBs is weak due to the longer distance
hetween adjacent DBs.

This higher edge energies of the zigzag N'T's indicate that the zigzag N'Ts are likely to be closed.
This is in accord with the previous result that an energy gain of a cap formation on the zigzag
edge is larger than the case for the armchair edge [66). The edge relaxation to stabilize DBs
introduces the lattice distortion. The edge energies contain an effect of this distortion. This effect
become relatively small an the edge of the thin NT which is already distorted by its high curvature,

Therefore, the edge energy decreases in the region of the small radius.

2.3.3 Total energy of finite-length nanotubes

Combining the strain energy and the edge energy calculated in the previous subsections, we obtain
the total energy of N'T's with finite length. When the (m, n}-tube consists of N carbon atoms, its

total energy with respect to a flat graphite sheet of N atoms can be calculated by,

Eé::m) — E(m)n) N+ E(m-n) . prlmam) (26)

strain edge edge !

where Né:,’;f) is a number of atoms on the edges of the (m,n)-tube with finite length, and BT

and Eé:;:ﬂ,‘;' ) are already ealculated in the previous subsections. When the number of carbon atoms

N is fixed, we can construct several kinds of NTs, from a thick and short tube to a thin and long
tube. The thick and short tubes have higher edge energy since this tube has more edge atoms. On
the contrary, the thin and long tubes have larger strain energy. Therefore, due to the competition
of BX™™ and Ec(dmg';‘), an optimized size (radius and length) of the NT at each N is expected,
This consideration is illustrated in Fig. 2.4, From the results of §2.3.1 and §2.3.2, the R=2 and
R! behaviors are assumed for the Es(zmg and the Egg;“; )| respectively, where R is the radius of

. the N'T. The total energy EU™™ as a summation of the BT and the EG™ is indicated by a

strain adgo
dushed line in Fig. 2.4. Since the Eé;fu:;) is dominant in the small radius limii, it is expected that
the Et(gf‘"} is proportional to R=2. On the other hand, in the large radius limit, it is expected that
the BE™ s proportional to R. Calculated EX™ as a function of the radius is shown in Fig. 2.5
for N =1000 {squares) and 2000 (circles). We have found that the armchair NT is energetically
favorable compared with the zigzag NT for N = 1000 and N = 2000. The optimized NTs that
have the minimum total energies are (12,12) and (15, 15) for N ==1000 and 2000, respectively. It is
also found that the shape of the plots are similar to the behavior of the E,g': ™) expected in Fig. 2.4,
We plot the ET™™ as a function of the number of atoms in Fig. 2.6. It is found that the most
stable NTs are always of armchair type. This stability of the armchair NTs is due to the small

edge energy owing to the efficient 7 interactions. The radius of the most stable NT increases with
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Figure 2.4: Schematic diagrams illustrating the energetics of the finite-length NT. When the
number of the atom is fixed, we can construct several kinds of the N'Ts, from a (relatively) thin
and long tube to a thick and short tube. {Upper figures, The chirarity is not considered here.)
The lower figures show the radius dependences of the Fgirain, Foage and Eioi. From the results of
the previously subsections, the Farai (Foedge) can be expected to behave as It~2 (R). The dushed
line indicates the F, as a summation of the Fyjn and the Fogge. (Superscripts “(m,n)" are
omitted here for simplicity.)

increasing N. In Fig. 2.6, only four armchair NTs are plotted. Yet actually the most stable tube
varies as --- —»(10,10) —(11,11) —(12,12) — .- around N = 1000 ~ 2000, When N become
large relative to Né&’;’;‘), the eflect of the edge is relatively small and the strain energy become
dominant. Therefore, at large N the thick tube is energetically preferred.

When the mumber of atoms N changes continuousiy from 1000 to 2000, several NTs are unable
to possess flat edges and the steps inevitably appears at the edge. We have neglected the effect of
such steps in this subsection, however, to obtain gross features of the energetics of N'Ts with finite
length. .

Furthermore, the length of the most stable NT L is considered here. The most stable NT has
been already obtained in Fig. 2.8, The length of the finite-length NT is determined from N and
the index of the NT'. Therefore, we can derive the length of the most stable NT as a function of &
i.e. L{N). Figure 2.7 indicates this length. We consider also the (8,8), (12,12) and (18,18} tubes
in addition to the (5,6}, (10,10), (15,15) and (20,20) tubes. The sclid line in Fig. 2.7 indicates
L{N) = 0.610N I, which is fitted to the calculated length satisfactorily. This function can be
derived analytically from Eq,(2.6). The derivation is follows. (We consider only the armchair NTs
because the armchair NTs are always more stable than the zigzag NTs.} The strain energy has
been obtained as ES™™ = 1.70/R? eV /atom for the armchair N'T. Since we consider the flat edge,

strain

the Né:éz) is equal to 24, where the N, is the number of the atoms on the periphery of the
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Figure 2.5: The total energy of a N'T with finite length E{™™ at N =1000 and 2000 as a function
of the nanotube radius. The energy reference is the total energy of a flat graphite sheet, Open
squares and circles indicate Et(ft‘n) of the armchair NTs at N =1000 and 2000, respectively, Solid

squares and circles indicate E,Eg"g") of the zigzag NTs at N-=1000 and 2000, respectively. Elmm

s6rain
decreases and Ee(:]”';‘) increases with increasing radius. Thus, a concave shape of plots is obtained.
In both cases of N =1000 and 2000, the total energy of the armchair NT is lower than that of the
zigzag NT. The tube that has the minimum total energy is (12,12) (R=8.1 A) for N=1000 and

(15,15) (R=10.2 A) for N=2000.
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Figure 2.6: Thae total energy of a NT with finite length with respect to a Aat graphite shect as a
function of N. We pick up eight kinds of NT from the armchair type, (5,5) ~ (20,20), and from
the zigzag type, (9,0) ~ (36,0). The most stable tube is always of armchair type and its radius
increases with increasing N. The most stable tube and its range of N are also indicated.

armchair tube. (See Eq.(2.3).) The factor 2 originates from that the finite-length NT has two

edges. Therefore, the E%™ is rewritten as,
(ny 179 (nn) BT
Et;l.tﬂ - _I'ETN +E(S:;gz ER. (2.7)
On the other hand, the number of atoms is given as
N (2.8)

where s = lf# is an area that one carbon atom occupies in the graphite sheet. Thus, the R is

represented by the N as

Vi3a (2.9)
8rL '
Substituting Eq.(2.9) into Eq.(2.7), we obtain the total energy as a function of the L and N:

RE=

(n.n) 8 z L? (nm} L
Bioe (L,N)= 179 (m) "t Beage 05 (2.10)
The length of the most stable NT is derived from a condition _
2B -
—r | = 2.11
( or) =0 (211)
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Figure 2.7: The length of the most stable N'T is indicated as a function of N. We pick up 7
kinds of armchair NT's for calculation. The lengths are calculated only in the range of N that the
corresponding NT is most stable. For example, the (10,10)-tube is most stable around N=1000,
Generally apeaking, the length of the most stable NT increases with increasing N. The solid
line indicates the analytic function L{N) = 0.619N3. (See text.) This analytic function is fitted
satisfactorily to the results calculated for each armchair NT.

This derivative of Et(:{"’) with respect to the L is calculated at fixed N. Accordingly, the L is

derived as a function of N:

H] )
somf ) E L Peigo ¢
\/_&2 N L2

Eee ( V3a?
edge N-’*. 2.12
= L=\ %\ e ’ (2:12)

Using a=2.46 A and E((,ng’;) 1.98 eV,? Eq.(2.12) becomes

L = 0.619N1%, (2.13)

Thus, the analytic form of the L{N) for the armchair NTs is obtained.

2.4 Adsorption on the Nanotube Edge

We consider adsorption energies for carbon adatoms at the NT edges in this section. It is found

that the armchair NT is energetically favorable compared with the zigzag NT in the previous

2Although the Eé:l'éz) depends on the R as indicated in Fig. 2.3, the constant E[Ezg’;) (=1.98 eV) is used for all

armchair NTs for simplicity.
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section. Hence we concentrate on the adatom adsorption on the armchair NTs.

We use (n,n)-tubes (n = 5 ~ 24) with 8 atomic rows length to calculate adsorption sites and

adsorption energies. The adsorption energy B,  is defined as

Ead = [Etot;(N) + Nnd * Eatom - Etut(N -+ Nacl)] /Nad} (2'14)

where N and Fyq: (V) are the number of the carbon atoms and the total energy of the NT without
adatom, respectively, Naq is the number of the carbon adatom, Fgioy, is the energy of the carbon
atom and Eeo (N + Nag) is the total energy of the NT on which the N,q adatoms are adsorbed.
In this work, V.9 varies from 1 to 4. Adatoms are adsorbed on a top edge of the NT', A bottom
edge ig terminated with hydrogen atoms and fixed during a geometrical optimization to simulate
an infinite-length NT. The dependence of the adsorption energy and the edge bond length with
respect to a number of rows are checked with the (10,10)-tube. Tt is found that the adsorption
energy and the edge bond length are converged in 0.01 ¢V and 0.01 A, respectively, with respect
to the number of rows already at the the 8-row-length NT. In the following subsections, we discuss
the adsorption energies of carbon adatoms at several sites on the flat edges, formation energies
of a set of pentagon networks and hexagon networks at the edges, and an effect of the pentagon

network on the following adsorption processes.

2.4.1 Flat edge

We consider here the fundamental adsorption structures on the armchair edge, that is, pentagon
and hexagon network. ¥ When the single adatom is adsorbed on the site between the triple bonds
(This site is termed as the “seat site”.), the pentagon network is formed as shown in Fig. 2.8 (a).
The two triple bonds between the atom marked as 1 {atom-1} and the atom-2 and between the
atom-3 and the atom-4 in Fig, 2.8 (a) nearhby the pentagon network are therefore weakened: The
bond lengths are ~ 1.4 A, which is close to the length of the C—C bond in benzene. Upon the
adatom adsorption, characters of dangling honds thus come up at the atoms 1 and 4 in Fig. 2.8
(a}, along with the DI3 at the adatom,

We next put an additional carbon atom on the edge (2 adatoms in total). The stable structure
is shown in Fig. 2.8 (b). A hexagon network is formed above the seat site. Again, the triple bonds
between the atom-1 and the atom-2 and between the atom-3 and the atom-4 nearby in Fig. 2.8 (b)
nearby the hexagon network are weakened and then the dangling bond characters come up on the
atom-1 and atom-4. On the other hand, the bond at the new hexagon has a character of the triple

bond: The bond length is 1.28 A, When we compare the two structures in Fig. 2.8, the hexagon

3Several adsorption structures on the flat armcheic edge can be considered. For example, if the single adatom
is adsorbed just above the triple bond (This site termed as the “arm site”.), the triangle network is formed (See
Fig. 3.4 (a).). Unfortunately, since the parameters of the T'TB are fitted to reproduce the energy of the typical
structure, such as the graphite and the diamond, the energy of the trisngle network which is largely distorted from
the ideat sp? bonding cannot be estimated precisely by the TTB. Thus, only the pentagon and hexagon network on
the armchair edge are considered here. The other adsorption structures are investigated in chapter 3 by the LDA
calculations,
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Figure 2.8: Side views of geometrically optimized pentagon and hexagon network on the armchair
edge. Only top four rows and adatoms are depicted. Adatoms are indicated by lighter spheres.
Numbers of 1 ~ 4 are atom indexes. Values in parentheses indicate the bond lengths in A.

formation is likely to be energetically favorable since the additional DB exists in the pentagon
structure,

This can be quantified by comparing the adsorption energies. Then, we consider a dependence
of the adsorption energy with respect to the NT radius. The adsorption energies of the pentagon
and hexagon are plotted in Fig. 2.9. Although the adsorption energy of the hexagon is almost
independent with respect to the radius, that of the pentagon decreased with increasing radius.
Consequently, the pentagon is more stable in a smaller radius NT. When we consider the growth
of NT's with open edges, formation of pentagon arrays at edges induces closure of the edges atid
hereby prevents the tube growth. It is thus of interest to compare energies of several pentagons
and of hexagons at edges. We here consider formation energies of two pentagons and one hexagon
and those of 4 pentagons and two hexagons at the armchair edge as shown in Fig. 2.10. Calculated
energies are shown in Fig. 2.11. In general the energy of the pentagon array increases with increas-
ing radius of NT's. This is due to the fact that the lattice distortion around the pentagon becomes
prominent for thicker NTs where the carbon walls are more flat than the thinner NTs, We have
found a crossover of the radius at which the hexagon formation becomes energetically favorable

than the pentagon formation. The open edge growth is thus likely for thicker N'Ts,

2.4.2 Roles of a pentagon

Adsorption on the flat edge is discussed so far. During the open growth of a NT, there should
be several adatoms on its edge and the several pentagens and hexagons are presumably formed
on the edge. In this subsection, in order to clarify roles of the pentagon during thé growth, we
study effects of the pre-adsorbed pentagon. on the adsorption of additional carbon atoms. We
first prepare a pentagon (a pre-adsorbed pentagon) on the flat edge to investigate the effect of
this pentagon. We then explore adsorption sites for the additional atom around the pre-adsorbed

pentagon and calculate the corresponding adsorption energy Eby". We define ELJ" as,

Etlx]c?n = ""Eg:(:;n-l_“duwm + Efoatn + Eatom, (2.15)
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Figure 2.9: Adsorption energies on the armchair( (5,5), (10,10), (12,12), (15,15), (20,20) and (24,24)

) edges. Solid circles and squares indicate the energies of the pentagon and hexagon network on
the armchair edge, respectively.

(a)

Figure 2.10: Structures of the geometrically optimized (10,10) edge with two or four adatoms.
Only top 4 rows and adatoms are depicted. Adatoms are represented by lighter spheres. (a) Two
adatoms form two-pentagon array. (b) Two adatoms form a hexagon. (c) Four adatoms form
four-pentagon array. (d) Four adatoms form two-hexagon array. We construct similar structures
on edges of the {5,5), (10,10) and (20,20) tubes to calculate the adsorption energies for each case.
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For both cases of two and four pentagons, the adsorption energy decreases with increasing radius.
The pentagon has high energy on the edge of the large radius NTs.

where EREnH2dalom 5o 5 total energy of the NT with the pre-adsorbed pentagon plus the additional
adatom, EL" is a total energy of the NT with the pre-adsorbed pentagon and Equom i an energy
of the carbon atom. Each structure and the corresponding adsorption energy are summarized in
Fig. 2.12, where the additional adatom is highlighted with a lighter sphere and “5” indicates the
position of the pre-adsorbed pentagon. The number of “6” in Fig. 2.12 indicates the hexagon
transformed from the pre-adsorbed pentagon by incorporation of the additional adatom,

In Fig. 2.12 (a}, additional adatom is incorporated to the pre-adsorbed pentagon, followed by
that this pentagon is transformed to the hexagon network.? In Fig. 2.12 (b}, the additional adatom
is adsorbed on the nearest seat site of the pre-adsorbed pentagon, and a two-pentagon array is
formed. The hexagon is energetically more favorable than the pentagon array on the (10,10)
edge as discussed previously. However, in Fig. 2.12 (b}, since the additional adatom erases a DB
generated by the pre-adserbed pentagon, the adsorption energy is larger than that of the seat site
adsorption with no other adatoms. On the next nearest seat site of the pre-adsorbed pentagon,
the effect of the pre-adsorbed pentagon becomes already small: The adsorption energy of this site
is almost equal to that on the flat edge with no other adatom. In the case of the two-pentagon

array (Fig. 2.12 (b)), therc are four DBs, (DBs are on the adatoms and the nearby seat sites.) On

4 Actually, some activation energy is vequired to incorporate the additional adatom into the pre-adsorbed pen-
tagon. However, we neglect here this activation energy and obtain the corresponding adsorption energy from the
total energy of the NT with hexagon network. (‘The total energy of the NT with hexagon network is substituted
into the EFenadatom iy po (2.15).)
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Figure 2.12: Side views of the geometrically optimized edge structures with a pre-adsorbed pen-
tagon plus an additional carbon atom. Values below the cach side view are adsorption energies
in e¢V. The additional adatom is depicted by a lighter sphere. The pentagon marked as “5” is
the pre-adsorbed pentagon and the hexagon marked as “6” is the hexagon transformed from the
pre-adsorbed pentagon by incorporation of the additional adatom. (a)~(c) Flat edge. (a) The addi-
tional adatom is incorporated to the pre-adsorbed pentagon, followed by that the hexagon network
is formed. (b) The additional adatom is adsorbed on the nearest seat site of the pre-adsorbed
pentagon and the two-pentagon array is formed.

the other hand, when the two pentagons are separated by more than one seat site, three DBs are
generated by each pentagon, Thus, there are six DBs on the edge shown in Fig, 2.12 (c). From the
viewpoint of the DB counting, the two-pentagon array is more favorable than other arrangements
of pentagons.

In short, the calculation of the adsorption energies in this subsection indicates that, the hexagon
network formation and the pentagon on the nearest seat site of the pre-adsorbed pentagon are
energetically favorable. The nearest seat sites of the pre-adsorbed pentagon become sinks for the
additional adatom because of the DBs generated by the pre-adsorbed pentagon. This effect is quite
local in a sense that the adsorption on other sites are not affected from the pre-adsorbed pentagon.
It is thus of interest that the pentagon has an ambivalent character: It suppresses the growth by
triggering the cap formation, but at the same time becomes a nucleation site for additional atoms

and hereby accelerates the hexagon formation,

2.5 Summury

In this chapter, to clarify the energetics of the N'T', we have caleulated the strain energy, the edge
formation energy and the total energy of the finite-length NT. The strain energy of the armchair
NT is found to be lower than that of the zigzag NT at the same radius. For the edge formation
energy, we have found that the armchair edge is more stable than the zigzag edge because of the
triple bond formation at the armchair edge. The total energy of the finite-length N'T' has been
calculated as a function of the number of constituting carbon atoms N from the combination of
the strain energy and the edge energy. The most stable NT is always armchair type and become
thicker with increasing . These results of energetics suggest that the armchair tube are formed

and grow to a long NT more easily than the zigzag tube. The calculation of adsorption energy

25



has been also performed. The energetics of a pentagon and a hexagon on the armchair flat edge
is discussed. It has been found that the energy of the pentagon increases with increasing the N'T
radius. The pentagon network is more stable on the edges of thin NTs than the hexagon network
which maintains open growth, suggesting that the thin NT is not favorable for the open edge
growth, We have discussed the effect of the pentagon to the additional adatom adsorption. The
adsorption on the nearest seat site of the pre-adsorbed pentagon is energetically favorable along
with the hexagon network formation by incorporation of the additional adatom to the pre-adsorbed

pentagon.
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