VII Tables

Table 1. Disappearance of gap junctional coupling between progenitor cells and appearance of voltage-gated Na⁺ currents in ganglion cells during retinal regeneration.

Regeneration Stages	Cell type	Na ⁺ current	% of cells which exhibited gap-junction current*	tracer coupling
Intermediate-I	PC	0 (n= 0/26)	96 (n= 25/26)	73 (n= 16/22)
	PC	0 (n=0/20)	80 (n=16/20)	71 (n=12/17)
Intermediate-II	GC	81 (n=13/16)	0 (n=0/16)	0 (n=0/16)
Intermediate-III	GC	100 (n=9/9)	0 (n=0/9)	0 (n=0/9)
Late	GC	100 (n=11/11)	0 (n=0/11)	0 (n=0/11)
Control	GC	100 (n=17/17)	0 (n=0/17)	31 (n=4/13)

PC: Progenitor cells, GC: Ganglion cells.

n = number of cells with Na⁺ current, gap-junction current or tracer coupling / a total number of cells examined.

^{**} The absence of gap-junction currents was evaluated by slope conductance values less than 0.5 nS measured at the initial phase.

Table 2. Development of voltage-gated Na⁺ currents and their activation threshold in ganglion cells during retinal regeneration.

Regeneration Stages	Cell type	% of cells which exhibited Na ⁺ current		Maximum Na ⁺ current (pA) ±S.E.	Activation voltage (mV) ±S.E.
Intermediate-I	PC	0	(n= 0/12)		_
Intermediate-II	PC	0	(n=0/16)	_	
	GC	80	(n=44/55)	432±54	-45±1
Intermediate-III	GC	100	(n=32/32)	711±76	-50±1
Late	GC	100	(n=42/42)	795±57	-55±1
Control	GC	100	(n=31/31)	953±88	-56±1

n = number of cells with Na⁺ current / a total number of cells examined.

Other abbreviations are the same as those in Table 1.

^{-:} no Na* currents.

 Table 3. Composition of external solutions.

Composition	A	В	С	D	E	F
(mM)	(control)	(for AMPA)	(for AMPA	(for NMDA)	(for NMDA	(for GABA, glycine)
			with antagonist)		with antagonist)	
NaCl	100	100	100	100	100	100
KCI	3.7	3.7	3.7	3.7	3.7	3.7
CaCl ₂	3	3	3	3	3	3
HEPES	5	5	5	5	5	5
TEA-CI	0	18	18	18	18	18
$MgCl_2$	1	1	1	0	0	1
CoCl ₂	0	3	3	0	0	3
NMDG-HCl	24	0	0	6	6	0
Glucose	0	3	3	0	0	3
glycine	0	0	0	0.001	100.0	0
cyclothiazide	0	0.1	0.1	0	0	0
strychnine	0	0.01	0.01	0.01	0.01	0
picrotoxin	0	0.2	0.2	0.2	0.2	0
CNQX	0	0	0.05	0*	0*	0
DL-AP7	0	0	0	0	0.1	0

The pH was adjusted to 7.5 with 0.3 N NMDG. The osmolality were adjusted to 255 mOsm. *: CNQX (0.01 mM) was added to solution D in the case of a presence of activity of AMPA receptors.