Chapter 4

Program PISA-QMS

4.1 Outline of PISA-QMS

We have developed the original computer program PISA-QMS to simulate ion trajectories in
RF-QMF and ITMS[7]. There are two options in PISA-QMS. One is suitable for the calculation
of ion trajectories in RF-QMF, and the other is aimed at the analysis of the ion motions in ITMS.
The main difference between the two is in the calculation of the electric fields. The boundary
element method (BEM) is employed for RF-QMF, while the multipole expansion method is
adopted for ITMS as described later.

For an ion with mass m and charge ¢, the equation of ion motion in PISA-QMS is taken to be

d u(t)

— = ‘I(Eq.u + Erm)+ F,, +F, (w=x,y,0rz). 4.1.1)

m

The first term of the right-hand side of this equation represents the electric forces in the ion
transmitting or the ion trapping field E_,. In the second term, £, is the field which is applied to
the end-cap electrodes of ITMS for ion extraction. The third term F,, expresses the effective
macroscopic damping force which is derived by approximating the microscopic process of
collisions with ion-buffering gas atoms. The fourth term F,, represents the force given to ions by
the space charge confined in a limited space around the center of ITMS. For simulations of ion
trajectories in RF-QMF, only the first term is considered because the ion extraction field £, is
not required. Since ion buffering gas is not necessary for RF-QMEF, the terms of /,, and £, may

also be dropped.
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The program PISA-QMS calculates ion motions in RF-QMTF or ITMS point by point in the
space at corresponding times. A typical sequence of calculations is as follows.
1. The calculation of the electric field in accordance with a given electrode configuration,
2. The input of the initial position, initial velocity, initial phase of RF voltage, m and charge g
of an ion.
3. The numerical integration of the equation of ion motion to obtain the position u,(A#} and

velocity #, (Af) after the movement of the ion for the short time Af.

4.  The calculation of the new value of electric field at the position of #,(Af) and the time /= Af
taking into account that the electric field varies with time.
5. The numerical integration of the equation of ion motion to obtain the new position w.,(A?)
and velocity #, (Af) after the next short time Az,
6.  Repetition of the calculation of items 4 and 5.
The ion trajectory is obtained as a series of solutions #y, t,, #,, **-. This trajectory is different
from the solution of the Mathieu equation which is a linear combination of sinusoidal functions.
The solution of the Mathieu equation is not used in our program PISQA-QMS.
PISA-QMS can be divided into the following three parts: (1) the calculation of electric fields;
(2) the calculation of ion trajectories; and (3) the calculation of the interactions of ions with
carrier gas atoms and space charge. Flow charts of the two calculation options are shown in Figs.

4-1(a) and (b). The details of each part are described below.
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4.2 Calculation of electric fields

4.2.1 Boundary element method

High accuracy of the positicning of four rods in the mechanical construction is required
especially in RF-QMF to obtain high mass resolution. The positioning error must be at least
within 2-3 um to achieve a mass resolution of m/Am=2000. In order to evaluate the effect of such
a low positioning error, the electric fields generated with practical electrodes must be calculated
with a numerical error as low as 0.01 %. In PISA-QMS, BEM is adopted for the calculation of

electric fields in RF-QMEF with high numerical accuracy.
The electric field in a charge-free space is derived from the potential ® which satisfies the
Laplace equation:
Vid=0. 4.2.1)
We introduce a certain volume A, and consider the potential @ in this volume. We express the
boundary surface by ['. A schematic drawing of the volume A with its boundary surface I is

described two dimensionally in Fig.4-2,

Fig.4-2 A schematic drawing of the volume A, The
volume is surrounded by boundary I. The boundary I’
is divided into small elements from I'y to Ly, .
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Using Green's theorem, the potential ®, at the source point  in A is given by the following

boundary integrals:

oo" . (6D
C®, +jrcb,,( = ldf:jrcp ”[E]bdr (4.2.2)

where ®" is such a known fundamental solution of eq.(4.2.1) as 1/(4nr). The symbol C, is a
constant that depends on the solid angle subtended by I at the point #[28], The eq.(4.2.2) implies
that for the charge-free volume A the potential @, anywhere inside A can be calculated from the
potential value @, and the normal derivative (8 ®/ 3 n), on the boundary surface I" only. This is a
basic equation of the BEM. Therefore, all unknown values ( @, or (3 ®/dn), ) need to be solved

by using eq.(4.2.2) when the source point 7 is on the boundary I". The method to solve all the
boundary values by BEM is described below.

In the application of this BEM to practical problems, it is convenient to divide the boundary
surface I" into several elements. Denoting the number of surface elements by », as shown

in.Fig.4-2, we write eq.(4.2.2) as

I 60" o, (8D
, — = O —| 4O 423
Cr(DI +;L~m (Db[ an derm ;J‘rm b[an)b ] ( )
with
r= Zr . (4.2.4)

In accordance with the division of the surface T into #,, elements, ®,, (8 ®/ 8 n), and coordinates

u (u=x, y, or z) on each surface element can be expressed in the following forms:

®, =3 0. (6,.£,) 0%, (42.5)
k=l
5® Y
(‘é;]b = E@k'(&l:é)'(gjk' (4.2.6)
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and

1 m;%(fl,‘fz)‘“k (4.2.7)

where £ and &, varying from -1 to +1, are local cartesian coordinates on each element as shown
in Table 4-1, instead of using x and y coordinates. In these expressions, @., @ and @, are
functions that interpolate the potential ®,, the normal derivative (8 ®/9#), and the shape of each
element on the boundary surface I, respectively. The suffixes &', &'’ and & of the interpolation
functions, @, ¢, and ¢,, mean nodal points on each element. At each nodal point, the potential,
its normal derivative and the position coordinate are denoted by @,°, (3 ®/8n)" and #,. The
nodal points are determined according to the order of the interpolation function. Table 4-1 shows
linear and quadratic interpolation functions with nodal points in a boundary element. Usually the
order of functions for interpolation of the potential is unified in all elements. The functions for
interpolation of the normal derivative and the shape of each element are defined in the same way.
In order to minimize the memory size needed for calculations, the order of the functions for
interpolation is determined in each element in our method. Fer example, for calculation of the
potential in the space between two coaxial cylindrical electrodes (see the surfaces A, B, C and D
of Fig.4-6, Subsection 4.2.3), quadratic functions are taken for the elements on curved surfaces A
and B, while linear functions are chosen for the elements on linear surfaces C and D. The electric

potential value ®, and the normal derivative (8 ®/0 ), can be determined in the same manner.
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Table 4-1. Linear and quadratic interpolation functions with nodal points in a boundary element

Element

Linear Quadratic

& &

Nodal points

2

P 5 (- EX1-6)
R LA GE BV
B =L AE(+EKI+6)
¢,=%(l+§1)(l—§,) ¢.=—%§l§1(1—§,x1+§,)

7= EXI-£)

Interpolation Ly nveiy
functions ¢;=%(1+¢1)C1+'§1) @ —-I‘Etf;( +6 N1-4)

¢ =S E0+EXI-&))

@y =';'E=z(1+§lz)(1+§z)

o= S E0-EX-8)
Py =(l“¢lz)(l_§:1)

Py U= 201+ 8)

From eqs.(4.2.5), (4.2.6) and (4.2.7), integration within each element I, in eq.(4.2.3) are

rewritten as follows:

J. @[-@g’;] T, =30 jj'co,,rm.e:z)[@%-@j G,&) dEde,  (428)

NP (2] o) 6.6 0E.E) dades (429

where |G((&,, &))| is a Jacobian due to transformation of the coordinate system from the global

coordinate system (x, y, z) to the local coordinate system (&, &) within each element as shown in

Table 4-1.



Substituting eqs.(4.2.8) and (4.2.9) into eq.(4.2.3), and rearranging the number of nodal points
j from 1 to &, that is the total number of nodal points on the whole boundary I', we replace
eq.(4.2.3) by the following algebraic equation:
b
ZH @ = ZGU[ J (4.2.10)
= j
where @/ and (8 ®/9n) denote the boundary potential value and its normal derivative value at

nodal point j, respectively. The coefficients H, and G; are given in the following integral forms:

H, =C5,+[ 0,0 8) [a‘b (5"52)]1 G, &) | dE L, (42.11)
and

Gy = [ 0,6, £)0°6,6)| G, &) 48 de, (42.12)

When potential value fl)j" is given as a known boundary value at nodal point j, the value of
(8 ®/dn); is unknown. Similarly, when (8 ®/dn); is known, ® is unknown. Since the number
of unknown values included in eq.(4.2.10) is &, that ig equal to the number of known values, N
simultaneous equations are required to solve all unknown boundary values. Therefore, by setting
the source point /i to every nodal point j (1<j<N), the following simultaneous equations are
obtained.

non n o b

Z! 1H ;JZ_."G"( ) (4.2.13)
The calculation of Hy and G is carried out using the Gauss-Legendre integration formula[29]
except when the point / coincides with node j in each element. In that case, we employ a polar
coordinate integration scheme which was developed by Koizumi and Utamura[30] to improve

numerical accuracy for improper integration by modifying the Gauss-Legendre integration

formula. Thus, the values of all the unknown boundary values of (Df' or (a®/ an)f' are obtained
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by solving eq.(4.2.13). From egs.(4.2.3) and (4.2.10), unknown potential values ¢, inside the
space surrounded by four electrodes (in the volume A) are finally calculated using all known
boundary values @, and (9 ®/dn); as follows;

N
=

8p) X ,
$,=2.0)\ 5| ~2H,®]. (4.2.14)

|

The input parameters to initiate the calculation are the potential and normal derivatives which
are known by the boundary conditions. Instead of the input of practical potential values on
electrodes like U-FpcosQ), unit values of +1 are given to eq.(4.2.13) as known boundary

values. This means that we put +@, =1 in eq.(3.2.1) and Fig.3-2 in Subsection 3.2,1. Then all

unknown potential values in the space surrounded by four electrodes (in the volume A) are
solved in fractions ¢<1 of the unit values. Once all unknown boundary values are solved, the
electric potential ©(x,,z;/) at any time and position in the volume A is obtained by multiplying
the fractions by the practical potential values, namely

O(x,y,z;1) = Dy - = (U — Vi cosQ)- 9, (4.2.15)
From this potential, the electric field can be derived as follows:

E . z_a(D(x:y'.f) :_“Q"

{8,(U =V cosr) ! wexory), (4.2.16)
v Ou ou - " .

The use of the unit values mentioned above is very advantageous to shorten the time for ion
trajectory calculations, because the calculation of the electric field is finished just once for a

given electrode configuration.
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Fig.4-3 Division of the space for calculations for RF-QMF.

In order to save computer memory and computing time further, PISA-QMS is able to divide
the space for calculations into several subspaces. In the case of RF-QMTF, for example, the space
for calculations can be divided into the entrance, the middle and the exit parts as depicted in
Fig.4-3. The fields in the entrance and exit parts are calculated using the three-dimensional
method, and ion trajectories are obtained from calculations of ion motions in those fields. Hence,
the effect of the fringing field at the entrance and the exit of the four rod electrodes is only
included. The field in the middle part is calculated with the two-dimensional method. This
reduction of the number of dimensions shortens computing time and uses a rather small area of
memory as compared to the case where three-dimensional calculations are performed over the
whole space of the mass spectrometer. No problem takes place in the connection of ion
trajectories computed for each part separately. Fig.4-4 shows ion trajectories obtained in this

way.

Entrance part Middle part - Exit part

e TR

Rod electredes

Fig.4-4 Total trajectories of the 85u ions obtained by linking the trajectories calculated in each part, The values of a
and q were taken to be 0.2363 and 0.706. The focal position was assumed fo be just at the edge of the rod electrodes,
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4.2.2 Multipole expansion method

Calculation of the electric field in ITMS does not require as high an accuracy as numerical
calculations in RF-QMF, since a small distortion of the field is no longer the principal factor
which deteriorates the performances, The deviation of the electrode shape from the ideal one or
misalignment of the ring electrode relativg to the end-cap electrodes in their mechanical
construction, however, brings about multipole fields other than the quadrupole field. The ideal
quadrupole field increases linearly with the ion position as shown in eqs.(3.3.9) and (3.3.10). On
the other hand, multipole fields other than the quadrupole one are called nonlinear multipole
fields because such fields no longer have a linear relationship with the ion position. Nonlinear
multipole fields have been regarded as having a bad effect on ITMS performance. It was reported
that influence of nonlinear multipole fields was such as to deteriorate ion storage and to cause
undesirable ion losses{31,32]. More recently, however, the beneficial influence of weak
nonlinear multipoles on mass resolution and ion motion stability has become more widely
known[33]. Therefore, it is important to include the influence of the nonlinear multipole fields
when estimating actual performance.

The electric potential ® in ITMS can be divided into two components, the potential for ion
trapping ®,,, and the potential for ion resonating ®,,, as shown in Fig.4-1(6)[10,34]. The former
is produced by the trapping RF voltage applied on the ring electrode, whereas the latter is by the
auxiliary RF voltage application across two end-cap electrodes. The electric potential in ITMS is
expressed in the form of a multipole expansion given by eq.(3.3.2), Here we write it in a slightly
modified form by normalizing the radial coordinate 7, by 7, which is the inner radius of the ring

electrode, The explicit form is

n=0

@(p’g):@OZ}i:’%— n(cosg):mﬂzc_"d)” (4217)
n=0 0
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where

C,=— and @, = p"P (cosh).

Here the symbol @, indicates VprcosQ) in the case of &=, or ¥, cos@,! in the case of
®=0,,. Thus, the electric potential ® can be expanded in 2n-pole multipole terms from #=0 to

n=o0, In practice, expansion of the electric potential @ is taken up to the multipole term of a

finite order of N. Therefore, eq.(4.2.17) is rewritten as

N n N
O(p,6) = Doy = 0, 4! £ P (cos) = 0,3 C, @, (4.2.18)
n=0 rg‘ n=0
where
N
¢0 = chq)n
n=0

Here the symbol ¢, denotes the fractional potential when ®(p, 6 is normalized to unity. The
calculation of coefficients C, for multipole order of 2z can be performed for B0, 1rap OF Po. rec
separately so as to obtain C,,,, 0 C, . In the same manner as for RF-QMF, the electric potential
®,,, is solved in fractions ¢ .., by the BEM by giving unit values of +1 to the ring electrode.
The potentials of the end-cap electrodes are put to null as shown in Fig. 4-5(a). Once the
fractions ., are obtained, the potential at any position and time is given by multiplying the

actual voltage @, ., as follows:
N
q)lmp(p7 91 !) = d)o,fmp?f’o,:mp - (VRF COSQI)Z Cn.rrapq)n . (42 19)
n=0

The electric potential ®@,, is solved in fractions g, ., by giving unit values of %1 to the end-cap
electrodes as shown in Fig. 4-5(b). The potential of the ring electrode is put to null. Thus the

potential @, at any position and time is given by

89



End-cap

Fig.4-5(a) The method to give unit boundary
values to solve the electric potential for ion
trapping @, . Unit value +1 is given to the
ring electrode, while the twe end-cap
electrodes are earthed.

Fig4-5(b) The method to give unit boundary
values to solve the electric potential for ion
resonance @ . Unit values +1 and -1 are given
to the two end-cap electrodes, respectively,
while the ring electrode is earthed.

N
(Dms (p> 9) t) = (po,res ¢O.r=s = (Vm COSL’DmI)Z Cn.re:q)n .

n=0

(4.2.20)

The electric fields are easily derived from the above potentials, It is more convenient to write
the electric fields in terms of the fractional potentials obtained for unit potentials. The z-

component is for instance given by

Ooirap _ & oo, ¥
cvay =B = 9 C (=) = D (B, 4221
5.,£mp oz ; n..rrap( Y ) é f p( ). ( )
and
a¢0 N 6(1) N
£, == = C ——) = C res(Err)z . (4222)
sJes az ; n.res( az ) ; "
The electric field for calculations of ion trajectories can simply be written as
Eopop T Eores = Eurap Ve COSQU+ 6,V OSOLL (4.2.23)

In this way, the calculation of the electric field is finished just once for a given electrode
configuration in the case of ITMS also. Both electric fields of E. ., and E, , at any ion position

can be obtained by just multiplying the applied voltages every time step A/ The time needed for
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the calculation of ion trajectories is greatly reduced by using the unit boundary values of

potentials.

4.2.3 Accuracy of numerical calculations

The accuracy of calculations of electric fields by means of PISA-QMS was tested in the

electrode configuration shown in Fig.4-5(a). The volume A was defined by two coaxially-placed

tube electrodes and two planes perpendicular to the tube axis. The boundary of the volume A was

subdivided into A, B, C and D surfaces as indicated in Fig.4-5.

The electric field in A was calculated for the following three cases, in each of which the

interpolation functions, shown in Table 4-1, were employed differently.

Surface A :
B=1

Surface C : i 3 y—
(a®/an),=0 =

| Pmm

Surface D :
(8 @/ 8 n),=0

Fig.4-6(a) The boundary of the volume A and the
boundary conditions used for the test caleulation, The
boundary conditions were as follows: surface A,
Dirichlet condition (®,=1); surface B, Dirichlet
condition (®,=0); surfaces C and D, Neumann
condition ((a ®/an=0),).
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Fig.4-6(b) The electric potential distribulion obtained
by calculation. The equipotential lines are denoted by
dotted lines. At the inper point P the electric fields
obtained by calculation and by the strict solution are
compared.



Case 1. A linear function was adopted to interpolate potential distributions on all the surface
elements.

Case 2. The linear function in case 1 was replaced by a quadratic function.

Case 3. The quadratic function was applied to the elements on the surfaces C and D, while the
linear function was used for the elements on the surfaces A and B.

As the boundary values, the electric potentials ®,=1 and O were given to the elements on

surfaces A and B, while the normal derivative (3®/3n), =0 was given to the elements on

surfaces C and D, The boundary condition in which ®, was given as the boundary value is called

the Dirichlet condition, while the boundary condition, in which the boundary value (8 @/ 9 n), =0

was given, is called the Neumann condition. The Neumann condition { 8 ®/9dn), =0 means that

distribution of the electric potential is symmetrical with respect to the plane of the surface, Fig.4-

5(b) shows the electric potential distribution in volume A between the two coaxially-placed tube

electrodes as shown in Fig.4-5(a). The electric potential seems to be distributed uniformly even

for the space close to surfaces C and D which employ the Neumann condition. Therefore, the

electric field obtained by our modified BEM can be compared with the strict solutions.

The strict electric field in the volume A between the two tube electrodes, the radii of which

are r, and r, (r, <r,), is given by

n(ryin) r

{4.2.24)
where ¥, and V, are electric potentials on the inner and outer tube electrodes, respectively. In
general, numerical errors become bigger as the inner source point / inside A comes close to the
boundary. However, ions usually transmit or oscillate in the middle of the volume A. The middle

point P of the volume A was chosen to test the numerical accuracy of the electric field. At the

point (x, 3 z)=(1.5mm, 0, 0) marked P in Fig.4-6(b) the errors of the calculated electric field
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relative to the exact field is compared in Fig.4-7 for the above three cases. The errors of the
calculation in case 3 are almost equal to those in case 2, but much smaller than those in case 1,
The relative errors in case 3 become less than 0.01 %, if we divide the surfaces into 500
elements. The relative errors become bigger as the inner point P comes close to the boundary.
This accuracy of the calculation is fully adequate for evaluating the deterioration of performance
caused by 2-3um positioning errors of the four rod electrodes in QMF.

Fig.4-8 indicates the memory size needed for calculations of the above three cases. The size in
case 3 is about 60 25 of that in case 2. The time necessary for the calculation in case 3 is about
80 % of that in case 2. Since this calculation volume A is very simple, the actual calculation
times were 1 to 4 minutes using the supercomputer HITAC $-820. As the electrodes
configuration becomes more complex, such reduction of calculation time becomes more
important. It is evident that the modified BEM employed in PISA-QMS is very advantageous to

achieve high accuracy of calculations with a smaller memory size and shorter computing time.

10? 102 . -
X 10 %" :
5 g2 |
o
g 10 |- : . E\
4 . i [ H " : H :
10 160 500 1060 10 100 500 1000

Number of the divided elements Number of the divided elements

Fig.4-7 Comparison of relative error versus number
of divided elements for three cases, The interpolative
function of potential was selected as follows: case 1,
linear; case 2, quadratic; case 3, linear or quadratic.

Fig.4-8 Comparison of memory size needed for the
test caloulation versus number of divided elements

for three cases.
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4.3 Calculation of ion motions

4.3.1 The Shanks method

Ton trajectories are calculated by integrating the equation of ion motion given by eq.(4.1.1).
There are several numerical integration methods for ordinary differential equations. In any
method the electric field must be evaluated at every ion position and time step, since ions are
moving in space with time, Most of the computing time is spent for calculation of the electric
field. A small number of times to make the electric field calculation is, therefore, desirable for
rapid computations.

In our program PISA-QMS, we adopted the Shanks method for the integration of eq.(4.1.1) to
obtain ion trajectories[35]. This methed is an 8th-order Runge-Kutta method, and it is often used
for calculation of artificial satellite orbits, This choice of integration method was based on
preliminary calculations of ion trajectories in RF-QMF with an ideal quadrupole field using

Newmark's B-parameter method[36] and the 4th-order Runge-Kutta method[37] as well as the

Shanks method, Newmark's f-parameter method is usually employed for vibration problems,
The 4th-order Runge-Kutta method is useful for problems in a wide variety of research fields.
The calculated ion trajectories in the x-z plane using the theoretical electric field expressed in
eq.(3.2.3a) when a, and g, values were 0.234 and 0.7044 are displayed in Fig.4-9. The condition
was set that the number of times to make the electric field calculation was 1000. The trajectory
displayed in (d) in Fig.4-9 is obtained from direct calculation of the stable solution of the
Mathieu equation from eqs.(3.2.10) and (3.2.11), We call this the "exact" trajectory. It is obvious
from Fig.4-9 that Shanks method provides the closest ion trajectory to the exact one. Table 4-2
summarizes the minimum number cﬁ‘ calculations of the electric field. The criterion for the

evaluation of these minimum numbers was that the accuracy of the trajectory is better than a few

64



am for typical 20cm long, four rod electrodes in RF-QMF. The Shanks method gives the highest
numerical accuracy in spite of having the least number of calculations. The calculation speed
using the Shanks method is about 11 times faster than that using the 4th-order Runge-Kutta

method, assuming that the computing time is almost proportional to the number of calculations

of the electric field.

SAVAVAYAYAYaVAY

(a) Trajectory calculated with Newmark's f~parameter method

(b) Trajectory calculated with the d4th-order Runge-Kutta method

SAAVAYAYAVAVAVAYS

(c) Trajectory calculated with Shanks method

(d) Exact trajectory in ideal field obtained by eqs.(3.2,10) and (3.2.11)

Fig.4-9 Comparison between exact and calculated trajectories obtained by three methods.
For each case, the number of times the electric field calculation was made was set to be 1000.

Table 4-2

Minimum number of times for to make the electric field calculation
with 10 zm numerical accuracy after a 20 cm flight for three cases.

Minimum number of

Case Integration method electric field calculations
(a) Newmark's f -parameter 6000
(D) dth-order Runge-Kutta 8000
(c) Shanks 700
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4.3.2 Interaction ofions with buffering gas atoms

In ITMS a neutral gas like helium is usually introduced into spectrometers to buffer ions or to
assist in dissociation of ions into fragments. In order to approximate the microscopic interaction
between ions and buffering neutrai gas atoms, we employed a viscous model. This choice was
based on the assumption that ions interact with buffering gas atoms through elastic collisions in
their thermal equilibrium[38]. The microscopic interaction between ions and neutral gas atoms
with the viscous model is explained in the following,

When the velocities of an ion and a neutral gas atom are ¥ and v, respectively, the relative
velocity is #=v —V, the direction of which is assumed to be (8 @) with respect to V. After these
particles collide at the point P which is in the direction (®, @) from the V- u plane, the relative
velocity becomes #’ which has the same magnitude as u. The pelar coordinate system which is

fixed to the plane ¥ - u is shown in Fig.4-10. The impulsive force acting on the ion is given by

Fig4-10 The polar coordinate system which is fixed to the shaded plane V- 4, where Vis
velocity of an fon and  is relative velocity between the ion and a neutrai gas atom before
they collide with each other, With respect to V, # is in the direction (8, #). Alter they
collide at the point P which is in the direction (®, @) from the ¥ - u plane, the relative
velocity becomes #” which has the same magnitude as #.
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df, = —2m_ucos®©cosa = —2m,u cos®(cos & cos® + sin A sin O cos D) 4.3.1)

where m, is effective mass and a is the angle between OP and V. Since the effective mass m, is

expressed by

.= xm,, (4.3.2)

e(.(4.3.1) can be approximated as follows:
S, = =2myu cos®(cosfcos @ +sin Isin @cosP). (4.3.3)

The neutral gas atoms are assumed to be moving in accordance with a Maxwellian velocity
distribution. The number of neutral gas atoms per unit volume dn, which have a velocity

between u and u+du within the solid angle (&, @) is given by

312
dn, = n(z’;;:T] exp{—?mﬁﬁ(u2 +V? — 2chos.9)}u2a'u sin 876 p (4.3.4)

where » is the neutral gas density, T is its temperature and & is Boltzmann's constant. The volume
in which the collision point P is within the solid angle sin®@d®d® per unit time is expressed in
the following form:

dV = (R+a)* sin OdOJD - ucos O (4.3.5)
where R and a are radii of the fon and the neutral gas atom.. Therefore, a damping force acting on
ions can be obtained by integrating the multiplication of eqs.(4.3.3), (4.3.4) and (4.3.5) as

follows:

F, = [[ f.an,av

3/2
m, 2™ 4 " . m, 4 2
=-2 R+a du-l 2msin &8 expd — —=—(u* +V* -2uVcosd
mbn(Q;dcT] ( ) L 1u'du L xp{ ZkT( )}

X J.:fzcosz ®sin Od© 'I:K“'(D{cos &cos© + sin §sin © cos D)
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=_2”2(R+a)‘.‘n[_m—}J i (kT)E

2k my-
nu mV m, (n-V)? mV Vy?
LBl S () of 2
(4.3.6)

Eq.(4.3.6) can be rewritten as follows:

1 | 2 = 2
F = -nkTn(R +a)’ -——;{——L (X + %) (¢ +x,° =1/ 2™ de
x> (V7 i

+72_;j:° (x - xy) 2 (3 ~ x5 + 1/ 20 dx} | (4.3.8)
where
x=(uFV)m, (2kT)
and x, =Vm, l2kT) . (4.3.9)

Using the following formulas of the integrals of error funtions[39]:

P(x,) = _z_r° e drx,

J;o

 dr=1F O(x,)

2 L]
7—;]!,5

"'Gl

2 " 1
xetde=—se™ ,

iz z

2 K xd
— ) x"eF dr=
N E‘* N o
and irﬂx:’ e dy =

we can rewrite eq.(4.3.8) as

F = —pit(R+a)2{3;; (x+2x,7) + (20, +2 = 2: 2)-;L"(x,))} (4.3.10)
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where p is the neutral gas pressure (p=nkT). Assuming that the gas atom’s thermal velocity is

much higher than the ion velocity ¥ ( x;<<1 in eq.(4.3.9) ), we can expand @(x,) as follows:

_ 2 _:x:c,J ;:c(,5
CD(xo)——J?(xo "'i'!"é"'}‘-"z-!g--... . (4311)

Therefore, from eqs.(4.3.9), (4.3.10) and (4.3.11) the damping force acting on ions can be

approximated as follows:

16 [ m 1 m,V?
F =—paR+a)? — | —V[1+——2—1..
= pER+a) 3\/2;:1:?( 5 T ]
16 {7
R e R-'- 2......._. ------bV, 4.3.12
PR +a) 31/2” ( )

Thus, a macroscopic coefficient of viscosity is obtained from the calculation of the average

probability of collisions of ions with buffering gas atoms which are moving in accordance with
the Maxwellian velocity distribution. Since the velocity of ions is not so high, the viscosity is
equivalent to a damping force acting on ions in proportion to their velocity.

To examine the effect of the interaction meﬁtioned above, mass spectra were calculated for a
ITMS using PISA-QMS. The trajectories of 1620 ions having different initial conditions in
ITMS were calculated for operation in the mass-selective instability scan mode with resonance
ejection as indicated in Fig.3-11. The parameters used in this simulation are listed in Table 4-3.
Mass spectra were obtained from the calculation of ion trajectories in the mass range from 100u
to 500u under various pressures of helium gas. Typical results for the mass 300u are shown in
Fig.4-11. The shape of the simulated mass spectra fit Gaussian curves to a good approximation.
The peak position seems to shift towards the lower mass side as the helium gas pressure goes

down.
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Table 4-3 1.2
ITMS parameters used to simulate mass specira. 21t
g Pu02x107

RF Drive voltage (applied to the ring electrode} g08r

RF frequency (Q) 909kHz E 06 Py, =0.1x10?

RY amplitude scan (Fyp) T26-4123 Y s ' P, =006x10"
Mass range 100-300 u 2 04
Resonance AC vollage 02 | Pe=0.02¢10"

(applied in dipolar fashion across the end-cap electrodes) )

Resonance AC frequeney (@,,,) 360kHz 0

Resonance AC amplitude (¥,,) 2.0-53V (0-p) 2080 2980 3000 3010 3020
Resonance ejection condition 9,.~0.859 ( f=0.792) Mass [u]
Radius of the ring electrode (r,} 1em _Fig.4-11 Simulated mass spectra of 300 u jons for

different He gas pressures, P, [Torr].

Fig.4-12 indicates this mass shift more clearly. As the helium gas pressure increases, the peak
position of the mass spectra shifts toward the higher mass side. The mass resolution was
evaluated by defining Am by FWHI\/I of the peak of a mass spectrum, As plotted in Fig. 4-13, Am
decreases rapidly up to a helium gas pressure of 2.0x10* Torr (2.67x10° Pa), and then
continues in a gradual decrease at higher pressures. In this dissertation, we use “Torr” as a
pressure unit, that is conventionally used in most research papers on ITMS. The present
simulation predicts that the maximum permissible value of +0.5 for the mass shift & and Am
<0.5 for the mass resolution are attained if we operate ITMS with helium gas pressure in the
range from 1.0x10" to 4.0x10* Torr. This range of helium gas is in good agreement with
pressures commonly accepted as optimum operational conditions in experiments{40,41]. Louris
et al.[40] reported that experiments with ITMS which were performed while maintaining the
helium pressure gas at 2.7x 10* Torr inside ITMS. Reiser ef al.[41] employed helium gas of

1.0% 10 Torr as a standard pressure for their experiments,
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Fig.4-12 The influence of He gas pressure on Fig.4-13 The influence of He gas pressure on the
the degree of mass shift. value of FWHM,

4.3.3 Ion - space charge interaction

Since all ions are trapped once in the center region of ITMS, it is necessary to take into
account the interaction of ions with the space charge. As a space charge model, we assumed a
uniformly charged sphere at the center of ITMS. The Coulomb field due to this charge
distribution is well known in classical electrodymamics, Denoting the radius and the charge

density of the space charge by R, and p,, respectively, the electric force is written as

R> 1 r 3
Fo=q——— (P‘>R,) and Fsqu—‘-r (r<Rs) (4.3.2)

g, ¥ or 3g,

where ¢ and r are the charge and the radial coordinate of ions.

The effect of the space charge was investigated by calculations with PISA-QMS. The mass
spectra of 100-500u ions were simulated for various ion densities which are the space charge
density themselves. In this simulation, the helium gas pressure was fixed to 1.0x 10* Torr. The

other parameters were the same as those listed in Table 4-3.
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Fig.4-14 Simulated mass spectra of 300 « ions

. Fig.4-15 i i ;
for different ion densities, p[/em . ig4-13 The influence of ion density on the

degree of mass shift,

Typical mass spectra for 300u ions are shown in Fig.4-14. Basically the ion density in this
region does not deteriorate the mass resolution significantly. However, Fig.4-15 indicates how
the mass shift & depends on the ion density. For all simulated ion masses the mass shift
increases linearly with increased icn density. To make |&#| lower than the maximum permissible
value of 0.5, the ion density in ITMS should be maintained in the range from ~3.0x10° to
1.0x 10" [ions/em’].

The ion density confinable in ITMS had been estimated theoretically. Schwebel ef al.[42]
proposed a theoretical model in which the boundary of the stability region (in Fig.3-8(c)) is
shifted due to the potential induced by the space charge. The relationship between the magnitude

of the shift Aa, or Aa, and the maximum ion density g,,, was reported as follows:

-32erm -8er
=0, and Aa = P
H 3mQQ_ pma.t r 3mQ2 p

The model of Schwebel ef al. was confirmed experimentally by Todd ef al.[43]. According to the
above relation and the observed magnitude of the shift Aa, or Aa, Fulford el al[44]

experimentally obtained the maximum ion density of 6.4x 10° [ions/cm®}, that is within the
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optimal range in Fig.4-15. Therefore, our results obtained from numerical simulations strongly

support such theoretical and experimental results.
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