Chapter 3

Theory of quadrupole mass spectrometers

In this chapter, the theory of ion motions in a time-varying electric-quadrupole field is
developed. The motions of ions in RF-QMF and ITMS is described with the solutions of
Mathieu equation which was originally developed by Mathieu[23] in his investigation of the
motions of a vibrating elliptical membrane. Later on, McLachlan examined in detail[24].

First, we summarize the Mathieu equation and its solutions. Then the application to the
description of ion motions in RF-QMF is presented. The motions of ions in a three dimensional

quadrupole fields are given in the last part of this chapter.

3.1 Mathieu equation

The Mathieu equation[23, 24] is expressed as follows:

j—;%+ [a, -2, cos2(¢ - &)]ul£) =0 (3.1.1)

where a, and ¢, are real constants. In the application of this equation to RF-QMF or ITMS, the
function #(£) is one of the coordinates of moving ions in the (x,3,z) cartesian coordinate system,
.while the variable & is related to the phase of the RF field.

A general solution can be written by a linear combination of two independent solutions of

,(&) and (&) in such a way that

u(E)=Tu (&) +T'u, (£) . (3.1.2)



The coefficients I' and I” in the solution depend upon the initial conditions of the ion position

u(0), the initial velocity (d/dr)., and the initial RF phase &. From Floquet's theorem[25], we

know there exists a solution in the fo.rm of

n(§)=e*w(&) . (3.1.3)
In this solution, 4 is a constant and y(&) has a period of n. The functions #,(&) and u,(&) are in
general either even or odd functions. We put them as follows:
(&) =u (=) and u, (&) =-u,(-£) . (3.1.4)
Thus the solution can be written in the following form:
w()=Te (&) +T'e *y(=§) . (3.1.5)
According to Fourier's theorem, a periodic function may be expressed as an infinite sum of

exponential terms, namely

V(&) = 3 Cpexp@nif)  and  p(=£)= 3 C,, exp(-2nif). (3.1.6)

The coefficients C., in the above functions describe the amplitudes of ion motion, and depend
only on the parameters a, and ¢,. Substituting eq.(3.1.6) into eq.(3.1.5), we obtain the following

expression;

(&) =Te* iCZ" exp(2ni&)+T'e™ iCln exp(—2ni&). (3.1.7)

The constant x1is a complex number defined by
H=a+iff, (3.1.8)
and it is related to the parameters a, and g, as given below[22,24];

A l 2 (Sfuz+7) 4
a,=p +———q, + 3 9.
B TR - (- 4)




(Opu* +58u° +29) 7.5
64(u® ~1)° (u* - d)(u* -9) "

(3.1.9)

The constant y is referred to as the characteristic exponent because it determines the type of
solution of the Mathieu equation. There exist two types of solution. The first type is a stable
solution which remains finite as & increases. The other type is unstable and increases without
limit with the increase of £ The solution given by eq.(3.1.7) becomes unstable when a# 0, since
one of the terms of exp(1&) or exp(-x&) increases to infinity. Therefore, only the solution with «

=( is stable, Then, if we substitute 4=if into eq.(3,1,7}, it reduces to

u(&) =T ic,,, exp[(2n+ B)i&]+ T i C,, exp[~(2n + P&}, (3.1.10)

n=—w n=~w

With the identity of exp(f @)=cosG+ising, the above stable solution can be modified into

u(E)=A icz,, cos(2n+ FYE+B icz,, sin(2n + )& (3.1.11)

with the definitions for coefficients Aand B as
A=(C+T" and B=iI"-T7"). (3.1.12)

Therefore, Eq.(3-1-11) becomes a real stable solution only in the following case:

I“=—;-(A--iB) and I":—I?:-(AHB). (3.1.13)

From the relationship of a, and g, with the constant 4 given by eq.(3.1.9), any sets of a, and g,
which yields z in a pure imaginary form of u =if are allowable for stable solutions. Such
allowable sets of a, and g, for stable solutions are given by points («,, ¢,} in the shaded areas in
Fig.3-1. It should be noted that the stability region is symmetric with respect to ¢, =0, since the
parameter , is expanded with even powers of g, in eq.(3.1.9). Therefore, the parameter g, can be

regarded as a positive value (g, > 0) for convenience.
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unstable
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Fig.3-1 Mathieu stability diagram in one dimension, The suffix u can be read
x or y. The shaded regions give the values of a, and g, for stable solutions.

3.2 Quadrupole mass filter

3.2.1 The equation of ion motion and its solution

The ideal field required for RF-QMF is a two-dimensional electric quadrupole field as shown
in Fig.3-2. This field can be generated in the space surrounded by four electrodeé with the cross
sections of hyperbolic boundaries. Because of the difficulty in the machining of the electrodes,
the hyperbolic boundaries are usually approximated with circular ones. A schematic arrangement
of RF-QMTF consisting of four rod electrodes was already shown in Fig.2-5(a).

A voltage of &, is applied to a pair of electrodes placed on the x-axis, face-to-face with each

other. Another voltage of opposite polarity -, is applied to another pair of electrodes on the y-
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axis as shown in Fig.3-2. Each voltage of * @, is a superposition of a DC voltage of U/ and an

RF voltage of V,rcosfdt as follows:

D, = U —Vppcosdt and ~ @y = ~(U ~VypcosQt) .

Fig.3-2 Hyperbolic electrodes with equipotential contours in an
ideal QMF.

The electric potential & for the electrode configuration in Fig.3-2 1s given by

U ~Vyecoslt
2

O(x,y) = 22 (x? - y*) = (x*-y%) .

e Y

Then the electric fields are derived as

E =- o0(x,y) _ 9 U- VRcmoth .
cx 7,

and

E, =- o0, y) _ + U- VRFICOSQI y
oy %
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We can immediately write equations of the ion motions in this field for an ion with mass » and

charge q. The explicit forms are

2 _ .
md xz(t) - _qu VRFqcoth N (3.2.42)
dt ¥y
2 —
md yz(t) _ +2qU VszcosQf y (3.2.4b)
[ ro
A O | (3.2.40)
o8 . 2.
Here, we introduce the following change of the variable:
Qi =2 (3.2.5)
Equations (3.2.4a), (3.2.4b) and (3.2.4¢) now can be written as
d’x(¢)  _ 8q
+ U—-V,:cos2 =0 3.2.6a
pr R [U - Var cos26T(2) (3.2.62)
d’yé) 3
- U~V cos2 =0 3.2.6b
der ez U Ve 00826 (3.2.6b)
2
d z(f) -0 . (3.2.6¢)
dg
Thus, if we define the parameters confaining U and Vyein such a way that
Bql/
= =—a 3.2.7
Q) d ( )
and
AV es
= e = g 3.2.8
x szro_ Q_y ( )

the motions of the ions in x- and y-directions are both described by the following Mathieu

equation:
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j.fh +la, ~24, cos2(&—£,) k(€)= 0 (with w=x, or y) . (3.2.9)

It is obvious that the subtraction of the initial phase constant & from the variable & does not
disturb any derivation of the above equation. This Mathieu equation can be solved exactly as
mentioned in Section 3.1, and stable ion trajectories in RF-QMF are strictly obtained. In this case
Mathieu stability regions in x- and y-directions are displayed in Figs.3-3(a) and (b), respectively.
The stability region in the x-direction is identical with those in Fig.3-1 according to the definition
of the parameter a, in eq.(3.2.7). The parameter g, has a positive sign from eq.(3.2.8). On the
other hand, the signs of parameters in the y-direction are ,<0 and ¢,<0 from the definitions by
eqs.(3.2.7) and (3.2.8). The stability region in the y-direction consists of the areas enclosed by
the dotted lines as shown in Fig.3-3(b). As mentioned in Section 3.1, the stability region is
symmetric about the g, axis. The stability region in y-direction, therefore, is obtained in a, -
¢.(>0) coordinate system by inverting the areas enclosed by the dotted lines of Fig.3-3(b) with
respect to the g, axis.

In order that ions injected into the two-dimensional quadrupole field survive until they reach
the ion detector, ion trajectories must be stable in both x- and y-directions. Therefore, the
stability diagram of RF-QMF is obtainable by overlapping Fig.3-3(b) onto Fig.3-3(a) as done in
Fig.3-4. The overlapping region for stability is symmetric with respect to the g, axis (see the
inset of Fig.3-4). For an ion with positive charge g and mass m, the adjustment of V. determines

g. so as to take a value on the ¢, axis in the stability region (see ¢, in the inset). The point

marked by an open circle in the inset of Fig.3-4 is assumed to have coordinates (a,, §.)in the

a.q. plane. The value of 4, in the stability region can be obtained by adjusting U in positive

DC voltages (see eq.(3.2.7)). The motion of the ion of which mass m corresponds to the above

A

&, and ¢, values is then stable in the x-direction.

x
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Fig.3-3(a) Mathieu stability diagram for the
ion trajectory in x-direction.

Fig.3-3(b) Mathieu stability diagram for the ion
trajectory in p-direction in 4,-¢, coordinate system.

N XY
wunstable -
x stable K o
y unstahle N
“ " xunstable
y stable

&/ xstable
AN unstable
X unstable N
03 F ¥ stable s .

Sxy
/ unstable ™

L 1 LI | 1 L

0 0.2 G4 0.6 0.8 L0

N

™

NS QQ\{\{\“&\\\\\\\“

Fig.3-4 Mathieu stability disgram in two dimensions (x and ).
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Similarly, the point marked by an X in the inset of Fig.3-4 is assumed to have coordinates (4,

4.} in a.-q, plane. The value of g, gives g, from the relation of ¢, = - g, in €q.(3.2.8). The
parameter &, lies at the symmetric position with &, since it is negative but the absolute value

remains unchanged from eq.(3.2.7). The motion of the ion which is stable in x-direction is thus
stable in y-direction also.
The stable ion trajectory is obtained from eq.(3.1.11) with the replacement of £and £ by Qt/2

and £,. It is expressed in the following form:

u(@y=AY.C,, cosw, t+B > C,, sina, ! (u(d=x(0), 1)), (3.2.10)

where w,, is defined by
Q
w,, = ?(211 + ﬂu) (u=x, y). (3.2.11}

The walue of £, can be obtained from eq.(3.1.9) by putting x4 equal to /5. The approximate

solution of this algebraic equation is derived by Caricco[26] as follows:

B = {a (a, —q,’ (54, +7)q,” _ (9a,’ +58a, +29)q,°

V2
- 2 2 3 s :| . (3.2.12)
2a, -1 —q,° 32a,-1)y(a, -4) 64(a, ~1)(a, -4)a, -9)

This formula and eq.(3.2.11) imply that ions travelling through RF-QMTF oscillate with angular

frequencies depending on their mass according to the values of g, and g, in the stable region.

3.2.2 Operation and mass separation in RF-QMF

The mass of ions which pass through RF-QMF all the way along four rod electrode is
determined by setting the voltages U and Vg in such a way that the parameters @, and ¢,

corresponding to these voltages remain in the stability region. Although the parameters a, and ¢,



are not fully independent, they satisfy a linear relationship. From eqs.(3.2.7) and (3.2.8), this

relationship is written as

= (3.2.13)
q: _qy VRF

Equation (3.2.13) is graphically expressed by a straight line on the a, and ¢, plane. If this line
crosses the stability region, the points of (a,, g,) on the partial segment of the line cut off by the
stability region provide @, and ¢, for stable ion motions. In x-direction, the partial segment of the
line lies in the upper half of the stability region divided by ¢, axis in the inset of Fig.3-4. The
segment for y-direction lies in the lower half of the stability region in the same inset. However,
we may discuss mass separation in RE-QMF using only the upper half of the stability diagram as
shown in Fig.3-5, This is based on the fact that the absolute values of a, and ¢, are identical in
both x- and y-directions and the stability regions for x- and y-directions are symmetric with

respect to the ¢, axis. The straight line derived from eq.(3.2.13) is named the operation line,

Fig.3-5 The operation ling of RF-QMF.

As shown in Fig.3-5, if we tentatively assume the points of intersection on the operation line

at the boundary of the stability region to be ¢, and g,,, the ions with m/q in the range of

4V m, .m _m 4V,
( i r;r J; 2 ¢ g_lz(z—*‘;ﬂ—-} (3.2.14)
_ q Q Fo qxl



are successfully transmitted through RF-QMEF to the detector. The slope of the operation line is
determined in accordance with the ratio of U/Vy, To obtain higher mass resolutions, therefore,
the ratio of U/V;, must be adjusted in such a manner that the operation line crosses the stability
region near its tip. Writing this ratio as (U/¥,z);,, we can observe a mass spectrum for a certain
range of mass numbers by scanning the voltages U and V- under the condition of the constant

ratio of (U/Vps),, as shown in Fig. 3-6.

Mass scan
_— / -
VRF TJ’CGM t

Fig.3-6 Typical operation sequence of RF-QMF, The
mass-to-charge ratio of ions which transmii the RF-
QMF can be changed by scanning the values of [/ and
Vg with maintaining a constant ratio UfV,,.

3.2.3 Practical limits of the mathematical method

The mass separation described in the proceeding subsection is valid for an ideal quadrupole
field over the whole range of four rods along the z-axis. The voltages of I/ and V. and angular
frequency € are also assumed to be ideal in their absolute values and stability. Furthermore, the
quadrupole field is assumed to have a sharp cut-off boundary in z-direction.

However, RF-QMF usually employs four rods with a circular cross section in actual
instruments because of the difficulty in machining hyperbolic electrodes. In addition to this

approximated shape of the electrodes, the quadrupole field is inevitably distorted by the error of



positioning of four rods in the mechanical construction. The sharp cut-off approximation must be
modified by introducing a fringing field. Consequently, the stability diagram of the practical RF-
QMF is no longer identical along z-direction, but has some diffusion near its edge. All of these
factors result in a practical limit of the mass resolution of RF-QMF.

It is very difficult to examine these complicated factors in terms of mathematical analyses,
Instead, a numerical simufation by means of a computer would be a powerful, or at least

complementary tootl for investigations of various characteristics of RF-QMF.

3.3 Ion trap mass spectrometer

Mass spectrometry with ITMS is usually performed in the following steps: (1) the ionization
of atoms or molecules; (2) the confinement of all ion species in a three-dimensional trapping
field; and (3) the extraction of a selected ion species by resonant forced oscillation, The most
attractive feature of [TMS is that the distance from the ion detector to the position where ions are
stored is much shorter than that of other types of mass spectrometers. Accordingly, ITMS is

expected to provide a compact, low cost and highly sensitive mass spectrometer.

3.3.1 Description of the three-dimensional quadrupole field

ITMS employs a three-dimensional electric quadrupole field. The three-dimensional electric
field is greatly simplified if we assume that it has axial symmetry around the z-axis and the
reflection symmetry with respect to the z =0 plane. The electric field in charge-free space is
derived from the potential ® which obeys the Laplace equation:

V=0 (3.3.1)

Since the potential & is assumed to be axially symmetric, the general solution is written as
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®(r,,0) =Y |4, +Byr, "] P(cos) (332)
=0

in spherical coordinates[27). The functions Pf{cosé) are Legendre polynomials. Since our
purpose is to find an ion trapping field in ITMS, we may assume that the above potential should
be regular at the origin »,=0. The coefficients B, in this case can be set to null for all values of /.
If we further confine ourselves for the above expansion to monopole, dipole and quadrupole

terms, the potential © reduces to

O(r,,0) = A, + 47, P, (cosB) + A,r,” P, (cosb)
= A4, + Ar,F (cosf) + %Azrpj (3cos’ @-1).

The dipole term may be dropped because of the assumed reflection symmetry. Thus, the potential

® can be expressed as
O, B)=A, + %Azrpz(S cos’ 8 -1). (3.3.3)

Here, we changed the coordinate system from spherical to cylindrical coordinate system, and
noted the relations of » ,cosé#=z and rpz:,z_,_zz_
The two coefficients 4, and A, are determined from boundary conditions. The curve of an

equipotential surface with a value of ® in the r-z plane is given by

: 1{.2+M]

Z =7
4,

5 (3.3.4)

from eq.(3.3.3). From the dimension analysis, the second term in the square brackets of

eq.(3.3.4) can be replaced by the square of a constant radial coordinate r; as follows:

2((D_A0).___i,.2 .

3.3.5
4 o (3.3.5)
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We take an equipotential surface with a value of ®=a, corresponding to -7, in the above
formula. Another equipotential surface with a value of ®=0 is taken for +r,>. Then, the
coefficients 4, and 4, are determined to be @/2 and -(&,/r.?), respectively. Thus, the potential

®(r,z) given by eq.(3.3.3) results in the following form:

¢(r‘,z)=%°-+5?°—2-(r? -2z%). (3.3.6)

o

The curve of the equipotential surface with a value of @, is given by

z=:t1‘—%(r2 -r,) (3.3.7)

in the r-z plane. Another curve of the equipotential surface with a value of ®=0 is determined by

z=i1/%(r2+r;) . (3.3.8)

The cross section of the axially symmetric equipotential surface at an arbitrary azimuthal angle is

drawn in Fig.3-7,

Fig.3-7 The cross section of the axially symmetric equipotential surface
between the end-cap and ring electrodes at an arbitrary azimuthal angle.

From these results, the configuration of electrodes to generate a three-dimensional quadrupole

field for ITMS is determined. As was shown in Fig. 2-5(b}, ITMS is comprised of one ring
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electrode and two end-cap electrodes. The cross section of these electrodes cut by a plane
including the z-axis should be shaped as shown in Fig,3-7. The inner surface of the ring electrode
should be machined according te eq.(3.3.7). Its inner radius is 7, The surfaces of the end-cap

electrodes should have the shape given by eq.(3.3.8). The separation between the two end-cap
electrodes is 7,/ /2.

The electric field components in ITMS are easily obtained from the potential given by

eq.(3.3.6). The explicit forms are

_00(r,z) @,

E = ' 3.3.9
" or vy ! 3:3:9)
and
E, = RaGL 29—‘,’-4? (3.3.10)
Oz ¥
3.3.2 Equations of ion motion
The equations of ion motion in the cylindrical coordinates (7, &, z) are as follows:
dr(@t)  [dpv)Y
m{ o —r[ . =gk | (3.3.11a)
drlydgty  dgm) _ 1d { ) d¢(r)}
2 +r =m——sr —=>r=qlk, =0, 3.3.11b
m{ a a | ar | Tra” Tar [T G.3.110)
and
mdzz{t) =gl (3.3.11¢})
a1 o

Since the electric field is axially symmetric around z axis, we put £,=0. From the second

equation, we obtain immediately r*{dgt)/ dt y=const, This is an expression of the conservation of
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angular momentum of ions. For ion motions in ITMS, we may assume this constant to be zero

for simplicity. In this case, the equations of the ion mation reduce to the following simple forms:

2
md r.St) =qF = —q-—g?-g-r, _ (3.3.12a)
at Iy
and
2
mZ 20 _ g —24% ;. (3.3.12b)
dt Yy

The electric potential @, can be taken, in general, to be a superposition of DC voltage of I/ and
RF voltage of V;cosQf in ITMS also. It is convenient to add U in deriving the Mathieu equation

for ion motions. With the transformation of Q/=2¢ defined by eq.(3.2.5), the above equations are

modified to

d’r(&) 4q N

pTE s N [U + Vs cos2(& = £,)) (&) = 0 (3.3.132)
and

s o U Vi cos26 - 6)hO =0, (33.130)

The ion motions in »- and z-directions, therefore, are described by the Mathieu equation in the
form of eq.(3.1.1). The two parameters of a, and ¢, with # = r or # = z are defined in the

following manner:

a, =-2a, =- Sqff, (3.2.14a)
mQr,”
and
44V s
g, =—2q, (3.2.14b)
mQr,’
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Fig.3-8(a) Malhieu stability diagram for the ion
trajectory in the z-direction.

Fig.3-8(b) Mathieu stability diagram for the jen
trajectory in the r-direction in a,-¢, coordinate system.
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Fig.3-8(c) Mathieu stability diagram for the ITMS.

Thus, the stability parameters of @, and ¢, for the z- and r-directions differ by a factor of -2 in
ITMS, although the absolute values of a, and ¢, in RF-QMF are identical in both x- and y-

directions. In the case of U<0 and V>0, the stability region in z-direction is obtained as



displayed in Fig.3-8(a). On the other hand, Fig.3-8(b) shows the stability region in r-direction,
that is Aa plot in the a.-q, coordinate system not in a,-g, Stability regions in both r- and z-
directions are the areas as indicated in Fig.3-1, respectively. However, the parameters of a, and
g, for the z- and r-directions differ by a factor of -2 from eqs.(3.2.14a) and (3.2.14b). The
stability region in the r-direction must be twice the size of that in z-direction with an opposite
sign. The stability region of ITMS, therefore, is obtained by overlapping the stability regions in
the two directions (#, z) of ion metions as shown in Fig.3-8(c). Only the ions having «, and ¢, in

this stability region stay in a limited space in ITMS with their characteristic stable oscillations.

3.3.3 Stableion oscillations in ITMS

For the values of a, and ¢, in the stability region, a stable ion trajectory is given by the same
expression as RF-QMF which was derived as €q.(3.2.10) with the definition of eq.(3.2.11). For

clarity we write it again for ITMS, i.e.

u(ty=A ECZH cosw,, [+B Z—:Czn_sin o, (u=rorz) (3.3.15)
where
Q
@,, =?(2n+/3’u) (u=rorz) (3.3.16)

Iﬁ a usual operation of ITMS, only the RF voltage is applied to the ring electrode. This means
that we may put U=0 which makes the parameter a, =0 from eq.(3.14a). Hence, all ions having g,
on the line of a, =0 in the stability diagram are stably oscillating in ITMS.

We consider ion motions in the z direction at first. The angular frequency w,, depends on a,
and ¢, through the value of f, as expressed by eq.(3.2.12). As already described regarding the

general solution of the Mathieu equation, the amplitudes (,, in eq.(3.3.15) also depend on «, and
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g, in ITMS. The dependence is more important in ITMS than in RF-QMF. The approximate

formulas derived by Carrico[26] are

gz,, - 4 . (3.3.17)
(2n+ﬂ,,)2[1— D - A
(2n+B.)° @+ B @2n+2+6,)(1- - etc
and
CC“ = — 4 . . (33.18)
M (2n2+ ﬂu)z(l- I 7.
2rn+B,Y (@n+ ) 2n-2+p8)(1-- etc
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Fig.3-9 The dependence of ¢, on ihe calculated

coefficients C,, of the n-th escillation in comparison with

that of the n=0 {fundamental) oscillation,
The value of Cj, is largest over the entire range of 0 < ¢,<0.908 in the stability region. The ratios
of C,,/C, calculated from eqs.(3.3.17) and (3.3.18) by putting @, =0 are plotted in Fig.3-9 as a
function of g, for =% 1 and for »=%2. It is obvious from this graph that the amplitudes other
than n=0 are sufficiently small as compared to C, in the range of ¢.<0.4. In other words, the »=0
oscillation mode is dominant in the operating condition with a, =0. Therefore, the ion motions in

z-direction can be expressed in the following simple harmonic oscillation to a good

approximation,



(=~ A, cos(w,f +¢,) (forg< 04) (3.3.19)

with

@ =fi> (3.3.20)

The description of ion motions in r-direction is completely analogous to that in z direction.
From eq.(3.3.14a), the parameter a, is automatically null in the operating condition of @, =0 for z-
direction, since U/=0. The value of C, and the ratios of C, /C, for a, =0 are calculable in a similar
manner as for z-direction. If we note the relation of g, = ¢ /2, dominance of C, is obvious. Thus,
the n=0 oscillation mode is dominant in r-direction also. The ion motion in r-direction is given
by

r{ty= A, cos(@t +4,), (3.3.21)

with

@y = f3, (3.3.22)

| D

In a rougher approximation than that in eq.(3.2.12}, the value of £, can be expressed as

B~ .2 . (3.3.23)
Therefore, the angular frequency @, of  direction becomes about half of ay, form the relation of
q, = q/2. Ions in ITMS oscillate at lower frequencies in r direction in comparison with z

direction. An example of the stable oscillations in ITMS is presented in Fig.3-10.
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electrode

Fig.3-10 The trajectories of m=100, 200 and 400 u ions in [TMS, when RF
voltage Vppcoslit (Vp~600V, (¥2n=509 kHz) is applied to the ring electrode. The
ions all oscillate stably with different frequencies according to their masses.

3.3.4 Operation and mass separation in ITMS

As described in the proceeding section, the first step in mass spectroscopy with ITMS is the
injection of ions under the condition of U=0(a,=0) and an RF voltage application to give
relatively small g, values. After injecting ions, all ions having ¢, on the line of a, =0 in the
stability diagram continue their stable oscillations mainly in the fundamental mode in both r- and
z-directions, The space where ions are moving is confined in a small region near the center of
ITMS. This is the second step of operation of ITMS, and it is called the ion trapping step.

The final step is to extract a specific ion by applying an auxiliary RF voltage of ¥, cosa..f on
the end-cap electrodes in dipolar fashion. From €qs.(3.3.23) and (3.2.14b) the angular frequency

@, of the fundamental oscillation, that is expressed in eq.(3.3.20), can be rewritten as

- Q _ \E(J’VRF
0= W2 owr Qo

(3.3.24)



Thus, ions oscillate with different angular frequencies according to their masses. When a specific
ion moves with the angular frequency agreeing with that of the auxiliary RF voltage (@,~a..),
the amplitude of the oscillation in z-direction increases selectively due to the resonant forced
oscillation. This process is analogous to ICR-MS. The frequency of the fundamental oscillation
of trapped ions corresponds to the cyclotron frequency, while the auxiliary RF voltage works like
the excitation pulse in ICR-MS. As an example, the oscillations of several ion species having

different fundamental frequencies are shown in Fig.3-11.

Fig.3-11 The trajectories of m=100, 200 and 400 u ions in ITMS, when RF
voltage V. cosCit (V,~600V, (¥2n=909kHz) to the ring electrode and resonance
voltage £V, cosa,t (¥, =10V, o, /2n=260.7kHz) to the end-cap electrodes

res

are applied. Only m=100[u] ion whose oscillation frequency agrees weith that of

the resonance field become excited to reach oneg of the end-cap clectrodes,
Only one ion species, the angular frequency of which agrees with that of the resonance field, is
resonated with the auxiliary RF voltage. Finally the excited ions which reach the aperture on one
of the end cap electrodes are detected by a detector as shown in Fig.2-5(b). A mass spectrum in a
certain range of mass numbers is observed by scanning the mass m of the selected ion; this is

called mass-selective instability scanning.
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Fig.3-12 Typical operation sequence of ITMS. In the peried of T, , atoms or

. . - . inf
molecules in a specimen are fonized and trapped in ITMS. In the period T, ,, the mass-

to-charge ratio of ions can be scanned by varying the amplitude of RF vollage V..

Equation (3.3.24) shows the mass-selective instability scanning is usually carried out by
changing the magnitude of /%, with a fixed auxiliary RF voltage V.. Fig.3-12 is a conceptual

drawing of mass spectroscopy with ITMS.

3.3.5 Primary factors relevant to the performance

Many factors must be examined to understand the motions of ions in ITMS and to improve
the performance. Which factor has a strong correlation with what performance item is
summarized in Table 3-1. Mathematically rigorous theories could of course be developed to
estimate the contribution of each factor to the performance. As mentioned for RF-QMS,
however, it is important to develop a method of computer simulation which is able to treat some
realistic conditions like collisions with ion buffering gas atoms. It should be emphasized that the
computer simulation is suitable for quick empirical estimates of performance while changing

various parameters.
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Table 3-1. Primary factors relevant fo the performance of ITMS

Performance

ITMS parameters | Mags resolution? Mass acouracy Sensitivi
(FWHM) i(shifting degree) ensitivity

He gas pressure

Space charge

O

Mass analysis
scanning method

OO0 0|0
o101 00

Resonance voltage

@

Injection method O

Electrode structure
(shape, configuration)

O

O O

O : strong correlation
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