Chapter 6
Estimation of the impacts of climate change on carbon
dynamics in terrestrial ecosystems

6.1. Introduction

The CO, emission from human activities to the atmosphere will critically affect the
terrestrial ecosystems through the greenhouse effect on climate system and the CO,
fertilization effect on plant productivity. These impacts on terrestrial ecosystems may range
from the molecular scale (Van QOosten et al.,, 1994) to the biosphere scale (Vitousek, 1994).
However, the response of terrestrial ecosystems may be so large that the feedback effect
would in turn alter the atmospheric CO, concentration and climate condition (Martin, 1993;
Melillo et al.,, 1996; Woodward et al., 1998), For example, if the plant photosynthesis is
enhanced by a few percent globally, almost all of the industry CO, emission (5.5 Pg C yr'’;
IPCC, 1996) may be sequestered into the biosphere. Quantifying the almospheré—biosphere
interaction is difficult, especially at the global scale, alithough several studies have
summarized the plant response to elevated CO, concentration (Poorter, 1993; Idso and Idso,
1994; Wullschleger et al., 1995; Curtis and Wang, 1998).

Using a simulation model of terrestrial carbon cycle is one of the promising
procedures to estimate and analyze the atmosphere-biosphere interaction (Esser, 1987; Raich
et al,, 1991, Potter et al,, 1993; Running and Hunt, 1993; Foley, 1994a; Ludeke et al,, 1994;
Warnant et al., 1994; Den Elzen et al., 1997; Cao and Woodward, 1998b; Xiao et al., 1998).
These models have been used to estimate the spatial zind temporal distribution of primary
productivity and carbon storage, and to simulate the response to global warming induced by
increased CO, (Kohlmaier et al., 1995; Melillo, 1996; Cao and Woodward, 1998a). Moreover,
some models have been used to seek the missing carbon sink (Dai and Fung, 1993; King et al.,
1995), to compare the interannual change in carbon budget (Kaduk and Heimann, 1994;
Kindermann et al., 1996; Gérard et al.,, 1999), and to reproduce the past terrestrial ecosystems
(Foley, 1994b; Esser and Lautenschlager, 1994). Most models consider the regulation of
productivity by radiation, temperature, water availability, and atmospheric CO, concentration,
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in various ways (Pan et al,, 1998; Churkina et al., 1999); some models, in addition, include
the regulation by nitrogen availability (McGuire et al., 1997). |

In this Chapter, a series of simulations are performed to estimate the changes in
productivity and carbon storage of terrestrial ecosystems. Sim-CYCLE may enable us to
estimate the spatio-temporal distribution of atmosphere-biosphere CO, exchange at the global
scale. After the Industrial Revolution, atmaspheric CO, concentration has increased from 275
to 360 ppmv (Neftel et al., 1985; Keeling et al., 1995), and this may cause a significant degree
of global warming (Jones et al,, 1999). The extrapolation of environmental condition to the
future remains uncertainties. However, several prescribed scenarios of the atmospheric CO,
concentration are proposed (IPCC, 1992), and a multitude of general circulation models
(GCMSs) have been used to estimate the climate change in the experimental period (Manabe,
1983; Cess et al., 1993; Kacholia and Reck, 1997). Because these scenarios take little account
of the biotic feedbacks stemming from the atmosphere-biosphere CO, exchange, the Sim-
CYCLE simulation is expecied 10 give an approximation of the potential feedback effect.
Finally, the polential role of the terrestrial ecosystems in the global biogeochemical carbon

cycle under the changing environment will be discussed.

6.2, Simulation design
6.2.1. Simulation model

Simulation configuration of Sim-CYCLE was similar to that of Chapter 4: spatial
resolution of 0.5°x0.5° longitude-latitude, and calculation time-step of one month. The soil
data and long-term mean climate data were derived from the same sources to the equilibrium
run (cf. Chapter 4). The Olson’s biome mapping was also adopted, but for convenience, it was
assumed that the movement of biome (and C,/C, composition) is negligible during the
experimental period of 70 years. This assumption of stationary biome may be appropriate,
because grid-to-grid distance (i.e. 55 km) is sufficiently lengthy in the light of the velocity of
biome shift. For each grid cell, at first, equilibrium carbon dynamics was attained in the same
manner to the equilibrium run in Chapter 4, and subsequently climate change projection (see

next section) was incorporated for capturing the transitional change in the carbon dynamics.
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6.2.2. Global environmental change

Sensitivity analysis. At first, a sensitivity analysis is
performed to clarify the sensitivity of the biospheric carbon dynamics. The transitional
changes in NPP and NEP are simulated, in response to step-wise environmental changes:
atmospheric CO, doubling from 353 to 707 ppmv, global w"arming by 3 °C, and precipitation
increased by +30%.

Climate change scenario. In this study, climate scenarios by three
GCMs were adopted: the U.S. Geophysical Fluid Dynamics Laboratory (GFDL; Manabe et al,,
1991, 1992), the U.S. Goddard Institute for Space Studies (GISS; Russel et al., 1995), and
Japan Meteorological Research Institute {(MRI; Tokioka et al., 1995). They are all coupled
atmosphere-ocean models, with minor differences in spatial resolution and parameterization
schemes. These three climate projection scenarios on the assumption that atmospheric CO,
concentration increases at a rate of +1% yr’ are termed the GFDL case, the GISS case, and
the MRI case, respectively. In addition to the three scenarios using the same configuration but
different models, two supplementary scenarios were derived from the MRI-GCM. One
scenario takes the effect of anthropogenic sulfate aerosols into account, because their optical
perturbation can affect the future projection of the global warming (Haywood et al., 1997;
Mitchell and Jones, 1997); the scepario is termed the MRIs case. Another scenario assumes a
halved rate of the atmospheric CO, growth, i.e. +0.5 % yr' and is termed the MRIh case.
Indeed, this halved rate seems more plausible, compared with the contemporary CQ, growth
rate (+0.45 % yr™') (Gray, 1998). In each GCM scenario, climate change was represented by
the variations in temperature and precipitation, between the control run {(without CO, change)
and the experimental run (with CO, change). Along with the precipitation change, solar
radiation can be affected by the variation in cloud cover, but the effect will be explored in the
future,

Atmospheric CO, concentration At first, atmospheric CO,
concentration was fixed to 352 ppmv, the level in 1990, until the equilibrium state is obtained
(long-term mean climate is used at this stage). Then, ‘atmOSphcric CQ, is increased at a rate of
+1 % yr', in a compound manner, up to 707 ppmv in the 70th year (GFDL, GISS, MR, and
MRIs scenarios). As a reference case, a simulation assuming the sole gradual CQO, doubling
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(2xCO,) was performed, In case of the MRIh scenario, the halved rate of +0.5 % yr! was
adopted; atmospheric CO, concentration reaches 500 ppmv at the 70th year, Then, the
prediction ron may account for the iransitional environmental change from AD 1990 to 2060,

using a few simplifying assumptions.

6.3. Result 1: sensitivity analysis

The step-wise environmental changes resuited in apparently changed NPP with little
time-lag in responsiveness (Fig. 6-1a). The CO, doubling increased NPP from 61.8 to 75.2 Pg
C yr in as early as the second year of the simulation, and the increased precipitation by 30%
also increased NPP to 67 Pg C yr'. However, the global warming by 3°C did not induce large
NPP change: 62.5 Pg C yr’ at the 70th year. A distinctive situation was revealed for the NEP
transition (Fig. 6-1b). The warming resulted in a net carbon emission (NEP<0) of as much as
14 Pg C yr' at the first year, which diminished graduvally but continued over 70 years. In
conirast, CO, doubling and precipitation increase resulted in positive NEPs. It is important
that the estimated NEPs induced by CO, doubling and warming by 3 °C are opposite in

direction but comparable in magnitude.

6.4. Result 2: prediction with 3 GCM scenarios
6.4.1. Climate change

Along with the increase of atmospheric CO, concentration, global mean land
temperature rose approximately lincarly independent of the GCMs adopted (Fig. 6-2a). The
magnitude of the temperature change seems comparable between the three GCMs, but GFDL
one was slightly higher (+2.5 °C at 61-71th years) than others (+1.9 to +2.1 °C), The warming
was temarkably heterogeneons over the land surface (Fig. 6-3), such that northern high
latitudinal zones would undergo more severe temperature change typical for the GCM
simulations of global warming (e.g. Manabe, 1983; Schiesinger and Mitchell, 1987).
Precipitation variation was more changeable between years and between GCMs (Fig. 6-2b).
The MRI scenario suggests the large inérease of precipitation in Monsoon Asia, central Africa,
and northern Eurasia (Fig. 6-3), while GISS one suggesits, in stead, an approximately stable
amount of precipitation.
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6.4.2, Overview of carbon dynamics change

Global NPP was estimated to increase significantly in all GCMs, as a result of global
environmental change (Fig. 6-4a). Sole CO, doubling resulted in NPP of 74.6 Pg C yr', or
+21.0 % of the contemporary one. Interestingly, CO, doubling coupled with climate change
resulted in larger NPPs after the ca. 30th year: 77.9 1o 79.9 Pg C yr’, or +26.4 to +29.8 %, in
the 61-70th years. These fertilization effects correspond to the biotic growth factor (f3; -
Kohimaier et al., 1989; Poiglase and Wang, 1992) of 0.38 to 0.43, which is larger than the
sole 2xCO, one, i.e. 0.30,

CD ]
NPPE,,, = NPF,, [1 + 5 'ln(“éfm) : (6-1)

ATM, Dth

Mainly due to the increased productivity, biospheric NEP was apt to keep positive during the
experimental period, except for the first 12 years (Fig. 6-4b). Cumulative annual NEP
indicates the net response of the biosphere to the prescribed environmental change; +205.8,
+74.4, +123,0, and +127.7 Pg C for the sole 2xCO,, GFDL, GISS, and MRI scenario,
respectively. Along with the global change, average LAl increased 18 %, or from 2.3 to 2.7,
leading to an improvement of radiation use efficiency (data not shown).

The carbon storage in plant and soil compartments changed in a disparate manner, in
case of the GCM scenarios (Fig. 6-5). Plant biomass increased to the extent similar to the sole
2xCO, case, and discrepancy among the GCM scenarios appears to be small: AWP=+114 to
+121 Pg C after 70 years. In contrast, the trajectories of soil carbon storage based on GCM
climate scenarios were disparate from the 2xCQ, case, in which as much as 98 Pg C was
sequestered into the soil carbon storage. In the GISS scenarjo, soil carbon storage kept an
equal level throughout the experimental period (AWS=+83 Pg C). The MRI scenario
predicted a decrease of soil carbon by -10 Pg C during the period from the 10th to 60th year,
but resuited in a small increase by +6.6 Pg C at the end of the simulation. The monotonously
decreasing trend of the GFDL scenario (AWS=—40,2 Pg C at last) is astonishing, because
increased plant biomass should increase litterfall, or the carbon supply to soil. Figure 6-6
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summarizes the global carbon cycle at the final stage of the 66-70th years, and it can be seen
that the net balance of soil carbon (=LF-HR) was surely negative in the GFDL scenario,
probably because of the strongest impact of global warming on decomposition.

The changes in NPP and carbon storage did not take place homogeneously over the
terrestrial biosphere, as shown in Figs. 6-7 and 6-8. As a result of sole CO, doubling, NPP in
such subtropical regions as eastern Africa, India and southern Australia responded largely.
Ecosystem carbon storage increased in many regions, especially in humid tropical regions
(Fig, 6-7). The large carbon accumulation to tropical ecosystems was attributable to increased
plant carbon storage, while moderate sequestration in temperate and boreal regions resulted
from increased soil carban storage (Fig. 6-8). Taking account of climate change, distribution
of NPP enhancement changed in many regions, NPP increased largely in eastern Africa in
each of the three GCM scenarios, while the increase in Australia and India was not
conservative. In stead, a part of central America and eastern Siberia showed large NPP
stimulation. In such arid regions as North Africa and central Asia, NPP decreased to some
extent. The large carbon accumulation into tropical ecosystems (sole 2xCO, case) was
diminished in a majority of grid cells, and some boreal ecosystems, especially southern
Siberia in the GFDL scenario (Fig. 6-7), released carbon to the atmosphere. Nevertheless,
other part of the boreal ecosystems acted as a strong carbon sink (e.g. Alaska and northern
part of Siberia). In the MRI scenario, Sahelian region absorbed a large amount of carbon. The
boreal ecosysiems underwent two opposite effects by climate change, i.e. augmentation of

biomass and reduction of soil carbon storage (Fig. 6-8).

6.4.3. Biome specific aspects

As shown in Fig. 6-9, NPP change was not equal among the 32 biome types.
Compared with the average of +21 %, semiarid woodlands (biome 6), Mediterranean-type dry
woodlands (biome 17), hot and warm wetlands (biome 23), and irrigated croplands (biome
29) showed larger NPP increase (>40 %) as a result of CO, doubling. In contrast, main
deciduous boreal forests (biome 10), tundras (biome 21), and wooded tundras (biome 22)
showed smaller NPP increase (<10%). (The small CO, fertilization effect in tundra
ecosystems seems consistent with observations (Grulke et al,, 1990; Mooney, 1991; Kérner,
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1993)). The climate change exerted little effect on tropical forest NPP, while it enhanced
NPPs in northern deciduous taiga (biome 12), Tibetan meadows and Siberian highlands
(biome 20), tundras, wooded tundras, and cool bogs and mires (biome 24), Figure 6-10 shows
the frequency distribution of NPP change as a result of 70-year global change, for eacil
scenario, The modes of distributions are different with or without the climate change; in
contrast to a single peak of the 2xCO, case, there was the second peak around +20 %, made
mostly by the occurrence of forest grid cells (biomes 1-12). (The 20 % increase of NPP seems
typical for a wide variety of woody species (Ceulemans and Mousseu, 1994; Wullschleger et
al., 1995; Curtis and Wang, 1998; Norby et al.,, 1599)). The impact on carbon storage was also
different among the biome types (Fig. 6-11). The large carbon uptake (AWE) into tropical rain
forest (biome 1), estimated by the sole 2xCO, case, was decreased by climate change, from 43
Pg C to 25 Pg C; especially, carbon uptake into soil was almost completely canceled. The
large NPP enhancement of semi-arid woodlands (biome 6) did not result in large carbon
sequestration in any scenarios, The loss of soil carbon from temperate and boreal forests
(biomes 4 to 12) is notable; main evergreen taiga (biome 9) was estimated to act as a net
carbon source in the GFDL scenario. On the other hand, a large amount of carbon was
sequestered as so0il organic matter in warm grasslands (biome 19).

The response to the global environmental change was different between C; and C,
plants (Fig. 6-12), because C; plants were assumed to be more sensitive to atmospheric CO,
level (cf. Table 2-1). Of the 12.9 Pg C yr"' of total NPP increase induced by CO, doubling,
85.8 % was by C, plants and the remnant was by C, plants; this implies that the contribution
of C, plants to total NPP was reduced from 20.3 % to 19.2 %. The GFDL and MRI scenarios
estimated similar decreases of the C, plant contribution (18.7 and 19.6 %, respectively), while

the GISS scenario expected the same magnitude of C, contribution (20.2 %).

6.4.4, Latitudinal aspects

The spatial heterogeneity in the responses of terrestrial carbon budget (cf. Figs. 6-7
‘and 6-8) may become comprehensive by aggregating into latitudinal zones. Figure 6-13 shows
the time-series of the carbon storage change al‘ong with 5°-composite zones. In the sole
2xCO, case, a majority of carbon uptake was concentrated around the equator; there was no
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source zone throughout the simulation period. When the climate scenarios were incorporated,
nerthern hi gh latitudes around 60°N acted as strong carbon sources from the 20th to 30th year,
and net sinks around the equator were reduced after the ca. 50th year.

The latitudinal distribution of NPP change (Fig. 6-14) represents the difference of
responsiveness among latitudinal zones. The sole CO, doubling enhanced NPP chiefly in
lower latitudinal zones, whereas incorporating the GCM scenarios resulted in larger
stimulation of NPPs in middle to high latitudinal zones. In the latitudinal zones from 40°N to
80°N, the increment of NPP was +3.3 Pg C yr” in the sole 2xCO, case, but +5.8 to +8.3 Pg C
yr' in the climate change cases. In consequence, plant biomass in the northern zones gained a
larger amount of carbon (Fig, 6-15), although they lost a comparable amount of soil carbon,
In other words, the ratio of plant/soil carbon pools shifted close to that of lower latitudes; the
contemporary ecosystems in the northern regions have lower plant/soil carbon storage ratio
than tropical zones (cf. Fig. 4-8). If this deduction is true, the soil carbon loss is not an

instantaneous but an inevitable consequence of the global warming.

6.5. Result 3: prediction with 3 MRI-GCM scenarios
6.5.1. Climate change

Based on the different assumptions of environmental change, the MRI-GCM
provided a set of different climate scenarios, i.e. MRI, MRIs, and MRIh (Fig. .6-16).
Compared with +2.1°C in the MRI scenario (the 70th year), MRIs and MR1h gave lower
estimations of the global warming: +1.6°C and +1.0°C, respectively, In the MRIh scenario,
many regions would experience only a small degree of warming (Fig. 6-17). The precipitation
of the MRIs and MRIh scenarios showed increments, however, to less extent (Fig. 6-16). No
consistent difference in the precipitation pattern was found among the three MRI-GCM

'scenarios,

6.5.2, Carbon dynamics change

Through the simulation period, NPP of the MRI case was larger than the MRIs one
(Fig. 6-18), but the difference between them was small (<1 Pg C yr'), And, NPP of the MRIh
case was apparently smaller than other two cases, certainly due to the lower atmospheric CO,
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concentration. Nevertheléss, the biotic growth factor 8 of the MRIh case, 0.432, was larger
than those of the MRI (0.428) and MRIs (0.389). The estimated NEPs were not significantly
different between the MRI and MRIs, but the MRIh scenario resulted in smaller uptakes.
Finally, the 70-year cumulative NEP of the MRIs case was 124,0 Pg C, which is comparable
Ato the MRI one (127.7 Pg C), and a larger amount of carbon was sequestered into soil, rather
than biomass (Fig, 6-19). Then, although inclusion of the effect of sulfate aerosols improved
the reliability of GCMs (Mitchell et al., 1995; Haywood et al., 1997), this may exert litile
effect on the prediction of terrestrial carbon budget, unless the cloudiness change is included,
The MRIh scenario lead to a carbon sequestration into biomass (AWP=+50.1 Pg C), which
became evident after the 30th year, and to a small emission from soil organic matier
(AWS=-5.4 Pg C). The total change of +44.7 Pg C is one third of the MRI case. In the MRIs
case, larger changes in NPP and carbon storage were estimated in basically similar regions to
the MRI case (Figs. 6-20 and 6-21): subtropical Africa, Australia, and central South America.
These changes were underrepresented by the MRIh case; even in tropical and northern high
regions, biomass increase was not so evident. However, soil carbon change occurred 10 the
comparable extent to the MRI and MRIs cases: e.g. increase in Sahelian grasslands and

Australian deserts, and decrease in central Siberian taiga.

6.4. Discussion
6.4.1. Atmospheric CO, rise and NPP

The increased NPP (Fig. 6-4) is primarily attributable to the fertilization effect due to
the atmospheric CO, doubling. Then, is it possible to derive a consistent relationship between
the atmospheric concentration and the terrestrial NPP at the global scale? Figure 6-22 plots
the estimated NPP as a function of atmospheric CO, concentration (CD,;,), including the
effect of climate change. It can be seen from Fig. 6-22 that NPP would be underestimated, if
the effect of climate change is not included, especially under a higher atmospheric CO,
concentration. Moreover, it seems that global NPP may be deduced using the empirical

equation, with an accuracy within = 2 Pg C yr’ (*=0.934):
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NPP(Pg C yr™') = 43.977+0.052597 -CD,, (ppi1v) (6-2)

Equation 6-2 is based on all the three GCM scenarios; see Fig. 6-22 for the individual
regressions, In the light of the fact that there is a considerable difference in NPP
responsiveness among the biome types and regions, the high convergence of CD p NPP
relationship deserves particular attention. Nevertheless, NEP is strongly dependent on the
time passage from the environmental change (cf. Fig. 6-1b), suggesting that a simple

regression to environmental factors may not be viable for prediction.

6.4.2. Biotic feedback to global environmental change

The changed carbon fluxes and carbon storage can in turn exert the feedback effect
on the first impact, in either a positive or a negative direction. Figure 6-4 indicates that the
estimated NEPs were almost positive after the 10th year of simulation (i.e. AD 2000), acting
as a negative feedback to the global warming induced by the atmospheric CO, rise. However,
their magnitude of 1 to 3 Pg C yr'! may not fully offset the anthropogenic CO, emission of 6
to 20 Pg C anticipated in the next century (JPCC, 1994), Through the simulation period of 70
years, the 5 simulations predicted that the total carbon storage would increase by 44.7 (MRIh)
to 127.7 Pg C (MRI) (Fig. 6-23). They are equivalent to 10 - 17 % of the increment of
atmospheric carbon, and comparable to the magnitude of the missing sink at present. Based
on the sensitivity analysis (Fig. 6-1), sole global warming resulted in a net carbon source to
the atmosphere (i.e. positive feedback of 80 to 158 Pg C), but when atmospheric CO, rise was
taken into account, a negative feedback took place. Then, if climate system is affected by an
external forcing except for CO, concentration (e.g, solar radiation change), the terrestrial
biosphere may exert a positive feedback effect on the changed climate, through the carbon
exchange. These contradictory characteristics of the biospheric feedback may have important

implications for the stability and variability of the atmospheric system.

6.4.3. Comparison with other predictions and potential uncertainty
Finally, the predictions of NPP and carbon storage are compared with other studies:
Melillo (1996) using TEM, and Cao and Woodward (1998a) using CEVSA model. Melillo
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(1996) adopted the GFDL, GISS, and OSU (U.S. Oregon State University) scenarios, and
predicted that terrestrial carbon storage would increase by +190 to +283 Pg C, when
atmospheric CO, becomes double, The quantitative difference from the Sim-CYCLE
estimation (+74 to +128 Pg C) is attributable to their simulation design of the equilibrium
carbon storage after the global change. However, there are several similarities between the
two studies; (1) carbon uptake was mostly by plant biomass, rather than soil organic matter;
(2) increase of soil carbon storage was diminished when including the global warming,
compared with the sole 2xCO, case; (3) the largest carbon uptake took place in tropical
ecosystems, and (4) a part of boreal soil could act as a net carbon source. On the other hand, it
is contrastive to the Sim-CYCLE prediction that the increment of plant biomass was
augmented when including the global warming, compared with the sole 2xCO, case,
particularly in boreal ecosystems, Because TEM is a coupled C-N dynamics model, enhanced
mineralization and availability of N due to the warming may result in better growth in these
ecosystems. Cao and Woodward (1998a) adopted the HADCM (U.K. Hadley Centre for
Climate Prediction and Research) scenario, and performed a {ransitional simulation. They
predicted the NPP increase of +36 % by AD 2070 and positive NEP of about 3.2 Pg C yr’
after 2030 (the 40th year in the Sim-CYCLE study). Using the global warming alone, CEVSA
model also estimated the net loss of carbon from the biosphere; atmospheric CO, rise turned it
into a net sink of carbon. These aspects by CEVSA study are similar to the Sim-CYCLE
prediction, but there is one significant difference between the two studies. That is, while Sim-
CYCLE estimated that total soil carbon would not be increased by the global change, CEVSA
expected that soil carbon would largely increase along with the climate change (about +120
Pg C). Determining whether this is attributable to the difference in climate scenario or the
difference in model property requires a further research (e.g. Sim-CYCLE simulation using

HADCM scenario).
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in response to prescribed environmental change.
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Fig, 6-5. Estimated change in (a) plant carbon storage and (b) soil carbon storage.
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Fig. 6-6. Biospheric carbon dynamics estimated by Sim-CYCLE
prediction run, in case of (a) CO2 doubling only, and (b} GFDL,
(c) GISS, and (d) MRI scenarios,
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Fig. 6-7. Estimated changes in (left) NPP and (right) carbon storage WE, under the present climate
with gradual CO2 doubling.
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Fig. 6-7 (continued). Estimated changes in (leaf) NPP and (right) carbon storage WFE, under GFDL
climate projection with gradual CO2 doubling.
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Fig. 6-7 (continued). Estimated changes in (left) NPP and (right) carbon storage WE, under GISS
climate projection with gradual CO2 doubling.
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(MRI scenario)
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Fig. 6-7 (continued). Estimated changes in (left) NPP and (right) carbon storage WE, under MRI
climate projection with gradual CO2 doubling.
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(2xCO2 only scenario)
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Fig. 6-8. Estimated changes in (left) plant carbon storage WP and (right) soil carbon storage WS,
under the present climate with gradual CO2 doubling.
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Fig. 6-8 (continued). Estimated changes in (left) plant carbon storage WP and (right) soil carbon
storage WS, under GFDL climate projection with gradual CO2 doubling.
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(GISS scenario)
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Fig. 6-8 (continued). Estimated changes in (left) plant carbon storage WP and (wight) soil carbon
storage WS, under GISS climate projection with gradual CO2 doubling.
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(MRI scenario)
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Fig. 6-8 (continued). Estimated changes in (left) plant carbon storage WP and (right) soil carbon
storage WS, under MRI climate projection with gradual CO2 doubling.
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Fig. 6-17. Projected climate change scenarion by MRIs gradual CO> doubling simulation.
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Fig. 6-17 (continued). Projected climate change scenarion by MRIh gradual CO2 doubling simulation.
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(MRIs scenario)
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Fig. 6-20. Estimated changes in (left) NPP and (right) carbon storage WE, under MRIs climate
projection with gradual CO2 doubling.
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(MRIh scenario)
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Fig. 6-20 (continued). Estimated changes in (left) NPP and (right) carbon storage WE, under MRIh
climate projection with gradual CO2 doubling.
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Fig. 6-21. Estimated changes in (left) plant carbon storage WP and (right) soil carbon storage WS,
under MRIs climate projection with gradual CO2 doubling.
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(MRIh scenario)
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Fig. 6-21 (continued). Estimated changes in (left) plant carbon storage WP and (right) soil carbon
storage WS, under MRIh climate projection with gradual CO2 doubling.
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Fig. 6-22. Relationship between atmospheric CO, concentration (C1 7, ) and total NPP,

estimated by Sim-CYCLE prediction run using GCM scenarios. (a) Linear regression,
and (b) logarithmic regression,
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