Chapter 3

Spin-Fluctuation-Mediated
Effective Interaction

The Hubbard model is a fundamental model in solid state physics, It is used to study
metallic ferromagnetism, metal-insulator transitions (the Mott transition), high-T,
superconducting cuprates and so on. it is also an appropriate model for liquid *He.
In this chapter we study the two-dimensional (2D} Hubbard model as a model for
2D liquid *He.

It is well know that, in 3D liguid *He, p-wave superfluidity is cansed by strong
ferromagnetic spin fluctuations [1, 2, 3, 4, 5]. In 2D, the uniform magnetic suscep-
tibility is also strongly enhanced in the dense region as in 3D [6}. One can therefore
expect that spin fluctuations induce superfluidity in 2D, too. If this is the case, one
of the fundamental questions is symmetry of Cooper pairs.

The symmetry of the Cooper pairs formed by spin-fluctuation-mediated interac-
tion is mainly determined by the wave number dependence of the magnetic suscep-
tibility [1, 2, 3, 4, 5]. In 3D, the susceptibility of a non-interacting fermion system
has 2 maximum at ¢ = 0. When one introduces short-ranged repulsive interaction
between fermions and treats it with the random phase approximation (RPA), one
finds that the peak at ¢ = 0 is the most strongly enhanced. Even if one further
considers correlation effects, effects not included in the RPA, it is likely that the
susceptibility still has the strong maximum at ¢ = 0. This nearly ferromagnetic
susceptibility leads to the p-wave superfluidity.

In 2D, the susceptibility of non-interacting fermions is independent of the wave
number as far as the wave number is less than twice the fermi wave number, ¢ < 2k g,
In the RPA, this is also true when the wave number dependence of interaction is
neglected. One then finds that spin fluctuations generate no effective attractive
interaction hetween a fermion with momentum kg and a fermion with momentum
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—kp i the static limit.

In contrast to 3D, correlation effects can qualitatively change the wave number
dependence of the susceptibility in 2D | It is therefore important to study the corre-
lation effects on the spin susceptibility to discuss the effective interaction mediated
by spin fluctuations and superfividity possibly caused by it.

The main purpose of this chapter is to study the wave number dependence of
the static spin susceptibility and the effective interaction for Cooper problem in
the dilute 2D Hubbard model. Using the quantum Monte Carlo method [7] and a
propagator-renormalized perturbation theory [8, 9], we study the spin susceptibility
in the strongly correlated region. To make results divectly relevant to 2D liquid *He,
the calculations are restricted to the dilute limit where lattice effect is negligible.
It should be noted that results obtained in this study can also he applied to 2D
clectron gas.

3.1 Formulation

3.1.1 Model Hamiltonian

The 2D Hubbard Hamiltonian on the square lattice has the following form in mo-
mentum representation:

H(Eff) = %: gka};‘,gaka

v it
TN LZA: %: “h-qt"k +q R R (3.1)
1

where a kg((f‘n ) is the annihilation(creation) operator for fermions of momentum k
and spin o, &, = —2t(cos(kya) + cos(kya)) — u, a is the lattice constant, ¢ is the
Lopping energy between the nearest neighbor sites, g is the chemical potential, U is
the on-site repulsion, and N is the total number of the lattice points.

Near the bottom of the band, the spectrum £, is approximated as

1
= —— k% — i — dt, 3.2
5’“ 213 A (3.2)

where mg = ﬁ Therefore, in the dilute limit, n < 1, where n is the number of
fermions per lattice point, effect of lattice is negligible.
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3.1.2 QMC

Using the grand canonical quantum Monte Carlo method [7] (See Appendix 3.A ),
the static spin susceptibility of the 2D Hubbard model in the dilute limit is calen-
lated, The QMC approach has the potential to treat strongly correlated systems,
allowing us to go far beyond approximate methods, e.g., a perturbation methad,
It provides numerically exact results and yields reliable information about strongly
correlated systems over a vast parameter range.

At low temperatures, the grand canonical QMC algorithm [7] becomes increas-
ingly useless not only because the numerical effort to go to lower temperatures
itself increases the computer time, but also because mumerical instabilities start to
dominate at low temperatures. These numerical instahbilities are suppressed by a
Gram-Schmiclt scheme; the instabilities and the scheme to aveid them are discussed
in detail in refs. 7 and 10.

Another possible obstacle to go down to low temperatures is the “negative sign”
problem. Tn the dilute limit, the “negative sign” problem is not so sericus, Actually,
in this study, we do not go down to the low-temperature regime where the “negative
sign” problem becomes serious, because finite size effects become too large for the
results to be reliable before the “negative sign” problem gets serious, In the present
simulations, the probahility distribution is almost positive-semidefinite.

The QMC provides us primarily with one-particle Green’s functions (in imagi-
nary time)

Ga(ia T;ja TJ) - —(TTG’I'G(T)a}a(T’)>1 (33)
and two-particle Green’s functions,
((;2 (i:Thji Ta3 if,T{j’,‘Té)

= (Tria(1)ejo{a)als, (m3)ab, (). (3.4)
Equations (3.3) and (3.4) can be used to compute observables such as the suscepti-
bility, The static spin susceptibility x{(¢) is defined as

—

G

yr i
(g} = fu A7 {T:5y (7)S%4 (0)) (3.5)
where SfI is given by
— 1 ol
Sg = ,uu% [aq + k%t T %y + k.lak.l.] .
Here 119 is the magnetic moment. The magnetic unit is fixed as pg = 1.
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In the Monte Carlo sampling procedure, we take 2 x 101 ~ 8 x 10! Monte Carlo
samples, divide the samples into 10 groups {bins), and then measure the standard

deviation among the 10 bins., The standard deviation is shown by an error bar in
the following figures,

3.1.3 Conserving approximations

Self-energy

We also study the susceptibility of the dilute Hubbard model using a propagator-
renormalized perturbation theory (conserving approximations [8]) for the tempera-
ture Green'’s function. This method gives access to remarkably larger lattice sizes.
As a consequence, it provides good access to very low temperatures, which is difficult
to treat by the QMC due to severe finite size effects.

This method may be generated by following an approach introduced by Baym
and Kadanoff [8]: (1) first, write down a frec-energy functional @ in terms of the
dressed single-particle Green's function G and the interaction U, (2) generate an
approximation for the single-particle selfenergy ¥ by functional differentiation of
¢ with respect to G, and (3) compute G self-consistently using this selfenergy.
The essence and the complexity are hidden in the functional ®[G], which is usu-
ally approximated by some infinite subset of the one-particle irreducible Feynman
diagrams.

We take for ®[G] the following four sorts of diagrams {see Figs. 1(a)-i{c)).
(1) @ diagrams describing the full contributions of O(U?). (2) @M diagrams
describing the full contributions of particle-hole scattering [9]. These diagrams rep-
resent spin fluctuations and charge fluctuations. (3) @) diagrams describing the
full contributions of particle-particle scattering, (4) ®@+?), diagrams describing
the full contributions of particle-hole scattering and particle-particle scattering. We
shall hereafter refer to the approach with ®@ as the second order perturbation the-
ory (SOPT), the approach with ¢ ag the fluctuation exchange approximation
(FLEX) [9] and the approach with ®{*”) as the (sclf-consistent) T-matrix approxi-
mation,

Eacl free-energy functional *) (% vepresents 2, ph, pp or ph + pp) is expressed
in terms of G and U as follows:

B =~ T(Um)?), (3.6)
(I)(ph) — (I,{p.h,s) + (I)(ph.,c} + q)(Q)’ (3_7)
1]
(I)(TH'J.,S) = %Tl[lll(l —_ U'Ti"ph) + U’ﬂ'ph 4- §(U7rph)2]a (3'8)

44



L, C l g 1
(I)(T}‘ )= §Tl[lll(1 + Uﬂ'ph) - Uﬂph + 'Z'(Unph)g]: (39)

pm — Tr[ln(1 - Un pp) — Uty + i

2 (Umpp)?] + 2%, (3.10)

and

i) — gloh) 4 glow) (I)(Q), (3.11)

where the particle-hole bubble m,,(g) and the particle-particle bubble m,,(g) ave
defined by

"Tph q ZG q+'l”)G(‘l‘) (312)
Tpp{ @) Z Glg — k)G (3.13)
respectively. The used abbreviations is Tr[4] = £ £, & e, Alk,ies) .

The selfenergy ™ is obtained by functional differentiation of ™ with respect
to the Green's function G. The second order selfenergy ©®is given as follows:

2@ (k Z |Gk — V™ (g)] (3.14)
V@ (q) = Uma(q). (3.15)
Similarly, £(™)is given as follows:
SEN (k) = 3 [G(k - q)vtbh)(q)] , - {3.16)
q
where 3 1
Vi) = SUML{a) + SUPTL(q) — UPm{), (3.17)
?T)h(q)
M) = — 29 3.18
(Q) 1— UTrph (Q) ( )
and

_ W;)h(G)
Tely) = 14+ Umpi(q) (319)

simplig given as follows:

;)p) z [ —p + q /'{PP) (q)] (320)
g

where

7 () — __U2___,.7_T_f,.’.f.’._(..q_)._, 3.21
1 (Q) l + Uﬂj‘)p(q) ( )
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and SPHPP)ig given as follows:

bh+pp Z [ -+ q V(f’hﬂnﬂ(q)] (3'22)
q
where
1/ (phtpp) (q) = Vi () + ViEr (g) — VE{g). (3.23)
The Green's funetion G is expressed in terms of the selfenergy T as
-1
G(k) = (ien — e — D(K)) (3.24)

Equation (3.14) (, {3.16), (3.20) or {3.22)) and Eq. (3.24) then coustitute self-
consistent equations.

When we carry out summations over the momentum and the Matsubara fre-
quency in the numerical calculation, the first Brillouin zone (FBZ) is divided into
fine meshes and the frequency summation is terminated at a cut-off energy w,. The
frequency cuf-off w. is chosen to he 160¢, which we find to be sufficiently large.
We solve the self-consistent equations using the Fast Fourier transformation (FFT)
[11). The FFT is very efficient when the frequency and momentum summations are
convolutions, as in the present case.

Susceptibility

In order to calculate the static spin susceptibility x(¢) within conserving approxima-
tions (8], it is necessary to compute the vertex corrections. The proper polarization
propagator Py o,oa, (¢) 18 a set of the diagrams which do not split into two dis-
tinct diagrams when one interaction line is cut. In terms of the proper polarization
propagator, x(g) is given by

x(g) = 2l

’ 1—-UP_{g)
where P_(¢) = Pyp(¢) —Prit(@) ( the subscripts 7111 and 141 indicate the velative -
spins of the initial-state particle-hole pair and the final-state one, and the subscript
— indicates O_ = OTTTT — O'H-H')'
The proper polarization propagator F_is given by

P.(g ZC’ g+ k)G R _(¢; &), (3.26)

(3.25)

in terms of the three-point vertex function K_(g; £). The three-point vertex function
K_{q; k) satisfies the integral equation

K_(q;k) m1+27— ¢ ki, K)Gg + KNG (R K (g k), (3.27)
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(a)
0.0

{b)

0.0

Figure 3.1; Diagrams representing a free energy functional ®[G) in conserving ap-
proximations for the Hubbard model. The dashed line represents the interaction U
and the solid line represents the Green's function G. (a) ®@ diagrams, (h) G
diagrams, and (c) ®#? diagrams.

+
{c)
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where y_(¢; k, &) is the irreducible four-point vertex function, If the irreducible four
point-vertex function y_(g; k, k') is given in terms of G and U, one can calculate the
three-point vertex function K_{q;k) by solving Eq. (3.27).

In general the functional differentiation of the selfenergy £ generates two sorts
of contributions to the irreducible vertex v (g; k, k') for the particle-hole scattering;
one is expressed as diagrams where one fluctuation propagator is exchanged. The
other is expressed as diagrams where the initial state particle-hole pair is converted
into two fluctuation propagators and then recombined into the final state pair. We
call the first set of coutributions Maki-Thompson (MT) diagrams and the second
Aslamasov-Larkin (AL} diagrams for convenience [12, 13, 14]. AL diagrams are
shown in Appendix 3.3. AL diagrams are expensive to calculate in comparison with
MT diagrams because the FFT algorithin cannet be applied to AL diagrams. We
have confirmed that the contributions of AL diagrams are negligibly small in a small
lattice, N = 8 x 8 [15]. In this study the contributions from AL diagrams are simply

neglected in lager lattices. The irreducible four-point vertex ,],(_*) are then given by
(See Fig. 3.2(a)- Fig. 3.2{c).)

YO gk, k) = Ulmpplg + k+ &), (3.28)
L U2
vwwmkwﬂ=?;URW—kﬂ—HJk-Hn, (3.29)
2 . &
(pp} e k) = U W,,I,(q—|—k+]\,) 5,50
r)l— (q$ 3 ) 1+Uﬂ_pp(q+k+k,)1 ( . )
A (g e, k) = A2 48, (3.31)

We give further discussions on the effect of vertex corrections in Appendixes 3.B

and 3.C.

3.1.4 Effective interaction

We estimate the effective interaction hetween quasiparticles mediated by spin flue-
tuations by using a paramagnon theory {1]. We cousider the effective interaction
between two quasiparticles on the fermi surface with zero total momentum. The ef-
fective interaction is then separated into the triplet channel and the singlet channel.
In the static limit, the interaction in the triplet channel is given by

2 ;
rﬂhkﬂ=—§%ﬂk—k)—xw+kﬂ» (3.32)
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Figure 3.2: Diagrams representing the irrecucible four-point vertex function. (a)

~+2 diagrams, (b) v diagrams and (c) ¥ diagrams
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where k and —k are momenta of incoming fermions and &' and —&’ are those of

outgoing fermions (|k| = |k'| = kp). Similarly, the effective interaction in the singlet
channel is given by
3U 302
vl b) = S+ S [k — ) + x(k 4 R (3.3

In obtaining Eq. (3.32) and Eq. (3.33), the wave function renormalization is ne-
glected for simplicity. Moreover, a part of the diagrams describing the effective
interaction is neglected. This neglect may be justified when the spin susceptibility
is strongly enhanced (See Appendix 3.D.).

To see the symmetry of the Cooper pair formed by the interaction (3.32) or
(3.33), we have to expand the interaction with the eigenfunctions of the angular
momentum m as was done in §2.1.2, In 2D, the strength A, of the interaction in
the channel with angular momentum m is given by

1 P
A= o= fo A8, 1r cos(mby, vk, &), (3.34)

where j represents ¢ or s, and €y, 50 is the angle between k and E'. Negative A,
represents attractive interaction in the chaunel with angular momentum m.

3.2 Results
3.21 QMC

In this subsection, we show the results obtained with the QMC. Here and in the
following we put ¢t = 1 and @ = 1. Except where otherwise noted, calculations in
£3.2.1 and §3.2.2 are done at T' = 0.5 and n = 0.186. Since the fermi energy e for
U =0 at n = 0.186 is given by ep = 0.96, sIF = 0.52, Furthermore, we show the
results obtained nsing the Trotter number L = (A7 = 71 = §). We find that the
systematic error from a finite Trotter number is negligible in the parameter regime
studied in this thesis, In Fig. 3.3, we show the static spin susceptibility y(q) at
T = 0.5 and U = 12 for three different lattice size: N =6 x 6,8 x 8 and 10 x 10. It
can he seen that the size with 8 x 8 is sufficient at this temperature. In the following,
therefore, we present the results for NV =8 x 8.

We show the static spin susceptibility y(q) for different values of U in Fig, 3.4,
The wave vector ¢ is in the diagonal direction in the first Brillouin zone. It can
be seen that as U become large, the susceptibility x(¢) is enhanced, in particular,
at ¢ = 0, and a maximum develops at ¢ = 0. This implies that the wave number
dependence hecomes ferromagnetic due to strong correlation.
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Figure 3.3: The static spin susceptibility x(q) obtained with the QMC at U = 12
and T = 0.5 for variety of lattice size. The vertical dashed-dotted line stands for
the location of ¢ = 2kp.
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Figure 3.4: The wave number dependence of the static spin susceptibility x{q) ob-
tained with the QMC at 7' = 0.5 and N = 8 x 8 for various values of U.
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Next we investigate the temperature dependence of x{¢}. As seen in Fig. 3.5,
the ferromagnetic structure (i.e., a maximum at g = 0} is not visible at higher
temperature than T = 0.6 and it emerges as temperature is lowered. If the ferro-

0.25

0.2}

x{qQ

0.15

0.1

0.06 5

Figure 3.5: The static spin susceptibility x{g) for three different temperatures at
U=12and N=8x8.-

magnetic structure were owing to the finite temperature effect, it would diminish as
temperature is lowered. From this observation, we conclude that the wave number
dependence of x(g) becomes ferromagnetic duc to the strong correlation, At lower
temperatures than T = 0.5, it is expected that the enhancement around ¢ = 0
becomes more prominent., The finite size effect hecomes so severe, however, that
reliable results cannot be obtained with the QMC at these temperatures.

3.2.2 Comparison of the QMC with the FLEX

To study x(q) at low temperatures, we have to resort to approximations, It is
not obvious what is the best approximation, say, among those mentioned in §3.1.3.
In this subsection, therefore, we choose the most appropriate approximation by
comparing approximate results with the results obtained with the QMC at T = {.5.
In the next subsection we study x(¢) at low temperatures using the approximation
chosen in this subsection.

In Fig. 3.6, results of the uniform susceptibility calculated with the various
approximations mentioned in §3.1.3 together with the QMC result, are plotted as
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functions of U. All results of the approximate calculations correctly take account of

..a-.ph
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Figure 3.6: Comparison of FLEX, SOPT and QMC results for the uniform suscep-

tihility x{¢ = 0) as functions of U. All results arc for 7 = 0.5, N = 8 x 8 and
n=0.186.

the contributions of O(U?). Therefore these results agree with the QMC result as
far as U is small, U1,

It can be readily seen that ™" calculated with the FLEX and v'PP) ealculated
with the T-matrix approximation agree well with the exact result obtained with
the QMC! ; in particular, the T-matrix approximation is found to be accurate as
far as the uniform susceptibility is concerned. Furthermore, we examine which
one, Y (q) or x(q), approximates the wave number dependence of y(g) more

! The uniform susceptibility obtained with the QMC increases as U gets strong. It can be seen
that the second derivative of the uniform susceptibility with respect to U is negative near U = (.
(This was also obtained in the previous study [16].) This is wlhy, as scen in Fig. 3.6, the uniform
susceptibility x{*(¢) obtained with SOPT decreases at U324 and deviates from the exact résults for
larger U. The SOPT is thus a poor approximation for the large U region where the wave number
dependence due to the correlation effect emerges. The uniform susceptibility 1% +PP) obtained by
considering the contributions of the particle-hole seattering and of the particle-particle gcattering
also decreases as U becomes large for large I, Note that although the calculation of ylphtrp)

includes more processes than that of " and that of x(PP | this approximation is niot better than
the FLEX and the T-matrix approximation,
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closely. We then find that, while x"(¢) Las little dependence on ¢ like y74 ()
calculated with the RPA and does not approximate the wave number dependence
well, ¥ (¢) has a maximum at ¢ ~ 0 and is close to the exact results if the strength
of interaction U is replaced with a renormalized value U, i.e. x®(q; 0) ~ v(q; U)
for U =12, U = 6 as seen in Fig. 3.7. Moreover, it is found that as temperature is

0.25

021

2@

0.5}

0.1

0.05

O..
—t
o
ik
KN

Figure 3.7: Comparison of the static spin susceptibility x{g) obtained with the
FLEX at U = 6, with the T-mafrix approximation at U = 8 and with the QMC at
U =12, The results are for T = 0.5, N = 8 x 8 and n=0.180.

lowered, X" {q) gets flattened at g ~ 0 as x(*P4) does (See Appendix 3.E.). This
is in contrast to the exact results, Because of these observations, we use the FLEX
to study the wave number dependence of x(¢} at lower temperatures in the next
subscction.

3.2.3 FLEX at low temperatures

In this subsection we show x®"{(g) calculated with the FLEX at low temperatures.
The calculation is performed on a lattice with N = 32 x 32.

In Fig. 3.8, we show the static spin susceptibility x(g) obtained with the FLIEX
for different values of U for 7 = 0.1 and n = 0.1, Since the fermi energy e for

U =0atn=01is given by ep = 0.5, E{f = 0.2. It can be seen that a maximum at

¢ = 0 develops as the interaction U gets strong,.
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Figure 3.8: The static spin susceptibility ¥ (¢) obtained with the FLEX at T =
0.1, N = 32 x 32 and n = 0.1 for various values of I7.

3.2.4 Quasiparticle dispersion

From the previous QMC calculations and FLEX results, it is now almost clear that
the ferromagnetic wave number dependence of x(g) is developed by the correlation
effect as T' is lowered. The temperature where the FLEX calculation is performed is
still T' = 0.2e», which is not very low. One may then ohject that the ferromagnetic
wave number dependence is owing to a finite temperature effect and it will dimin-
ish at lower temperatures, Unfortunately, as the calculation including the vertex
correction is difficult to perform at lower temperatures, we cannot directly answer
this possible objection. We can, however, obtain an inference on the wave number
dependence of x(g) at lower temperatures by locking into the origin of the wave
number dependence.

First, we note that the effect of the vertex correction is negligibly small in the
FLEX (ie. x¥(¢) ~ x™(q)) as shown in Appendix 3.C. The spin susceptibility
Ya(q) is given by

iy 2Rlq) y
;\D(Q) - 1 — UP{]((_{), (3'3‘3)
where Py(g) is defined by
Ro(q) = = Y Glq+ k)G (k). (3.36)
£
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The wave number dependence is therefore rought about by the selfenergy effect.
The calculation of the selfenergy and Xg)h'}(q) can be carried out at lower temper-
atures. In Fig. 3.9, we show xP"(¢) at lower temperatures, T = 0.05 = 0.1lep,
together with y")(g) at T' = 0.1 = 0.2er. Note that a lattice larger by 10 times

0.3,

——x™q) T=0.05
——™q) T=0.1

0.2

Figure 3.9: The susceptibility x P (q) obtained with the FLEX at T = 0.05 = 0.1ep,
N =128 x 128 and U = 8.0, and the susceptibility y®" (g) obtained with the FLEX
at T =01=02ep, N =32 x 32 and U = 8.0.

is needed to go down to a temperature smaller by a factor 2. We can see that the
ferromagnetic wave number dependence remains at lower temperatures.

The selfenergy can affect the quasiparticle dispersion through its frequency de-
pendence and its wave number dependence. We show that the wave number depen-
dence of x(g) can be mainly accounted for by the wave number dependence of £(k).

a6



The quasiparticle dispersion E}, is defined by

Ey — & — Sk, By) =0, (3.37)

where we carry out the analytic continuation of the selfenergy from the Matsub-
ara frequc—m.cy~ iy, to the real frequency axis Z using the Padé approximation [17],
%(k,ig,) — L(k, Z). We denote the susceptibility of free fermions having the dis-
persion Ej by ¥(q)

27, _
Xlg) = -2 f (;};2 ! (‘%:’3 ng’"‘). (3.38)

It should be noted that ¥(g) contains no effect of vertex correction; the wave number
dependence of the selfenergy is fully considered, but the frecuency dependence is
ouly partly considered. The quasiparticle dispersion E,E,‘“ " obtained with the FLEX
at T = 0.1, N = 32 x 32 and U = 8.0, is shown in Fig. 3.10 together with a
parabolic curve. [t can readily be seen that E{_p ") deviates from the parabolic curve
and results in ferromagnetic wave number dependence in X" (g) as seen in Fig.
3.11. This demonstrates that the deviation of the quasiparticle dispersion E. from
a simple parabola accounts for the ferromagnetic wave number dependence of the
susceptibility.

In Fig. 3.12, is shown the dispersion E™ obtained with the FLEX at T =
0.05 = 0.1lep. It is again obvious that EP deviates from a parahola. The resultant
"M (q) is indeed of ferromagnetic wave number dependence (Fig. 3.13). From the
calculations of the susceptibility X[(f’h}(q) and the quasiparticle dispersion E,E.”M at
lower temperatures, it is clear that the ferromagnetic wave dependence is a genuine
feature at T' — 0, not a result of a finite temperature effect.

Lastly we also calculate the dispersion B and ¥ (q) using the results of
the T-matrix approximation. It is found that E,EP r) closely follows a parabola (Fig.
3.14) and the resultant 7" (g) has little wave number dependence {Fig. 3.15) as
expected.

3.2.5 Effective interaction

We calculate the effective interaction between quasiparticles mediated by spin flue-
tuations by using Eqs. (3.32) and (3.33). In the calculation we use the susceptibility
obtained with the FLEX at T = 0.1 and n = 0.1, For comparison, we also calculate
the effective interaction using the RPA susceptibility 2 .

? If the RPA is used, no effective interaction is generated in channels with finite angular momernta
at T' = () because of the independence of the susceptibility on the wave number at ¢ < 2kp. At finite
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T=0.1 N=32x 32

Figure 3.10: The quasiparticle dispersion E;{,”h) obtained with the FLEX at T' = 0.1,
N =32 % 32 and U = 8.0.

We find that the interaction in the s-wave channel is always repulsive and that
the most attractive interaction is in the d-wave channel or in the p-wave channel.
In Fig. 3.16, we show the ratio of strength of effective interaction in the p-wave
channel to that in the d-wave channel as a function of U, For US5, the d—wave
components is the most attractive both in the RPA and in the FLEX. In the FLEX,
however, the p-wave interaction takes the place of the d-wave one to become the
most attractive as U gets strong and a maximum of x(g) develops at g=0.

It should be noted that an attractive interaction does not necessarily imply an
occurrence of the transition to a superfluid state. We have obtained a finite attractive

teimperatures, the susceptibility weakly depends on ¢ at quQI:.p. This tead to a weak attractive
interaction in the d-wave channel,
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Figure 3.11; The susceptibility ¥ (q) obtained from the quasiparticle dispersion
EM at T =0.1, N =32 x 32 and U = 8.0,

interaction using the RPA. This is because we have used the susceptibility at a
finite temperature (T' = 0.1). Using this attractive interaction, we would obtain
a finite transition temperature, which would be much smaller than T = 0.1. At
this small temperature, however, the effective interaction calculated with the RPA
susceptibility will he much smaller, probably almost vanishing. This means a finite
transition temperature obtained with a finite temperature RPA susceptibility is an
unreachable possibility, What is important is thus that a finite attractive interaction
remains finite as T — 0. From the discussion given in §3.2.4, we can expect that a
finite p-wave attractive interaction remains finite and is possibly slightly lar gu that
the one obtained at a finite temperature,
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Figure 3.12; The quasiparticle dispersion EE”") obtained with the FLEX at T = (.05,
N =128 x 128 and U = 8.0.
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Figure 3.13: The susceptibility " (q) aobtained from the cquasiparticle dispersion
EP at T =0.05, N = 128 x 128 and U = 8.0.
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T=0,1 N=32x32

Figure 3.14: The quasiparticle dispersion E” obtained with the T-matrix approx-
imation at 7 = 0.1, N = 32 x 32 and I/ = 8.0.

62



0.3 LA T S IS Ay e T

0.2 4

x®P(q)

Figure 3.15: The susceptibility $®P}(q) obtained from the quasiparticle dispersion
EP at T =01, N =32 x 32 and U = 8.0.
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Figure 3.16: The ratio of strength of effective interaction ), in the p-wave channel
to that Ay n d-wave channel as a function of I/

3.3 Summary and discussion

In this chapter we have studied the static spin susceptibility y(g) and the effective
interaction between quasiparticles in the dilute two-dimensional Hubbard model hy
applying the quantum Monte Carlo method (QMC) and the fluctuation exchange
approximation (FLEX), The principal results to be drawn from this study are as
follows:

1. The FLEX is a good approximation in caleulating the wave number depen-
dence of the static spin susceptibility (at least where the reliable results are
obtained by the QMC),



2. A maximum at wave number ¢ = 0 emerges and develops in y(q) as the
interaction U gets strong.

3. A maximum at ¢ = 0 emerges and develops in x({q) as temperature is lowered,

4. The most attractive component of the effective interaction mediated by spin
fluctuations is the p-wave component in the strong coupling region where a
maximum at ¢ = 0 develops in x{g).

Baranov, Kagan and Chubukov [18, 19, 20] once studied the Cooper instability
in the dilute 2D Hubbard model on the square lattice, They calculated the effective
interaction in the Cooper channel with the second order perturbation theory, They

expanded the spectrum on the square lattice, & = —2t(cos ky, + cos ky), 6l higher
order terms. Expanding the spectrum ¢  till the sixth order terms, & = % -

5 d:ﬁg (k2 + ki) — 72{}“13 (k3 + k8) — 41, they found atiractive interaction was generated
in the d-wave channel. They further studied the Cooper instability taking account
of diagrams beyond the second order diagrams and found that the p-wave pairing
occurred in the strong coupling region. These results agree with ours in that the
p-wave pairing arises only when higher order diagrams are included in the effective
interaction.

Olnishi and Miyake [21] also studied the Cooper instability using paramagnon
theory in short-ranged interacting 2D fermion systems. They used the RPA sus-
ceptibility, but took account of frequency dependence and momentum dependence
of interaction more seriously.(They considered retardation effect and also removed
the restriction that the interacting particles were just on the fermi line.) They then
found that the d-wave interaction was the most dominant, Certainly the frequency
dependence of the effective interaction can he essentially important in discussing the
pairing instability. At the same time, strong correlation effect is equally important
in liquid *He. It is possible that the interaction in the p-wave channel dominates
over that in the d-wave one in the strong coupling region even when frequency de-
pendence is fully considered. Study taking account of both strong correlation effect
aud frequency dependence of interaction is an important sub ject of a future study.

The model and results obtained here ave directly applied to dilute *He films
where the radius of the hard core is much smaller than the inter-particle distance.
For dense 2D liquid 3He, use of a lattice model hecomes questionable. Morcover,
at high densities, the momentum dependence of the interaction potential should
be seriously considered in the calculations of susceptibility. For dense 2D 3He, a
microscopic theory which starts from a realistic potential such as the Lennard-Jones
potential is necessary, which is also a subject of future study.
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Appendix

3.A The quantum Monte Carlo method in the 2D
Hubbard model

The approach for simulating the grand canonical ensemble in the 2D Hubbard Model
was formulated by several anthors [7, 10]. In this section, we outline the algorithm
of the grand canonical quantum Monte Carlo method in the 2D Hubbard model.
The expectation value of a physical observable, O, is given by

Tr Qe FH
< O0>= ——, 3.39
Tre—#H ( )
where @ is the inverse temperature, and H is the Hamiltonian, The 2D Hubbard
model has the following form in real space,

H=Hr+Hu, (3.40)

where

nY

Hyp=—t 3. (al ajo + a}aaia) —RE> (it ny) = 3 ol Kyaje,  (3.41)

<i >0 i=1 <ijoo

and
N 1 1
Hy = Uz nip — 5) iy = ) (3.42)

2

Here aw(cff ) is the annihilation{creation) operator for fermions of spin & at site i,
Nig = a:raa,g, t is the hopping parameter, U is the on-site repulsion, ft is the chemical
potential, and N is the total nunber of the lattice points. The sum < ¢,j > is over
the all pairs of the nearest neighbor sites.

In order to perform numerical simulations, we first carry out the traces over the
fermion degrees of freedom. By Suzuki-Trotter break up, the partition function of
the system is approximated for large L >3>1 (L is the Trotter number) as follows,

Z=Tre™M=Tr H A~ Ty H eATHUATHE (3.43)

=1 (=1
where A7 = '@- Errors resulting from finiteness of A7 is known to be of the order of
(AT)2. The 1ntcmct1011 terms, exp (—ATHy), can be made quadratic in the fermion
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creation and annihilation operators by introducing a discrete Hubbard-Stratonovich
transformation

—ArU(n,—T—-l](n”_—L) _ 1 zarll —Ars; jaln;p—ni)
& 2 2/ = — ' it (18
5¢ ! > e , (3.44)
{s;1=41}

at each lattice point i ail% at each imaginary time slice I. « is defined by the
. T .

relation cosh (Ara) = el%57). The transformation reduces the problem to that of

non-interacting fermions in a time-dependent Hubhard-Stratenovich spin field Sil.

As a result, the trace over the fermion degrees of freedom can be preformed and the
partition function is given hy

Z= 3 detM'detM*, (3.45)
{si4=%1}
with
M°=I+B{Bf_,---DB7, (3.46)
and
;= oxp (—(sgno)ArS (1)) exp (—ATK). (3.47)
I'is the N x N unit matrix and Si;{f) = 6;;5,;. Then Eq. (3.39) can be written by
<O>= 3 <O>, P({sy}), (3.48)
{sig==%}

where < O >, is the expectation value for a fixed set of fields {s;;} and the proba-
bility distribution P({s;;}) is given by

det M Tdet MY
P({si}) = 7 : (3.49)

Since < O >; i3 an average for particles which interacts only with auxiliary fields
{s::} and not with each other, we can apply Wick’s theorem to it and < O >, can
be expressed in terms of the Green’s function,

Once the trace over the fermion degrees of freedom has been performed, we can
use standard Monte Carlo techniques to evaluate the right-hand side of Eq. (3.48).
We wish to obtain a sequence of spin configurations, {s;}, with the probability dis-
tribution P({s;;}). Now in order to update the spin variable s;; using any standard
algorithm, such as heat bath or Metropolis, we must calculate the change in the
probability distribution P({s;;}) when s;; = —s;;. Under this change,

A(D) = A°() = [T+ A3, 1)) A7 (1), (3.50)
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where A%(l) is defined by

A°(l) = Bf --- B{BY .- Bfy, (3.51)

and A°(4,1) is a matrix with only one nonzero element,
A(i 1) g = 8503, (eSBNI2ATes _ 1), (3.52)

The ratio of the probability distribution P({s;;}) after and before the spin flip is
given by

R = R'R, (3.53)
where
s detM

= Qoeage = Gt + GTMATLDAT)] = 1+ [1 - GOl A7, s (3.54)

Here G7(I} is the equal-time Green’s function for a fermion propagating through
the field produced by the s;y,

G ()i =< Ty [a,a(zm (AT >= [T + A7 (D))" (3.55)

The rate of the probability distribution P({s;;}) is expressed by only the Green’s
function, which is one of the most remarkable features of the algorithim. Thus we
can obtain < O > if we can calculate the Green’s function at an individual Monte
Carlo step.

We have now assembled all of the ingredients necessary to carry out simula-
tions. However, actually there are some problems ta perform simulations at low
temperatures. At low temperatures, the grand canonical QMC algorithm becomes
increasingly useless not only because the numerical effort to go to lower temper-
atures itself increases the computer time, but also because numerical instabilities
start to dominate at low temperatures. To perform simulations, we must compute
the Green’s function , i.e., the matrices A(1), to sufficient accuracy. This becomes
increasingly difficult as the temperature is lowered. For example, for the 2D Hub-
bard Madel with U = 0, the A7({) have cigenvalues as large as exp (4¢f) and as
small as exp (—4¢3). If we caleulated A7(!) simply by multiplying B, iteratively in
Eq. (3.51), therefore, round-off errors would dominate and no reliable results could
be obtained at low temperatures such as at § = 2/t, where we carry out the calcu-
lation. To avoid this difficulty, we have to separate the contribution from the large
eigenvalues and that from the small eigenvalues and perform the 11111!1:11)110&1;1011 in
Eq. (3.51) cazefully.

This problem can indeed be dealt with a rvelatively straightforward manner using
matrix factorization methods [7, 10}. Suppose that one can multiply m of the BY
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without losing nmmerical aceuracy. We then use the Gram-Sclumicdt orthogonaliza-
tion procedure to write this product in the form

a.‘lj(l) = a+m ?+m.-—l T B?-H = UTDTR‘]TB (356)

where U7 is an orthogonal matrix, DY a diagonal matrix, and RS a right triangular
matrix with diagonal elements equal to one. The orthogonal matrix UY is necessarily
well conditioned and R{ need not be well conditioned, but in practice it is. Only

the diagonal matrix DY has large variations in the size of its elements, We next
form

(ég U) = ;J+2m b B?—H = B?-{-Qm e B?+111+1UCIID?RCII$ = UngRg (3‘57)

The order of operations in Eq. (3.57) is important, We first multiply UJ by

tram *  Blymarr By asswmption, m is small enough so that this matrix can be
computed accurately. We then multiply it on the right by DY. This only rescales
the columns of the matrix, and thus does no harm to the numerical stability of the
next step, a UDR decomposition of this partial produect. We then multiply the
resulting triangular matrix on the right by R to obtain the last line of Eq. (3.57).
This process is repeated ;LT; times to obtain,

'

AN =a% () =ULD%L R%. (3.58)
m we n m
Thus these numerical instahilities are suppressed by the U DR decomposition scheme.
For the present simulations where a temperature is lowered down to :5-, We can remove
the numerical instabilities efficiently by the UDR decomposition schemie.

Another possible obstacle to go down to low temperatures is the “negative sign”
problem. So far we have implicitly assumed that P({s;;})} is positive semidefinite so
that it can be regarded as a probability distribution function. Unfortunately, this
is not always the case for fermion problems because of the anticommuting nature
of fermions. In cases where the probability distribution P({s;;}) Is not positive
semidefinite, one uses |[P{{s;;})| as the probability distribution, and the expectation
value of an observable O is calculated as

< Ospgul? >|p
< sgnP >py

<O >p= (3.59)
where the subseript P and | P| indicate averages taken with the distributions P({s;})
and |P({s;})|, respectively. However, if the average sign, < sgni’ >p|, is close to
zero, this estimator for < O >p is very noisy. Generally the “negative sign” proh-
lem is very serious for simulations of fermions at low temperatures because no useful
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means to overcome it is discovered. In the dilute limit, the “negative sign” problem
is not so serious. Actually, in the present study we do not go down to the low-
temperature regime where the “negative sign” prohlem becomes serious, because
ﬁnl‘re size effects become too large for the results to be reliable before the “negative

sign” problem gets serious. In the present simulations, the probability distribution
is almost positive-semidefinite,

3.B  Aslamasov-Larkin diagrams in the irreducible
four-point vertex function

We neglect contributions of Aslamasov-Larkin (AL} diagrams and consider only
contributions of Maki-Thompson diagrams (MT) in the irreducible four-point ver-
tex function because of difficulty of calculations. While there is one spin fluctuation
propagator in MT diagrams, there are two spin fluctuation propagators in AL di-
agrams. Therefore, at first sight, it appears that contribution of AL diagrams is
greater than that of MT diagrams when spin fluctuations are strongly enhanced
and that an approximation omitting AL diagrams is a poor one. In this section, it is
argued that contribution of AL diagrams is at most of the same order as contribution
of MT diagrams when spin fluctuations are strongly enhanced [22].
In the FLEX, there are six kinds of AL diagrams:

74 (g by ) =
L @ e, k) + A ) + v (s ke, &)
~yim e kY = v (g k)
—iii @k k), (3.60)

Each contribution is expressed as (See Figs. 3.17(a)- Fig. 3.17(f).}

B gy b, &) ; G UPmo(k + ¢ — k")
xUPm, (K — R)G(E + k" — k), (3.61)

Hart (@R K) = 3 G + Q) UPmo(k — &)
kh’
xUPm(K" + ¢ — K)G(k + K — k"), (3.62)

i (a3 koK) =
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Figure 3.17: Diagrams 11(1[1)1e°se11t111g AL cha%l‘}ms The wavy hue‘}c%noeents Un,,
U, or UMl,. (a) 'yﬁﬁ'" (q; k, k"), 'T*ijrfjr’ (q; k, k™), (c) fyﬁﬁ‘ (g ky k™), ()

\Ld AL, Lk AL ]
A (g ke k), (e) Y5 (g ke, k), a.nd () o (a by k7).
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xU2S GU[1 + Ul (k + g — &)
kl
X1+ UL (K" — k)] - 1}G(K + k" — k), (3.63)

ALd
el (A NSE

xU* Y GK" + g){[L+ UL (k — k)]
kH

X[1+UILK + ¢ — k)] — 1}G(k + K — &), (3.64)

(#ALe
’YﬂJ,T )(ff: ky KTy =

XU2 S G + Ure(k + g — k"))
k”

X[1+ Ul — k)] — 1} G + k" — k), (3.65)

Ny @k, W) =
U S G + ) {[1 + Ure(k — K]

AII
X[L+ Um (K" 4 ¢ — k)] — L} G(k + & — k"), (3.66)
where m,(¢) and 7.(¢) is defined as
1
o(¢) = 5(Ie(¢) + Ts(a), (3.67)
and l
me(q) = —5(e(e) — s(). (3.68)
If spin fluctuations are strongly enhanced, m, and @, can be approximated as
1
Ta(a) ~ 5TL(q), (3.69)
and ]
me(a) ~ ;1L (). (3.70)

Furthermore, if ferromagnetic spin fluctuations are strongly enhanced, Il,(¢) has a
strong maximum IT% at ¢ = (¢ = 0,w, = 0) and II,(¢) in Eq. (3.61)-(3.66) can be
approximated as

II,(g) = I3dq,00u, 0- (3.71)

Bach term, Eq. (Ad) (i=2,...,7), is of O(II}?) while contribution of MIC diagrams
is of O(IT¥). However it can be readily confirmed that the leading terms cancel each
other and that contribution of AL diagrams turns out to be of the same order as
that of MIC diagrams.
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3.C Effect of the vertex corrections

We give brief comments on the effect of the vertex corrections in this section. When

the vertex corrections are neglected, i.e. K_{(q; k) = 1, the spin susceptibility xo{¢)
is given by '

Cn_ 2B(q)
where Py(q) is defined by
Pylg) = — Y Glg+ k)G (k). (3.73)

k

As seen in Fig. 3.18, we find that the effect of the vertex corrections of MT
(Maki-Thompson) type is negligible in the FLEX, i.e. Y% (g) ~ x")(¢). The wave
number dependence of x™*)(g) is caused hy the effect of selfenergy LM,

On the other hand, in the T-matrix approximation, the effect of the vertex
corrections of MT type is quite large. As seen in Fig. 3.19, without taking account
of the vertex corrections, one would considerably overestimate the susceptibility.
Only with vertex corrections, one can obtain reasonable results for the susceptibility
with the T-matrix approximation.

3.D Effective interaction mediated by spin fluc-
tuations and charge fluctuations

We give the expression of effective interaction mediated by spin fiuctuations and
charge fluctuations in this section. In the static Himit, [y, opaq0, (0; &y b=
I‘Uldwwl(q,lwn,k iEm, k", ig") — | R 10 0 A N the effective interaction V'
mediated by spin fluctuations and charge fluctuations can be written as second-
quantized form

- 1 =
V=5 2 Clamme(ak k)
k. k', g “
1.
% Z + . La’la‘]" _+_ q.o1 (ﬂkl o5 (3.74)

where I‘mama , 15 a four-point vertex function which represents spin fluctuations and
charge fluctuations. In this section, the function T oi0y090s A Do gponar, are defined
as the four-point vertex function which represents spm fluctuations and charge fluc-
tuation. A difference between Ty os050s a1 Doyopagay 18 that while Iy ayas0, includes
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Figure 3.18: The susceptibility yv¢"" (¢) and x@®"(g) obtained with the FLEX at
U=8,T=01N=32x32and n=0.1.

diagrams which split into two distinct diagrams when one interaction line is cut,

T'oion do not include those diagrams. [t is convenient to separate 17 into two
G\ 09030

terms, referring to the triplet channel and the singlet channel

~

1

V=5 > Vilakk)

2k,k’,q

% Z’a’ikl '+' q:o'aL.J'ﬂk: + qla,ﬂkﬁv"

1
+3 Yo Vilaik, k)
k,k"}q

1 i
X Zak, + ok + qoRl o
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Figure 3.19: xP (g = 0), (g = 0) and y@¥C) (g = 0) are plotted as functions

of U. All results are for T = 0.5, N = 8 x 8 and n=0.186.

where
Vi(a;k, k)
= % (T(gs by k) = Do (K — ki b o+ @)
+ i(f‘—(q;k,k')-f‘-(k’~k;k,k+q)), (3.76)

Vilg: k, k')
_ 1w N
3 . .
— 7 (P-(gsh, k) + T (k' — kik, k +q)), (3.77)

( the subscript 4 indicates Op = Opqq & Ogyyp). In Eq. (3.74) and Eq. (3.75),
the wave function renormalization zj, is neglected for simplicity, zj, = 1. Although
zp, I8 important for determining the fransition temperature, z can be neglected in
discussing the relative intensity of the effective interaction in the d-wave channel to
that in the p-wave channel owing to the isotropy of system, zj, = 21k

The four-point vertex function f‘i(q, k, k') satisfies the following relation:

Talqi ey k) =Talq; ky k') + Kolq; B )= (q) Ke(g; k), (3.78)
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where /Cy(q; k) is the three-point vertex function which is defined in §3.1 and J*(q)
is defined as
U

7 = 5Ey

When spin fluctuations are much greater than charge fluctuations, i.e. |f‘+| < |f_|,
[’} can be neglected. Furthermore, since the main factor of the enhancement of spin
fluctuations is a small denominator (1—UP_-(g)) in Eq. (3.79), |T_| is much smaller
than the second term. I'_(g)can thus be approximated as

(3.79)

C(gik, B') = K_{q; k)]~ (K- (g k) (3.80)
Then the effective interaction v,(k, k') in the triplet channel is given by
w(k, k) = i [P(k— Kk, &) = T_(k + K K, &)
= llI [F (R, K'Y~k — K K2 (R, )
— KK k)J"(k+ k)K= (-K k)], (3.81)

where K*(k, k') = K_(k — k’;k'). Similarly, the effective interaction v,(k,&') in
the singlet channel is given hy

vyl k) = _% [k = k3o, ) + Byl o+ 3 K, )
_ ,._% (K (e, k)T~ (b — K)K™ (Jy )]
+ KRk k)T (kB (—K k)] (3.82)

K*(k, k') represents “vertex corrections” [23]. Migdal once showed that “ver-
tex corrections” in the electron-plionon interaction could be neglected (23], i.e.
| — 1| = O(yme/Mion) € 1 (m, is mass of electron and e, is mass of ion}.
However, it is not obvious that ”vertex correction” in the interaction mediated by
spin fluctuations can be neglected. In this study, We simply put K~ = 1 expecting
that the wave number dependence of the interaction, which is the key element to
determining the relative intensity of interaction in channels with different angular
momenta, is mainly determined by the wave number dependence of J(g). The fi-
nal expression of the effective interaction in the triplet channel and in the singlet
channel are then given by

wlk k) = - [J (k- k)= J (k+K)]

L

4
U2 , ,

= —= Ik~ &) = x(k + K], (3.83)
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vy(k, k') = —Z (77 (ke — k) + T (ke + &)]

3U 302
=5 + T[X(k — kN + vk + KN (3.84)

3.E x(¢q) Obtained with T-matrix approximation
at low temperatures

In Fig.3.20, we show the static spin susceptibility x#” (q) for different values of U
for T = 0.1 and n = 0.1. ¥ (¢) has little dependence on g at ¢=2kp like YN (g)
obtained with the RPA. y#(q) is close to x{#4}(q) if the strength of interaction U
is replaced with a renormalized value U*, i.e. Y®P (q; U*) ~ x BN (; U) for U = 14,
U* == 3.7 as seen in Fig. 3.21.

0.3 -

0.25

Figure 3.20; The static spin susceptibility ) (g) obtained with the T'—matrix
approximation at T = 0.1, N = 32 x 32 and n = 0.1 for various values of U.
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0 05 5 25835

Figure 3.21: Comparison of the static spin susceptibility v (g) obtained with the
T—matrix approximation at U = 14 and x(*1) () with the RPA at U = 3.7. The
results are for T = 0.1, ¥ = 32 x 32 and n=0.1.
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