Chapter 2

R-matrix Theory

The reaction(R-) matrix theory was developed by Brueckner and others to discuss
nuclear matter and liquid 3He in 3D [1}. They calculated the effective interaction in
3D liquid *He using this theory and found that the interaction in the d-wave channel
was the most attractive. Now it is known that their conclusions were incorrect [2].
The major reason for the failure is that the R-matrix theory cannot take proper
account of the effect of spin fluctuations, which are strongly enhanced in 3D liquid
4He and generate the effective attractive interaction respounsible for the occurrence of
the p-wave superfluidity. The R-matrix theory takes account of only the two-particle
correlation.

In contrast to 3D 3He, one can change the areal density pap of 2D *He consid-
erably; for example, the areal density pyp of submonolayer 2D 3He on graphite can
he changed by a factor of about 5, 0.01A=25 0,5 50.06472 [3, 4, 5, 6, 7, 8). In 3D,
the density can he hardly changed and the uniform susceptibility, which is a good
measure of the correlation effect of the system, is always strongly enhanced. In the
dilute 2D *He, the enhancement of the uniform susceptibility is modest [4]. It is
thus clear that the R-matrix theory is valid for 2D *He at least in the dilute limit.

We apply the R-matrix theory to 2D liquid *He to calculate the effective interac-
tion and the possible transition temperatures. In Subsection 2.1.2, we introduce the
R-matrix approximation, where the effect of the surrounding particle is considered
only through the fermi distribution function, i.e., through the restriction of the phase
space available for two scattering particles (holes). Neglect of the fermi distribution
function reduces the R-matrix approximation to the simple scattering problem. We
calculate the effective interaction between 3He atoms and estimate the superfluid
transition temperature. In Subsection 2.1.3, we study the effect of the swrounding
atoms hy introducing the selfenergy which is made of the particle-particle (hole-
hole) T-matrix. In principle, the T-matrix has to be calculated self-consistently,
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and the R-matrix has to be calculated using the dispersiou of quasiparticles, which
is readily obtained once the selfencrgy is calculated; the R-matrix obtained in this
way is called the K-matrix [1]. We call the method using the I-matrix the K-matrix
approximation. We also calculate the effective interaction using the the K-matvix
approximation,

2.1 Formulation

2.1.1 Model Hamiltonian

We begin with the second-quantized Hamiltonian

HA = Z‘fkfi‘fk‘,”ka

v

: t f
+ 5;V(|Q|)k§ '“L’:+qa“k’_qa:“k’af”’ka’ (2.1}

where « kq(a}ca) is the annihilation(creation) operator of a 3He atom of momentum
k = (k,, k) and spin o, & i is the kinetic energy measured from the chemical poten-
tial p, &g, = %‘%—y and V'(|q|) is Fourier transformation of the interaction potential
V(r) between He atoms. Here my is the atomic mass of 3He.

The interaction between *He atoms is a combination of a hard core repulsion at a
short distance and the weak van der Waals atlraction at medium and long distances.
The Lennard-Jones potential {9, 10] is used as the interaction potential between ¥He
afoms,

Vi) =de |52 - (2] 22)
r r
The parameters ¢ and € are o = 2.56A4 and € = 10.2 K respectively.

A technical problem with the Lennard-Jones potential is the strong divergence
for small r (a hard core). To avoid it, we use a modified potential, which is free
from the divergence at v — 0,

Ar’ + B 0<r<r,
Vir) = (2.3)

45{(‘;’"?)12*(5)6] P>,

'

where A and B are chosen so that V{r) and its derivative become continuous at
r = 7. In Fig. 2.1, we show the modified potential for 1, = 0.90.
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Figure 2.1: The modified Lennard-Jones potential for v, = 0.9, which is free from
the divergence at » — 0.

We must confirm that results are independent of r,. We find that as », decreases
the results such as the effective interaction converge to constant values; the con-
vergence is almost complete for r,~0.8¢, In Fig. 2.2, we show the dependence of
the effective interaction A,, on r. for pop = 0.02042 and g. = 0.2ep (See the next
subsection about the definitions of A, and &.), As seen in Fig. 2.2, the convergence
is almost complete for r.~0.80. In the following, we present results obtained for
re = 0.30.
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Eigure 2.2: Dependence of the effective interaction Ay, on r. for pap = 0.0204-2 and
E. = 0.25p

2.1.2 R-matrix approximation
WWe introduce a vertex function T(K; k, k') satisfying the integral equation

TUEGRE) =V (k= K} =3 V(E =GO GO(K - ENTICGE, K, (2.4)
LH .

Wwrhere we use the following abbreviations: k = (k,ig, ) and Ty = E EpXn Where g, =
(2n41)xT with T being temperature and n being integer and S is thc system volumne,
“Which is assumed to be unity in the following. Equation (2.4) is diagrammatically

&iven in Figs. 2.3. G%(k) is the Green’s function of a non-interacting fermion,

1

GO (k) = ——. 2.5
0= (2.5)
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Figure 2.3; Diagrammatic expression for the integral equation to be satisfied by
a vertex function 7(/;k, k'), The dashed line represents the interaction and the
solid line represents the Green’s function G of a non-interacting fermion. On the
left-hand side, external lines are included for clarity.

In Egs. (2.4) and (2.5), spin indices are neglected. Note that a vertex function
T (I k, k') 18 not antisymmetrized.

As V{|q|) is independent of frequency, it can easily be seen that T(IK;k, &)
depends neither on g, nor on £,, and Eq. (2.4) is written as

TUCRE) =V (k=) =S V(k - B DLUCG KT (KGR K (2.6)
’\_,"

where

— (&) — FEK _k)
W — & —EK &

1
Z GORYGONK — k) = — , (2.7)
f(£) is fermi clistribution function and Q,, = 2maT" with m being integer,
As we are interested in the effective interaction between *He atoms of momentum
kpand —kp (K is the fermi momentum), we calculate T (k, k') = T(0; k, k'), which
satisfies the integral equation,

Tl k) = V(I — &) - Y v(lk — s 2 G

TR E).  (28)
o 28 g

It is noted that, in the absence of the exclusion principle, Eq. (2.8) is reduced to
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the two-hody scattering equation. At 7' =0, Eq. (2.8) is written by

_ Tl L
Tk, k) = V(i — &) - 3 LR

TR B, 2.9)
k" 2|§k”| ( ) (

As the potential V' (7) is short-ranged, it is more convenient to transform to the
coordinate space. We introduce the wave matrix Q(K) hy

T(K;k,E)=> V(k—k|) < E"|QUE)|KE > . (2.10)
kn

We define the wave function Wy, (K r) by

Vp(K;r)=<r|fUK)|k>. (2.11)
Then, Eq. {2.9) can be written in terms of ¥ [ a8
Vp(r) = ekr _ /erL(h’ — WV ('Y (e, (2.12)

where
otk 1

oo lkog(kr)

Lir) = 2’? el = %/0 TR (2.13)

Jo(z) is the Bessel function and W (0; ) is abbreviated by ¥, (r). Using Eqs. (2.10)
and {2.11), we can show

Tk, k') = f Pre= RV () (). (2.14)

Once Tk, k') is obtained, it is easy to calculate the effective interaction A, (m =
0,1,2,.-), where m stands for the magnitude of the angular momentum:

1 2 _ , .
A = 5= fo cos(my, g VT (ks Kp)dOp, e, (2.15)

where 8y, 4+ is the angle between & and K.

Thus far we have not yet discussed the singularity on the second term of the
right-hand side of Eq. (2.9} or Eq. (2.13). Now we have to specify how to avoid
the singulavity. We understand the integral on the right-hand side of Eq. {2.9) and
Eq. (2.13) as principal integrals; thus 7 (X &, &) is understood to be the R-matrix.
In fact, taking the principal part is not sufficient to obtain useful results for the
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effective interaction. To see this, suppose, for the momentum, V' (k) to be constant
Vo. Equation (2.9) is then easily solved and the solution is

= .. 15
kk)=T= 0
Thk) =T = S n IR

(2.16)

which simply vanishes at T = 0 because 2 L(%) logarithmically diverges. From
this it is difficult to obtain useful 111f01m'1t1011 on the effective interaction and the
transition temperature caused by it. We then introduce a cut off £, in Eq. (2.9) o
Eq. (2.13); for example, Eq. (2.13) is changed to

ikr
L(r) = L(r;e.) = o = _l"f a0ty =), (2.17)
g l>ee 2| (2m) S
where
1 x| >1
91(;];):{ : H 21 (2.18)

Then T(k, k') and consequently the effective interaction Am depends on the cut
off &, We can show, however, that the superfluid transition temperature hardiy
depends on the cut off e,. To show this, we again assume V{k) to be constant
and negative, V(k) = ¥, < 0.(constant V(&) induces only the Cooper pairing of
s-wave syminetry. Extension to deal with non-s-wave chaunels is straightforward.)
Equation (2.16) is then written as

Vol
Tk, k) = 1 — Np|Vp|In &7 (2.19)

where Ny is the density of states at the fermi surface,

ma

No=> 0 = . 2.20
0= 30060 = 5 (2.20)
Introducing gy by
1= Ny|Vp|In =£, (2.21)
£n
we can rewrite Eq. (2.19) as
- , 1
Tk, k'Y (2.22)

Npln &’
<0
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(We assume that g < &..). From this, we can see that the effective interaction A,
logarithmically depends on =,

1
NoAm & ——. (2.23)

In o=

On the other hand, having integrated out the high-energy process, £z > &, we
can regard A, as the effective interaction between atoms near the fermi swrface,
|65| < g.. We therefore obtain the expression for the trausition temperature T
as

1
7 =113, exp(— ——1. 2.24
c CY‘].)( J‘\rﬂ|Arn| ) ( )

Substituting Eq. (2.23) into Eq. (2.24), we finally cbtain
T gy, (2.25)

which does not depend on £,. We have indeed confirmed the insensitivity of the
transition temperature 7™ on ¢, (See Figs. 2.4}. In the following, we fix the value
of e, to be 0.2cp: £, = 0.2cp

In Appendix 2.A, we show that the estimation of the transition temperature 7,
using the method described above can be justified as far as T, € ep.

2.1.3 K-matrix approximation

We also use the K-matrix approximation to calculate the effective interaction, We
introduce a vertex function T'(K, k, k'), satisfying the integral equation

T(K k) =V(k—~K])~3 V(k—Ek')GEYGK — K"YT(K; k' &), (2.26)
LH

which is diagrammatically shown in Fig. 2.5. The dressed Green's function G(k) is
given by

1
G(k) = - ) 2.27
(k) = 1€y — & — L(k) ( )
where the self-energy (k) is given hy {See Fig. 2.6),
S(k) =23 Tk + Kk EYGRE) = YTk + k5 6, K)GK). (2.28)

ki R

The factor of 2 of the first term arises from the summation of spin. Spin indices
are neglected in Eqs. (2.26), (2.27) and {2.28). It should be noted that when the
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P op =0.03 (A7)
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Figure 2.4: Dependence of the transition temperatures, TS (solid circles) and T2
(solid squares), on the energy cut off ¢,

dressed Green's function G(k) is replaced by the Green’s function G (k) of a non-
interacting fermion, T(I; k, &) is reduced to T(K; k, k'),

Since T(I; k, ') also depends neither on €, nor on &,:, Bq. {2.26) is rewritten
as

Tk E)=V(k—K|) =Y V{(k—K')MEK; K"T(I; k" &), (2.29)
k” :

where

M(K; k) =T GURG(K — k). (2.30)

n!
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Figure 2.5: Diagrammatic expression for the integral equation to be satisfied by a
vertex function T(K, k, k). The dashed line represents the interaction and the solid
line represents the dressed Green's function G. On the left-hand side, external lines
are included for clarity.

Similarly, Eq. (2.28) is rewritten as

L(k) =23 Tk + Kk, B)G(K) — SST(k+ K1 k, KNG, (2.31)
kr k!

Equations (2.29) , (2.30) and (2.31) constitute self-consistent equations. How-
ever, it is difficult fo solve self-consistent equations (2.29) , (2.30} and (2.31) in a
continuous model hecause of the enormous computation time ! . In this study we
neglect the frequency dependence of the K-matrix for simplicity, i.e. T(K;k, k') —
T(K; k,k'). Since the summation of the frequency, 2, of the selfenergy can
then be performed analytically (See Eq. (2.36)), the numerical effort is suppressed
dramatically and we can solve self-consistent equations with a moderate numerical
effort.

We can easily show that the selfenergy also becomes independent of the fre-
quency, i.e. 3(k) = (k) and Eq. (2.31) is written as

L(k) = S(k) =23 Tk +kik, k) DGR =3 Tk + k' k, k)Y G, (2.32)

! In lattice models the self-consistent equakions can be solved since the FFT algorithin can he
appliecl (See the next chapter).

n!
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oK) =

Figure 2.6: Diagrams representing selfenergy S(k); (a) the direct term and (b) the
exchange term. The solid line represents the dressed Green's function G. External
lines are also included for clarity.

Since the selfenergy L(k) is independent of the frequency ie,, the Green’s function

G(k) is written as
1

Hk) = e 2.33
Glk) = 7= A (2.33)
where the quasiparticle dispersion Ey, is defined as
By, = &, + X(k). (2.34)
It is then easy to show
T G& B, (2.35)
and that
S(k) =23 Tk + Kk k) [(Ey) =3 Tk + &k E)F(E), (2.36)
kn’ ]\,J
and
1— f(£)~ f(E
MK k) = — H&r) = [ Epe k) (2.37)

W — By — Bpc_ kg
Substituting Eq. (2.37) into Eq. (2.29), we have
~ 1(By) = F (B _g)
Bpr+ B g =2
(2.38)

1
(K- ’u ’u |k kl Z ]\:" (I{';kﬁ’kl‘)

1
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where we replace if),, by a real number Z.

Although we have assumed that T(K; k, k') is independent of frequency, we still
have frequency Z on the right-hand side of Eq. {2.38), i.c., the approximation is not
self-consistent. To male the approximation self-consistent, we have to get rid of the
Z-dependence of Eq. (2.38) appropriately. It is reasonable to replace Z by the total
energy of the “incident” particles, Z = By, + Epe_ k. in Eq. (2.38). This is indeed
close to the approximation used by Brueckuer et al. [1].

It is again more convenient to transform to the coordinate space. We introduce
the wave matrix Q(K) by

T(K b, ) = ZV b — k7)) < k' — mfz‘im(rf)w— T (23

We define the wave function I () by

- - K
"Ifk.,(K; r) =< T!Q(I{)lk ) > (2.40)
Then we can obtain
T(K;k,k') = /d?,,.e—i(k—gl-’F‘V(,.)ﬁ,fk,(lr{; T). (2.41)

Equation (2.38) can he written in terms of ¥ p(ICr) as

U (K;r) = itk Eyp _ f Pr' MK, Zr — YV ()T g, (K 7) (2.42)

where | HE Ve )
- _-Ig__. “] K Jat L
MK, Zir)y= -3 Z—Eg k 7 stk cik i (2.43)
k“ ..«.I.g.._k" I:;—{-I—k"
and
Z=Ep p+Eg. (2.44)
Note that k - %:— is the relative momentum of the scattering particles.

Since there is a singularity on the second term on the right-hand side of Eq.
(2.38) (or Eq. (2.43)), we have to specify how to avoid the singularity. The method
we use here is to replace

¥ (2'45)



where 2 is the energy denominator in Eq. (2.38) (or Eq. {2.43)) and § is a small
positive value,

In fact, it is still difficult to obtain a self-consistent solution for Eqs. (2.36),
(2 41}, (2.42) and (2 43). We then make the following approximation closely follow-
ing Brueckner et al. [1]: (1) we replace to(K; k") =1~ f(EK k") - f(EI{+k")

with its angular average in Eq. (2.43);

1 2
to(EGK") o t(IGE") =<< (K k") >>= Py fo d8 g grto(EC K"). (2.46)

We easily obtain to{ I &),

( K
!\:”"f' il <1\41—‘

1 — (]2
-1 + - ’uct‘m i k2 4 < kp < K7 2
to(K K" = | ‘/_IT\TQ Y e (2.47)
_ / {
lwgalctm | | |!h”__m| <kp < Luz_i_T

Y A
L 1 ) I‘JI = 9
where )
2 w , I*
= A”I’{k — (A" + T)] (2.48)
(2) Furthermore, we consider the polynomial expansion of Ey,, By, = Ey + Ak? +
BiA 4 ..., Then << E,I§m+k” + El}:_k" >> is written by
v+ E w > 2.49
<< Egi_k + Iz_{_k ( )
"2 K2 H2 *Kg 2 2
o~ 2[Eg + AR + "II") + B(k +~4—) ]+ 2B << (k- K)*>>  (2.50)
K? K? L, o oo
= 2[Ey+ A" + T) + B{K"™ + —4—)2 + -§k K~ Eg, + Fr_, (2.51)
where
"2 12 F2
K \IW + -{;— L 21‘ (2.52)

Resorting to approximations (1) and (2), we have

o " 4y o
1 Zir) = o [ i PO E RRRDAER) - g

» L/ .
M(k+E', Z;r) = M( Z —Ex, — By
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that is, M(k+ k', Z; ) depends only on magnitude of |k + K| and of . We finally
have the self-consistent equations to be solved;

Ep=§,+2 > T4k k) — > T4k k), (2.54)
(k' |<kp &' |<tkp
> I :(M)T 2 ] N T t
Up(lk+&|r)=¢""3 - fcl rM{|k -+ K| Zs |l — )V (Vg (lk + K0,
{(2.55)
1 fpos (Z—Ex, — Ex.)
1/1' k kn’ ,Z; Y = __f [kﬁk”t 2 ! 'k” - L .r
4 (| + ?) 2?1' 0 ( {}(“" + I" I! )(Z'—Ef{+ —_ Ej(_)g +62‘r (2 OG)
and
. ok N
Tk+k: k k)= fdzfre"'( A )'rV(v")‘nIikrﬂk + k'|;7), (2.58)

where we use the relation, Wy (k4 k';7) = ¥p(|k+ &'|; ). Once Ey, is obtained by
solving self-consistent equations (2.54), (2.55), (2.56) and {2.58), we easily obtain
the effective interaction A,,,

- 1 2 _
A = hﬁ./o df cos{(m8)T'(kp, "’,.«), (2.59)

where T(k, k') is given by

_ Vlk —&") -
Tk, K'Y =V(|k— k| — 5 —————(I |)’I'(k'”, k). (2.60)
12, o 2|Ek:r|
k” L
The superfluid transition temperature f‘c("') is given by
T == 1,182, exp(-— = , 2.61
) D( Nulx\m.l) (2.61})
where Np is the density of states at the fermi surface,
~ kp 1
k an ('?j‘jgi)k=kﬁ
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2.2 Results

2.2.1 R-matrix approximation

In this subsection, the results obtained with the R-matrix approximation are shown.
We calculate the effective interaction and the superfluid transition temperatures for
0.00511_2'5/)2050.055;1‘2, which is the experimentally accessible arcal density of 2D
He.

We solve Eq. (2.12) for ¥p{r) for 0 < r < R with R = 30. The integration
on the right-hand side of Eq. (2.12) is discretized: R = N, A, and 27 = Ny We
show results obtained for N, = 80 and N, = 30.

In Fig. 2.7, the effective interactions A, are shown as functions of the areal
density; the cut-off £, is fixed at £, = 0.2ep. When the areal density pap is low,

0 0001 002 003 004 003

pap A

Figure 2.7: The effective interactions A,, as functions of areal density pap.
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P2350.033;1“2, the effective interaction Ay in the p-wave channel is the most attrac-
tive. When the areal density pap is high, popR0.033 A2, the effective interaction s
in the d-wave channel is the most attractive. For 0.005A2 5102950-055;1‘2, we find
no a£t1'acti\:e interaction in the s-wave channel. We find, however, in the dilute limit,
p2ap~0.003A72, the effective interaction in the s-wave channel becomes attractive.

Next we estimate the superfluid transition temperature by Eq. (2.24), In Fig.
2.8, the superfluid transition temperatures TSV and 7¢? are shown as functions of
the areal density. The transition temperature to the p-wave superfluidity is 1-10
mI< for the low density region, papS0.0334-2,

30 ———————————
—&— m=1
-k~ =2

0 001 0.02 003 004 0.5

pan (AP

Figure 2.8: The p-wave superfluid transition temperature 7 (solid circles) and the
d-wave superfluid transition temperature T (solid triangles} as functions of arcal
density pap.
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2.2.2 K-matrix approximation

In this subsection, the results obtained with the K-matrix approximation are showmn.
The problem is to find a self-consistent solution of Egs. (2.54), (2.55), (2.56) and
(2.58). We obtain self-consistent solutions by iterations starting from the energy

]
3

dispersion of non-interacting particles, Ep=¢, = E&TT — . One iteration consists

of calculating the output energy dispersion Egmt) from the input energy dispersion

Egm. Firstly, using E’Sn), we calculate Eq. (2.56). The integration on the right-
hand side of Eq. (2.56) is discretized: 2

o<t<® g (2.64)
- — g GO

We then solve Eq. (2.55) to obtain W (I 7). The integration on the right-hand
side of Eq. (2.55) is discretized:

0<+ <30, A = ?l)_g and 0 < & < 2, Al = ?—g (2.65)

The mesh used for the calculation of Eq. (2.54) is

kr 27

0<K <kp, AF ==L and 0 < ¢ < 97, A0 = —, (2.66)
10 10
We calculate Eq. (2.54) to obtain Egmt) at the discretized values;
o
0< k< ko Ak = 77, (2.67)

where we choose %y to be 2kp. In Eq. (2.56), we need more Ep's than caleulated
using Eq. (2.54). For those E'y,’s, we use a spline interpolation and we put

k‘2
B =6 = -— —ufor k > ky. (2.68)

2m

The condition for the convergence is
1B — B < 0.1ep ~ 0.001ep for 0 < & < ko. (2.69)
? We use the following ahbreviation about a mesh:
ks —

b <kl o= B2 (2.03)

where k stands for a variable, ky and kg stands for the upper limit and the lower limit respectively,
and the mesh of k consists of N values.

29



In Fig. 2.9, we show the obtained quasiparticle dispersion £y, for several values
of the areal density. The results are shifted so that Ek:—kp = (), For comparison the
dispersion £, of a non-interacting particles is also shown. As the density increases,

< . . . .
the slope of Ey, becomes small for k~kp | fe., the quasiparticle effective mass my
increases in agreement with the experiment results [3]. The effective mass m} is
calculated by
2
ke
*
My = =g, (2.70)
di: 1k=kF

and is shown in Fig. 2.10 as a function of the areal density.

The transition temperatures Té”” calculated with dispersion Ey, are shown in
Fig. 2.11 together with 7™ obtained with the R-matrix approximation. For
2 D’S'O.OBOA_QL the p-wave transition temperature is the highest. The transition
temperatures 70™ are enhanced compared with 7™ obtained with the R-matrix
theory because of the enhancement of the effective mass, i.c., the density of states Ny
at the fermi surface. For pyp~0.020472) however, 4™ ~ T¢m implying that the
selfenergy effect is insignificant in this region. This means that the present theories
— the R-matrix approximation and the IC-matrix approximation — are quantita-
tively reliable in this region. On the other hand, for pgpsz.OQDA‘z, 'f'e(”‘J deviates
from T{™, In this region, the selfencrgy effect is important.

2.3 Summary and discussion

We have applied the R-matrix theory to two-dimensional ¥He on a flat substrate to
calculate possible transition temperature to a superfluid state. The R-matrix ap-
proximation gives the transition temperatures of the order of mI. For pzDrSU.OBB;l“Q,
the p-wave transition temperature is the highest. For pop~0.033472, the d-wave
transition temperature is the highest, In the K-matrix approximation, which takes
account of the selfenergy effect, the p-wave transition temperature is the highest and
remains of the order of mI< for pap~0.020A72. We find that the selfenergy effect is
irrelevant for the low density region, ps p~0.020472%. This implies that the present
theory is valid for psp~0.020472,

We neglect dynamical effects such as the damping effect of the selfenergy and
the retardation effect of the effective interaction in the present theory, These effects
will reduce the transition temperature to some degree. However, these effects are
expected to be small in the dilute region,

Since the system is two-dimensional, the transition will be a Kosterlitz-Thouless
(KT) transition [11]. The KT transition temperature T is generally smaller than
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1 H ——pap=0.005 A‘§
—o— |:@D=0.015A'2
—o— gm=0.025 A

13

k/kg

Figure 2.9; The quasiparticle dispersions F, obtained with the K-matrix approxi-
mation for several values of the areal densitypap: pap = 0.005472, pep = 0.015A~2

L . N }‘.2
and pap = 0.025A%, The results are normalized by the fermi energy ep = -, The

dashed line stands for the free dispersion & = —Ep.

2ms
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pan(A?)

Figure 2.10: The quasiparticle effective mass m3 as a function of the areal density

P2p.
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0 0.01 0.02

pa A

Figure 2.11; The superfluid transition temperatures T and T obtained with the
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the “mean field” transition temperature T,, which we have calculated. From the
theory of the KT transition, there is a jump of the areal superfluid density Ps{Trer)
at the transition temperature Typ. The areal superfluid density ps(Tpic) at the
transition temperature is given by £ (T‘;") = Q-Jﬂ- where Ty = 25020 W crudely

makg
estimate the difference of the two transition tempemtmes by T“_TJ‘ ~ P*‘g :3") =

2—”— From this, we can see that the difference of the two tnnsltlon temperatures
is neghglbly small when —qéfl < 1{12]. Therefore, the actual transition temperature
is reliably estimated by the “mean field” transition temperature T, if T. is of the
order of mI{ 3, -

Our conclusion is for pure two-dimensional systems. In fact, the actual system
is not free from the randomness of the substrate. It reduces the onset of non-s-wave
superfluidity and can localize *He atoms. To realize superfluidity, it is essential
to suppress the randomness. Another problem is a system size of 2D plane. If the
transition temperature is of the order of 1 mK, the coherence length of the superfluid
state is of the order of 100 A, The area of 2D plane has to be at least preater than
100 nm? in order for superfluidity to be free from the size effect, which is considered
to suppress the transition temperature. For example, howevel, the Grafoil surface
congists of many platelets, whose typical size is 40-100 nn? [5, 6], which is at most
the size of a Cooper pair. This can be one of the reasons why superfluidity has not
been observed yet although the temperature is lowered down to 100pI< [6].

Chubukov and Sokol [13] discussed the properties of liquid *He adsorbed on
graphite on the basis of Landau fermi liquid theory. They found that the dominant
attractive interaction was in the p-wave channel and estimated the p-wave transition
temperature to bhe of the order of mI for moderate areal density, The present results
are consistent with theirs, and provide a microscopic basis of their theory at least
in the dilute region.

The present theory can not be reliably applied to the high density region, pap &
0.020472, where correlation effect is important, and cannot predict anything on a
.supelﬂuld transition in that region. We helieve that a paramagnon theory, which
was successfully applied to 3D 3He {14, 15, 16, 17, 18], will also be useful in the high
clensity region, because spin fluctuations are also strongly enhanced there in 2D. We
study what type of paiving the strong spin fluctuations leads to in 2D in the next
chapter.

3 Tp is of the order of 1 K for the aveal density region of 2D 3He.
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Appendix

2.A The effective interaction and the estimation
of the transition temperature 7,

Here we reformulate the integral equation for the vertex function 7 (k, &), Eq. (2.8),
and show that the method of the estimation of the transition temperature 7, in §2.1
can be justified as far as T, & .

The integral equation for Tk, k') reads

Tk, k') =V(k -k - ZV |k — K"NL(k")T (K", &), (2.71)
where
Lk = 222 k) (2.72)
2¢,

at a finite temperature. The transition temperature T, is determined as the temper-
ature where 7 (kp, k') diverges (Thouless’s criterion). If the transition temperature
were similar in magnitude to e, it would be easy to solve Eq. (2.71) directly to
obtain the transition temperature. However, in the present case, the transition tem-
perature turns out to be much smaller than £p. In this case, one has to solve Eq.
(2.71) accurately at exponentially small temperatures to obtain the transition tem-
perature, which is a difficult numerical task, However, we can take advantage of the
fact that T, < ep and solve Eq. (2.71) accurately in two steps [19].
Equation (2.71) can also be expressed as a series expansion,

TkE) = V(|k—K|) ZV |k — ky |V L{R)V (| Ry — K|)

+ T V(e - kl Ba)V (1 — Ral) L(ko) V(g — K]
ki k.
+ o (2.73)

In the series expansion, each summation of wave number can be divided into the
summation near the fermi suiface and the summation far away from the fermi sur-

face,
PIEDIE DI (2.74)
L H

k
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where

Y= 3, (2.75)

L 1€, I <ee

and
o= 3 (2.76)
n Ifk|>5c

where an energy cut off £, is introduced. The choice of e, will be discussed later.
! . .
We define W{k, k') as the series where only the summations far way from the
fermi surface are included,

Wik,k) = V(k—k|) -

k) V{|ky — E)
Hy

+ D2 V(K — k) L(k)V (k1 — ko|)L(k2)V (ko — &'])

Hy Hi
F o (2.77)

Note that W{k, k') depends on the energy cut off .. One can readily see that
Wk, k') satisfies an integral equation, '

Wk, &) = V(k—K|) = S V(jk— K")LE"W(E" k). (2.78)

I”

In §2.1, we used the same notation T(k, k') even when the cut off €. was intro-
duced. Here, we introduce another notation Wk, k') to avoid confusion, Note that
then, strictly speaking, 7 (k,k’) in Eq. (2.14) and Eq. (2.15) should be written as
Wik, k). :

Now we rearrange Eq. (2.71) or Eq. (2.73) in terms of W (k, k). First we collect
all the terms where only one summation near the fermi surface is involved;

s1[) L{k 1)V (| k) — K'])

ZZ+ZZV |k — ko)L

L1 Ha fHy Lg

_(ZZZ"' ZZZ'}"ZZZ)V(M - "\‘-1|)L(k1)v(|k1 - ’GQDL(kQ)

Ihw He Hy Hy Lg M3 Hy, Hqa Ia

V(|ks — ka|)L{ks)V ([kg — K']) + - - (2.79)

— ko[}L(Ro)V {|ky — K

Denoting the wave number restricted to the vicinity of the fermi suiface by p, we
can sce that those terms are cast into the following expression,

-—ZW k,p)L(p)W(p, k'). (2.80)
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In Eq. (2.73), there are (n—1) summations of the wave mmbers (&1, kg, ++, Rno1)
inn the nth term on the right-hand side. Those terms where two of the (n — 1) sum-
mations of the wave numbers are restricted to the vicinity of the fermi surface are
similarly cast into the expression,

Lz ; W (k, p ) L(p )W (py, p2) L(p2) W(ps, k'), (2.81)

where p; and p, are restricted to the vicinity of the fermi surface. Extending these
arguments, we finally find that 7(k, k') can be expressed in terms of Wk, k') as

T k) = Wk k) = Wk, pILPW (21, F)

+ZZI’V '1" ) L(p )W (py, o) L(pa) W (pa, KT) + -+, (2.82)
Ly Ls

that is, 7 (k, k') satisfies the integral equation

Tk, k') = W(k,E)— > Wk, p)L(p)T(p, K'). (2.83)

i

In particular, the transition temperature can be determined by solving the integral
equation,

Tlke ) = W ke, K) = W ke, P LT (b, ). (2.84)

What we have shown thus far 1s just a formal rearrangement; instead of solving
Eq. (2.71) divectly, we can solve it in two steps using Eq. (2.78) and Eq. (2.83).
Now we show that we can easily calculate the transition temperature by using Eq.
(2.78) and Eq. (2.83) and by taking advantage of the fact T, < gp.

We can choose the cut off £, satisfying the condition T, €« &, € £y when
T, <« #p. Consequently, we can make two simplifications. The one is that we can
solve Eq. (2.78) at T = 0. Strictly speaking, we also have to solve Eq. (2.78) at
finite temperatures (TRT,), which would be a difficult task as mentioned before.
Temperature enters Eq. (2.78) through the fermi distribution function f(£z) in
L(k). As the wave vector k is restricted so that |£g| > €., we can safely put T =0
in L{k) and the resultant error is of the order of exp {—&./T%) (K 1).

The other simplification is that we can put the magnitude of the arguments p in
W {kp,p) and in T(p, k%) in the second term on the right-hand side of Eq. (2.84)
to be equal to kg, because . € €y

T(kp,kp) = Wkp, kp) — 22 W(kr, pp) L(O)T (Pr, k7). (2.85)
L
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Then, W(kp, k) and T(kp, k) are functions of the angle f between k r and k'
ouly, and can he expanded as

o0
Wkp, ki) = > 8, W, cos(m8), (2.86)
me={)
where 5o = 1 and s, = 2(m > 1) (T(kr, k) can also be expanded similarly).
Coefficients ¥, is expressed as

2w
Wa = é};/ COS(THB)I’V(kF, k';n)dﬂ, (287)
0

and we can see that Wy, = A,, (See Eq. (2.15), Note that in §2.1, we did not distin-
guish 7(k, k') and W(k, &'). Tn Eq. (2.15), we should use W(k, k') as mentioned
before). It is then straightforward to solve Eq. (2.85), and the result is

Tz —m (2.88)
= NgW, L '
where )

L. = fﬂ ‘ Etanh(%g—)df, (2.89)}

from which the transition temperature 7™ ig calculated as

1

Ti™ = 1,13z, exp(————). 2.90
c pr( NU T’T"rn[|) ( )

This is identical to Eq. (2.24) hecause W,, = A,,.
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