List of Tables

1. Introduction of some measurement sensors and their field array ······17
2. Daily mean integrated values of the energy budget components, partitioning of the available energy, and Bowen ratios
3. Diurnal characteristics of the net canopy CO ₂ flux ······68
4. Daily-integrated net canopy CO ₂ flux and water use efficiency72
5. Midday mean values of omega factor, Priestley-Taylor coefficient, aerodynamic conductances, and canopy surface conductances
6. Characteristics of the rectangular hyperbolic responses of hourly net canopy CO ₂ flux to incident hourly photosynthetic photon flux density102
7. Summary of nighttime net canopy CO ₂ flux in response to temperature ······106
8. Relationship between net leaf CO ₂ flux and incident photosynthetic photon flux density119
9. The linear model coefficients for the relationship between net canopy CO ₂ flux and incident hourly photosynthetic photon flux density120

List of Figures

1. Location of the experiment field ······12	,
2. Photographs of the ERC grassland in different seasons	3
3. A schematic representation of the micrometeorological observation mast	3
4. A flow chart shows CO ₂ concentration measurements19	
5. A schematic representation of temporal and spatial patterns of fluxes2	4
6. Recipient solar radiation and albedo35	
7. Air temperature and soil temperature36	
8. Wind speed and wind direction37	
9. Precipitation, soil water content and vapor pressure deficit38	}
10. Canopy height and leaf area index ······40	
11. The relationship between leaf area index and canopy height41	
12. Typical time traces of turbulent fluctuations44	
13. Energy budget closure check · · · · · · · 45	
14. Daily performance of the eddy flux measurement system · · · · · · · · 46	ı
15. Comparison between the latent heat flux densities estimated by the EC technique	
and those measured by a lysimeter ·····47	
16. A comparison of the diurnal sequences between evapotranspiration rate estimate	
by the EC and that measured directly by a lysimeter48	
17. Daily variations in energy flux densities and some microenvironmental variable	
during the period prior to canopy closure52	
18. Daily variations in energy flux densities and some microenvironmental variables i	
the early part of the closed canopy period ······53	
19. Daily variations in energy flux densities and some microenvironmental variables i	
the later part of the closed canopy period ······54	
20. Daily variations in energy flux densities and some microenvironmental variables i	
the flowering period · · · · · · · · · · · · · · · · · · ·	
21. Daily variations in energy flux densities and some microenvironmental variables i	
the senescence period · · · · · · · · · · · · · · · · · · ·	
22. Daily courses of the net canopy CO ₂ flux and photosynthetic photon flux densit	
for selected clear days in the period prior to canopy closure60	
23. Daily courses of the net canopy CO ₂ flux and photosynthetic photon flux densit	
for selected clear days in the early part of the closed canopy period61	
24. Daily courses of the net canopy CO ₂ flux and photosynthetic photon flux densit	
for selected clear days in the later part of the closed canopy period	
25. Daily courses of the net canopy CO ₂ flux and photosynthetic photon flux densit	
for selected clear days in the flowering period63	
26. Daily courses of the net canopy CO ₂ flux and photosynthetic photon flux densit	J

	for selected clear days in the senescence period64
27.	Diurnal variations in water use efficiency 74
28.	Relationship between energy balance closure and fetch-to-height ratio and
	relationship between energy balance closure and wind direction
29.	Daily variations in omega factor, Priestley-Taylor coefficient, Bowen ratio, and
	dryness index (DOY 151 to 159)84
30.	Daily variations in omega factor, Priestley-Taylor coefficient, Bowen ratio, and
	dryness index (DOY 204 to 216)85
31.	The relationship between net canopy CO ₂ flux and canopy evapotranspiration in
	daytime ·····88
32.	Diurnal trends in aerodynamic conductance, canopy surface conductance and
	stomatal conductance92
33.	The relationship between canopy surface conductance and photosynthetic photon
	flux density with respect to vapor pressure deficit93
34.	The relationship between the canopy CO2 flux and the canopy surface conductance
	at various air temperature ranges94
35.	The relationship between the canopy CO2 flux and the canopy surface conductance
	at various vapor pressure deficit ranges95
36.	The relationships between net canopy CO2 flux and photosynthetic photon flux
	density for the entire measurement period98
37.	The relationships between net canopy CO2 flux and photosynthetic photon flux
	density for various growth stages ·····99
38.	The relationships between net canopy CO2 flux and photosynthetic photon flux
	density under different air temperatures100
39.	The relationships between net canopy CO2 flux and photosynthetic photon flux
	density under different vapor pressure deficits · · · · · · · · · · · · · · · · · · ·
40.	The relationships between nighttime net canopy CO_2 flux and air temperature $\cdot \cdot 105$
41.	The relationship between nighttime net canopy CO ₂ flux and the sensible heat flux
	density107
42.	The relationship between water use efficiency and photosynthetic photon flux
	density109
	Comparison of the canopy-scale and leaf-level CO ₂ fluxes·······113
44.	Comparison of stomatal conductance and H ₂ O flux between the canopy and
	individual leaves·····114
	Comparison of the canopy-scale and leaf-level water use efficiency115
46.	Some microenvironmental variables during the canopy-level and leave-level flux
	measurements······116
	CO ₂ concentration above and within the canopy117
48.	Relationships between net leaf CO ₂ flux density and incident photosynthetical
	photon flux density

List of Symbols

ROMAN ALPHABET

```
the rate of net photosynthesis of the canopy
A_{\rm c}
          atmospheric CO2 concentration
С
ď
          fluctuation in CO2 concentration
Ca
          atmospheric CO<sub>2</sub> concentration
Ca_{hi}
          atmospheric CO<sub>2</sub> concentration at 2 m
Ca_{lo}
          atmospheric CO<sub>2</sub> concentration at 0.25 m
Ci
          intercellular CO2 concentration
C_{\rm p}
          the specific heat capacity of air at constant pressure
DI
          the dryness index
Ε
          the rate of evaporation
EF
          evaporative fraction in the available energy
ET
          evapotranspiration rate
          the conversion factor for CO<sub>2</sub> from ppm to g m<sup>-3</sup>
f
F_{\mathbf{c}}
          the integrated net CO<sub>2</sub> flux over the canopy
F_{\rm c2000}
          the integrated net CO<sub>2</sub> flux over the canopy at PPFD = 2000 \mu mol m<sup>-2</sup> s<sup>-1</sup>
F_{\mathbf{s}}
          the vertical flux density of any scalar above the canopy
G
          the heat flux density into and out of the soil
          aerodynamic conductance
ga
          canopy surface conductance
ge
          stomatal conductance
gs
          stomatal conductance of leaf
g_L
H
          sensible heat flux density
          mean canopy height
h_c
          von Karman's constant
k
L
          the latent heat of vaporization
LE
          latent heat flux density
          the equilibrium evapotranspiration rate
LE_{\rm EO}
LE_{\mathsf{IM}}
          the imposed evapotranspiration rate
P
          the energy consumption by photosynthesis
P_{\rm n}
          net photosynthesis rate
          the specific humidity of air
q
```

q'	fluctuation in the specific humidity
Q_{10}	the temperature coefficient
Q_{n}	available energy
R_{d}	the hypothetical mean dark canopy respiration (soil plus plant)
R_{D}	the canopy respiration (soil plus plant) in the daytime
R_{N}	the canopy respiration (soil plus plant) at night
R_{N0}	the canopy respiration (soil plus plant) at night for a reference temperature T_0
$R_{\rm n}$	net radiative flux density
S'	fluctuation in scalar concentration
T	temperature
T'	fluctuation in air temperature
T_0	a reference temperature
$T_{\rm a}$	air temperature
T_{L}	leaf temperature
T_{len}	mean time length for net carbon gain
T_{s}	soil temperature
TR	transpiration rate
и	wind speed
u*	friction velocity
w	vertical wind speed
w'	fluctuation in vertical wind speed
z_{oh}	the roughness parameter for transfer of sensible heat
z_{om}	the roughness parameter for transfer of momentum

GREEK ALPHABET

α	Priestley-Taylor parameter
β	Bowen ratio
γ	the psychrometric constant
Δ	the slope of the saturation water vapor pressure vs. temperature curve
ΔC	the amount of CO ₂ stored in the canopy
ΔS	the net physical storage of energy
ρ	the air density
Ω	omega factor

List of Abbreviations

BOREAS

the Boreal Ecosystem Atmosphere Study

DOY

day of the year

EC

eddy correlation

EFEDA

the ECHIVAL Field Experiment in a Desertification-Threatened

Area, the European field experiment in desertification-threatened areas

ERC

the Environmental Research Center

FACE

Free Air CO2 Enrichment

GAME

the GEWEX Asian Monsoon Experiment

GAME- HUBEX

GAME- the HUaihe River Basin EXperiment Processes

GAME-Thailand GAME-Siberia GAME-Tibet

GEWEX

the Global Energy and Water Cycle Experiment

GCMs

General Circulation Models

HAPEX

the Hydrological-Atmospheric Pilot EXperiment

HAPEX-MOBILHY

the Hydrological-Atmospheric Pilot EXperiment-Modelidsation

du BILan Hydrique

HAPEX-SAHEL

the Hydrological-Atmospheric Pilot EXperiment-Sahel

HEIFE

the HEIhe River Basin Field Experiment on Land Surface

Processes

HIFE

the ISLSCP Field Experiment

IGBP

the International Geosphere-Biosphere Program

ISLSCP

the First International Satellite Land Surface Climatology Project

IRGA

infra-red gas analyzer Japan Standard Time

JST LAI

leaf area index

LCP

canopy light compensation point

LCP_{am}

canopy light compensation point in the morning canopy light compensation point in the afternoon

LCP_{pm} MOM

micrometeorological observation mast

MOT

meteorological observation tower

NDVI

normalized difference vegetation index

NEE

net ecosystem CO2 exchange

 NEE_{D}

net ecosystem CO2 exchange in the daytime

NEEN

net ecosystem CO₂ exchange at night

NOPEX

the Northern Hemisphere Climate-Processes Land-Surface

Experiment

OTC open top chamber
PFT plant functional type

PAR photosynthetically active radiation

PPFD photosynthetically active photo flux density

SHA vertical sensible heat advection
SiB the Simple Biosphere model

SPAC the soil-plant-atmosphere continuum

SWC soil water content

TABLE92 the Tsukuba Atmospheric Boundary Layer Experiment 92

TDR time-domain reflectometry
VPD vapor pressure deficit

VPD_L vapor pressure deficit at the leaf surfcae

WUE water use efficiency