Chapter 2. Weakly Hyperbolic Systems
with Holder Continuous Coefficients in Time

2.1 Introduction

There are few papers for the weakly hyperbolic systems. K. Kajitani got the
Gevrey wellpossedness for the weakly hyperbolic systems with Leray-Volevich'’s
weights{ see [Kal]). As for the analytic weliposedness P. D’Ancona and S.
Spagnolo treated the nonlinear weakly hyperbolic systems( see {DS1]}. Moreover
E. Jannelli treated the weakly hyperbolic systems with the coefficients which
belong to L}( see [J2]).

For the strictly hyperbolic systems E. Jannelli also got the result concerned
with the relation between the order of Gevrey classes and the regularity of the -
coefficients( see [J3]). In this chapter, we shall generalize his result to the weakly
hyperbolic systems and investigate the relation among the Gevrey wellposedness
and the regularity and the form of the matrices of the coefficients.
 We shall consider the following system in [0,T] x R

(2.1) Opu = }; Ap(t}opu -+ B(t)u

u(0, z) = up(z),

where Ax(t)(1 € h < n), B(t) are N x N matrices, while u(t, z), ug(z) are
N-vectors.

We denote by C*([0,T]){(0 < a £ 1) the space of o-Hdlder continuous

functions. Now we assume that
(2.2) A1 h<n)e C¥(0,T]), B@)e CO([O,T])

and (2.1) is weakly hyperbolic, i.e.,

n
2.3) z An(t)éphas real eigenvalues ( allowing multiplicity ) for "¢t € [0, T}, Ve e Rg.
h=1

We shall treat the following two cases.
CASE 1. No condition is imposed.
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CASE 2. There exists a non-singular matrix P(t,§) such that
P(t,€)A(t,€)P(t,6)" = diag{Dy, Dz, --Di} (1 T k< N)
|P(t, )+ P, €)M <P C for te[0,T], €] =1,
where A(t,&) = Yoh_1 An(t)én and D;(1 < j < k) are the triangular matrices
whose diagonal components are real and whose sizes are m; X m;.
Then we can prove the following theorem.
Theorem 2.1. Let 0 < pp < oo and vy > 0. Assume that the coefficients
An(t)(1 < h < n) and B(t) satisfy (2.2), (2.3) and CASE 1 ( resp. CASE 2 ).

Then there exists v > O such that for any ue € L2 ., (R"), the Cauchy
problem (2.1) has unique solution u{t,z) € CY{[0,T), L? ., ,(R™), provided

P11Ky

p(l+at)
2.4 < 1< '
(2.4) 0 < p1 < po, “S<,,u(1+a-1)-1

where p is equal to the dimention of the system, i.e.,
(2.5) =N
( resp. the maximal sizes of D; (1 < j < k), i.e,

(2.6) p= max m

), and s = k71,

In CASE 1, we find that “No condition is imposed” means that the multi-
plicity of eigenvalues of 3¢ _, Ap{£)&, is variable. As for CASE 2 the following
examples can be also treated.

Example 1. The multiplicity of eigenvalues of 3 .r_, An(t)és is independent
of t, &, i.e.,

det(A — > An(£)er) =TI (A = Ma(t,€))™ for Yt € [0,T), V€ € Rg
h=1

with 1 < k< N, ¥m; € N (1 € ¢ € k), where A(2,€) (1 <1 < k) satisfy
that if 4 # 7, Ai(£. &) # A;(,€) for t € [0,T], |€] = 1.

We shall show in Appendix that Example 1 is included by CASE 2 and u
is equal to the maximal multiplicity of the eigenvalues of > p_; Axlt)és, ie.,

M= maxigi<k my.
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(2.7)

(2.8)

(29)

Example 2. The multiplicity of factors of all the elementary divisors of
S h=1 An(t)€s is independent of ¢, £, ie.,

e(A) = ITE, (A= M, €))™E) (1< 1< N)Y for Yt e(0,T], Y€ R

with 1 <3k < N, Im(i,)) e NI(1 <1< N, 1< < k), where \i(t,€)(1 € <
k) satisfy that if ¢ # §, A(t, &) # A;(t,€) for t € [0, T, |¢] =1.

By Jordan normal form, we can see that D; (1 £ j < k) are the Jordan
blocks whose sizes are m(¢,1) x m(4,1) ( m{i,l) denotes the multiplicity of the
factor (A — A;) of the elementary divisors e;(A) of 3 }_; An(t)és) and u is equal
to the maximal multiplicity of factors of the elementary divisors (or the minimal
polynomial) of >y, Ar(£)&n, Le., o = maxi<ick,1<icnv m(i,1).

When the maximal multiplicity for factors of the minimal polynomial of
S oh=1 Ar ()€ is equal to 1 in CASE 2, the system is symetrizable and K.Kajitani
proved that the Cauchy problem (2.1} is G?-wellposed (1 < s < 1+ a ){ see
[Ka3]). Moreover when 3 ,_, An(t)}s has real distinct eigenvalues or is Her-
Iﬁitian, the Cauchy problem {2.1) is LZ-wellposed( see [M]). Concerned with
the single equations of higher order, the condition corresponding to (2.4) is
1 <5< 14 2(see [OT]). |

2.2 Preliminaries

In this section we shall construct the algebraic lemmas which play an im-

portant role to prove the theorem.

Lemma 2.2.A. Let A be a N x N constant matrix which has real eigenvalues
Aty A2, -y An (allowing multiplicity). Then for Y € (0,1}, there exists a non-

singular matrix P, such that
P,AP;' = A+ R,
where A = diag{ i1, A2, -+, An} is Hermitian, and Py, P,J‘I,R,, satisfy that
1Pyl < C1 1B S O™, Ryl < Can.
The constants C, Cy > 0 are independent of A, but C3 > 0 depends on | Al.

Proof. From linear algebra we find that there exists a unitary matrix P

such that
PAP'=A+R
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where A = diag{A1, Az, +,An} is Hermitian, and R is a strictly lower trian-
gular matrix with zeroes on the diagonal (see [S]).
Since |A;] £ [A] (1 £¢ £ N), we get

(2.10) |R| < |PAP™Y| +|A] < C1|A|C: + |4l = (C1C: + 1)|A].

Defining @, = diag{1l,7n,---,7V !} and putting P, = Q,P, by (2.9) we
have

P AP = Qu(A+ R)Q; = A+ R,

where R, = Q,RQ;!. Hence we get (2.7).
At last noting that Q7! = diag{l,77%, .-+, 7~ =1}, we can easily esti-
mate Py, P, " as follows

|Ppl < 1@,||1P| < 1-C1 =G,
|27 < |P7HIQ M £ Co -t N = Cont 7N,

Here actually €y = Cp = 1 since P is a unitary matrix.

Noting that (R);; = 0 for j > £ and (2.10), we can estimate R, as follows.

|R;| = max |(Rp)yl=_max [7'"#(R)s;l

1< <i<N 1< <i<N
< 4 =nR
<n, nax (Rl = niE|

< (0102 + l)lAlT}' = 037]‘.
Hence we get (2.8).

Lemma 2.2.B. Let A(€) be a N x N matrix which has real eigenvalues A1(£), A2(£),
c++, An(€) (allowing multiplicity), and is continuous and homogeneous of degree
one in { € R¢. Then for ¥ € (0, 1], there exists a non-singular matrix Py(§)
such that

(2.11) Po(€)A() Py (€) = A(€) + Ry(€)
where A(¢) is Hermitian, and P,(€), Py (€), Ry(€) satisty that
(2.12) |P,(6)| < Ci,  |Py(O)7 < Can' ™M, |Ry{&)| < Csnlé] for V¢ e R

The constant Cy > 0 is independent of £.
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Proof. S"~! = {¢ € R} ; |[¢| = 1} is a compact set, for any fixed £ > 0,
there exists a finite partition T; (1 <4 < =l(¢)) of S™~! such that

sup |€1 - 52] <&, U = gn-1,
£1.62€T,154<!

Defining
A(EDY. f 0, = i <1
Ag(g)r_{ € for €40, melsi<)
' 0 for £ =0,

with 3¢(® e T;, we get from the hypotheses
(2.13) |A(E) — A:(§)] < Ceelél.

Now we apply Lemma 2.2.A to each constant matrix A(£()). We can

construct, for ?n € (0, 1], non-singular matrix F;; such that
(2.14) PigA(ED)PL) = Ai+ R

where A; = diag{0s (€D), Aa(6®), -+, (€}, 1Pinl < O, [P S G,
|Ri | < Csn. The constant C3 depends on |A(£¢)), however C3 can be taken
independently of ¢ since |A(6®)| is bounded for Y¢ @) ey

Hence, multiplying the both sides of (2.14) by [¢| and putting

&m:{ﬂm for €0, merd._sn
0 for £=0,
sz{mm for £ #0, E L (1<i <)
0 for £=0,
;(E)E{Ri‘,,m for  €#0, mer (1<i<l)
0 for &£=0,
we obtain
Py(&)A(E)Pp(6)F = Py Ac()P(€) ™1 + Py (A(E) - AP ()™}
= A(€) + Rqy($),
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where A(€) is Hermitian, and P,(£), Py(¢) !, Ry(£) satisfy that

1P, 1B (&)Y <0t
| By (€)] = | Ry (€) + Py (€)(A(E) = Ac (€N Py(€) 7]
< Cynlé] + C1lA(€) — Ae(€)ICam ™
(using (2.13) and taking & =n")
< (Cs + C1C206)n¥é|
= Cynlé.
Hence we get (2.11), (2.12).
Lemma 2.2.C. LetT > 0, A(t,£) be a N x N matrix which has real eigenvalues
Mt ), Aa(t,86), - -+, An(t, €) (allowing multiplicity), and is o-Holder continuous

in t € {0, T], and continuous and homogeneous of degree one in § € Ry. Then
for Yn € (0,1}, there exists a non-singular matrix Py(t,£) such that

(2.15) Pyt ) At 6Py (2,6) = A(t,€) + Ry (t,€)
where A(t,€) is Hermitian, and Py(t,€), Py 1(t,£), Ry(¢,€) satisfy that

(2.16) 1PN < Cr (P67 S Can' ™Y, |Ry(5,8)] < Ol

o
(.17) [ |2Pis.0]ts < 20007
0 Bs .

fort€ [0, T}, Y€ eRE.
Proof. Since £ € Ry is fixed to the end of the proof, we shall omit the
letter &.
For any fixed 7 > 0, we take a finite collection of disjoint intervals I; (1<
i <l=[t/r]+1) of [0,1] such that
[(i~Dmir)  for 1<igi-1
b (t/r]mt]  for i=L '
Defining A,(t) = A(tD) for t € I; (1 <4 < 1) with 3@ € I;, we get from
the hypothesis,

(2.18) |A() = AL (t)] < Cs7(€].
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Now applying Lemma 2.2.B to each matrix A(t("')), we can get
Pi.nA(t(i))PiTnl = A + Riqy
where A; is Hermitian,

|Pinl < C1 IPFS Con' ™, |Rigl < Csnlél.

Hence putting
P(ty=Py, for tel; (1<i<li),

Alt) = 4, for tel;, (1<igl),
R\(t)=Ryy for tel; (1£igl),
we obtain
(2.19) Py()A@)P, (1) = A(t) + Rq(t),

where A(t) is Hermitian, and
(2.20) [P} < O, [By(®)7H < Con* ™7
|Ba(£)] = | Ry (8) + Py(t)(A(E) ~ Ar (£) Py ()~
< Canlé] + CilA(t) — Ar(8)|Can* ™™
( using (2.18) and taking T = n%)
< Crinlél.
By (2.19) and (2.20) we get (2.15) and (2.16).

It remains the estimate (2.17). For any fixed T > 0, defining with Dirac
function §(¢)
6i(t) =6(t—4r) for 1<i<ZI-1,

and noting that P,(t) is the piecewise constant function satisfying
|Piy = Pic1,g| € |Pigl + | Pic1 gl £2C1 (2 <8<,

we abtain
g -1

: /;]-(%P,,(s)lds S/D ;20153'(3)(18

= 201(!! - 1)/'00 5(8)d8

t t
=201[-] <2012 =2Citn7 %,
T T
here we used [°°_6(s)ds=1and 7 = n> . Hence we get (2.17).
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Lemma 2.2.D. LetT > 0, A(t,£) be a N x N matrix which has real eigenvalues
(allowing multiplicity), and is a-Holder continuous int € [0,T], and continuous
and homogeneous of degree one in £ € RZ. Moreover assume that there exists

a non-singular matrix P(t,£) such that
P(t,f)A(t,g)P(t,f)_l = diag{DI:DQ: e Dk} (1 SH k < N)
[P, )+ [P, )71 <7 €,
where D;(1 £ § < k) are the triangular matrices whose diagonal components

are real and whose sizes are my x m; . Then for ¥n € (0,1], there exists a

non-singular matrix Py(t,£) such that

(2.21) Py(t,€)A(t €)P; 1 (8,€) = A(3,€) + Ry(t,€),
where A(t,€) is Hermitian, and P,,(t,f),Pn‘l(t,g), R, (2,€) satisfy that

(222) IPT](t?g)l g CQ’ |Pﬂ(t!£)—1| .<_ ClﬂnlmNa lRﬂ(ts‘EN S Cllnlél

r

b a
f \——P,,(S,E)id.s < 2Cstn =
o 10s
for Yt € [0,T), V¢ € R}, where r = max;<j<k m;.

Proof. Since ¢ € RE is fixed to the end of the proof, we shall omit the
letter &, '

For A(t) using again the disjoint intervals I; (1 <3 < {) and A, (¢)(= A(t®)
for t € I; with ¢ € I;) of Lemma 2.2.C, we get (2.18).

From the assumption, for each matrix A(t(?), there exists a non-singular

madtrix B such that

PAEM P = diag{D?, DY, . DY 1 <Pk < N)
[Pi+PT P C
where D;i)(l < 7 £ k) are the triangular matrices whose diagonal components
are real and whose sizes are m; X m; .

Defining



and putting P; , = @, F;, we obtain
P AP = QA PTIQ; Y
= Q, diag(D{", DY, ..., D@1
= fii + -RT,H

where A; is Hermitian, and

|Pinl £ Cs, 1P S Cion'™",  |Ripl < Cranlél.

Hence we can connect the proof of Lemma 2.2.C and get (2.21), (2.22).

2.3. Proof of Theorem 2.1

For the proof of Theorem for CASE 1 and CASE 2, we use Lemma 2.2.C and
Lemma 2.2.D respectively. The defference of two lemmas is ::mly the meaning
of the parameter u. Therefore it is sufficient to prove Theorem 2.1 in CASE 1.

Our task is to derive the energy estimates. By Fourier transform the system
(2.1) can be changed to the form

(2.23) O = 1A(t, &)v + B(t)v

where A(t,€) = 3., An(t)en.

Furtheremore we shall change the system (2.23). With some function p(t) €
C({0, T}) and some constant x € (0, 1], putting w(t, &) = P,(t,&)e” N Duu(e, ¢),
and multiplying the both sides of (2.22) by P,(t,£)ef (&) we have

ep(t)(f)ﬁ_pn(t, f)a{e"”(‘)(f):P,,(t,{)_1w(t, £)}
- z’eP(‘”f)zP,, (t,g)A(t,g)e'P“)(E)ﬁPﬂ(t,g)'lw(t, £)
+ ep(t)(‘f):Pn(t, E)B(t)e"’(”(ﬁ)ﬁP,,(t, £y w(t, £).
Then we obtain
left hand side = "0 P, (1, &) (—p' ()(£))e P P (2, €) T w(t, €)
+ PR Pt E)e"’(”('f’:at{Pn(t, &)~ tw(t, £)}
= —p (NEVsw(t, £) + Py (1, £)D{ Pp(t, €) " w(t, )}
= —p ()€ Sw(t, &) + B P (1. O P8, &)t )}
~ {8 Py (8, )}{ Py (t.©) " w(t, )}
= —p ()(E)5w(t, &) + Bw(t, €) — {Be Pyt EYH{ Pyt ) w(t, £)}.
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While by Lemma 2.2.C we obtain
right hand side = iP,(t,£) A(t, €) Py (8, £) " 1w(t, &) + Py(t, &) B(t, £) Py (t, £) tw(t, &)
= 1 A(t, E)w(t, €) + iRy (t, Ow(t, ) + B(t, E)w(t, &),

where B(t,£) = Py(t, ) B(t)Py(t,€)"
Thus we get the system

(2.24) Bew(t, €) =tA(t, €)w(t,€) + iRy (t, ) (2,€) + o' (EHE)Sw(t, €)
+ {atPn(tﬂ 5)}{Pﬂ(t1 é)_lw(ta f)} + B(ta f)u)(t, E)

Hence we shall derive the energy estimate. Noting that A(t €) is Hermitian,
by (2.16) we get the estimate

d
(2.25) E|w(t,€)|2 = 2Re(Qyw(t, €), w(t, €))
= 2Re(iRyw + p'{€)5w + 8, P, - P w + Bw,w)
< 2(Comlé] + p'(€)5 + Cal @ Py~ + C1CoCran* ) Juwf?

where 013 = MaXp<t<T |B(t)l
Writing the left hand side of (2.25) as
d 0 d
'&Elw(ti £)| - 2|‘U.)(t, E)l'd_t:lw(tl E)'

and deviding the both hand sides of (2.25) by 2|w(Z, €)|, we get the estimate
I’w(t €)| < (Cmle] + o' (D)) + Cal @By (£, )~V + CLC201an ™M) w(t. €)].

Moreover by Gronwall’s inequality and (2.17), we get the estimate

t
fwi(t, €)] < 1w (0, &)]exp! / (Conlé] + 7 (s)(E)
4 02|83Pn(3,f)|7]l~N + ClcgclatnlﬂN)dS}

< lw(0, &)|exp{Crtnle] + p(£)(€)% — p(0) (€)%
+ QC‘lcgtn’“'N(“"“"l) + C]chlst’{]l_N}

< Cralw(0, €)|exp{p )€} ~ p(O)(E)D
+ H(Crmié| + 3C, Cant =N+,
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where Cy4 = exp%Clc'ngaT. Here we used

1 1
GbS_*};ﬂp‘*"q-bq (1<p:Q<OO,

=~

and supposing p > 1 + TVN?.T—:“IT > 1,
exp{C1C,Cratn* =N} = exp{{Cﬁaq‘%(Clcgclstnl"“')%n%”“—l}
X {Cﬁqé(Clczclstfrl'N)%ﬂ_%Na—l'}}
< exp{%{ the first factor }¥ 4 %{ the second factor }q}

= exp{p~ ' Ciyq™ 5 C103Catn N AV Y exp (€1 Gyt N (4aTY)
< exp{p~'q' "PC1C2CY, T} exp{clcztnl—N(1+cx“)}‘
Sincel-}--N—,{F-lﬂa—l <2for0<a<l, 1<N<oo wecean takep =g =2,
and get Cyq = $C1C,CHT.
Putting

N(l +a‘1) -1 : -1
< = tro «
N1+« 1) <ks=l 7 (‘f)y <1,

|w(t,€)| < Cra|lw(0,€)] exp{p(t){€)F ~ p(O)(E}5
FHCHE)F T 7le] +3C1Ca(g) Mo - Nk
< Chalw(0, &) exp{{€)5 (p(2) — p(0))
+ H{CHE)S " + 3CLCR{E)o (€)oo NG )
using (£)50=F < y%0~& and (E);l+N(1+a“)—nom(1+a‘1) = ()0 =1,
< Cralw(0, €}l exp{ ()5 (p(t) — p(0) + Crse™ ™"t} },
where Ci5 = C7 + 3C1C,.
Here if we choose p(t) such that in [0, T
p(t) — p(0) + Crsp™ "t =0
{ p(0) = po, ie,

(2.26) 0< Ko =

(2.27) p(t) = po — Cr5™° "¢ (t € [0, 7)),
where fo = wpg + (1 —w)p1 for 0<¥w< 1, 0<Y py < pg, we have

(2.28) lw(t,€)] < Craw(0, €)].
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Noting that |w(0,&)] = |B,(0,8)e?CHEN4(0,£)| < C1eP€04(0,¢)| and
lo(t, €)] = ePOQOCP (1, £)~ (2, €)| < Con~Ne @ [w(t, €)] = Cy(e)lH TroIt=N)
xe P lw(t, €)|, (2.28) is changed to the estimate

(2.29) e u(t,6)] < 0103 C1a{g) XN Db (€1 |00, £)).
It holds generally that
(2.30) e*<nlz™ for z>0, n=[(1 = Ro) (N - 1)],
K

and for v; > ¥,

1
(231) ()5 = {OF, = (1 — ta) fo O EYE v 100 vy 10

1
= (1 —vy) fo r(ve + 81— V) ) 5 o0 —uay 2

= k(v ~ vo)rvf 2 < wduf 2,
a %R CysT
e : 15
If we put v = (w—li-m(po__pl)) and take 0 <w < mln{l, (o pi i }, we

get v > vp. Hence by (2.30), (2.31) the right hand side of (2.29) is changed to
(2.32) right hand side of (2.29) < C1C,C14{€) (o) N —1)o=(po—ro) ()
w ePol(&0S—{§Y05) grolfdl, [v(0, &)
< C1CChal&) (N "Unl{ (g — o €N}
v, ePonu%&“"’ ePo(f)':{, |’U('D, é)l
< GG Cunl{(1~w)(po — p1)} "

—d
% ePuN(w(fo..zl)) rne VS-ZBPD(E}ZO !'U(Oa f)l

While, noting that
x Kp— O T rc—-llr: Ro—H
p(t) 2 p(T') = po — Cr5v™ "wapo—(l—w);ol"cls{(-m}é“—) O} T =p1,

w(ea — p1)
the left hand side of (2.29) is changed to

(2.33) left hand side of (2.29) > e85 |u(t, €.

Thus by (2.29), (2.32) and (2.33) we get

L3 c T N N ~
(2.34) e” €|y (t, 6)] < C1C,CLant{(1 — w){po — pl)}-—ﬂem“(wm) 2 U5 ol (0, £)|
< Ce” o |u(0,8)| for Yte[0,7], Y¢ € R,
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where p; and & satisfy

Nl+eae ) -1
<
N{i+aT) <F=h
respectively from (2.26) and (2.27). This implies (2.4) and (2.5) of CASE 1.The-
orem 2.1 under CASE 2 also can be proved quite similarly.

D<p1<p0:

2.4 Appendix
We shall show that the Example 1 is included by CASE 2 and p is equals to

the maximal multiplicity of the eigenvalues of Ay (t)és, i.e., p = maxi<i<k M.
Since the multiplicty of the eigenvalues is constant, it is sufficient to consider
the constant matrix A, Moreover for the simplicity we may suppose that the
N x N constant matrix A has two distinct real eigenvalues A; and A, whose
multiplicity are m; and g, respectively, Then similarly as Lemma 2.2.A, we

can get a non-singular matrix P. such that

( A1 0 0
2.1 Ay -
PAP_I = ‘4 +R= Om,1 v Omyumy—1 )\1
Qmy+11 " e Cmy+lmy A2
: 0
\ aN1 e o GNN-1 A2

_ Dy 0
= E D, .
As it is well known, if D, and D, have no eigenvalues in common, the

matrix equation D;X — X D; = E has a unique solution X (see [Ort]). Hence

putting P = ( ;T( (; ) P, we find that

==y (T 0 D, 0 I 0
= 2 1)( 55 )( A7)
_ Dy 0 y

= ( XD] _sz+E Dz ) -—dfla.g{D]_,Dg}.

Here we can easily see that D, and D), are the triangular matrices whose sizes
are m; X m; and ms X mq respectively., Therefore u is equals to the maximal

multiplicity of the eigenvalues of A.
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