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Preface 

An oracle τuring machine is an algorithrn that can utilize external in-

formation. Intuitively spe心<lnιanoracle τuring machine is obtained by 

allowing a programmer to use special flow control s七atemen七sof the follow-

lng form. 

if u belongs to the oracle /本字 thisline is called a “query." * / 

then . .. ; else . . . 

end-if /本 uis a bi七s七nng.本/

A set of bit strings， called an oracle， is fixed previously to the computa-

tion of a given oracle τliring machine. 

In this thesis， by extending the work of Dowd and that of Poizat， we 

study computational complexity of Boolean formulas with query symbols. 

Main methodological features of this thesis are the following two points. 

First， we consider not only complexity of τuring machines but also complex-

ity of arithrne七icalpredicαtes. For this purpose， we introduce七heconcep七of

10何 ingcomplexity as an extension of Dowd's concep七oft-generic oracles. 

The forcing complexity of an arithmetical predicate for a given oracle means 

the minimal size of a finite portion of the oracle that forces七hepredicate 

An oracle with small forcing complexity of a given predicate is called a 

ceiliηg-geηe門C 07'1αcle 10r the predicαte. We present applications of forcing 

complexity and ceiling-generic oracles to the s七udyof complexity of τur-

ing machines. The results (a) and (b) in the following are shown by using 

forcing complexity and ceiling-generic oracles. Second， we use forcing meth・

ods not only for con七rollinga nondeterministic Turing machine but also for 

controlling the execution time of a while-loop of a deterγninisticτuring ma-

chine， by which we clarify the relationship between七her-query tautologies 
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and fundamental problems in七hetheory of computational complexity. The 

result (c) in the following is shown by using this method. 

(a) Clear-cut new proofs of previous results. We presen七an

explici七exampleof a coN P[X]-predicate <p(X)(y) which has叫 onential

forcing complexity for any oracle. By七hisexample， we give a simpler al-

ternative proof of Dowd's result about t-generic oracles. We also presenも

a clear-cut proof of Dowd's result abou七r-genericoracles， by investigating 

oracles' hierarchy wi th respec七七oforcing complexity. 

(b) Results on Cohen-Feferman generic oracles. By investi-

gating how existence of ceiling-generic oracles affec七sbehavior of a Cohen-

Feferman generic oracle， we show， for each positive integer r， that the fo1-

lowing set is comeager in七heCantor space. 

{X: coNP[X] ~ NP[rTAUT[X]]} 

(c) Control of while-loops by a forcing method. Bennet and Gill 

showed:“If A is a ra吋 omoracle then T AUT[A] tf. P[A] with probability 1円

We consider the problem whether the statement of七heabove fact remains 

true when we substitute rT AUT[A] for T AUT[A]. For each positive integer 

r and for each r-generic oracle A (in Dowd's sense)， we show七hefollowing 

formula: 

rTAUT[A]三fTAUTEBA 

The above formula is shown by constructing a deterministic algorithm whose 

while-loop's execution time is con七rolledby a forcing method. Consequently， 

we have that the following七woassertions are equivalent. 

(1) If A is a random oracle then rT AUT[A] tf. P[A] with probability 1. 

(2) The unrelativized classes R and N P are no七identical

V 
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Chapter 1 

Introd uction 

1.1 Forcing complexity and 

historical background 

Various researchers have suggested concepts tha七measurescomputa七ional

complexity of mathema七icalobjects; for example， polynomial time Thr-

ing reducibility， Kolmogorov complexity， circuit complexity and Kむ chmer-

Wigderson's communica七ioncomplexity， and so on. However， we still have a 

variety of mathematical objects whose nature of computa七ionalcomplexity 

is unknown. 

Ari七hmeticalforcing was introduced by Feferman [14] soon after Co-

hen's independence proofs in se七theory[10， 11]. Since 日mma山 work[16]， 

arithmetical forcing has been studied in recursion theory. For example， see 

Jockusch [18] or Odifreddi [24]. Later， arithmetical forcing and its variations 

were used as tools to study P = ? N P question by some people. Typical 

examples are Dowd [12， 13]， Ambos-Spies et al. [2]， Poizat [26] and Blum 

and Impagliazzo [7]. Among七hem，Dowd investigated the relationship be-

tween uniform machines and N P = ? coN P question. For this purpose， he 

1 



2 CHAPTER 1. INTRODUCTION 

studied the relativized propositional calculus by inves七igatingthe minimal 

size of the forcing condiもion七hatforces a given formula. More precisely， 

he investigated an extension of the propositional calculus that has query 

symbols for a given oracle. Then， he studied the concep七ofan oracle such 

七hatif a given formula of the relativized propositional calculus is a tautol-

ogy wi th respec七七othe oracle then (under certain assumption) there exists 

a small finite portion of the oracle that forces the formula， where “small" 

means polynomial size and "forces" means that the formula is a tautology 

Wl七hrespect to any oracle extending七he五niteportion. We may call such 

an approach initiated by him "foTcing complexity." 

More formally speaking， we have the following definition， where we iden-

tify an oracle wi七hits characteris七icfunction; thus， a finite portion of a 

given oracle means a function obtained from the charac七eristicfunction by 

restricting the domainもoa finite se七ofbi七s七rings.A finite portion of an 

oracle is often called a forcing condition， or a condition. In七hefollowing， 

for a se七X，Card(X) denotes its cardinality 

Definition 1.1 Let X beαunαry pTedicαte symbol deηoting membeTship to 

αg'tυeηOTIαcleαnd y be αυαバαbleforαbit stTing. Assume thαtψ(X)(ν) is 

αη aTithmetical pTedicαte (OT，αfunctional) 

1. Suppose thαt S isαforcing conditionαηd thαt A is eitherαfOTcing 

condition OTαη OTIαcle. We sαy“A isαη extension of S刀 αηdω門te

"S c: A" if we hαυe dom(S) c; dom(A)αηd S(u) = A(u) for all 

U ξ dom(S). 

2. ([26]. See also Tanaka and Kudoh [31]) <p(X)(y) is finitely testable 

(OT) test fini) if theTe existsαfunction f : N → N such thαt for every 

1.1. FORCING COMPLEXITY AND HISTORlCAL BACKGROUND 3 

OTiαcle A， every nαturol numbeT nαηd every bit stTing u of length n， 

<p(A)(u) holds ifαηd only if <p(Alf(η))( u) holds，ωheTeωe tempoTaTily 

define the OTiαcle Alf(η)αs folloω:ωe hωe (Alf(η))(u) = A(u) fOT 

εαch bit stTing u of lengthαt most f(n)，αηd (Alf(η))(u) = 0 for all 

u such thαt lul > f(η) . 

3. We sαy“αconditioηS fOTceS <p(X)(u)，"ωheTe u isαg'tυen bit stTing} 

if <p(A)(u) holds fOTαηyoァαcleA such thαt S c: A 

4. (Suzuki [30]) Assume thαt <p(X)(y) isβnitely testαble. Assume thαt 

A isαη OTIαcle. The forcing complexity of <p(X)(y) relative to A isα 

function f : N → N such that fOT eachηα如TalnumbeT n} f(η) is the 

least numbeT k εN  of the following pTopeTty: f07・αηYbit st門 η9u of 

length n} if <p(A)(u) is true then A hαsα 万九itepo吋wπSof size αt 

most k such t九αtS fOTceS <p(X)(u): in otheTωOTds， the cαrdinality 0 f 

dom(S) is at most k αnd fOTαηy oTacle B extendi句 S}<p ( B) ( u ) is 

true. 1f fおthefOTcing cor.卯 lexityof <p(X)(y) Telative to A aηdη 'ts 

αnatuTal numbeT} the υαlue f(η) is cαlled the forcing complexity of 

伊(X)(y) relative to A a七n，ωhichis deωted by the folloωt句・

FC(<p(X)(y)， A，η) .口

The au七horbelieves七hatthe study of forcing complexity by Dowd is 

important; it is an in七erestingexample of a study that bridges over com-

putational complexity and set theory. However， the au七horalso feels七hat

Dowd's proofs [13， 83， s4] are ∞七 necessarilyeasy to understand. Among 

them， the difficulty of Dowd's proof of nonexistence of t-generic oracles is 
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pointed out in the introduction of Suzuki [28]. We discuss七hismatter in 

the next sec七lOn.

1.2 Motive for the study: 

the existential problem 

of t田 genericoracles 

Although we shall presenもprecisedefinitions in the nex七chapter，let us 

review some of them in an informal manner. The relativized propositional 

calculus is an ex七ensionof七hepropositional calculus. We get the former by 

adding a coun七ableset {ゲ(ql'・・ 1 仇): nと1} of connectives to the latter. 

Roughly spealGng， ゲ(ql，・・.， q.π) asserts that a certain binary sequence， of 

leng七hless than n， associated to 七hegiven bi七S七ringql・・・ qnbelongs to 

the oracle that we are considering. Suppose七hatr is a positive integer. 

A relativized formula is called an r-query formula if i七hasjus七r-many

occurrences of additional connectives. For each oracle A， T AUT[A] denotes 

the collection of all (binary representations of) rela七ivizedformulas tha七

are tautologies with respect to A. For each positive integer r， rT AUT[A] 

denotes the collection of all (binary represen七ationsof) r-query formulas 

that are tautologies with respect to A. An oracle G is called t-gene問 [131

if every rela七ivizedtautology with respect to G is forced by a polynomial 

sized portion of G. 

Dowd's Lemma 7 ([13， Lemma 7]) t-geη的 conαcles do not exist. 

Dowd proved the above lemma by using the following lemma. His ex-

pression MX is， in our no七ation，M[X]. Similarly， N is {O， 1}*: we denote 

七hecollection of all bit strings of finite length by {O， 1}"， as in七hetex七book

1.2. MOTIVE FOR THE STUDY 5 

on computational complexity by Balcazar et al. [5]. (On the other hand， 

Kune山 textbookon se七七heory[20] denotes this collection by <ω2.) For each 

natural number κ{O，l}η(二九2)and {O， 1}三π(=自 2)are similarly defined 

It is easily verified that the cardinality of {O， l}S;n is 2n+l_1 for each natural 

number n. Recall七hata language A is called spαrse if there exists a poly-

nomial p such that for each natural number n， Card( A n {O， 1}三η)三p(η)

Citation 1.1 ([13， Lemma 6]) 

Lemma 1fαdeterγninistic polynomial time orlαclemαchine MX 

αcceptsαII its inputs with respect toαt-geηεilC onαcle G) then 

it is forced to do so byαspαrse set of que門 es.That is) there is 

α戸 市αlfunction Y flOm N to {O， 1} sαtisfying Y c G whose 

domain is spαrse) which forces 'l/xM X (x). 

Proof. The relativized formulaぉserting七hat"on all inputs of 

length三九七hemachine M accepts)) is a tautology wi七hrespec七

to the oracle G for every民 andits length is bounded by a 

polynomial in η. Therefore the nth is forced by a se七Wn of 

queries to G of size polynomial in η. Let W = U{VV;π:ηis a 

power of 2}. Then W is sparse， and forces the stateme瓜口

Careful readers may hesitate， because the following assertion is false， by 

a counter example below. 

Assertion 1.1 (false) Suppose that p is a polynomial， and that for each 

positive in七egerη，Dηisa subset of {O， l}S;p(n) such that Card(Dn)三p(η)

Let D = U{Dn :ηis a power of 2}. Then D is sparse. 口

Example 1.1 [28] For each na七uralnumber η三2，let k(η) be the largest 

natural number k such七hat2k+l - 1三ηForeach n， let Dn = {O， 1}三k(η)
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Let D = U{Dn:ηis a power of 2}. Then， for each η三2，Dn is a subset of 

{0，1}壬ηa凶 Card(Dn)is at most n. However， we have D = {O， 1}¥ 口

Nevertheless， Dowd's Lemma 7 is righιAn alternative proof of this 

lemma is given in Chapter 3 of this thesis. 

Remark. One significance of Dowd's Lemma 7 is that it implies 

the following result about uniform machines. 

Dowd's Theorem 8 ([13， Theorem 8]) 1f M[X] isαnond仰 rministic

m 白川chineuniformlyαccepting T AUT[X] (i. e. if for ev均的cleA， 

we hωe Lar以M[A])= T AUT[A])， then for every oracle A， M[A] does not 

九αltin polynomial time. 

1.3 Aim of this thesis 

In七histhesis， by extending tec凶 iquesin [13] and those in [26]， we study 

computational complexity of TAUT[A] and TT AUT[A]. In particular， we 

investigate the cぉewhere A is a Cohen-Feferman generic oracle and the 

case where A is a random oracle. 

• Clear-cut new proofs of previous results. We begin our study 

by giving explicit alternative proofs of Dowd's results. 

In [2附2お刻8司]， fo白orci

cal predicate wa:.おs泊nv刊es叫ti氾ga抗，ゐted，and the concept of ceiliηg-genenc OTIαcles 

was introduced. An oracle is called ceiling-generic with respec七七oa given 

arithmetical predicate ifもheforcing complexity of the arithmetical predi-

cate relative to the oracle is at most polynomial. In [28， 33]， by using the 

concept of ceiling-generic oracles， an alternative proof of a weak version of 

Dowd's Lemma 7 was given. In [30]， an explici七exampleof a coN P[X]-

predicate <p(X)(y) with the following property was given: for each oracle A 

l.3. AIM OF THIS THESIS 7 

and for each positive integer n， a lower bound for its forcing complexity is 

(uniformly) given as follows 

2η-1ー η+1
FC(<p(X)(y)， A，η)三

η 

By this example and the argument in [28， 93]， an alternative proof of 

Dowd's Lemma 7 is immediately derived. We present this example in 

Chapter 3. 

By the way， Dowd also introduced weak versions of七henotion of t-

generic oracles. Suppose七hatr is a posi七lvem七eger.An oracle G is called 

an T-geneηC  OTiαcle (in Dowd's sense) ， if it satisfies the definition of a七-

generic oracle with T-query tautology in place of tautology. 

Dowd's Theorem 10 ([13， Theorem 10]) Suppose that T isαpositive 

integer. Then， T-geη仇 COTiαcles in the sense of Doωd]ormαmeasure one 

set in the Cαntor spαce. 

The following was also shown in [13]. 

Fact 1.1 (section 4 of [13]). The clαss ofαII r-gene門COTiαcles (in Dowd 's 

sense) is meager in t九eCαntoT spαce. R包吋her}t九日 clαssis closed under 

finite chα句 esz. e ザAis T-geneパcαηdB(u) = A(u) ]OTαII but βnitely 

mαny bit st門ηgsu then B is also r-geηenc. 口

In Chapter 4， we explain what is di伍cultin Dowd's proof of his The-

orem 10. By investigating oracles' hierarchy with respect to forcing com-

plexity， we present a modified， clear-cu七proofof Dowd's Theorem 10. 

We hope our exposition help the reader understand the pioneering work of 

Dowd. The co凶 entsof Chapter 4 is based on a section of [30] 

• Results on Cohen-Feferman generic oracles. Recall the well-

known result (Mehlhorn [23]， [26] and [13])七ha七thefollowing clぉsof oracles 
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is comeager (i.e. the class contains almost all oracles in七opologicalsense): 

{X:P[X]ヂNP[X]}.

The above result w出 strengthenedin [28] ; we discuss七hismat七erin Chap七er

5. That is) we investigate how exis七enceof ceiling-generic oracles affects 

behavior of a Cohen-Feferman generic oracle， by which we show that七he

following is comeager) where r is an arbitrary posi七iveinteger: 

{X: coNP[X] i NP[rTAUT[X]]}. 

Chapter 6 and Chapter 7征 edevoted to studying random oracles. 

• One-query versus one-question. 1n Chapter 6， we investigate， 

among others， whether for a random oracle A，七hese七ofone-queryもautolo-

gies relative to A is one-question truth-table reducible to A. We present 

negative answer) i.e. 七isnot one-question truth-七ablereducible七oA with 

probability one. 

• Control of while-loops by a forcing method. 1n Chapter 7) 

we inves七igate七herelationship between the r-query tautologies and funda-

mental questions in the theory of computational complexity. 1n [6]) Bennet 

and G ill showed七ha七ifA is a random oracle then P[A] =1 N P[A] with 

probability 1. Since T AUT[A] is a coN P[A]-complete set for an arbitrary 

oracle A) we obtain七hefollowing as its direct corollary. 

If A is a random oracleもhenTAUT[A]手P[A]with probability 1 

The above statement means that the class of all A such that T AUT[A] rf: 

P[A] has Lebesgue measure one in the Cantor space. We consider the 

problem whether the statement of七heabove fact remains true when we 

1.3. A1M OF TH1S THES1S 9 

substitute rT AUT[A] for T AUT[A]. 1n SUZl出 [29]， by exもendingDowd's 

work about r-generic oracles， it was shown that for each posi七ivein七egerァ

and for each r-generic oracle A (in Dowd's sense)， we have the following: 

rT AUT[A]=f T AUT fB A 

The above formula wぉ shownby constructing a determinis七icalgorithm 

whose while-loop's execution time is controlled by a forcing me七hod. By 

using七heabove formula， it was also shown in [29] that the following two 

assertions are equivalent. 

(1) If A is a random oracle then rT AUT[A]巨P[A]with probability 1 

(2) The unrelativized classes R and N P are not identical 

Recall that P c R c N P. 1n Chapter 7， we present proofs of the above 

results. 
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Chapter 2 

Prelirninaries 

In this chapter， we review ba.sic concepts rela七mg七othe following subjects. 

• Computational complexity. 

• Random oracles and Cohen-Feferman generic oracles. 

• The relativized propositional calculus. 

2.1 Guide to this chapter 

An oracle τuring machine is an algori thm tha七canu tilize external informa-

tion. Intuitively speaking， an oracle τ¥rring machine is obtained by allowing 

a programmer to use special flow control statements of the following form. 

/本 uis a bit string. * j 

if u belongs to the oracle j*仁 thisline is called a "query.)l本/

then . .. ; else . . . 

end-if 

11 
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A set of bi七strings，called an oracleう isfixed previously to the computa-

tion of a given oracle Thring machine. We assume an oracle τuring machine 

can get the correct answer for each query. More formally， an oracle Thring 

machine is defined as a mul ti tapeτuring machine M with the following 

three properties [5]. First， M has a dis七inguishedwork tape which is called 

a query七ape. Second， M has three dis七inguishedstates: QU ERY， Y ES 

and NO. Third， for a given oracle A and a given input， M works as follows: 

at some steps of computation， M may transfer into the state QU ERY; let 

u be the bit string currenもlyappearing on the query tape; if u belongs to 

the oracle A then M 七ransfersinto the state Y ES; otherwise，λイ七ransfers

into the state N O. 

Each recursive function is computed by a Thring machine; likewise， for 

a given oracle A， each function recursive in A is computed by an oracle 

Thring machine with七heoracle A. 

By subs七itutingoracle τuring macmnes for usual τliring machines in七he

de五nitionof the computational complexity class P， we get the relativized 

computational complexity class P[X]. That is， P[X] deno七esthe se七ofall 

languages recognized by a polynomial time-bounded deterministic oracle 

Turing machine with the oracle X. Likewise， we get the rela七ivizedclasses 

NP[X] and coNP[X]. Al七houghP =7 N P problem is a very hard problem， 

many resul七sabout the relativized version of this problem are known. For 

example， it is well-known that (Baker et al. [3]) there exist oracles A and 

B such七hatP[A] = N P[A] and P[B] -=1 N P[B]. There are important 

relationships between unrelativized complexity classes (i.e. P， N P， etc.) 

and rela七ivizedcomplexity classes (i.e. P[X]， N P[X]， etc.) relative to "the 

majority" of oracles. 

There are two well-known approach to formalize七heconcept of "the 

2.2. COMPUTATIONAL COMPLEXITY 13 

majority" of oracles， i.e. “almost allηoracles. The one is a probabilistic 

formalization in which， for a given class κof oracles， we consider κcontains 

almost all oracles ifκhas Lebesgue meお ureone. The other is a topological 

formalization in which we consider a given class K contains almost all oracles 

ifκis comeager. While the concept of random oracles plays an important 

role in the probabilistic approach，七heconcept of Cohen-Feferman generic 

oracles plays an important role in the topological approach. 

As we stated in七heprevious paragraph， there are important relation-

smps between unrelativized complexity classes and relativized complexity 

classes relative to "the majority" of oracles. For example， if七heset of all or-

acles X such七ha七P[X]戸NP[X] n coN P[X] is comeager， then there exists 

a Cohen-Feferman generic oracle G such that P[G]ヂNP[G] n coN P[G]， 

and he恥 e，by [7， Theorem 2.3]， we have PヂNP (unrelativized). More-

over， in Chapもer7， we show the relationship between random oracles and 

unrelativized complexity classes. 

By七heway) recall七ha七manyassertions about graphs and Turing ma-

chines can be interpreted as assertions about the propositional calculus. 1ロ

particular) SAT，七heset of satisfiable formulぉ ofthe propositional calculus， 

lS an 1mportant example of a N P-complete set. 

2.2 Computational complexity 

Sets and functions. The set of all natural numbers is denoted by 

N = {O， 1，2， ・・ }.For a function f and a set D c dom(f)， f I D denotes 

the restric七ionof f to D. For a set A， Card(A) denotes i七scardinali ty. If 

two sets A a吋 B are disjoint (i.e. A n B =日)， we often wri te "A + B" 

to denote七heirunion instead of “A U B，" and we call A + B the disjoint 
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union of A and B. The union of two given functions means the function 

whose graph is the union of the graphs of the two functions. If f and 9 

are functions such七hatdom(f) n dom(g) =日，七henwe often wri te "f + 9円

instead of "f U g" to denote their union. 

Oracles. The set of all bit strings is denoted by {O， 1}*. Let入bethe 

empty string. We order all bit strings in lexicographic order: 

入，0，1，00，01，11，000，001，.・・

The (η+ l)sもs七n時 inthis list is denoted by z(η). For example， z(O) =入

and z(l) = O. A subset of {O， 1}ホ iscalled an onαcle or a lα句切ge，according 

to the context. We identiちran oracle with its characteristic function; thus， 

an oracle is a function仕om{0，1}率七o{0，1}. The clぉsof all oracles is 

denoted by C. When we同lkabou七Lebesguemeasure and topology of C， 

we consider the class C to be the Cantor space by identifying each natural 

number ηwith z(n)ε{O，l}ホ

Suppose that A and B are oracles. A EB B denotes the join of A and 

B. The only one important property of the join is七hatits polynomial 

time many-one degree is the supremum of七hoseof A and B. According 

to七he七extbookof complexity七heory[5]， we adopt七helanguage {ω :u ε 

A} U {v1 :υε B}ぉ aformal de五nitionof the join; of course， there are 

different ways to define the join (see e.g. Rogers [27]). P[A] denotes the set 

of all oracles which are polynomial time百 ringreducible to A. "A f B" 

means that A and B are polynomial time Turing叩 ivalent."A三 B(mod. 

finite)" means七hatthe following set is おute: {xε{O， 1}* : A(x) # B(x)}. 

Suppose that M[X] is an oracle τuring machine and that A is an oracle. 

Then， Lar以M[A])deno七es七helanguage accepted by七hemachine M[X] 

with the oracle A. 

2.3. RANDOM ORACLES AND GENERIC ORACLES 15 

Complexity classes. For each oracle A， Book [8] introduced七he

computational complexity clぉsN PQU ERY[A] as follows. A language B 

belongs to N PQU ERY[A] if B = Lar以M[A])for some nondeterministic 

oracle machine M[X] such that M[X] uses a polynomial amount of work 

space and make a polynomial number of queries toぉsociatedoracle in each 

computation. It was shown in Balcazar et al. [4] that for any oracle A， 

NPQUERY[A] = NP[QBFEBA]， where QBF is a well-known PSPACE-

complete set. 

A language L belongs to the computational complexity class R if and 

only if there exists a probabilistic polynomial time τUring machineM and 

a positive constantε< 1/2 such that (1)叩 d(2) below hold for every bi t 

string u : 

(1) u εL if and only if Prob[M accepts u]ど(1/2)+久

(2) u経Lif叩 donly if Prob[ M accepts u] = 0 

1 t is well known七hatP c R c N P. See [5] for more about computa-

tional complexity and oracle τuring machines. For七heCantor space and 

ari thmetical predica七民 see [27] 

2.3 Random oracles and generic oracles 

Random oracles. Suppose that for each bit string， we decide whether 

the bit string belongs to an oracle A or not by tossing a fair coin. Then， A 

is called a random 07'1αcle (Bennet and Gill [6]) 

The reader would think七hatthe concept of random oracles is a li七tlebit 

s七rangeterm; in fact， by the above clぉsicaldefinition of random oracles， we 

do not have defined "the set of all random oracles" as a particular subset of 
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the Cantor space bu七havedefined a probability distribution on七heCantor 

space. This probability distribution is the exactly sarne thing as Lebesgue 

measure on the Cantor space. Thus， a statement of七hefollowing form (1) 

means the statement (2) below it. 

(1)“If A is a random oracle， then the assertion . .. holds with probability 

one." 

(2)“The set of all oracles A for which七heassertioIl • • • holds has Lebesgue 

meぉureone in the Cantor space." 

In Bennet and Gill [6]， it was shown七ha七ifA is a random oracle， then 

we have P[A]ヂNP[A]wi七hprobability one. 

Cohen-Feferman generic oracles. A function S is called a forcing 

condition (condition， for shor七)if dom(S) is a五凶esubset of {O， 1}本 and

we have rar 

every condition S， there exists a c∞ondi七ionTξ D such that S c; T. An 

oracle G is called a Cohen-Feferman geneTIc oracle (or， a generic oracle) if 

for any collection D of condi七ionssuch七hatD is arithmetical and dense， 

there exists a condition S such七ha七SεD and S c; G. Such defini七ions

of dense sets and generic oracles appear e.g. in Defi凶 ion1.1 of [7]. It is 

well-known tha七七hecollection of all Cohen-Feferman generic oracles form 

a comeager則 inthe Cantor space [16， 12]. And， i七isknown that if G is 

a Cohen-Fefe町rm宜mangeneric oracle，七henwe have P[G]ヂ:N P[G] ; for a proof 

of this fact， see [13， 26， 7] 

For general knowledge about the theory of forcing， see standard text-

books ofaxiomatic se七theory[17， 20]. 
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2.4 The relativized propositional calculus 

In this section， by introducing new notation， we review concepts relating to 

the relativized propositional calculus， such as七heconnective Cn(ql) ・.，qn)， 

七heBoolean function An(ql，.. • ， qn)， t-generic oracles and r-generic oracles 

Convention: Str(η). Suppose七hatηisa positive integer. We define 

a set Str(η) of bi七stringsas follows. 

Str(η) =def. {z(m) : 0三m三2n- 1} 

ニ {O，l}三九一1U {Oη} 

The relativized propositional calculus. Let m be a natural num-

ber such that 0 :S; m三2n-1. Note七hatz(2η-1 + m) is a bit string of 

lengthηThen， let z;n，m) be the jth bit of the string z(ア-1 + m) (for 

j二 1，. • .汁1η吋):t出ha抗tis， z刈(2アη一l+m叫)=Z4iy?7nmlh，

symbol z乎;?ηm川'川m吋)only in this section. Let A be an oracle. Int凶山則山1北山則川七h印川u山山I札i

ing， Aηdenotes the n-ary Boolean function such七hat七hefollowing diagram 

commutes， where “とどη means the isomorphism wi七hrespect to lexicographic 

order i.e. z(2n -1 + m) f-+ z(m) 

An 

{O，l}九一→ {O，l}

ノAr Str(η) 

Str(n) 

More formally， for each natural number m such that 0 :S; m :S; 2n - 1， we 

deam An(zin ，m)3 ・ ・ ・ ， z~n，m)) as to be A(z(m)). This raもherobscure defi凶 lon
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of Aπis forced on us in p1ace of the more direct A n ( Ul ，・ ，Uη)= A(u)， 

because we wan七七hatthe information contained in An be preserved in An+l， 

and a1so because a predicate in a tauto1ogy must have a definite number 

of arguments. The corresponding string z( mη吋)is v刊erげysimply obtained from 

七hebit s叫七n時匂 =zi「n叩，グ，fT作吋7

de1ete from '1包J， the 五firs討t1 from the lef白七 and all the O's at its 1eft， then the 

resulting string is z(m -1)， and z(m) is easi1y obtained 

We introduce組 n-ary connecti ve Cn ( ql ，・・，qη)，where qj's are propo-

sitiona1 variab1es. For a given oracle A， we interpre七theconnective Cn to 

the Boolean function Aπ The relati仇zedpropositional cαlculω[13] is a sys-

tem obtained by adding七heset of connectives {ゲ :η=1，2，3，・.} to the 

propositional calculus. A formula of the relativized propositional calculus 

is often called a 倒的vizedformula; it is called a qu仰向eformula if it has 

no occurrence of cn's. 

ア四querytautologies. Suppose that r is a positive integer. We con-

sider a rela七ivizedformula with r occurrences of additional connectives;剖

the expense of adding dummy variables， it can be put in the form: 

[(α1仲 Cnl(ql，l'..品川)))ハ・・ .̂(αγ 仲 Cnr(qr，l'・・ ，qr，叫))]=今 H，

where H is a query仕eeformula and α，/s and qi./S are propositional variables. 

According to七heterminology of [13]， we call a relativized formula of七he

above form an r-query formulα. Note that it is only the number r of queries 

which is relevant to this defini七ion，not七heirlength nl，・・・ ，nr. 

For an oracle A， T AUT[A] is the set of all (binary representations of) 

relativized formulas七ha七aretau七ologieswi七hrespect to A. rT AUT[A] is the 

set of all (binary representations of) r-query formulぉ thatare tautologies 

with respect to A. Each member of rT AUT[A] is called an r-query tαutology 
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with respect to A. Moreover， by T AUT， we denote the collection of all 

(binary representa七ionsof)七autologiesof usual proposi七ionalcalcul us. Let 

X be a unary predicate symbol denoting membership to a given oracle 

and y be a variable for a bi七回ri略 Membership to the set T AUT[X] 

is expressed by組制hmeticalpredicate， tha七wedenote TAUT(X)(y) 

For each r， a predicate rT AUT(X)(y) is similarly defined. As is well-

known， T AUT[X] is uniformly coN P[X]-complete [13， p.68]: tha七is，for any 

polynomial time-bounded nondeterministic oracle Thring machine M[X]， 

there exists a function f such that f is polynomial time computable (withou七

an oracle) and for any oracle A and for any bit s七ringu， M[A] rejects u if 

and only if f(u) belongs to TAUT[A]. 

r-generic oracles. Suppose F is a relativized formula. We say "a 

forcing condi七ionS forces thαt F isαtαutology'! if F is a tauto1ogy wi七h

respec七toany oracle A that is an extension of S. We also say "s forces 

Fε T AUT[X]，" or more simply， we say "s forces F." An oracle A is叫 led

a t-geη的 COT'lαcle [13] if there exists a polynomial p such七hatfor any formula 

Fε T AUT[A]， there exists a finite portion S c A such that the size of (the 

domain of) S is at most p(/F/) and S forces F. Suppose r is a positive 

in七eger.An oracle A is called an r-geneiIc OT'lαcle (in Dowd's sense) [13] if 

i t satisfies the de五凶ionof aも-genericoracle with rT AUT[A] in place of 

TAUT[A].Ofc∞ourse杭， 七廿凶出hi司isconcept 0ぱfアれ申generi巾i均coracles is completely d出i庄eren

from 七凶heconcept 0ぱfCoぬhen-Fef，おer口ma叩‘z心ngeneric oracles. The relationship of 

these two concepts of generic oracles is studied in [13， Theorem 12] and in 

[28， 94]. That is， [13， Theorem 12] says that any Cohen-Feferman generic 

oracle is not l-generic in Dowd's sense. The contents of [28， 94] is discussed 

in Chapter 5 of this thesis. Throughout this article， an "r-generic oracle" 

means that in Dowd's sense. 
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Convention:ム(n，i)[8]. For each natural numbers i and j， we reserve 

the propositional variables a(i) and qY) for special usage. Suppose that 8 

is a forcing condition whose domain is a subset of Str(n). For each bit 

string z(m)εdom(8)， let ctn，m) be the value of 8(z(m)); in other words， 

ctn，m) is the value of 8n(zin，m)，. . • ， z~n ，m)). We use七heauxiliary symbol 

dm)in出isparagraph only. Th叫 forぬ chnatural number i， we define a 

query free formulaム(叩)[8] as fo11 ows， where m varies over all m such that 

z(m)εdom(8). (cf. 81 in [13， p.71].) 

ム(叩)[S]三 def

八m ([(qii)φ zin，m)) ̂  . . . ̂ (q~i)叫m))] 今川

Then， for any oracle A， the necessary and su伍cientcondition for “SCA" 

is七hatthe following relativized formula is a tautology with respect to A. 

(α( i)件 cn(qii) ，・ ，q~i))) キム(n ，i)[s].

In particul紅， if the domain of 8 is {O， 1}η?もhen8 forces the following 

formula. 

(α( i)φ ゲ(qiz)? ?qr)))仲ム(叩)問

Chapter 3 

t-generic Oracles 

In this chapter， we present叩 explicitexample of a coN P[X]-predicate 

r.p(X)(y) with七hefollowing property: for each oracle A and for each positive 

integer n， a lower bound for its forcing complexity is (uniformly) given as 

follows. 

2n-1 - n + 1 
FC(r.p(X)(y)， A， n)三

η 

By this example， an alterna七iveproof of Dowd's Lemma 7 is immediately 

derived. 

Dowd's Lemma 7 ([13， Lemma 7]) t-geη的 COTiαcles do not exist 

3.1 Ceiling-generic oracles 

To explain our motive for七heargument， we first show a weak version of 

Dowd's Lemma 7. 

Definition 3.1 Suppose thαt r.p(X)(y) isαηαrithmetical predicαte)ω九ere

X isα匂ηαrysymbol denoting member叫 iptoαgweηOTiαcle，αnd y isα 

υαriable forαbit string. 

21 
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1. ([26]. See also [31]) For eαch oracle A， <p[A] denotes the set {u ε 

{O， 1}* : <p(A)(u)} 

2. ([28]) Suppose thαt <p(X) (y) is finitely testαble， G isαηonαcle， and 

f isαfunction from N to N. G is f-ceiling-generic for伊(X)(y)(f-

c-geη仇 cfor <p(X)(y)， for short)， if for eαch naturalηumber n，ωe 

九αυe

FC(<p(X)(y)， G， n)三f(η)

G is ceiling-generic for <p(X)(y) (c-generic for <p(X)(y)， for sho付)，

if t九ereexistsαpolynomial p such thαt G is p-ceiling-generic for 

<p(X)(y) 口

The following is a weak version of Dowd's Lemma 7. 

Lemma 3.1 The set of all t-generic onαcles九αsLebesgue meαsure zero in 

the Gαntor spαce. 

Proof' ([28]) The oracle-dependent 1anguage CORANGE[X] is well-

known among the reader of Bennet and Gill [6]. Weぽ pressmembership 

to七hislanguage by a predica七eCORANGE(X)(y). More precisely， the 

predicate CORANGE(X)(y) is defined as the following assertion: 

h ヨusuch that y = X(u1)X(u10)X(u100)・..X(u101ul一1)." 

No七e七haty and u in七heabove assertion have the same length， and hence 

the above assertion is fir此e1ytestable. Recall that T AUT[X] is uniformly 

coN P[X]-complete. Thus， there exists a function f such that f is com-

putable (without an oracle) in polynomial time， and for any oracle A and 

any bi七stringω， CORANGE(A)(ω) holds if and only if we have f (ω)ε 

T AUT[A]. Therefore， if A is a t-generic oracle，七henA is ceiling-generic 
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for the predicate CORANGE(X)(y). Hence CORANGE[A] is a finite set; 

indeed， 1etting p be a polynomial for which A is p-ceiling-generic， whenever 

2n is sufficiently larger than p(η)， CORANGE[A] does not contain any y of 

1ength n， since a condition of size p(η) cannot force all the 山 ofsize n so 

that yヂX(u1)X(匂10)X(u100)...X(u10Iul-1). Thus， all t-generic oracles 

belong to the following class: {X : CORANGE[X]εNP[X]}. However， 

by [6]， this class has Lebesgue measure zero.口

3.2 Exponential lower bound 

In this sec七ion，we state and prove our main theorem of七hischapter (The冒

orem 3.2). We in七roducea predicate NotCNum(X)(y). Let X be a unary 

predicate symbol for membership to an oracle and let y be a variable for a bit 

string. We define印 刷hmeticalpredicate ConsecNum(X)(y) as theお1-

lowing assertion: "y is no七七heempty bit string and， le七七mgηbethe natural 

number such七ha七JyJ=η+ 1， there exists a natural number j such that we 

have Jz(j) J =ηand y = X(z(j))X(z(j+1))... X(z(j+η))." "ConsecNum" 

is an abbreviation of “consecutive numbers." Then， we define a predicate 

NotCNum(X)(y) as to be the negαtion of ConsecNum(X) (y). 

NotCNum(X)(y)三 def.--，COηsecNum(X)(y). 

Clearly， NotCNum(X)(y) is a finiもe1ytes七ablecoN P[X]-predicate. 

Theorem 3.2 ([30]) Assume thαt A isαηαrbitrary oracle αηdη ~s α pos~

tive integer. Then，αlower bound for the f07司'cingcomplexity of the predicαte 

NotCNum(X)(y) is (uniformly) givenαs folloω 

2η-1η+1 
FC(NotCNum(X)(y)， A，η)三

η 
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ProoJ- Assume for a contradiction that for an oracle A and for a natural 

number η+ 1， we have七hefollowing. 

FC(NotCNum(X)(y)， A，η+1)<竺二n
n+1 

Among bi七stringsof leng七hn + 1， a七most2n bit strings v's make the 

assertion C onsecN um( A) (υ) true. Hence，七hereexists at leas七onebit string 

usuch七ha七lul= rけ 1and N otCNur川A)(u)is true. We fix such a u. Then， 

there exists a finite portion S c A such that S forces N otC N um( X) (u) and， 

letting 

d二 def.Card(dom(S))， 

we have d三 FC(NotCNum(X)(y)，A，η+ 1). By our assumption for a 

contradiction， we have the following. 

Hence， we have η ・(d+ 1)く 2n- d. Therefore， the cardinality of the set 

Remainder =def. {O， 1}π¥dom(S) 

is greater than n . (d + 1). However， Remαinder is a disjoint union of at 

mos七d+ 1 closed intervals (wi七hrespec七tolexicographic order)ぅ andhence 

at least one of them， say 

1 =def. [z(j)， z(j + k)] ~二 Remαinder)

must have cardinali七ystrictly greater七hann. Hence，七hereexists an oracle 

Bex七endingS such七ha七ConsecNum(B)(u)is七rue:in 0七herwords， S does 

no七forceN otC N um( X) ( 1仏andwe get a contradiction口

In our proof of Lemma 3.1，七hepredicate CORANGE(X)(y) played 

an important role. By using the predicate NotCNum(X)(y) in place of 

3.2. EXPONENTIAL LOWER BOUND 25 

CORANGE(X)(y)， we immediately get an alternative proof of Dowd's 

Lemma 7. 

Proof of DowdヲsLemma 7・ ([30]) Assume for a contradiction that 

an oracle A is t-generic. Then， A is ceiling-generic for NotCNum(X)(y)， 

in other words，七heforcing complexity of NotCNum(X)(y) relative to A is 

at most polynomial; the argument is similar to Lemma 3.1. By Theorem 

3.2， we have a con七radiction.口
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Chapter 4 

γ-generic Oracles 

In this chapter， we reconstitute a proof of the following fact by investigating 

oracles' hierarchy wi th respecもtoforcing complexity. 

Dowd's Theorem 10 ([13， Theorem 10]) Suppose t九αtr isαposit附

znteger・ TheηJr-geη的 corlαcles in the sense of Dowd formαmeαsure one 

set in the Cαntor spαce. 

The contents of this chap七eris based on [30]. 

4.1 What is difficult in the original proof? 

In this sec七ion，we explain what is di伍cul七inthe original proof. Dowd 

proved his Theorem 10 by using七回 followingresult. 

Dowd's Lemma 9 ([13， Lemma 9]) 1f F is a 1-qu的 formula叫 chisα 

tαutology with respect to some X then there isα包ηzqω minimalset S of 

queriesωhich force F to beαtαutology (ωe say F specifies S) 

That is， F specifies七heunique forcing condi七ionS of the following prop-

erty: if T is a forcing condition then the necessary and su伍cientcondition 

for “T forces F" is “SCT." 

27 
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Note七haムin七heabove Lemma， theぉsumptionof 1-query is critical. 

For example， let G* be七hefollowing formula: 

((α(2)仲♂(ω肌q

ぽ仲dげ仇3)り)八ぽ件 1)八叫1)件qj3))八ぽ件サ

キ (α(1)仲「α(3)). 

Nex七， let F宵 bethe following "3・queryformula." 

(α(1)特 c4(qF)，1， 0， qi1)))キ G女

Observe that F女 doesnot specify the unique minimal set of queries in 

the following sense. There are two minimal sets of queries that force F， 

one is {"O件ゲ(1，1，0，1)，"“1件 c4(l，1， 1， 1)"}， and the other is {“l件

ゲ(l，13O，l)???ttO件ゲ(1，1，1，1)"}. 80， we must be careful when we deal 

with r-query formulas for r strictly greater than 1. 

By七heway， Dowd began七heproof of [13， Theorem 10] by showing the 

existence of l-generic oracles. More precisely， le七kbe a su伍cientlylarge 

natural number， p be the polynomial p(f.) = f.k (in his notation， roughly 

speaking， the variable e denotes七helength of a given relati市 edformula) 

and let Aηbe an n-ary Boolean function which is l-generic wi七hrespect to 

the polynomial p ; he counもedthe number of (η+ 1 )-ary Boolean function 

An+1 which is compatible with An and is not l-generic with respec七七othe 

polynomial p. Let N = 2n. Then， he showed， by using [13， Lemma 9]， 

among七he2N Boolean function An+l compatible with Aぺthenumber of 

Boolean function satisfying the above requirement is o(2N). After七hat，

he wrote as follows， where his symbol “Xn" meallS， in our notation， the 

connective“ゲ"or the n-ary Boolean function “Xη" with respec七toan 

oracle X depending on the context. 

4.2. DI8ENTANGLED R-QUERY TAUTOLOGIE8 

Citation 4.1 ([13， p.70 line 33 -p.71 line 6]) 

For the induction step， define k1 k， kS+l二 k. ks + 1， and 

suppose Xηh出 beenconstructed deciding the s-query formulas 

involving Xt with :::; n， with polynomial f.k3 for 1 < s < 

T・ Proceeding出 above，the number of X叫 1ruled out by 1-

query formulas is determined as above. Now suppose F is (p件

Xη+1 (ql'・・ ，qn+l)) =今 G，where G is an (s -l)-query formula. 

We may further suppose that if G involves Xi then i :::; n， so 

七hatwi th respect to X¥F is either never a tautology or speci五es

some set S of queries. 

29 

Why may we suppose so? How to deal with formulas such as the above 

F女 wouldbe no七soclear from the ar思unentin Citation 4.1. May we 

suppose“if G* involves ci then i :::; 3"? How should we proceed induction? 

Thus， in the following sectiollS， we would like to present some facts implicitly 

shown in [13， pp.70-71]，釦dwe would like to describe the structure of 

induction explicitly. We will see that Dowd's idea is completely right. 

4.2 Disentangled r-query tautologies 

Now， we may七hi叫<:that it is a formula of the following form that appeared 

as the formula F in Citation 4.1. 

い(1)件と川河)，qi1
)))八

(α(2)仲♂(07qj2)142)142)))〈

同伴c4(0， q~3) ， q~3) ， qi3)) ) )刊
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where H is a query合eeformula. We shall consider no七onlyformulas of the 

above form but also formulas of the following form. 

((α(1)件♂(qP)小川)))八

(α(2)件ゲ(qj2)30?1?qj2)))〈

μ ~  

In七hefollowing Definition， note tha七ァ(ァ-1)/2 is the binomial coeffi-

clen七:

ヰ旦=(;) = rC， 

Definition 4.1 Suppose thαtrαηd n are positive integers such t九αtωe九αυe

アど 2. A tTiple 6 = (t， B， f) is cαlled an (ア，n )-disentangled matrixザthe

following three r，句ωrementsαresαtisfied. The set of all (r，n)-disentαηgled 

mαtパces日 denotedby DEM(r，η) . 

1. t is αpositive integer sαtisfying the following inequαlity. 

log2T・<t三min{九 r(γ-1)/2}. 

2. B isαmαtTix 0 f type (r， t) such that each element is 0 or 1αηd such 

thαt TOWSαre pαirwise different. 

3. j : {1，.・.，t}→ {1，・・，n} is an order preserving mα.pping; we shαII 

。βeη denotej by the sequence (f(l)，・・・ ，j(t)).

In the following four Examples， we explain how we shall use the concept 

of (ア，n)-disentangledmatrices. To clarify our idea， we observe the particular 

case where r = 3 and η= 4. Throughout these Examples， weぉsumethat 
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6 = (2， B， f) is a (3， 4)-disentangled matrix such tha七f= (2，3) and 

1 0 

B = 10 1 

1 1 
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Example 4.1 Suppose七hatQ is a matrix of type (3，4) such that each 

component is 0 or 1 or a propositional variable. Then， we say "6 expressesα 

subrr協 同 ofQ" if the jth column of B is identical wi出七hef(j)出 column

of Q (for j二 1，2)，i.e. if Q is of the following form. 

Thl山u瓜1

columns.口

* 1 0 * 

Q = ，* 0 1 * 

* 1 1 * 

Example 4.2 We regard七hedisentangled matrix 6 as a partition of the 

setStr(4). Foreachi ξ{1， 2， 3}， we define a seもS七r(4， 6， i) of bit strings as 

follows. 

Str(4， 6， i) =def. {z(m)εStr( 4): The string z(24 
- 1十 m)is of the form 

ψii) b~i) U4， where bii) b~i) is the ith row of B and {1川 J，4}三{0，1}}

Then， we get the following partition of七heset Str( 4)， where + means 

disjoint union. 

Str( 4) = Str( 4，6，1) + Str( 4，6，2) + Str( 4，6，3) + (Str( 4)¥U1<i<3Str(4， 6， i)). 

For any oracle A， the partial function A I Str(4， 6， 1) determines queries 

of the form “αφ ゲ(ql，1， 0， q4)." Similar fact holds for Str(4， 6， 2) and for 

Str( 4，6，3) 口
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Example 4.3 We identify the disen七angledmatrix 8七obe七hefollowing 

operation on arbitrary relativized formula F. 

8(F)三 def.F[l/q~l)] [0/ q~1)] 

[0/ q~2)] [1/ q~2) ] 

[1/ qf)] [1/ q~3)] 

The right-hand side denotes substitution. For example， 

8(q~1) V (qP) ^ q~2))) 三 (q~1) V (qP) ^ q~2)))[1 /q~1 ) ][0 / q~2)] 三 1V (qi1) ̂O) 

We often write 8F ins旬以 of8(F). If F is a tautology wiもhrespect to an 

oracle A， then 8F is also a tautology wiもhrespect to A. 

In particular， for a query仕eeformula H， we define a relativized formula 

8(3，4， H)ぉ follows.

引3，4，H)=def. ((((α(1)件ゲωil)117吋)))̂  

(α(2)件 c4(qi2)，0，1， qi2))) ^ 
(い川αa(3ロ(3){::} 

In七hefollowing， each expression of the form 8ム(叩)[S] denotes 8(ム(叩)[S])

For the symbol of the formム(叩)[S]， see the 1ぉtparagraph of Chap七er2 

of this thesis. Suppose that each Si (i 1，2，3) is a forcing condition 

such tha七dom(Si)三Sむ(4，8，の.Let F3 be the formula obtained from 

8(3，4， H) by s1.かtituting8ム(4，3)[S3] for “α(3)φ ♂(qi3)?l?l?qi3))"Let Fh，3 

be the formula obtained from F3 by subs出 uting8ム(4，2)[S2] for “α(2)件

ゲ(qi2)?O?1742))"Moreover?le七Fωbethe query台eeformula obtained 

from F2，3 by substituting 8ム(4，川5¥]for 、(1)件ゲ(qil)11?0741))"We

consider the following fourぉsertions.

(1) The query丘eeformula F1，2，3 is a tautology 
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(2) The forcing condition 81 forc白 theformula F2.3 

(3) The forcing condition 81 + S2 forces the formula 九.

(4) The forcing condition Sl + S2 + S3 forces the formula 8(3，4， H) 

Suppose七hata truth a.ssignment for propositional variables is given such 

that the three query仕切 formula.s8ム(4，1)[Sl]， 8ム(4，2)[S2]and 8ム(り)[S3]are 

true with respec七七othis truth a.ssignment. Then， it is not hard七osee that 

we can extend the forcing condition Sl +S2+S3 to an oracle A (i.e. 81 +82+ 

S3 c A) so that the七hreerequirements “α(1)仲 A4(qjl)31?03dl))?"川(2)件

A4(qj2)?O?l，qj2))ηand“α(3)件 A4(qi3)?131?qj3))3Fare制 isfiedwi th respect 

to七hetruthぉsignment.Hence， the a.ssertion (4) implies theぉsertion(1). 

On the other hand， Sl forces the following formula. 

(α(1)件 c4(qP)，1，0， qi1)))キ 6ム(4，1)[Sd 

Similar facts hold for S2 and S3・ Therefore，the above four a.ssertions are 

equivalent.口

Example 4.4 We observe七hata weak version of DowdうsLemma 9 [13， 

Lemma 9] holds for tautologies of the form 8 (3，4， H). 

Now， suppose that H is a query free formula and E is a set of bit strings 

satisかingthe following inclusion. 

Str( 4，8，2) + Str( 4，8，3) c E c Str( 4)¥Str(4， 8， 1) 

Suppose七ha七Aois a forcing condition whose domain is E and tha七the

formula F三 def.8 (3，4， H) is a tautology wi七hrespect七osome oracle A ex-

tending Ao. In general， a minimal set of queries that forces F is not匂nique;

recall the example of the formula F * in the previous sec七ion. However， 

le七tingSi二 def.Ao r Str( 4， 8， i) for each iε{2，3}， the “1-query forrr叫 a円



34 CHAPTER 4. R-GENERIC ORACLES 

F2，3 defined as in Example 4.3 is a七autologywith respect to A. Hence， by 

Dowd's Lemma 9 [13， Lemma 9]， there exists the unique forcing co吋 ition

S1 satisfying the following two requirements. 

• For any forcing condition T1， the necessary and sufficient condition 

for “T1 forces F2，3" is “Sl c T1・"

• dom(5d is a sゆsetof Str( 4， 8， 1) 

In particular， by considering the case where T1 = A I Str( 4)， we have Sl c 

A. Note the following two facts. First， for any forcing condition T1 such 

七ha七dom(T1)c Str(4，8， 1)，七hefollowing three assertions are equivalen七

(see Example 4.3). 

• T1 forc白 F2，3.

• T1 + Ao forces F. 

• Ao forces F1' where F1 is the formula obtained from F by substituting 

6ム(り)[T11for “α(1)仲ゲ(qjl)，110?qjl))??

Second， 51 is uniquely determined only by F and Ao: that is， determined 

without using information on七heremaining part A¥Ao. Because， F and 

Ao determine the formula F2，3， and F2，3 specifies 51・口

More generally， we de五neas follows. 

Definition 4.2 Suppose thαt r isαpositive integer suc九thαtγ と2.

1. Suppose thαt n isαpositive ir，山gerαηd8 = (t，B，f) isαη (r，η)ー

diser山 ngledmat門x.Forαmatrix Q oftype (r，η)} we sαu 句 expresses

a S1山 natrixof Q ，)ザthej七hcolumn of B is identicalωth the f (j) th 

column of Q for each j = 1，. . . ，t. For each integer i = 1，・・ .，r} we 
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deβηeα set Str( n， 8， i)αs folloωStr(η，8， i) is the collection of all 

bit strings z( m)εS七r(η)such tl叫 lettingU1 . . . Uη be the bit string 

z(2
n 
-1 + m)ε {O，l}n， the bit string Uf(1)uf(2)・.• U f(t) is identical 

with the “h iOW 0 f the matrix B. M oreover， fromαgweη relativized 

formula F，印 刷keαformulα8(F) by the following sub必 tution，

ωh抑 制Lby) denotes the (i， j) -comp附 ηtofthem伽 xB

8(F)三defFlbil)/qjii)1 141)/qp)] 

lbjhJ2)l 

IMT)/qm)lM)/qn)i 

We ojteηω門te8F insteαd of 8(F). ln pα尚 cular，forαgweηquery 

介eeformula H，ωeαbbreviate (叫(r，n， H)" to 匂(r，η7H)J3Pωhere

Q(r， n， H) is the 川匂的f07マnuladefinedαs follows. 

Q(帆 H)三def“(合(α(i)<=> cn(qii)，.. .， q~i)))) =? H." 

2. Assume thαt F isαrelαtivized fo門九包Jα.We cαllFαdisentangled 

r-query formulaザF is of the form 8(ア，n， H)， whereηisαnatural 

number， 8 is an (r，n)-disentαηgled mαt巾 andH isαq包町内efor-

mula. lf F isαdisentαngled r-query fo門ηulααηdF isαtαutology 

with respect to αηonαcle A) theηωe cαII F αdisentangled r-query 

tautology wi七hrespect to A.口

The following is a crucial property of the disentangled r-query tautolo-

gles. 

Revised Dowd's Lemma 9 (Implicitly shown in [13， Lemma 9]) Suppose 

thαtァαηdnαrepositive integers such that rと2.Suppose 8ξ DEM(r，η) 
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αηd s叩Iposethat H isαquery free formula and E isαset of bit strings 

sαtisfying the following inclusion. 

Str(η7672)+--・+Str(η) o， r)三E三Str(η)¥Str(へ5，1).

Let Ao be α forcing condition ωhose domain is E. Assume t仇九αωtF三d由巴f

o(ヤr，ηκ，H)iωS α d必2S犯entはtα仰η旬g〆ledrト-q卯匂Mε7旬11tωαωolo勾gyωωit抗九 T何'es叩pε白ctto some 07iαcle e 

ext白的endi仇7ηLgAo. T，九eη叫，t仇九er，陀εex幻iお‘S幼S

St仕r(作η，O，1リ)α仰ηds卯匂ch九t仇九αぱtfor噂 απ旬yfoア陀C2仇7ηLgC∞Oηditioη丸 山hosedomα2n 2Sα 

subset of Str( n， O， 1)} the folloω句 threeαssertionsαreequ2Vαlent 

1. 51 c T1・

2. T1 + Ao forces F. 

3. Ao forces F1' where F1 is the formula obtained from F by substituti旬

6ム(吋)[T1]for 匂(α(1)φ ç-n(qil) ， ・ ・ ， q~l))) . " 

Such αforcing condition Sl is uniquely dete門 η仇edonly by the disentαngled 

r-query fo門 ηulaF αnd the forcing condition Ao. A nd， forαηy orlαcle A 

extending Ao， if F isαtαutology with respect to A theηA isαη extension 

of Sl' (Becαωe， letting T1三def.Ar Str(n， O， 1)， T1 + Ao forces F.) 

Froo!" Proceed as in Example 4.4.口

Now， suppose that Q is a matrix of type (r，η) such that each element 

is 0 or 1. Observe tha七eitherQ has a pair of identical rows or七hereexists 

6εDEM(r， n) such tha七Oexpresses a s山 matrixof Q. If r is fixed， then 

the cardinality of DEM(r， n) is at mos七polynomialof ηindeed， we have 

the following， where R =ァ(r-1)/2 

ωrd仰 川三R.max({2 rt
• (~) • t :'O R}) :'O R. 2rR ηR 

4.3. HIERARCHY 37 

Thus， we can reduce a problem of an r-queηr七autologyto polynomial 

many problems of disentangled r-query tautologies and to polynomial many 

problems of (ァ-1 )-query tautologies; we shall discuss this matter more pre-

cisely in the next sec七ion.Also， we shall see七hatby using Revised Dowd's 

Lemma 9， we can apply七heargumen七in[13， pp.70-71] to disentangled r-

query tautologies. 

4.3 Hierarchy 

Our next task is to describe the structure of induction explicitly. 

For this purpose， we investigate oracles' hierarchy with respect to forcing 

complexity. The following Diagram 4.1 illustra七esthe relationship of oracle 

cl出 sesrGENi's七hatwe are going七odefine. It is eぉilyseen that rGEN3 

is exactly the collection of all r-generic oracles in Dowd's sense (for アニ

1，2γ .l For each r， the class rGEN2 is defined as the collection of oracles 

for which (the binary codes of) disentangled r-query tautologies have forcing 

complexity at most polynomial. The class rGEN1 is defined as the collection 

of oracles for which (七hebinary codes of) disen七angledr-query tautologies 

have “partial forcing complexity" at most polynomial，七hatis， the collection 

of oracles for which “51ηin Revised Dowd 's Lemma 9 has size at most 

pol戸lOmial.

Diagram 4.1. 

2GEN1 ~ 3GEN1 コ •• • 

IU IU 

2GEN2 ~ 3GEN2 コ・・・

IU IU 

1GEN3 ~ 2GEN3 ~ 3GEN3 コ・・・
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In the following， for a relativized formula F， f(F) denotes the length of 

F as a formula:七hatis， f( F) is七henumber of occurrences of propositional 

variables， constants (0 and 1)， logical connectives ('，ハ， V， => and仲)， 

additional connec七ives(C1， C2， e， ・・・ ) and punctuation marks (parenthe-

sisses and commas). We do not rigorously formalize syntax of the relativized 

propositional calculus here. However， we do noもadmitgates of unbounded 

fan-in， that is， the following symbols are not our formal symbols. 

八， V

Definition 4.3 Suppose thαt r) k) C αnd n αre positive integers. Let 

Func(η) be the collection of all forcing conditions whose domains are Str(η) 

1n the folloωng) for eαch i ε{1， 2}} rGENi(k， C，η) is definedαsα subset 

ofFun刈Tηb). 

1. For each oracle A) rT AUT[A; C] denotes the set of all f07m叫αsF

such that we hωeFεγTAUT[A]αηd f(F)三C.

2. Assume r三2. A forcing condition X εFunc( n) belongs to the set 

ァGEN1(k，C，η) if for every 8εDEM(r・，n)αnd for every query free 

f07mula H} l凶εett材ti吋η旬9F be t向h仇ed向t臼印附S犯sen臼7η仰Z

t九ε folωlo ω 句 αωss犯e付耐w仰η fμA1り)holds: 

(Al)“1fωe hαυeF巴rTAUT[X; C] then there existsαforci句 condi-

tion 51 such that Card( dom(Sd)三f(F)k}S1 c X I Str(η，8，1)αηd 

S1 + (X↑E) forces F}ωfげ eE = Str(η)¥Str(η，8，1). n 

3. Assume r三2. A forci句 COT凶 tionX εFunc(η) belongs to the set 

rGEN2(k， C，η) if it sαtisfies the requirement for rG EN 1 (k， C，η)ωit九

the follo切句 αsse耐 on(A2) in place of (Al). 
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(A2) "1fωehαve FεrTAUT[X; C] then t九ereexistsαfo何 ingcondi-

tion 5 such thαt Card(dom(5)) ::; f(F)k) 5 c X αnd 5 forces F. n 

4. For eαch i ε{1，2Lωe defiηeα class rGENi(k， C)αs the collection of 

αII oracles X such thαtfor eαchηαtural number m) the partial function 

X I Str(m) beloηgs to the set rGENi(k， C， m) 

5. We deβne rGEN3(k， C)αs the class 0 f all oracles X such thαt forαII 

Fε rTAUT[X; Cl) F is forced by some β似た portion5 c X such 

that Card( dom(5))三f(F)k.

6. For each i ε{l， 2，3}} rGENi denotes the collection ofαII oracles X 

such thαt for some nαturalηumbers k'αηd C'} X belongs to the class 

rGENi(k¥C') 口

We paraphrase the argument in [13， pp.70-71] as follows 

Proposition 4.1 (Implicitly shown in [13， p.70]) Suppose we九ωerと2

Then) for sufficiently large k and C) ωe hαve the following. 

μ(rGEN1(k， C)) > 0， 

ωhereμdenotes Lebesgue meαsure. Siηce rG EN 1 is closed uηderβnite 

chα句 es}ωeαlso九αveμ(rGENd= 1. 1n other words) siηce membership to 

rGEN1 is α tαil event} by zero-or・サnelαωJ 切ehωe μ(rGENd = 1. (For 

tαil eventsαηd zero-or-one lα叫 seee.g. Feller [15].) 

Proof The proof is a paraphrase of Dowd's proof of the existence of 

l-generic oracles [13， p. 70]. Ins七eadof Dowd's Lemma 9， we use Revised 

Dowd's Lemma 9. Suppose that k， C and n are positive integers. 

We observe the nature of a forcing condi七ionXεFunc(n) ruled out by 

a particular formula F， where “ruled out" rneans七ha七X does not belong to 
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TGEN1(k， C， n). Assume七haもXis a member of Func( n) and F is a formu1a 

of the form 8 (T，叫 H)，where 8 = (t， B， f) is an (T， n )-disentang1ed matrix 

and H is a query仕eeformula. N ote七hat8 and H are uniquely determined 

by F. Thus， the set Str(n， 8，1) is also unique1y determined by F. 

Then， we assume the formu1a F witnesses七hatthe forcing condi七ionX 

be10ngs七o七heset Func(η)¥TGEN1(k， C，η). We state this assumption more 

precisely in the following. We assume that F is a member of TT AUT[X; C] 

and Xo is the partial function defined as follows. 

( 4.1) Xo三def.Xr (Str( n)¥Str(η，8，1) ) 

The domain of Xo is unique1y determined by F. By Revised Dowd's 

Lemma 9， there exists七heminima1 forcing condition 51 such七hatdom(51) 

三Str(η，8，1)and 51 + Xo forces F. We have 51 !: X and 51 is uniquely 

determined by F and Xo・Theassumption of "F wi七nessesX ιFunc(η)¥ 

TGEN1(k， C，η) " means that we assume the following. 

(4.2) e(F)kく Card(dom(Sd)

Thus， in particular， we have e(F)三2πjk

Now， X is unique1y determined by F， Xo and by七hefollowing function 

X1・

( 4.3) X1三def.X ↑(Str(η，8，1)¥dom(51)).

Of course， the domain of X1 is uniquely determined by F and Xo・Thus，letー

もingV(F) be七henumber of members of Fur叫吋¥TGEN1(k，C，η) witnessed 

by the particular formula F， we have the following. 

V(F)三(thenumber of X
1山)• sup(the number of X1 's)， 

where七hesecond factor of七heright-hand side denotes the supremum (in 

fact， maximum) of the number of X1 's for various Xo's. T引he悦r閃e伽 e久， b匂Yt山he e 
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above formulぉ (1)，(2) and (3)， we have the following. 

( 4.4) log2 V(F)三(2n-2n-t) + (2n-t -e(Fl) = 2η -e(F)た

For each natural number e， let w(e) be the number of formulas F such 

七hatits length is e and we have to pay attention to F to count the cardinality 

of the set Func( n)¥TGEN1(k， C，η). If e is su伍cient1ylarge，七henwe may 

assume w(e)壬(2e)e.Becau民 wearray at most e variables and at most 

e other symbols (constants， logical connectives， e七c.)to make a formula of 

length e. Thus， we may assume the following: 

(4.5) 10g2W(e)三e2

Let N=def.2n and L =def. max{C， T(η+ 1) + 1}. If k and C are suffi.cient1y 

1arge， then by the above formulぉ (4)叩 d(5)， we have七hefollowing. 

Card(Func(η)¥rGEN1(k， C，η))三乞2N-f(E)1

w here e varies台omL to 2njk a凶 f(x)二 def.xk -x2 Then， the right-hand 

side is at most the following: 

2N・{2n-f(L)}三2N ・{1/2f(L)-L}三2N・(1/2L)三2N. (1/2n+2) 

Therefore， for sufficiently large natural numbers k and C， we have the fo1-

lowing: 

μ(ァGEN1(k，C)) > 0口

Proposition 4.2 We hαυε2GEN1 c: lGEN3・

?TOOf: This is shown by adding dummy symbols. Suppose F is the 

following 1-query formu1a. 

F三def“(α(1)件 cn(qp)，...， q~l))) => H，" 
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where H is query企ee.Then， for any oracle A， the necessary and su伍cient

condition for “Fε 1TAUT[A]" is七ha七thefollowing formula belongs to 

2T AUT[A]， where we assurne H has no occurrence of the variables α(2) and 

q;2) (for j == 1， 川)

F〆==de三弓弘d白川e
(伊αa(2ロ(2)C:> 

Then， we may consider F' to be a disentangled 2-query formula. Therefore， 

we have 2GEN1 c 1GEN3・口

Proposition 4.3 (Implicitly shown国 [13，p.71]) Suppose thαt r isαPOS1，-

tive integer. TheηJωehαυerGEN3n(ァ+1)GEN1 c (r + 1)GEN2・

Proof: The proof is a paraphrぉeof [13， p.71， line 6-13]. We show 

七heProposition by interpola七inga formula of the form 5ム(n，l)[Sl]' Let 

A be an oracle such七ha七Aε rGEN3(k，C) n (ァ +1)GEN1(k， C)， where 

k and C are positive integers. Let F三 def.5 (r，叫 H)，where we have 5二

(t， B， f)εDEM(r，η) and H is a query free formula. Now， suppose Fε 

(r + l)TAUT[A; C]. Let G be the following formula. 

G-d匂~三弓元知d由ωefピfベ4巾t“て令令判，(令か(←い何6引仰(いαa(2ρ(2)C:> 

引仰Mαa(r+l円(か仲山川T件川叫+札刊lり)仲吋Cnη(ωωぱ(qir+1ιqir+1件川+札1)¥，...，qιqιr叫 今叫5Hη 

Then， F is equivalent to 5(α(1)φ ゲ(qjl)??qil)))キ G.Since A belongs 

to the class (r十 1)GEN1(k， C)，七hereexists a forcing condi tion S 1 c; A 

Str(η，5，1) such七hatthe size of the domain of Sl is sufficiently small and 

Ao forces the formula (5ム(n，l)[Sl])キ G，where Aoニdef. A ↑(Str(η)¥ 

Str(n， 5，1)) (see Revised Dowd's Lemma 9). Although the size of Ao 

is big， by the hypothesis of A εγGEN3(k， C) and by七hefact七hat七he
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formula (5ム(n，l)[Sl])今 Gis a tautology with respect to A， there exists a 

forcing condition T c; A such that T forces (5ム(n，l)[Sd)キ Gand the size 

of the domain of T is sufficiently small. Recall七hatSl forces the following 

formula. 

5(α(1)件 F(qil)1Fqi1)))キ 6ム(吋)[51]

Therefore， Sl UT forces F， and the size of the domain of Sl UT is sufficiently 

small. Hence， for sufficiently large k' and sufficiently large C'， A belongs 

七o(ァ+1)GEN2(k'， C').口

Proposition 4.4 Suppose thαt r isαpositive integer・ Theηyωehαυe the 

folloωtηg 

ァGEN3n (r十 1)GEN2c (ァ+l)GEi可3

Proof: Assume that k and C are natural nurnbers and A is an oracle 

such七ha七Aε rGEN3(k，C)内 (r+ 1)GEN2(k， C). Suppose七hatηlSa 

positive integer and F isもhefollowing (r + 1 )-query formula 

F三 def.，，( (α(1) C:> cn(qi1
)，...， q~l))) ^ 八

川

where H i均squery丘e閃e.Let e ==def. e( F). 

For each pair (i， j) of integers such七ha七l三tく j::; r + 1， le七Guibe 

the following formula obtained from F by substi七ution.

Gi，j三 def.F[qli)/qlj)]... [q~i) /q;;)] 

Each Gi，j is essentially not an (r + l)-query formula of length e but anアー

query formula of shor七erlength. Now， for any oracle X，七henecessary and 

sufficient condition for theぉsertion"FεTAUT[X]" is the conjunction of 

the following twoぉsertions;recall theむ gumen七inthe last paragraph of 

the previous section. 
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• For every (i， j) such that 1三tく j三r+ 1， Gi，j is a tautology with 

respect to X. 

• For every 8εDEM(r， n)， 8(r + 1， n， H) is a tautology with respect to 

X. 

Thus， by our assumption of AεrGEN3(k， C)内 (γ+1)GEN2(k， C)， if F is 

a tautology wiもhrespec七七oA and f is su伍cien七ly1紅 ge，もhenF is forced by 

a finite portion S c A of the following size. 

ωr山町(r;1)計十州

Since γis a .fixed cons七an七， it is easily verified that the right-hand side is 

bounded by a polynomial of f and η. And， obviously we have n :::; t Thus， 

七heright-hand side is bounded by a polynomial of t Hence， for suffi.cie凶ly

large numbers k' and C'， the oracle A belongs to (γ+ 1)GEN3(k'， C').口

Theorem 4.5 In Diαgram 4.1， each ve付icalhierarc九ycollαpses. Thαt 

is， for eαch positive integeア r，we hαυe (r + 1)GEN1 = (ァ+1)GEN2 = 

(ァ+1)GEN3・Thus，we get the relation of oracle classes illωtrated by the 

following Diαgram 4.2. 

Diagram 4.2. 

2GEN1 3GEN1 

11 11 

2GEN2 3GEN2 

11 11 

1GEN3 ~ 2GEN3 ~ 3GEN3 コ・・・
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Proof By induction on r with Propositions 4.2， 4.3組 d4.4， we 

have (r+l)GEN1 c rGEN3 and (ア十1)GEN1= (γ+1)GEN2 = (ァ+1)GEN
3
，

for each positive integer r.口

Dowd's Theorem 10 ([13， Theorem 10]) Foァεαchpositive integer r，ωe 

hαveμ(rGEN3) = 1. 

Proof Immediately from Proposition 4.1 and Theorem 4.5.口
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Chapter 5 

Cohen-Feferrnan Generic 

Oracles 

In this chapter， we study how existence of ceiling-generic oracles affects 

behavior of a generic oracle， by which we strengthen the well-known resul七

七hatthe following class of oracles is comeager: {X: P[X] =1= N P[X]}. The 

con七entsof七hischapter is based on [28]. 

5.1 Separation of complexity classes 

Recall that an oracle A is called ceiling-generic for a predicate rp( X) (y) if 

the forcing complexity of rp(X)(y) relative to A is bounded by a polynomial. 

And， recall that rp[A] denotes the set of all bit strings u such七hatrp(A)(u) 

holds. For these concepts， see Definition 3.1. 

Theorem 5.1 S叩 poserp(X)(y) andψ(X)(y)α何 βnitelytestαbleα吋th-

metical predicαtesJ G1 isαηonαcleJ αnd suppose thαt the ]ollowing three 

hypothesisses hold ]or every oracle A such thαtA三 G1(mod.βηite) 

(H. 1) A is c-geηeric ]or rp(X)(y). 

47 
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(H. 2) A is c-geneパcfor.ψ(X)(y). 

(H." 3) A is not c-gene付cforψ(X)(y) 

Then， for eveη Coheル Fefermangeneric oracle G2，ωehαυe 

ゆ[G21~ N P[cp[G2]]. 

Proof: Suppose that M[X] is a polynomial time-bounded nondetermin-

istic oracle Thring machine， and suppose that So is an arbitrary condition. 

We shall show existence of a condition T such that T is an extension of So， 

and T forcesψ[X]ヂ:Lang(M[<p[X]]). Let A be叩 oraclesuch that A三 G1

(mod. finite) and A is an extension of So (i.e. So c A). Assurne that p is a 

polynomial such that A is p-c-generic for (ρ(X)(y) and A is p-c-generic for 

「伊(X)(y).By the hypothesisses (H. 1) and (H. 2)， such a p surely exists 

Le七tbe a polynomial that is a time-bounding function of M[X]. We may 

assume η三t(η)< t(η+ 1)， for all natural numbers n， and may assume 

tha七七hesame thing holds wi七hp in place of t. Let us define a polynomial 

q as follows. 

q(x) = t(x) . p(t(x)) + Card(dom(So)) 

By the hypothesis (H.3)， A is no七q-c-genericfor ψ(X)(y). Moreover， the 

predicateψ(X)(y) is finitely testable. Hence， there exists a bit string u for 

which the following holds: "?t(A)( u) is true， and for each condition S such 

七hatS c A and Card(dom(S)) ::; q(lul)， there exis七sa condition T such 

that S c T and T forces 'ゆ(X)(u).円 We五xsuch a u. 

In the cぉ ewhere M[cp[A]] accep七su. We consider a日xedaccepting 

computation of M. Since in course of the computation M asks at most 

t(lul) questions of size at most t(lul) to the oracle， there exists a condition 

Sl such七hatSl c A， Card(dom(Sl))三t(I包1). p(t(lul)) and Sl forces that 

M[cp[X]] accepts the bit string u. Since So and Sl are compatible， there 
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exists a condition S2 such七hatS2 is a cornrnon extension of them (i.e. 

So c S2 and Sl c S2 ) and Card(dom(S2))三q(lul)・ Hence，by our choice 

of the bit string u， there exists a condition T such that S2 c T and T forces 

「妙(X)(叫.We fix such a T 

Otherwise. We consider the ari thme七icalpredicate ψo(X)(y) defined by 

the following assertion: “ψ(X)(y) is true， and M[cp[X]] rejects y." Since 

the predicate ψo(X)(y) is日I此elytestable andギψJ

a condition Sゐ'3 c A such t出ha抗tSお3 forces ψ仇o(X)(u吋.t). Let T be a common 

extension of So and S3・

In ei七hercase， So c T， and T forc白州X]戸Lar以M[cp[X]]) 口

Corollary 5.2 Suppose that r isαpositiveηteger・ Then，the following 

clαss 0 f oracles is comeαger: 

{X: coNP[X] CJ;. NP[rTAUT[X]]}. 

Proof: Note七hatone counter-example is su白cientto refute a tautology. 

Thus，αny oracle is p-c-generic for .rTAUT(X)(y) wi七hp(n)二 def.r (for 

each ηεN). Let G1 be an r-generic oracle in Dowd's sense such七hatG1 is 

not t-generic. By Dowd's Lemma 7， Dowd's Theorem 10 and Fact 1.1 

(see Chapter 1 of this thesis)， we know that such a G1 surely exists， and 

that the following triple satisfies七hethree hypothesis (H. 1)， (H. 2)組 d(H. 

3): 

(rTAUT(X)(y)， T AUT(X)(y)， G1). 

Hence， by Theorem 5.1， for each Cohen-Feferman generic oracle G2， we 

have T AUT[G21経NP[rTAUT[G2]] 口

Remark: Since N PQU ERY[A] = N P[QBF EB A] for any oracle A， it is 

easily seen七hatthe statements of Theorem 5.1 and Corollary 5.2 hold 

wi七hNPQUERY[] in place of NP[] 口
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5.2 Examples 

Let LBGS [X] be the oracle-dependent tally set defined as follows. 

LBGs[Xl = {On : -，ヨuε A(lyl=η)} 

It is well-known that Baker et al. used (the complement of) the above七ally

set in [3]七oshow existence of an oracle A such that P[A]ヂ:NP[A]. Later， 

some people interpreted the me七hodof Baker et al.ぉ aforcing method， and 

もheyshowed that P[G21 f N P[G2] for every Cohen-Fef，白e口rmangeneric oracle 

G2 (いe.g.[12，13司]，[け問7可]).Howev1刊er，the polynomial time many-one degree of the 

tally set LBGS[X] is so low七ha七LBGS[X]is useless to separate T AUT[X] 

from rT AUT[X] i.e. useless to show Corollary 5.2. To see七his，let us 

prove an example by using LBGS [X]. Suppose that G2 is a Cohen-Feferman 

generic oracle. Then， the following holds: 

(4.1) 1TAUT[G21 rt. N P[QsF EB G2]. 

Moreover， as a special cぉeof (4.1)， we have the following: 

(4.2) 1TAUT[G2]要P[TAUTEBG21 

A proof of (4.1) by using LBGS [X] is ぉ follows.Suppose that M[X] is a 

polynomial time-bounded nondeterministic oracle Thring machine. Let DM 

be the set of all condi七ionsthat force the followingぉsertion(4.3). 

(4.3) LBGS[X]ヂ:Lar以M[QsFEB X]) 

By the method of the proofs of Theorem 3 and 4 of [3]， it is verified tha七DM

is dense， and hence every Cohen-Feferman generic oracle X satisfies (4.3). 

Therefore， for each Cohen-Feferman generic oracle G2， we have LBGs[G2] rt. 

NP[QsF EB G2]. Since the above tally set LBGS[A] is polynomial time 

many-one reducible to 1T AUT[A] for each oracle A， we have (4.1). 
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Of course， we can show (4.1) without using LBGS[X]. First， note the 

following. 

Proposition 5.3 SupposeギI(X)(y)isαβnitely testαbleαrithmetical pred-

'l，Cαteαnd G1 isαn OTiαcle. A叫 supposethat the hypothesis (H. 3) holds 

for eυery oracle A such that A三 G1(mod. finite). Then) for every Coheη-

Fefermαn gene行cor，αcle G2)ωe hαve 

ψ[G2] rt. N P[QsF EB G2]. 

Proof: We consider七hepredicate <p(X)(y) defined by "yεX." Clearly， 

any oracle is c-generic for <p(X)(y) and c-generic for i 伊(X)(y).And， for 

any oracle A， the language <p[A] is jus七Aitself. Hence， by Theorem 5.1 

and Remark after the proof of Corollary 5.2， we have Proposition 5.3. 

口

Let :F be the class of all oracles which are not l-generic in Dowd's 

sense. By Fact 1.1， :F is comeager in the Cantor space， and is closed under 

五nitechanges; indeed， :F contains all Cohen-Feferman generic oracles [13， 

Theorem 12]. Take an oracle G1ε :F， and let ψ(X)(y) be七hepredicate 

1TAUT(X)(y). Then， we get (4.1) by Proposition 5.3. 

By the way， in the statement of Theorem 5.1， it is essential七ha七七he

three hypothesisses (H. 1)， (H. 2) and (H. 3) hold not only for A = G1 but 

also for any A such that A三 G1(mod. finite). Compare Proposition 5.3 

with七hefollowing Example. 

Example 5.1 There exists a pair (ψ。(X)(y)，G1) tha七satisfiesall of the 

following three requirements. 

1仇(X)(y)is a finitely testable a出 hmeticalpredicate and G1 is an 

oracle. 
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2. G1 is not c-generic for ψ。(X)(y)

3. For each Cohen-Feferman generic oracle G2， we haveψo[G21 E P[G21 

Proof' For each positive integer i and for each query free formula H， 

we denote七hefollowing l-query formula by q(l， i， H) : 

(α 仲 ~t( q1 γ • ， qi))=*H. 

Let G1 be a l-generic oracle in Dowd's sense with respect to a polynomial p. 

Wemay 凶 sumen三p(η)三p(叶 1)，for all natural numbers ηWe consider 

the ari七hmeticalpredicateψ。(X)(y)de五nedby七hefollowing assertion:“for 

some ηε N，y二 on，and for each i 三ηandfor each query free formula H， if 

q (1， i， H) is a tautology with respect七oX then七hereex凶 sa condi tion S c 

X such that Card( dom( S)) is a七mostp(lq(l， i， H) 1) and S forces q(l， i， H)ε 

TAUT[X]." 

We show tha七G1is not c-generic for ψ。(X)(y). Assume for a contra-

diction that G1 is q-c-generic for妙。(X)(y)， where q is a polynomial. We 

mayぉsumen三q(η)三q(η+1)， for all natural numbers ηLet c be a 

sufficiently large natural number and let m be a natural number sa七isかmg

the following inequality: 

( 4.4) c. p(c. q(mr + c)く 2m -1 

Since G1 is l-generic in Dowd's sense with respect to the polynomial p， we 

have ψ。(Gd (om). Therefore， by our assumption for a contradiction， there 

exists a condi七ionS c G1 such that Card(dom(S)) is at most q(m) and S 

forces ψ。(x)(om).Let {υ(l)?・，v(d)} be an enumeration of all bit strings v 

such七ha七υεdom(S)and S( v) = 1. Of course， we have the following: 

d三q(m).
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Let Ho be a query free formula such that for each oracle X，七he1-query 

formula q(l， m， Ho) is a tautology with respect to X if and only if the 

following ぉsertionholds: 

(4.5) (VuεX n {O， l}~m-l) (uこり(1)or '" or u =υ(d)) . 

We choose Ho so that its length IHo 1 would beぉ shortas possible. We define 

an oracle Aぉ follows:S c A， and A( u)ニ ofor all u rf-dom(S). Then， we 

have q(l， m， Ho)ε1TAUT[A]. On the other hand， ?To(A)(O勺 holds，since 

this predicate is forced by S. Hence， by our definition of ψo(X)(y)， there 

exists a condition T c A such that Card( dom(T)) is a七mostp(lq¥1， m， Ho) 1) 

and T forces q(l， m， Ho)εTAUT[X]. Thus， T forces the assertion (4.5). 

However， by the inequality (4.4) and by our choice of the formula Ho， we 

may assume Ca釘.rd(doαI叫I

{伊0，1斗}三m一→おs2m 
- 1. Hence，七hereexi向 anoracle X such that theお sertion

(4.5) fails but T c X， a contradic七ion.

Finally， let G2 be a Cohen-Feferman generic oracle; le七usshow平川G2]E 

P[G2]. Then， G2 is not a l-generic oracle in Dowd's sense [13， Theorem 12]・

Therefore，ギ叫G2]is a finite seも 口
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Chapter 6 

One-query versus One-question 

In this chapter， we investigate， among others， whether for a random ora-

cle A， lT AUT[A] is one-question tru七hーもablereducible to A. We presen七

日egativeanswer， i.e. it is not one-question truth-table reducible to A with 

probability one. 

6.1 Reducibilities 

In this chapter and in the next chapter， for several kinds of reducibilities， 

we consider the followingぉsertion.

(↑)“If A is a random oracle七henlT AUT[A] is not reducible to A with 

probability one." 

Disjunctive reducibili七y(“d-reducibility" for short) and one-question 

truth-table reducibili七y(“l-tt-reducibility" for sho刈 arewell叩 knowncon-

cepts locating between many-one reducibility and truthーもablereducibil-

ity (“tt-reducibility" for short). An oracle A is called d-reducible (1-tt-

reducible， respectively)七oan oracle B if it is tt-reducible to B and every 

truth-table condition used in the reduction is a disjunctive formula (every 

55 
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truth-table condition used in the reduction has norm 1). For more for-

mal treat町民 seeOdifreddi [25， p.268]. It is also well-known七hatfor 

any oracle A， A is 1-tt-reducible to七hecomplemen七ofA. Some authors 

called disjunctive reducibility by different name (Rogers [27， p.123]). Poly-

nomial time versions of 七七一reducibility，d-reducibility and 1ーもt-reducibili七y

have been studied since 1970's (Ladner et al. [22]). In this chapter， we 

show the following. 

Theorem 6.1 1. 1f A isαmηdom oracle， then 1T AUT[A] is ωt dis-

junctive reducible to A with probαbility one. 

2.万Aisαァαηdom0'Tiαcle， theη1T AUT[A] is not disjunctive reducible 

to the complement of Aωith probαbility one. 

3. 1f A isαrandom 0"αcle， then 1T AUT[A] is not 1-questioηtruth-tαble 

reducible to Aωith probαbility one. 

Convention for this chapter: Nbhd(S). For each forcing condition 

S， we define a class Nbhd(S) of oracles as follows. Nbhd(S) =def. {XεC: 

S h X}. "Nbhd" is an abbreviation of “neighbor hood." 

6.2 Initial segments of oracles 

To show Theorem 6.1， we introduce an auxiliary language 1niSeg[X] in 

this section. For each oracle X，七helanguage 1niSeg[X] consists of all 

initial segments of the oracle. For technical reasons， we adopt the following 

definition. 

Definition 6.1 1. For each bit string u of lengthαt leαst 1，ωe define 

αforci句 conditionSuαs folloω. Letting u = U1 U2 . . . Un+1， dom(丸)
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is definedαs {z(O)，z(l)，... ，z(η)}，αηd Su(z(j)) is defined as匂j+1

(for j ニ 0，1，・・・，n). For the empty bit string入y 切edeβηe αforcing 

condition S入 αsto be the empty function. 

2. We deβneαη oracle-dependent lαηguαge 1niSeg[X]αs folloω. 

1niSeg[X] =def. {匂モ {O，1} * : Su h X} 

マIniSeg"isαηαbbreviαtion of "initial segment. }}口

Observe that 1niSeg[X] is uniformly (polynomial ti立吋 one-one re-

ducible七olT AUT[X] in the following sense. Recall that批判的 isthe 

following set of biもstrings;Str(k) = {z(m) : 0三m三2k-1}・Foreach bit 

string U of length at least 1， we de五nea relativized formula Fu as follows. 

Fu三def“(α(1)件ゲ(qF)，・， qi1)))今ム(k，l)[Su] ，" 

where k is the least natural number such that dom(Su) c Str(k). For 

the symbol of the formム(叩)[S]， see the 1おも paragraph of Chapter 2 of this 

thesis. For七heempty bit string入， we define F).. as to be“(α(1)件 e(qF)))=} 

(1件 1)"i.e. a trivial 1-query tautology. Th民 forany oracle X and for 

any bit string u， the necessary and suffi.cient condition for "Su h X" is 

t凡 ε1TAUT[X]."

Thus， to prove Theorem 6.1， it is sufficien七toshow the following. 

Lemma 6.2 1. 1f A isαmndom oracle， then 1niSeg[A] is not disjunc-

tive reducible to A with probαbility 0ηe. 

2. 1f A isαrandom oracle， then 1 niSeg[A] is not disjunctive reducible 

to the complement of A with probability one. 

3. 1f A isαrandom oracle， then 1niSeg[A] is not 1-questioη truth-tαble 

ァeducibleto A with probαbility one. 
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6.3 Disjunctive reducibility 

In this section， we show七heassertions 1 and 2 of Lemma 6.2. Note that 

a language A is disjunctive reducible to a language B if and only if七here

exists a recursive rnapping 9 satisfying the following three requirernents. 

(d:l) The dornain of 9 is {O， l}* 

(d:2) For each bit s七ringu， g( u) is (the binary representation of) a finite 

set of bit strings. 

(d:3) For each bit string u，七henec邸抑制 sufficien七condi七ionfor "uε 

Aηis "g(u)ηB is not ernpty." 

Now， suppose B is a randorn oracle. Consider the situation where 9 is a 

recursive rnapping satisかmg吐leabove requirernents (d:l)， (d:2) and (d:3) 

with IniSeg(B] in place of A. Then， 9 rnay be ∞七 one-to-one. Thus， in 

the following Definition， we introduce a rnapping Core(g] approxirnating 

g. For each bit string 叫 Core[g](u)is defined as a subset of g(u) so that if 

bi t strings u and υhave山口組問 binarylength and we have uヂυthen

Co吋g](吋andCore(g](υ) are disjoint 

Definition 6.2 Let 9 be αmα.pp~句 sαtisfyi句 the reqωrements (d: 1)αηd 

(d:2). Assume i ε{O，l}. We use the follo切句 definitions1 -5 in this 

section only. 

1. We defineαmapp2句 Core[g]αsfollows. dom( Core[g])二 def.{O，l}¥ 

For each bit string u} lettingη = /u/} 

Core[g](u) =def. {ωε g(u) :Vvε{0，1}η¥{u}，ωtt g(υ)}. 
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2. We defineαmα.pping AntiCore[g]αs folloωふ dorn(AntiCore[g])=def 

{ 0， 1} *. For eαch bit string u) lettingη= /u/) 

AntiCo吋g](u) =def. U{ Co吋g](υ):υε{O，l}n¥{u} }. 

3. We defineαmαppiηgS叩 p[g]0ηηαtural numbersαs follows. For eαch 

九αturalnumberηJ 

Supp[g](n) =def. {uε{O，l}π : Core[g](u) is noη-empty}. 

“Supp" isαηαbbreviαtion 0 f "suppo付 "For eαch nαtUTiαl numberη1 

we denote the cαrdinality of S叩 p(g](n) by c(g，η) . 

c(g，η)ニdef.Card(Supp(g] (η)) 

イ Foreαch bit striη9 u)切edefiηεα forcing condition T(g，u，i)αs follows 

dorn(σT宍(g仰

T宍l仰，i)(μω) =dωef. '寸~ ) ωh仇er，陀ε -， ~臼s the operator of complement 0η the 

Booleanα1gebTiα{O， l} i. e. -，1 = 0 and ，0 = 1. When the mapping 9 

αnd the Booleαnvαlue i αre clear from the context}ωe denote T(g，u，i) 

by九.

5. We deβne d-Red(g， 1) (d-Red(g，O)) respectively)αs to be the collec-

tion 0 f all OTiαcles X such thαt the lαngωge IniSeg[X] is disjunctive 

reducible to X (to the complement of X) via the mα.pping g. Thαt 

is} d-Red(g， i) =def. {XεC : For eαch bit string u} the necessαryαηd 

sufficient condition for "Su c X 刀 is(9ωε g(u) such that X(ω)=γy 

}.匂-Red}}isαηαbbre仇αtioηof"disjunctive redωible. "口

Lemma 6.3 Let 9 be αmα.pp2ng sαtisfyi句 thereqωァ'ements(d: 1 )αηd (d:~ノ 

Assume i ε {刊0，1リ}.AsおS幻T包umet仇九αωtη tおSα poωS幻1伽t

fol仇Jゐ01切iρm九t仇Tη句Lりgαωss犯er付tiωons臼s1一 5holds. 
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1. 

d-Red(g， i) c 

{XξC : X(z(O))X(z(l)).. .X(z(η-1))εSupp[g](η)}. 

2. d-Red(g， i)三U{d-Red(g， i) n Nbhd(Su) : u E Supp[g] (η)}. 

3. We hωeμ(d-Red(g，の)三 c(g，η)/2n)whereμdenotes Lebesg悦 mωー

sUie. 

4. d-Red(g， i) c U{Nbhd(Tu) : uεSupp[g](η)}. 

5. Assume c(g， n)三2.The叫 ωehωe 

μ(d-Red(g， i))三c(g，n)/2c(g，n)一

FiOO!" 

Proof of 1 and 2: Suppose that X is a member of the set d-Red(g， i). Let 

u be七hebi七stringX(z(O))X(z(l)) . .. X(z(ηー 1)).Then， XεNbhd(丸

Hence， there exists a bit string w εg( u) such七ha七X(ω 'l;m 七he

following， we verifyωE Co同g](u).Suppose υε {O，l}n¥{u}. Then， X is 

not an extension of Sv・Therefore，by our assumption of Xεd-Red(g，i)， w 

does not belong to the set g(v). Hence， we have ωε Core[g]( u). Therefore， 

we have u E Supp[g] (η). Hence，七heassertions 1 and 2 of Lemma 6.3 hold 

( 4') 

Proof of 3: This is a direct corollary of the assertion 1 of Lemma 6.3. 

Proof of 4: Suppose u ξ{O，l}π. We show the following relation. 

d-Red(g，のnNbhd(Su) c Nbhd(九)

Then， the conjunction of the above (4') and the assertion 2 of Lemma 6.3 

implies the assertion 4 'of Lemma 6.3. To show the relation (4')， a.ssume 

Xε d-Red(g， i) n Nbhd(Su)' Assume for a contradiction that the oracle 
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X is not an extension of七heforcing condition Tu. That is， there exists a 

bit string ωεAntiCore[g] (u) (recall七ha七A凶 Core[g] ( u) is the domain of 

the forcing condition Tu) such that X (ω) = i (recall Tu(ω) = --，i)・Then，

by the defi吋 ionof the mapping AntiCore[g]， there exists a bit string vε 

{O，l}ヘ{匂}such thatωεCo叫g](υ)三g(υ).Therefore， by ourぉsumption

of X εd-Red(g， i) and by the fact that X(w) equals i， we have Sv c X. 

This contradicts our assumption of Su c X. Hence， the relation (イ)holds 

Proof of 5: Suppose uε{O，l}九 Wedefine a family :Fu of sets as follows. 

:Fu =def. {Core[g] (υ) : v εSupp[g](η)¥{u}} 

Each element of :Fu is a non-empty set. Moreover， it is easily verified thaも

もhemembers of :Fu are mutually disjoint: that is， if v 戸山七henCore[g](υ)n 

Core[g](ω)二日.Recall the following relation. 

U:Fu = A凶 Co吋g](u)= dom(九)

Therefore， the domain of九 hascardinality at leぉtc(g，η) -1， where 

c(g，η) = Card(Supp[g] (η)). Thus， we have the following. 

μ(Nbhd(九))~ 1/2c(g川)一

Since u was arbitrary， by 4 of Lemma 6.3， we have the following. 

μ(d-Red(g， i))三c(g，η)/2巾川)一l口

Fioof of 1αnd 2 of Lemma 6.2: Let 9 be a mapping satisfying 

the requirements (d:1) and (d:2). Assume we have i ε{0，1}. We show 

μ(d-Red(g， i)) = O. Case 1: The case where there exist i凶 nitelymany 

m七uralnumbers n such that c(g，η) <ηIn this case， by 3 of Lemma 6.3， 

we have μ(d-Red(g， i)) = O. Case 2: Otherwise. Then，もhereexists a 
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natural number no such七ha七forall natural numbers ηgreater than no， we 

have c(g， n)とn.ln七hiscぉe，by 5 of Lemma 6.3， we have μ(d-Red(g， i)) = 

O. 

However， the following relation holds. 

{XεC : IniSeg[X] is disjunctive reducible七oX} 

= U{ d-Red(g， 1) : 9 is a recursive mapping satisちrmg

the requirements (d:1) and (d:2)}. 

Hence， the above class of oracles has Lebesgue meぉurezero. In other words， 

if A is a random oracle，七henIniSeg[A] is not disjunctive reducible to A 

with probability one. Similarly， if A is a random oracle， then IniSeg[A] is 

not disjunc七ivereducible to the complement of A with probability one口

6.4 One-question truth table reducibility 

In七hissection， we showもheぉsertion3 of Lemma 6.2. Note that a lan-

guage A is 1-tt-reducible to a language B if and only if there exists an 

ordered pair of七worecursive mappings gl and g2 satisちringthe following 

four requirements. 

(l-tt:l) The domain of gi is {O， 1}寧 (fori = 1，2). 

(1-tt:2) For each bit string u， g1(U) is a bit s七ring

(1-tt:3) For each bit string u，の(u)is either 0 or 1 

(1-tt:4) For each bit string u， the necessary and su伍cientcondition for 

“uεA" is官 (g1( u)) = g2 ( U ) ." 
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Definition 6.3 Let 9 = (gl， g2) be αpαir ofmαppi句 ssuch thαt the αbove 

reqωrements (1-tt:1)，ρ-tt勾 andρ-白:3)αresatisfied. The following deβ-

nitions 1αnd 2 αre包sedin this section only. 

1. We defineαmαpping S叩 p[g]0ηηαtural numbersαs folloω. For each 

ηαtural number n) 

Supp[g](η)=def. {uε{O，l}π Forαllvε{O，l}π ¥{叶，the orde陀 d

pαirs (gl ( U )， g2 (匂))αnd(gl (υ) ，の(υ))αrer，川 identical}. 

For each nαtural number n)ωe denote the cαrdinality of Supp[g](η) 

by c(g， n). 

2. We define 1-tt-Red(g)αs to be the collection of all oracles X such thαt 

the lα句 uageIniSeg[X] 日1・討-reducibleto X 仇α9・That is) 

1-tt-Red(g) =def. {XεC: For eαch bit string u， the Tほ essαryαηd

sufficieηt condition for "Su c X" is 'X(gl(U)) = g2(U)刀}・

(1-tt-Red" isαηαbbreviαtion of ((l-tt-reducible. "口

Lemma 6.4 Let 9 = (gl， g2) beαη ordered pair of mappings sαtisfying the 

reqωrements (l-tt: 1)) β-tt勾 αηd ρー拭:3). Assume that n is α positive 

integer. Then， each of the followi句 αssertwns1 -4 holds. 

1. 

1-tt-Red(g， i)三

{XεC : X(z(O))X(z(l)) .. . X(z(η-1))ε Supp[g](n)}. 

2. 1-tt-Red(g， i) c: U{l-tt-Red(g， i)ハNbhd(Su):包 εSupp[g](η)}

3. We hαυeμ(l-tt-Red(g， i))三c(g，η)/2n.
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4. For eαch real number x) we let i x 1 denote the least natural number m 

such thαtm三x.Assume c(g，η)三3.Then)ωehαve 

Moreover， the mapping g1 is one-to-one on Fu. Hence， we have the following 

、‘‘，a
，J

'
b
 

''ea‘、
μ(Nbhd(冗))三1/2f伽 n)/2l-1

μ(l-tt-Red(g，の)三 c(g，η)/2fc(g，n)/2l-1.

Proof: The assertion 1， 2， 3 are shown similar1y to corresponding 

ぉsertionsof Lemma 6.3. To show the assertion 4 of Lemma 6.4， we 

Therefore， by七heabove (a)， (b) and by the assertion 2 of Lemma 6.4) we 

get the following inequa1ity. 

introduce the following equivalence re1ation "rv" on S叩 p[g](η):u rv V if 

and only if g1 ( u) = g1 (υ). Now， fix an arbitrary bit string uε{O，l}n. Le七

Fu be the family of all bit strings V E Supp[g] (η) sati均時 thefollowing 

μ(l-tt-Red(g， i))三c(g，n)/2fc(g，η)/2l-1 口

ProoJ oJ 3 oJ Lemma 6.2: We use Lemma 6.4. The reminder of the 

proof is simi1ar to ProoJ oJ 1 and 2 oJ Lemma 6.2.口
two requirements. 

• v is not equivalent to u with respect to the re1a七lon
ProoJ oJ Theorem 6.1: Immediate from Lemma 6.2 and from the 

fact that IniSeg[X] is uniformly one-one reducible to lT AUT[X].口

• In the equivalence clぉsof v with respect to the re1ation rv， V is the 

1eぉte1ement with respec七to1exicographic order. 

We define a forcing condition T~ ぉ follows

dom(T~) =def. {gl (υ) : v ε九}，

T~(gl (υ)) =def. ig2(υ) . 

By the五rstrequirement for Fu， each bit string υε Fu is not u. Hence， if X 

is an oracle such that Xε1-tt-Red(g) n Nbhd(Su)， then for every vεF川

we have X (g1 (υ)) i= g2(υ). Thus， the following holds 

(a) 1-tt-Red(g)パNbhd(Su)c Nbhd(T~) 

No七e七hat，for each bi七stringυεSupp[g](η)，もhecardinality of the equiv-

alence class v / rv is at most 2. Therefore， the number c(g，η) (i.e. the 

cardina1i ty of S叩 p[g]( n )) is a七mos七2x Card(Fu) + 2. In other words) we 

have七hefollowing. 

Card(Fu)三ic(g， n)/21 -1 
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Chapter 7 

Control of While-Ioops 

In七hischapter， we investigate七herelationship between七her-query tautolo-

gies and fundamental ques七ionsin the theory of computational complexity. 

For this purpose， we construct a deterministic algorithrn whose while-loop's 

execution time is controlled by a forcing method. The con七entsof出is

chapter is bぉedon [29J 

7.1 Problem of this chapter 

In [6]， Bennet and Gill showed that正Ais a random oracle then P[A] 1= 

N P[AJ with probability 1. Since T AUT[AJ is a coN P[A]-complete set for 

an arbitrary oracle A， we obtain七hefollowing as its direct corollary. 

Fact 7.1 11 A is αTαndom oracle thenωe hαve T AUT[A] ~ P[A]ωth 

probαbility 0ηe. 

The above statement means that the set {X : T AUT[X]~P[X]} has 

Lebesgue meお ure1 in the Cantor space. We consider the problem whether 

the s叫ta叫七旬加e白me

for T AUT[AJ. Extending Dowd's theory ofァーgenericoracles [13]， we shall 

67 
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1，Sαη ァ-geneηCOTlαcle in Doωd's sense，ωehα閃 thefolloω1，ng. 

Dowd's Lemma 9 ([13， Lemma 9]) 1f F isα1-qu町 formulαωhichis a 

tαutologyωth respect to some X then there is αunique minimal set S of 

q町内eswhich forces F to beαtα1山 logy(we sαy F specifies S) 

Dowd's Theorem 11 ([13， Theorem 11]) 1f N P = coN P then there is 

αnondetermir，山ticoracle machine M uniformlyαcceptiη9 TAUT[X]， such 

that with respect to any r-geneバcX (in the sense of Dowd)， M αccepts the 

members of rTAUT[X] in polynomial time. 

present a forcing argument to bound execution time of a while-loop of a 

deterministic oracle 恒lfingmachine，合omwhich we shall show the following 

七heorem，where T AUT denotes七hecollection of all tautologies of the usual 

propositional calculus. 

Theorem 7.1 Suppose thatァ 1，Sαpositiveinteger. Theη， for each A thαt 

、、B
E

，r

守

1
4
• 1

i
 

，，t
l

、
rTAUT[A]三~ TAUTaA 

We shall show an analogue of Dowd's Theorem 11 for a de七erministic

oracle machine: 
When A is a Feferman generic oracle， as is shown in Chapter 5， the 

formula (1.1) does not hold. Whereお， we do have the above formula (1.1) 
Lemma 7.3 There exists a deterministic oracle Turing machine M[X] foァ

ωhich (1)αηd (2) below hold. for A tha七isan r-generic oracle in the sense of Dowd. 

Our conclusion in this chapter is the following七heorem.

ρ) For every oracle A， Lang(M[T AUT a A]) = 1T AUT[A] 

Theorem 7.2 Suppose thαt r isαpositive integer. Then， the following two 

stαtementsαre勾U1，υαlent. (~ノグ A is l-geneバcin the sense of Dowd， then M[T AUT a A]αccepts 

the members of 1T AUT[A] in polynomial time. 

(1) 1f A isαァαηdomoracle theη7・TAUT[A] tI. P[A]ωth probαbility 1 

(2) The unrelαtivized clαss R does not eqωl NP. 
In the proof of Dowd's Theorem 11， Dowd used a forcing argument 

to bound the lengths of bit s七nngswritten on a query tape by a nondeter-

ministic oracle machine. However， we want to bound the computing time of 

a deterministic oracle machine. To show the above Lemma 7.3， we shall 

carefully examine the computational complexity of a function which maps 

each 1-query formula F that is a tautology wi七hrespec七七oa given oracle 

X to the unique minimal forcing condi七ionS such that F speci五esS. We 

shall construc七atransducer七hathas one while-loop so that， for each 1-

query formula F， i七computesa candidate for (the domain of) the specified 

forcing condition. The transducer computes (the domain 00 the speci五ed

function S itself as long as input F is a tautology wi七hrespect to a given 

We shall prove Theorem 7.2ぉ acorollary of Theorem 7.1. However) 

七oexplain our motive for proofs， we first show Theorem 7.1 in the case 

w here r = 1 separ a tel y. 

7.2 Algorithm for l-query tautologies 

In this section， we give a proof of Theorem 7.1 in the case where r = 1. In 

this special case， each tautology F has the unique minimal forcing condition 

that forces F. Let us recall the following two results by Dowd. 
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oracle. A forcing argument will put七hebounds of the execu tion time of the 

while-loop. Finally， we shall check whether the candidate for the specified 

forcing condi七ionreally forces七ha七Fis aもautology.

Proof of Lemma 7.3: Let us define four predicates as follows 

TAUTALL(F) 

三 def.F is a formula ofもherelativized propositional calculus and 

F is a tautology wi七hrespec七toany oracle. 

1QFORMU LA(i， H， F) 

三def.i is a positive natural number， H is a query丘eeformula and 

F is the 1-query formula可α件 e(q1，"'， qi)) =今 H."

CRITICAL(u， i， H， F) 

三def.juj = i， 1QFORMU LA(i， H， F) is true and 

七hefollowing formula is no七atautology : 

吋八j=1(qj仲町))二今 H."

SEGMENT(u，i，H，F， (υ(1)γ ・グ(m))) 

三 def.There exists ωsuch that u is an initial segmen七ofω7 

CRITICAL(ω，i， H， F) is true and 

no v(j) equals ω (j=IF・・・ ，m).

Hereafter， whenever we talk about a l-query formula F， we assume that 

i and H satisfy 1QFORMU LA(i， H， F). 

TAUTALL belongs to coNP (see [13]) and SEGMENT belongs to 

N P. Hence there are七wodeterministic polynomial time-bounded oracle 

Turing machines NALdX] and NSEC[X] such that Lang(NALdTAUT]) = 

TAUTALL and Lang(NsEC[TAUT]) = SEGMENT. Using these ma-

chines， we construct two oracle machines T[X] and M[X] as follows. 

7.2. ALGORITHM FOR 1・QUERYTAUTOLOGIES 

AIgorithm 7.1 (T[rv] and M[rv]) 

transducer T[Y] (input F: 1-query formula) 

begin 

List := 0; /* the empty list * / 

while NSEC[Y] accep七s(入，i， H， F， List) do 

U :=入;

for i times do 

if NSEC[Yj accepts (uO， i， H， F， List) 

then u := uO; else u := u1; 

end-i王

end-for; 

Add u to List; 

end-while; 

output( List ) 

end {T[Y]} 

machine M[Y EB Z] (input F : 1-query formula) 

begin 

List := T[Y](F); 

if List is empty then accept; 

(υ(1) ・ 1υ(m)):= List; 

Uj := Zi( vij)， • . • ， v~j)) ， for each j = 1， • . • ，m; 

G := the formula吋八;1(Uj仲 ci(vij)，..• ，dj))) )キ F'"

if N ALL (Y] accepts G 

then accept; else reject; 

end寸R

end {M[Y EB Z]} 

71 
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Suppose that F is a 1-query formula and u is a string whose length 

lS 2， When T[T AUT] runs on input F， u is added to List if and only if 

CRIT ICAL( u， i， H， F) is true. Hence if F is a tautology with respect to 

an oracle A then it is a飢似C∞C白epμte吋db匂yM[TAUTE9A]. Cωonve 悶 ly， the 日nal 

七estin M[X] gu紅 an民自 thatany formula accepted by MITAUT E9 A] is a 

tautology with respect to A. Hence (1) of Lemma 7.3 holds. 

Next， we show (2). Note七hatif a forcing condition forces a given 1-

query formula，七henthe function should be an extension of the forcing 

condition specified by七hel-query formula. Thus， if F is a 1-query for-

mula and a forcing condition S forces F， then for each j < 2π-1 such 

that CRITICAL(z(21 
- 1 + j)， i， H， F) is true， z(j) belongs to dom(S) 

Therefore， for every A that is l-generic in the sense of Dowd， there exists 

a polynomial p( x) such七hat七hewhile-loop of T[T AUT] terminates within 

p(IFI) s七epswhenever input F is a tautology with respec七七oA.口

Proof of Theorem 7.1 for r = 1: Now， for each A tha七isa l-generic ora-

cle in Dowd's sense， we construct a machine by adding an appropria七eclock 

to M[X] in Lemma 7.3. This machine witnesses 1T AUT[A] ~r; T AUTE9A 

口

7.3 Algorithm for general case 

In this section， we present a proof of Theorem 7.1 without theぉsumption

of r = 1. 

We begin with rewriting a given r-query formula so七hatthe resulting 

formula is longer than the original one but it has fewer occurrences of query 

symbols. Then we shall investigate a f，おも algori七hmfor the rewri七ing.Le七

r and i be positive integers and H a query free formula. q (r， i， H) denotes 

7.3. ALGORITHM FOR GENERAL CASE 

the following れ queryformula. 

(A(山 内ij)， . .. ， q~j)))) =} H 

~(r， i， H) denotes the r-query formula below : 

[八;二1 (α(j) {:}ω)??dj)))]キ

[[八;=lQdld吋十1)))キ (α(j){:}α(T+1)))Jイ
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Note tha七thelength of Q(r， i， H) is given by a polynomial of r + i+七he

length of H and the length of ~(r ， i， H) is similarly bounded 

From now on， we fix a positive integer r七hroughout七hissection. For an 

oracle A， (r十l)CRITICAL[A] denotes the collection of all triples (ω，i，H) 

for whjch the following two conditions hold. 

(1) i is a positive ir巾 ger，H is a query free formula and ωis a bit string 

whose length is i. 

(2) ~(r ， i，八1=1(ωk件 4T+1))ニ今 H)does not belongもorTAUT[A] 

Proposition 7.4 Let i αnd m be positive integersαηdHαquery free for-

mula. And) let A be αη orlαcleαηd u，υ(1)1・・・ ，v(m)bit strings. Assume the 

following four conditions hold. 

(i) /u/ = m) 

例 Iv(l)1= i αnd uI = Al(υjI)7?ujI))(J=171m)J 

向り Gis the qu町内eformulαbelo似・

2((ムd件 qkT

+
1
)))今 (UIれ(川)))， 

戸υノ{υ(I)F・.，v(m)} = {ω: (ω，i， H)ε(r十 l)CRIT 1 C AL[A]) 

Then the following twoαssertions are eqωυαlent. 
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fα) ~(r ， i， G二今 H)εrTAUT[A]. 

(b) q(r + 1， i， H)ε(r + l)TAUT[A]. 

Proof" First， we show that (a) implies (b). Assume (a). Then， the 

formula q(ァ+1， i， G =今 H)belongs to (r + l)TAUT[A]. However， by (ii) 

and (iii) ， q (ァ+1， i， G) also belongs to (ァ+l)TAUT[A]. Hence (b) holds. 

Next， we show七ha七thenegation of (a) implies the negation of (b) 

Assume ~(r， i， G => H) does no七belongto rTAUT[A]. Then， for some 

七ruthassignmentν，七hefollowing four formulas are true : 

(1)八;二1(α(j)件 AZ(qij)7?qjj)))?

伶)八3=1((八Lld

(3) G， 

(4) ，H. 

We de五nea bit string ωwhose 1ength is i as follows. For each k (k = 

1， • • • ，i)， 1et Wk =ν(qiT+1
)) i.e. the truth value of the atom qir+1

). Then， 

もhefollowing formu1a is true with respect七oν:

(5)八い(ωk件 qiT+1))

Since (1)ベ2)，(4) and (5) are true wi th respect toν， (ω， i， H) belongs 

to (r + l)CRITICAL[A]. Therefore， by (iv)， there is an integer n (1三

n :::; m) such that W = υ(ηThen， the following formulas are true with 

respect to ν: 

(6) (ハい(υr)件 qir
+
1
)))今(同伴 α(r+1) ) (by (3))， 

(7)八い(vin
)件 qkr+1

)) (by (5))， 
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(8)α(r+l)φ Ai(qir十1) ・.，q;r+1)) (by (ii)， (6) and (7))， 

(9)八見(α(j)件 Ai(qij)γ ， qIj))) (by (1) and (8)) 

Since (4) and (9) are true with respec七toν，q (r + 1， i， H)石(γ+

l)T AUT[A]. Thus we have shown that the negation of (a) implies the 

negation of (b).口

Remark. We did not use (iv) to show that (a) implies (b). The state-

ments (1)， (8) and (9) of the above proof are not formu1as of the relativized 

propositional calculus in the strict sense but the interpretations of formulas 

with respect to the particular oracle. However， we abuse termino1ogy.口

Our next prob1ems for a given formula F = q(ァ+1， i， H)， are the fo1-

lowing two. 

How 10ng is the rewrit七回 formula~(r， i， G =今 H)? 

How fast can we rewrite F by a deterministic a1gorithm ? 

The 1ength of the rewritten formu1a is determined by the cardinality of 

the following set: 

(6.1) B=  {ω: (ω，i， H)ε(r + l)CRITICAL[A]} 

For the second problem， it is enough to construct a deterministic transducer 

that outputs a list of all the members of七heabove set B in polynomial time 

when i七runson input F. 

Proposition 7.5 Suppose i isαpositive integerαηdHαquery free for-

mula. Let A beαηOTiαcle) S αforcing condition)αnd B the set given by 

(6.1). Assume S c A)απdαssume that S forces q (ァ+1， i， H). TheηJ 

Card(B)三Card(dom(S)) 

Proof" Let C be the following set : 

{z(j) : (z(22 
- 1 + j)， i， H)ε(ア十 l)CRITICAL[A]} 
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Clearly， Card(B) = Card(C). Therefore it is su伍cientto show七hatC c 

dom(S) 

Assume for a con七radictionthat z(η)εC¥dom(S) for some n. Fix such 

an integerηand putω = z(2t-1+n). Recall that Xi(W1" ・1ωi)= X(z(η)) 

for each oracle X. Since ωε B，七hereis a tru thぉsignmentνforwhich 

七hefollowing four formulas are七rue:

(1)八J=l(α(j)特別qij)? 1qjj)))? 

(仰2幻)八;LL叫叫=1((ベ((八Lいμ1(μ川1(qij)ω叫ぽぽqijν;rFjρ)仲吋q4;T件川叫+刊叫1り)勺)リ)キ引吋(似凶α

(ω3め)八ぺLしい=司=1( ω叫k伶 q ;T川 )以) ， ? 

(4) .H. 

Define an oracle D as follows. Let D(z(η)) = V(α(件 1)). For strings 

U ヂz(η)，let D(u) = A(u). Then， the following七woare true with日spect

to ν: 

(5) (α(川)件 Di(qi
r+1)

γ..  ，qY+1))) (by (3))， 

(6)八J=l(α(j)件グ(qi
j)，・・.， q~j))) (by (1)， (2) and (3)) 

Since (4)， (5) and (6) are true with respect toν， q(r+1， i， H) ~ TAUTD 

Since z(η) does not belong to dom(S)， we have S !: D. Therefore， S 

does no七forceTAUT[X](q(ァ+1， i， H));七huswe get a contradic七ion.口

Given an oracle A， let (ァ+l)SEGM ENT[A] denote the collection of all 

sequences of the form (u， i， H， (υ(l)7・，v(m)))such that for some bit string 

ωthe following七hreecondi七ionshold. 

(1) u is an initial segment of ω 

(2) (ω，i， H)ε(r + l)CRITICAL[A]. 
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(3) ω#υ(l) (l=l，・・・，m).

Proposition 7.6 For eαch OTiαcle A}ωe hαυe 

(r + l)SEGMENT[A]~~ rTAUT[A]・

77 

Proof: Suppose that i is a positive integer， H is a query free for-

mula and we have lul < Iv(1) 1 ・・= 1υ(m)1=ι Then， the sequence 
(u，i，H，(υ(l)7・・ ・?υ(m)))belongs to (r + l)SEGM ENT[A] if and only if the 

following formula does not belong to rT AUT[A]. 

1(TJ71(iM件 qi
r+1)))^ (公「ゲ;I)

件 qy+1)))]今 H)

口

Lemma 7.7 There臼adeterministic oracle Turiηg machine M叫 l[X]such 

thαt (1)αηd (2) beloωhold. 

ρ) For every oracle A} Lang(M九drTAUT[A]]) = (ア+l)TAUT[A] 

(~ノグ A isαη (r + l)-geneバC OTiαcle in the sense 01 Doωd) then the ma-

chin 

pol匂yrηwm九'LIαaltime. 

Proof: As in our proof of Lemma 7.3， we construct a determin-

lS七icoracle transducer Tr+1 [X] that works as follows. Running on input 

F三 def.q (ァ+1， i， H)， Tr+1 [rT AUT[A]] outputs the list of all members of the 

set B as in (6.1). Further， if A is (r + l)-generic in the sense of Dowd， 

then Tr+1 [rT AUT[A]] terminates within polynomial steps of the length of 

input F， where such a polynomial depends upon A. Such a construction 

is possible by Proposition 7.5 and 7.6. By using the transducer Tr+1 [X]， 
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again as in our proof of Lemma 7.3， we construct a deterministic ora-

cle machine Mr+l [X] as follows. When Mr+l [rT AUT[A]] runs on i叩 ut

Fニ q(γ+1， i， H)， it checks whether ~(r・ ， i ， G=今 H)belongs to rT AUT[A]， 

where G is the formula given in (iii) of Proposition 7.4. By七hefact七hat

A is polynomial time τ百1、ur江山r
a machine Mr+1[X]. Thus by Proposition 7.4 and by our cons七ructionof 

Tr+dX]' M十+dX]satisfies the requirements of the lemma.口

Proof of Theorem 7.1: Suppose tha七ris a positive integer and A is an 

r-generic oracle in Dowd's sense. By Lemma 7.7， for any positive integer 

Sく円 (s+ l)T AUT[A] is polynomial time Thring equivalen七tosT AUT[A]， 

and hence we have r・TAUT[A]三flTAUT[A]. Thus， by Theorem 7.1 for 

r = 1， we have Theorem 7.1 for all rと1.口

7.4 Conclusion of this chapter 

For each positive integer r， the following two statements are equivalent 

(Theorem 7.2). 

(1) If A is a random oracle then rT AUT[A] ~ P[A] with probability 1 

(2) The unrelativized class R does not equal N P 

Proof of Theorem 7.2: Consider the following five subsets of the Cantor 

space; 

D1 = {X: TAUT~f X}】

D2 = {X : X is r-generic in the sense of Dowd}， 

D3 = {X : r・TAUT[X]三fTAUTEBX}，

D4 = {X: rTAUT[X]~f X}， 
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Ds = {X: rTAUT[X]~P[X]}. 

First， R = N P if and only if N P三BPP (by Ko [19]). The la七teris 

equivalent to the ぉsertioncoN P c BP P. Next， T AUT εBPPifand 

only ifμ(D1) = 1 (by Bennet and Gill [6]， see also [1])， where μmeans 

Lebesgue measure. Now，μ(D2) = 1 (see section 4 of Dowd [13]). Therefore， 

by Theorem 7.1，μ(D3) = 1. Hence μ(Dd = 1 if叩 donly ifμ(D4) = 1 

Moreover， the set D4 is closed under finite changes i.e. if AεD4 and 

{x : A(x) -::f. B(x)} is a 日山eset then B εD4・Consequently， ifμ(D4) > 0 

thenμ(D4) = 1. Hence Ds has Lebesgue measure 1正andonly if R戸NP

口
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Chapter 8 

Conclusive Rell1ark 

A prob1em that we 1eft open in Chapter 4 is whether the horizonta1 hierarchy 

of Diagram 4.2 collapses or not. Tha七is，for each positive integer r， whether 

(ァ+1)GEN3 equals rGEN3 or not. 

We conclude this thesis by giving a remark on the re1ationship between 

the l-query tautologies and P =7 N P problem. Recall the following basic 

property of polynomial time truth-七ablereducibility [22， Proposition 3.4] 

For all sets A and B， A is polynomial time truth-table reducible to B if 

and only if there is a deterministic oracle Turing machine M and a po1yno-

mial time-bounded deterministic transducer T such that七hefollowing three 

reqmrements are satisfied. 

• On each input u， T outputs (the binary representation of) a lis七T(u)

of bit strings. 

• M reduces A to B in polynomial time. 

• On each i叩凶民 M only asks questions of B from the list T( u). 

Thus， by analyzing七heconstruction of the machine M["，] of AIgorithm 

7.1， it is no七hardto see that if P ニ NP and A is a l-generic oracle in 

81 
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Dowd's sense then 1TAUT[A] is polynomial time七ruth-tablereducible to A. 

Hence， by [13， Theorem 10] (Dowd's Theorem 10)， we get the following 

Lemma 8.1 (Corollary of Lemma 7.3) The followingαsse付ion1 implies 

the αssertion 2. 

1. 1f A isαmηdom oracle then 1TAUT[A] is not polνnomial time truth-

tαble reducible to Aωith probαbility one. 

2. The unrelativized clαsses PαηdNPαre not identical.口
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