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Abstract

‘The main purposes of this dissertation are: (1) to carry out empirical
mvestigations of nonstationary financial time series based on available econo-
metric techniques, and then (2) to develop time series techniques to test for

the nonstationarity of variance.

Chapter 1 investigates the relationship between macroeconomic variables,
such as the industrial production index, interest rate and inflation rate, and
the stock market, using Toda and Yamamoto’s (1995) vector autoregressions
(VAR) specification. The major findings are: (1) macroeconomic variables
do Granger cause the stock market variable, where the reverse causality is
ambiguous. (2) The lagged stock market variable affects its own current value
but its impact tends to diminish in the long-tun. Based upon the findings
including the above two, we draw a policy implication that the PKO by
the Japanese government would not work, but appropriate macroeconomic
policies would benefit not only the real side of the macroeconomy but also

the stock market.

Chapter 2 compares in- and out-of-sample forecasting performances of the
Heath, Jarrow, and Morton (HIJM) (1992) model, a short rate model that
nests popular spot rate models, ARIMA, VAR, and a prediction method
based on the SABL, using the daily three month Euroyen intcrest futures
data. Predictive performances of the forecasts from the HIM model resem-
ble to those of the other models, except for the SABL. SABL’s performance
is sometimes excellent, but occasionally very poor. It seers that such con-

trasting differences in the SABL performance are due to non-liner trend com-



ponents’ changing behavior.

Chapter 3 derives a log-GARCH representation of a class of stochastic
volatilify (SV) models, including the ARMA-SV model, and analyzes the
finite sample properties of a Quasi-Maximum Likelihood (QML) estimator.
The Moute Carlo results indicate that their finite sample properties are (1)
superior to those of the Generalized Method of Moments (GMM) estimator
and those of the QML estimator based on the Kalman filter, and (2} close
to those of the nonlinear filtering maximum likelihood estimator, which is a
computationally intensive method. Chapter 3 provides a testing procedure
of a unit root in log-volatility, and presents an empirical example using daily
observations on the yen/dollar exchange rate data. Chapter 3 also devel-
ops a method of analyzing ARMA(p,q)-SV regression error models using the

Markov chain Monte Carlo technique in a Bayesian framework.
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Introduction

The main purposes of this dissertation are: (1) to carry out empirical investi-
gationsl of nonstationary financial time series based on available econometric
techniques, and then (2) to develop time series techniques to test for the non-
stationarity of variance. This dissertation consists of three chapters, which

correspond to three published papers of the author.

It is well known that many economic time series and financial data possess
unit roots'. For a unit root process, stationarity can be achieved by a simple
differencing. A problemn arises if one attempts to fit a regression relating
the levels of independent time series, since such an attempt often produces
a high value of R?, combined with a low Durbin-Watson value. The Monte
Carlo simulations conducted by Granger and Newbold (1974) suggest that
a high value of 2 or R?, combined with a low Durbin-Watson value, is no
indication of a true relationship, although such interpretations were made in
many épplied cconometric papers. Granger and Newbold (1974) referred to
this phenomenon as the “spurious regression.” Phillips (1986) provides an
analytical study of linear regressions invelving the levels of economic time
series. He develops an asymptotic theory for regressions that relate quite
general integrated random processes. He showed that the usual £ and F ratio
test statistics do not possess limiting distributions such as the normal nor
the x? distributions. His theoretical results explain many of the simulation
findings of Granger and Newbold (1974). The presence of nonstationarity in
the time series, therefore, makes it impossible to interpret regression results
in the usual way, and thus the conventional econometric inference procedures

break down.



Tests for the presence of unit roots are required before estimating econo-
metric models. When a rescarcher tests a unit root, he has to pay attention
to the distribution of the test statistic. Fuller (1976) showed that the asymp-
totic distributions and rates of convergence for the estimated coefficients of
unit root processes differ from those of stationary processes, and thus the
conventional ¢ test is invalid. The asymptotic distributions of unit root pro-
cesses may be described in terms of functionals on Brownian motion. After
the work of Dickey and Fuller (1979), a number of approaches to test for unit

roots have been proposed; see, e.g., Hamilton (1994, pp.475-543).

A particular class of vector unit root processes is known as a co-integrated
process. Once a researcher finds that variables of his interest all possess
unit roots, he has to investigate whether a co-integration relationship among
variables exists or not. Co-integrated processes were implicit in the “error-
correction” models advocated by Davidson et al. (1978). A formal develop-
ment of the key concepts did not come, however, until the work of Granger
(1983) and Engle and Granger {1987). For more details, sce Hamilton (1994,

Chapters 17-20), among others.

Let us look at the nonstationarity from a different angle. Brownian mo-
tion is ‘a continuous time version of a random walk process, and is widely
applied to term structure models. Models of the term structure are used for
pricing and hedging fixed-income securities. In the term structure frame-
work, movements of interest rates or forward rates arc modeled in terms of
the Ito process. The Ito process contains a stochastic differential equation
that is derived by the standard Brownian motion. If a researcher want to

estimate parameters of a continuous term structure model, then he needs its



discrete time approximation. Such an approximation becomes an integrated

process, and thus nonstationary.

Integrated processes are used not only to model levels of financial time
series but also to model variances or volatilities. After the seminal work
of Engle (1982), autoregressive conditional heteroskedasticity (ARCH) mod-
els have been widely used to model time-varying volatility and the persis-
tence of shocks to volatility. One member of the family of ARCH processes,
GARCH(1,1), since its introduction by Bollerslev (1986), has been especially
popular in econometric modeling. As an alternative to the GARCH, we may
set up a model containing an unobservable volatility component. We take
iogarithm of the volatility and model it in a linear stochastic process, such
as an autoregression. Models of this kind are called the stochastic volatility
(SV) models. While conditional volatility in an integrated GARCH model
is strict stationary as shown by Nelson (1990), an unobservable volatility in
a random walk SV model is nonstationary. Although testing procedures for
integration in GARCH models are discussed in Engle and Bollerslev (1986),

no testing procedure for random walk SV processes has been proposed.

This dissertation deals with the following three aspects of nonstationarity
in economic and financial times series that call for careful attention by the
rescarchers: (1) regression techniques for integrated variables, (2) integrated
processes derived as the discrete time approximation of stochastic differential
equations for term structure models, and (3) tests for unit roots in time-
varying volatility.

An earlier version of Chapter 1 is a paper, Asai and Shiba (1996). After

the incredible boom years that started in 1987 came to halt in 1991, the



Japanese stock market has been experiencing down turn since then. One
of the dominant theses for this down turn, is the fundamentalist viewpoint.
It says that it is the weakness in the Japanecse macroeconomy that is to be
blamed, and hence not the negative ‘bubble’ or speculative move that is the
culprit of the bear market. The Japanese government, on the other hand, has
maintained that by the price keeping operation (PKO) in the stock market,
they may put a stop to the market’s recession. The two contrasting views
on the Japanese stock market, then, need to be empirically tested so that
the government can choose appropriate measures to remedy the depressed
stock market. Chapter 1, therefore, investigates the relationship between
macroeconomic variables, such as the industrial production index, interest
rate and inflation rate, and the stock market, using Toda and Yamamoto’s
(1995) vector autorcgressions (VAR) specification. The major findings are:
(1) macroeconomic variables do Granger cause the stock market variable,
where the reverse causality is ambiguous. (2) The lagged stock market vari-
able affects its own current value but its impact tends to diminish in the
long-run. Based upon the findings including the above two, we draw a pol-
icy implication that the PKO by the Japanese government would not work,
but appropriate macroeconomic policies would benefit not only the real side

of the macroeconomy but also the stock market.

A paper, Asai, Takahashi, and Shiba (1998), has been revised and ex-
tended so that it can be included as Chapter 2 in this dissertation. In their
celebrated paper, Heath, Jarrow, and Morton (H1JM) (1992) proposed a con-
tinuous time instantaneous forward rate model that gives a general and com-

plete description for variations of term structures of interest rates. In the



paper, they also derived a set of necessary and sufficient conditions for the
existence of an equivalent martingale measure under which all discount bonds
and associated contingent claims are priced or valued. Although the HJM
model is not meant to be used to forecast interest rates, it is used for pric-
ing bonds in many financial institutions, in practice. Hence, there is a need
to compare the performances of various different interest rate forecasting
schemes including the HJM model. In- and out-of-sample forecasting perfor-
mances of the HIM model, a short rate model that nests popular spot rate
models?, ARIMA, VAR, and a prediction method based on the SA BL?, have
been compared using the daily three month Euroyen interest futures data.
Predictive performances of the forecasts from the HIM model resemble to
those of the other models, except for the SABL. SABL’s performance is some-
times excelient, but occasionally very poor. It seems that such contrasting
differences in the SABL performance are due to non-liner trend components’

changing behavior.

Chapter 3 is based upon a paper, Asai (1998). A wide variety of the
GARCH class models and the SV models are available for modeling changes
in asset return variance or volatility over time. The log-GARCH models
are the logarithmic extension of the GARCH models. While the GARCH
models are popular and easily estimated, it is well recognized that the SV
models are not easy to estimate. It should be noted that the SV models
are more general and therefore preferable in several respects, compared to
the GARCH models. Chapter 3 derives a log-GARCH representation of
a class of SV models, including the ARMA-SV model, and analyzes the

finite sample properties of a Quasi-Maximum Likelihood (QML) estimator.



The Monte Carlo results indicate that their finite sample properties are (1)
superior to those of the Generalized Method of Moments (GMM) estimator
and those of the QML estimator based on the Kalman filter, and (2) close
to those of nonlinear filtering maximum likelihood (NFML) estimator, which
is a computationally intensive method. Chapter 3 also provides a testing
procedure of a unit root in log-volatility, and presents an empirical example

using daily observations on the yen /dollar exchange rate data.

Monte Carlo simulations in Chapter 3 suggest that some computer inten-
sive methods performs better compared to the log-GARCH approach when
researchers can afford to neglect computational costs. In this sense, appendix
3.G develops a method of analyzing ARMA (p,g)-SV regression error models
using the Markov chain Monte Carlo technique in a Bayesian framework.
An empirical study that uses the Bayesian MCMC technique on the daily

yen/dollar exchange rate is also provided in the appendix.

Footnotes

%1  For example, Takeuchi (1991) has found that many Japanese macrocconomic time
scrics possess unit roots. Baba {1995) and Yoshida and Rasche {1990}, amnong

others, empirically tested and found unit roots in Japanese financial data.

%2  These models include the Vasicek model, the Cox-Ingersoll-Ross class models, the
Merton model, the Dothan model, the Brennan-Schwartz model, the constant elas-

ticity of variance process, and the geometric Brownian motion model.

*3  This is a popular seasonal decomposition method, found in such statistics software

as the S-PLUS.



Chapter 1

Relationship between the Stock
Market and the Macroeconomy: VAR
Investigation

1.1 Introduction

What are the relevant factors that would explain the variation in stock prices
and returns? In recent papers such as Keim and Stambaugh (1986), Camp-
bell and Shiller (1988), Fama and French (1988) and Cutler, Poterba, and
Suminers (1991}, the authors report that variables such as dividend yield and
price-carning ratio explain 25 percent or more of the variation in stock re-
turns. Further, Balvers, Cosimano, and MacDonald (1990), Schwert (1990),
and Fama. (1990) present evidence that economic indicators such as industral

production index also have power predicting stock returns.

Stock price has been considered as the leading indicator of macroeconomy.
For instance, if we use the dividend discount model, the fundamental value of
the stocks may be regarded as a function of the past macroeconomic variables
since they constitute information sets to gencrate flow of expected future
income!. A typical view that says that the stock market has been the most
sensitive indicator of the business cycle, can be found e.g., in Siegel (1991).
Cochrane (1991), on the other hand, has constructed and tested a model that
GNP growth, among other variables, explains variations in stock returns.
Although, he tested and found evidence in favor of the reverse relationship

too,



Kitasaka (1995) used near-VAR system, which is the VAR system restrict-
ing some parameters to be zero, to test the causality among the Japanese
stock markets and the macroeconomic variables of Japan and U.S. His re-
sult indicates that no causality running from the Japanese macroeconomic
variables to the stock market. His work is, however, open to criticism since
he seems to have misused his test statistics. The tests he used are valid
when the variables in the VAR are stationary, whereas his VAR system is

nonstationary.

In this chapter we investigate the relationship between the stock market
(SM) and the macrocconomy (ME) in Japan. After incredible boomn years
that started in 1987 came to a halt in 1991, Japanese stock market has been
experiencing tremendous down turn ever since then. The “bubble” years
are over and there is slight recovery in sight, as of this writing. One of the
dominant theses for this down turn, is the fundamentalist viewpoint. It says
that it is the weakness in the Japanese macroccoromy that is to be blamed,
and hence not the negative “bubble” or speculative move that is the culprit of
the bear market. This view, in turn, implies that the direction of the stock
market- can only be reversed by appropriate economic policies that would

strengthen the macroeconomy.

The Japanese government, on the other hand, has maintained that by
the price keeping operation (so-called P.K.O.) in the stock market, they may
put a stop to the market’s recession?. This view puts credentials to stock
market’s self-mending power, to put itself into the recovery path by its own

power with help from the P.K.QO.

The two contrasting views on the Japanese stock market, then, need to

8



be empirically tested so that the government can choose appropriate mea-
sures to remedy the depressed stock market, Let us list the following several

hypotheses that need to be investigated in this chapter:

1. Is there a causal relationship between the stock market and the macroe-
conomy, causality going from ME to SM (i.e. ME—»SM)? This tests

the fundamentalists’ view.

2. The reverse of (1), i.e, ME+—SM? This is a view that stock mar-
ket’s performance precedes that of the macroeconomy, since SM uses
predictions of the future macroeconomic variables. In other words, the
market’s performance can be considered as signaling the future perfor-

mance of ME.

3. Can SM be regarded as exogenous? In other words, does the past SM
vartable have explanatory power in explaining the current SM perfor-
mance®? If this is supported, then government’s positive intervention
into SM may be justified. A further question we want to ask is: is the
relationship a short-run or long—term phenomenon? This is an inter-
esting question to ask, since if it is only a short-tun phenomenon, then
the above stated government’s intervention would only have a passing

effect, while if it is a long-run phenomenon then its effect may not be

There has been a great deal of discussions empirically as to what, if any,
relationship there is between the stock market and the macrcoeconomy, in
particular the real side. It is well known that the traditional IS-LM frame-

work is not really a suitable theoretical tool for answering such a question.
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Among the attempts to establish a theoretical link between the stock mar-
ket and the macroeconomy, Blanchard’s {1981) model seems to be worth
looking into, because the moedel is based on a traditional framework and it
incorporates Tobin’s (1969) g-theory. Let us call Blanchard’s (1981) model
the Tobin-Blanchard model. The Tobin-Blanchard model emphasizes the

interaction among asset values, interest rates, and output.

Among the macroeconomic variables, we select the variables used in the
Tobin-Blanchard model since there is no other satisfactory theory that de-
scribes explicitly relationships between the stock market and the macroe-
conomy. Considering the existing state of the Japanese macroeconomy and
sample periods, we add price index and exchange rates to above three vari-
ables. Therefore our VAR system consists of five variables: the stock market
variable TOPIX, the income variable, interest rates, price index, and ex-
change rates. It should be emphasized that the Tobin-Blanchard model is
described as structural form equations, and thus time series techniques can

not be applied to testing the validity of the model.

The remainder of this chapter is organized as follows. Section 1.2 discusses
the econometric methodology used in this chapter. Section 1.3 presents test-
ing results of the unit roots and co-integrations. The VAR results, including
the various estimation and hypothesis testing results, are given in Section

1.4. Section 1.5 concludes this chapter.
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1.2 Econometric Methodology

This section outlines the econometric methodology used in this chapter. We
use the VAR, vector autoregressions, specification to investigate various dif-

ferent causal relationships cited in the previous section.

Prior to conducting on VAR analysis, we need to investigate whether
the dafa to be used in the VAR analysis are stationary or not. If the dth
difference of a time series {X,}, A?X,, d > 0 is stationary, then it is said to
be integrated of order d, {X;} ~ I(d). If alinear combination of integrated
time series is stationary, then they are said to be co-integrated. The vector
of weights in the co-integrated process is called the co-integrating vector.
If the variables that we are interested in are integrated, then whether a
co-integrating vector exists or not ought to be tested. Textbooks such as
Banerjee ef al. (1993) and Hamilton (1994), among others, provide detailed
discussion and surveys about tests for unit roots and co-integrations, and

estimation of co-integrating vectors.

It should be emphasized that these tests suffer from low power and/or size
distortions. Moreover, since usually only small sample sizes are available, a
slight change in sample period could result in different test conclusions. In
other words, we are aware that unit root tests are easily implemented and
that there are established ways to estimate cointegrating vectors, but at the
same time we need to note that the tests and estimation methods are known
to be not robust to small sample sizes, in particular. But these considerations

themselves are preliminary to a further question.

If time series are found to be I(1) say, then there may be two possible

11



routes that we could take:

1. If no co-integrating relationship can be found, thea the usual practice

is to specify the VAR in terms of first differenced variable, AX,.

2. Ifa co-integration test does not reject the null hypothesis of co-integration,

we may specify a vector error correction VAR model (VECM).

It should be noted that the VECM is not the only representation when the

variables are co-integrated; see Watson (1994, p.2871).

The VAR in AX; form, however, has certain drawbacks, when used in
economic analysis,. While it is not wrong from a statistics viewpoint to
estimate the parameters of such a systern, the most that we can find with such
a system, is less than the first order relationship in the variables involved.
Note that if {X;} ~ I(1) then AX, ~ stationary, and this “stationary”

component is composed of non—{X,;} or an error term process.

One way to test causal relationships is to employ the Johansen-type
VECM, which was proposed by Toda and Phillips (1993). This may be
a natural way to proceed after we conducted Johansen’s (1998, 1991) co-
integration tests, since the test statistic is dependent on the outcomes of
co-integration test. For reasons already stated, Toda and Phillips’ (1993)
procedure is unsatisfactory. Alternative procedures are the fully modified
VAR approach proposed by Phillips (1995) and the lag-angmented VAR ap-
proach -propose(l by Toda and Yamamoto {1995) (T-Y here after). These
procedures are designed to be robust to integration/co-integration properties

of the time series, and therefore can be applied without a priori knowledge

12



of the presence/absence of unit roots. Yamada and Toda (1997, 1998) inves-
tigated. finite sample properties of these test statistics for Granger causality,
and found that test statistics based on Phillips (1995} suffer from size dis-

tortion and that tests by T-Y produce low power®.

We use the results of T-Y to model the VAR for three reasons: (1) a
test with uncontrolled size is not useful, even if it has reasonably high power.
(2) As it is described later in this section, T-Y’s procedure is very easy to
implement. (3) since T-Y’s VAR system is modeled in levels, i.e., without
differencing to achieve stationarity in each variable, interpretation of the test

results is easily made.

The VAR system proposed by T-Y is modeled possibly in levels, but aug-
menting the lag length by a priori set maximum order of integration. They
showed, albeit loss in efficiency due to the artificial lag length augmentation,
standard asymptotic theory is applicable to such a system®. If T Y’s specifi-
cation is used then the standard %? based block exogeneity tests, 7.e. Granger
causality tests, can be performed, and after the Cholesky decornposition of
the error term variance matrix, we may compute the forecast error variance

decomposition (FEVD) and the impulse response function (IRF)S.

In the following we shall introduce T-Y's results in more detail. Their
most salient conclusion is: if the order of integration of the process does not
exceed the true lag length of the model, we can apply the usual lag selection
procedure to a possibly integrated or co-integrated VAR since the standard

asymptotic theory is valid. Let us consider the following VAR system which

13



is T-Y’s equation (24}, p.242.
h=y+nt+ g o e+ Ly e (1.1)

where Jyp = ... = J, =0 (p > k+1). Suppose that we wish to test the
hypothesis
H{)!Jm+13...2JP:U (12)

where £ < m < p—1, in the estimated system
Y =TT +0Z +dX' + €

where

Yie Ye—-1 Yt-m—1

_ Lo
y Bt = : y Ly = : 7Tf: ’
1 ... 7T

Unt Yi-m Yt-p

W

Y’ = (yla'“ay’f): ZI — (zla"'az'f')a Xf = (371,---;3;’1‘), é’ - (ély -":EAT):

v)-

According to T-Y, the Wald statistic, W, to test the hypothesis (1.2)

oy

f - (’?m,"’h), \]} = (jl, ...,jm), and (i) = (jm+1, ceay

W =d[(X'QX) ' 2] ¢ (1.3)
where
¢ = vece(d), T, =T,
Q= Qr-QrZ(2'QrZ) ' Z'Qr,
and

Qr =Ip - T(T'T)'T,

14



has an asymptotic x? distribution with n*(p — m) degrees of freedom under
the null hypothesis (1.2) if m > dpax where dy,,, is the maximal order of
integration that we suspect might occur in the process. For notational con-

venience, we use vec(M) to stack the columns of a matrix M into a column

Having determined the lag length &, we estimate a (£ + dyqy) th order
VAR. The coefficient matrices of the last d,,,, lagged vectors in the model
may be ignored since these are regarded as zeros, and we can test limear or
nonlinear restrictions on the first % coefficient matrices using the standard
asymptotic theory. We restrict our attention to the case of d . = 2 because
we expect most economic time series encountered in empirical studies to be

at most [(2). Suppose we wish to test the linear restriction
Hy Ry =0. (1.4)

We may construct the Wald statistic W1

W= [RI'[R{(X'QX)" ® %, }R] '[Ré] (1.5)
where
Ye—1 Yt—m—1
Ly = y &L= 3 (i) = (jl,..., jm,)a and \i’ = (j—rn_.}ﬁl,jm,'rg),
yt——m yt—m—‘z

has an asymptotic x? distribution with m degrees of freedom under the null

hypothesis (1.4) if p > k + 2.



1.3 The Data

As noted in Section 1.1, we used 19 years worth of monthly data from Jan-
uary 1976 to December 1994 on the industrial production index (IPI), the
dollar/yen exchange rate (EX), the call rate (CR), the whole sale price in-
dex (WPI), and the TOPIX". IPI, WPI and TOPIX have been scasonally
adjusted by SABL, a seasonal adjustment method available on a software S-
PLUS. SABL has been successfully used in stock price prediction, among
others; see Shiba and Takeji (1994). In some models differenced series,

AX, = InX; — InX,_,, have been used on IPI, WPI and the TOPIX.

1.3.1 Tests for Unit Roots

We first investigate the integration order of our individual time series using
some well-known unit root test including augmented Dickey--Fuller (ADF)
tests and Phillips and Perron’s (1988) non-parametrically modified Dickey-
Fuller test. The ADF test is based on the following regression model

?

Ay =+ pt + pypy + _Zlﬂiﬁyt—z' + &4, (1.6)
where 3, is a scalar in this section. « and gt are the drift and trend terms,
respectively. If the data generating process (DGP) is a= u =0,p = 1 and
equation (1.6) is estimated, then the estimate of p does not have the normal
distribution asymptotically, but it follows the distribution which Dickey and
Fuller derived. In practice we must choose the appropriate statistics for
testing p = 0 depending on whether constant or trend terms are included
in the regression. If g % 0 in the DGP, the t-ratio of p has the normal
distribution. Similarly, if ¢ = 0, # 0 in the DGP and we estimate the
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regression with a constant term but without a trend term, then the t-ratio

of p has the normal distribution.

Dolado, Jenkinson, and Sosvilla-Rivero (1990) suggest a procedure to
test for a unit root when the form of the DGP is unknown. Their method is
as follows: start with the least restrictive model that will generally include
a trend term and a drift, 7.e. equation (1.6), and use the ADI test statistic.
If the null hypothesis of a unit root is rejected, there is no need to proceed.
Conclude that {y} sequence does not contain a unit root. If the null hy-
pothesis is not rejected, test for the significance of the trend term under the
null of a unit root. If the trend is significant, retest for the presence of a unit
root using the normal distribution. I the trend is not sigunificant, estimate
equation (1.6) without the trend and use the ADF test statistic to test for the
presence of a unit root. If the null hypothesis of a unit root is not rejected,
test for the significance of the constant. If the drift is significant, retest for
the presence of a unit root using the normal distribution. If the drift is not
significant, estimate equation (1.6) without the trend or drift, then test for

the presence of a unit root.

Instead of including lagged dependent variable in the right hand side to
circumvent the possible serial correlation in the error terms, Phillips and
Perron (1988) made a non-parametric correction for a serial correlation. In
this approach, we first calculate the Dickey-Fuller unit root tests from re-
gression equation (1.6) assuming p = 0. The statistics are then transformed
to remove the effects of serial correlation on the asymptotic distribution of
the test statistic. We used the Newey and West (1987) method to construct

an estimate of the error variance from the estimated residuals. For both
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ADF type and Phillips-Perron type statistics, we start with the maximal
lag length 15, and gradually decreased the lag length until the coefficient on
the last included lag is significant by the ¢ test; see Campbell and Perron

(1991).

We usec the following notation to present the results of ADF tests and
Phillips-Perron tests. 7 represents the 7 test, i.e. f ratio test for p = 0,
based on equation (1.6} without trend term and 7, is the 7 test based on
equation (1.6) with trend term. & is the one sided F type statistic testing
the null hypothesis of (o, p) = (0,0) in equation (1.6) without the trend
and @, is the one sided F' type statistic testing the null of (p,p) = (0,0) in
equation (1.6) with the trend. The Z versions reported in Table 1.2 have the
same interpretation but the Phillips-Perron non-parametric correction has

been used instead of the lag augmentation.

As shown in Table 1.1, for each five series (in levels) the null of a unit
root is not rejected at ten percent significant level, but after taking the frst

differences, the null is rejected.

In Table 1.2, Z(®) of IPI and five differenced variables reject the null
at tem percent significant level. Applying Dolado, Jenkinson and Sosvilla-
Rivero’s procedure for IPI) the trend term is not significant under the nuil
of a unit root, but the drift is significant. The value of Z(7) of IPT is -2.2663

and we may reject the null using the normal distribution.

It must be noted, however, that Phillips-Perron type test are more likely
to reject the null of a unit root, whether it is false or not; in the presence of

negative moving average (MA ) terms, the Phillips-Perron test tends to reject
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Table 1.1: ADF Unit Root Test

) D, Ty d T

TOPIX 9 1129 -1.050 1.867 -1.426
1P} 15 3657 2461 2.802 -1.688
CR 3 3905 2620 2487 -2.174
EX 3 2812 -2345 2308 -1.369
WPI 12 2891 -2.050 1.961 1.975
ATOPIX 7 7.248% -3.802" 6.671* -3.651%
AIPI 15 6.689* -3.655* 5.516% -3.306*
ACR 2 18.62*% -6.103* 18.62* -6.103*
AEX 12 8.056% -4.013* 8.080* -4.019*

AWPI 2 7.991*% -3.993* 7.454% -3.858%

Note: ‘* indicate that it is significant at the ten percent level.
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Table 1.2: Phillips-Perron Unit Root Test

Z2®,)  Zr) 2@ 2()
TOPIX (3.940 —(.650 2928 ~1.369
IPI 3.148 —1.89% 7.109* -2.266
CR 1.965 -1.800 1.251 -1.453
EX 2.159 -2.049 2.596 -1.217
WPI 3.074 —~1.754 1.704 -1.817
ATOPIX 64.083*% -11.319% 63.694* -—11.285*%
AIP 233.65%  -21.595% 22425 -21.160%
ACR 64.987F -11.401*% 65.028% -11.404*
AEX 96.791* -13.901* 97.065* -13.925*
AWPI  21.429%  -6.553* 19.518* 6.253%

Note: “*' indicate that it is significant at the ten percent level.
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the null whether or not the actual DGP contains negative MA components.
Phillips and Perron (1988) present simulation evidence regarding the power

of the Phillips—Perron type test. The DGP is taken to be

U = Py T Uy,

U = £y + By q, g~ iid(0, af); Yo = 0.

The Phillips-Perron type test generally has high power, but suffers substan-
tial size distortions for # < 0, in sample sizes typically found in economics.

See Banerjee et al. (1993) for more details.

The sample autocorrelation and the sample partial autocorrelation of
the residuals for IPI decrecase with an oscillation starting from the negative
region. The residuals probably have negative MA components and this shows
it is preferable to use the ADF test in this case. We conclude IPI has a unit
root, supported with the ADF test’s result. we hence treat our five variables

as I(1) hereafter.

1.3.2 Tests for Co-Integration

Once we have been unable to reject the null hypothesis of a unit root, we can
build multivariate models that will enable us to investigate the absence or
presence of co-integration relationships in our data set. We use the Engle -

Granger (1987) test and the Johansen (1988, 1991) test.

‘Table 1.3 shows results of the Engle-Granger tests between two variables.
For instance, using the residual from regressing “TOPIX" on the constant

and “IPI”, we calculated that the value of 7 statistic under the null of no co-

21



Table 1.3: Engle-Granger Co-Integration Test

TOPIX  IPI CR EX WPI

TOPIX -2.28) - 1.677 -1.947 -1.355
IPI -2.197 -1.804 2413 -1.028
CR -2.730  -3.048* -2.794 -2.582
EX -2.115  -2.278 -2.009 ~2.096

WPI ~1.886 -1.833 -2.048 -2.212

Note: “* indicate that it is significant at the ten percent level.

integration relationship is -2.2892. Except for the case of CR on IPI, Table

1.3 shows that there is no bivariate co-integration relationship.

Using the Johansen test, we investigate the co-integration in systems of
equations, while we dealt with the bivariate co-integration regression using
the Engle-Granger test. The trace statistic tests the null hypothesis that
the number of distinct co-integrating vector is less than or equal to r against
a general alternative. The maximal eigenvalue statistic tests the null that
the number of co-integrating vector is r against the alternative of r + 1.
Note that the presence of the constant terms in the VAR system will effect
the distribution of the test statistics, which is analogous to the effect of the
presence of the constant and trend in testing a unit root. We use aritical

values provided by Osterwald-Lenum (1992).

Table 1.4 shows the result of the Johansen test using the estimated twelfth
order VAR including five 1(1) variables, TOPIX, IPI, CR, EX, WPI, and the

constant. We reject the null of » = 0 from the results of the trace test
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and the maximal eigenvalue test. We therefore concluded that the number
of co-integrating vector is one in this case. Table 1.5 shows the estimated
normalized co-integrating vector and the estimated adjustment coefficient in

each equation.

1.4 VAR Results

As mentioned in Scction 1.2, we use the T-Y result to model the VAR system
instead of the VECM. Let us present the lag length selection results. We

estimated three models using equation (1.1) specification of the VAR:
1. model A: (TOPIX, AIPL, CR, EX, WPI)
2. model B: (TOPIX, AIPI, CR, EX, AWPI)
3. model C: (ATOPIX, AIPL, CR, EX, AWPI)

For models A and B, we set the maximum lag length /., to be a year and a
half, i.e., I = 18, while for model C we set {,,,4, = 12, one year. We would
think such /,,,’s are reasonable in view of the way variables are transformed
in each model. The null hypothesis we wish to test is given by Hy : [ =p —1,
while the alternative hypothesis by H, : | = p, where [ is the lag length. The
Wald x* test statistic as given in T-Y is distributed under Hy as x? with its
degrees of freedom 25, x*(235), since there are five variables in the system.
Table 1.6 gives the three models’ computed Wald statistic along with their
probability values. Results in Table 1.6 indicate that the chosen lag length,

p*, is 16 for models A and B, while 9 for model C. We have computed such
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Table 1.4: Johansen Co-Integration Test

null hypothesis ~ trace  maximal-eigenvalue
r<4 7.698 7.698
r<3 17.303 9.605
r<2 32.632 15.329
r<1 55.048* 22.416
r=20 92.890* 37.841%
eigenvalues: 0.037, 0.046, 0.073, 0.105, 0.170

Notes: r denotes the rank of ce-integration. ¥ indicate that it is significant

at the five percent level,

Table 1.5: Normalized Co—Integrating Vector and Adjustment Coefficients

TOPIX IPI CR EX WPI
co-integrating
vector 1.000 -0.597 3.236 6.668 13.49
adjustment
coefficient  { 0.000551 -0.0000555 -0.000138 -0.000747 --0.0000364
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Table 1.6: Lag Length Selection Wald Test (WT)

Hy : pth lag coefficients=0
P 18 17 16
Model A 34.956 22.493 62.956
prob-value  (8.9)  (60.7)  (0)
P 18 17 16
Model B 22.584 30.344 61.492
prob-value (60.2) (21.2)  (0)
p 12 11 10 9
Model C 325332 32.702 33.144 40.817
prob-value (14.4) (13.9) (12.8) (2.4)

Notes: WT denotes the Wald test statistic as given in T-Y’s paper. In all
models, the figure in the last entry or column is significant at the five percent
Jevel. The critical value is given by X2 05 (25) = 37.7. ‘prob-value’ denotes

probability values x100.

lag length selection criteria as the AIC and SBIC, but they tend to select

very low order lag lengths such as 1 or 2.

We assumed d,,q,, the maximum order of integration, to be at most 2 for
all three models, hence our chosen VAR is given by VAR (p* +2). VAR(p*+2)
for the three models was put to block exogeneity test. Two test statistics
have been computed: the Wald statistic (WT) as given in T-Y, and the usual
degrees of freedom adjusted likelihood ratio (LRT) statistic. Since the LRT

results are very close to that of the WT, we only present the WT results.
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They are in three matrices with respective prob-values x100 attached inside

the parenthesis. See Tables 1.7 to 1.9.

We note that in Tables 1.7 to 1.9, results are qualitatively very similar.
To see the qualitative similarity in the tables, let us denote the stock market
by SM and the macroeconomy block by MIE. Then we notice that in all three
models, (1) at least one of the variables in ME causes SM, i.e. ME—SM,
but (2) SM does not cause any variable in the ME block. From these
observations, we decided to concentrate on model A in the rest of this chapter
to save space and to make this research more clearly focused. We have also
computed all the results for models B and C, and they are available from the

author upon request.

In the usual VAR analysis, forecast error variance decomposition (FEVD)
and impulse response function (IRF} tead to give markedly different results
depending on the way variables are arranged in the Cholesky decomposition.
The order that variables are arranged, in a sense, implies a particular re-
striction that a researcher imposes on the VAR®. We, however, followed the
traditional approach of the Cholesky decomposition since we observed that
the results we obtained are robust to the different orderings. Table 1.10 gives
FEVD of TOPIX and Table 1.11 presents that of AIPI, both due to the five
variables in the system. The numbers in the tables indicate: for instance, in
Table 1.10, “73.308” percent of “A==36" months ahead forecast error variance
is due to TOPIX itself. The ordering of the variables are indicated in the
top row, z.e., EX, CR, WPI, TOPIX and then in the last position, AIPL A

lower triangular Cholesky decomposition is used.
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Table 1.7: Model A Block Exogeneity W'T

TOPIX AIPI  CR  EX  WPI
TOPIX | 6070* 14,114  36.925*% 20.939 30.220*
(0 (5900 (0.1) (181) (1.7)
AIPT | 10710  181* 21891 98.405* 13317
(234)  (0)  (147)  (28)  (64.9)
CR | 17156 17.140  1152* 40.823* 83308*
(37.6) (377 (0 (01 (0
EX 20491 39.237* 38.283*% 2122* 26.978*
(19.9)  (0.1)  (0.) (0) (4.2)
WPI | 18480 54.078% 50.881* 07.726* 3350*

(206) (0 (0) (0) ()

Notes: Figures in the parentheses are prob—values x100. “*’indicate that it is
significant at the five percent level. The critical value is given by x3 45 (16) =

26.3. Lag length is p = 16.
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Table 1.8: Model B Block Exogeneity W'T'

TOPIX AIPI  CR EX  AWPI
TOPIX | 6380% 12727 26.544% 17.768  21.276
0)  (693) (A7) (338 (16.9)
AIPT | 19.832  175% 26175  26.140  11.956
(32.8)  (0) (5.2)  (5.2)  (74.3)
CR | 17.077 16.658  2594* 50.101* 66.493*
(38.1)  (40.8)  (0) (0) (0)
EX | 20.563 38.547* 39.147% 2011%  31.671*
(19.6)  (0.1)  (0.1) (0) (1.1)
AWPI | 18.123 37.012% 30.865% 86.999*  48.9*
(L7 (02)  (L4) (0) (0)

Notes: Figures in the parentheses are prob-values x 100. *” indicate that it is
significant at the five percent level. The critical value is given by xg 45 (16) =

26.3. Lag length is p = 16.
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Table 1.9: Model C Block Exogeneity WT

ATOPIX AIPI  CR EX AWPI
ATOPIX | 35.79% 7794 17.003% 7.510  10.755
(0) (55.5)  (4.9)  (584)  (29.3)

AIPI 8.391 106*  18.474*%  3.536 4.509
(495)  (0)  (3.0)  (939)  (87.5)
CR 4,044 5.741 2149* 14.956  49.601%
(908) (76.6) (0) (92  (0)
EX 8.G87 6.887 9.265 1591%* 9.802

(467)  (649) (41.3) ()  (36.7)
AWPI 10.272 16.057 12,720 88.135%  41.6*
(329) (66) (175 (0) (0)

Notes: Figures in the parentheses are prob—values x 100, *” indicate that it
is significant at the five percent level. The critical value is given by X2 0 (9) =

16.9. Lag length is p = 9.
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Table 1.10: Forecast Error Variance Decomposition of TOPIX

h EX CR  WPI TOPIX AIPI
3 0453 1031 0.067 98.426 0023
6 0497 4623 0.860 93.914 0.106
12 0436 6356 3.852 38.809 0498
24 2186 8661 7.479 75450 6225
36 1.466 10.881 6.751 73.308 7.584

Notes: This table gives the FEVD result of TOPIX based on model A. The
numbers in the tables indicate: for instance “73.308” percent of “h=36"
months ahead forecast error variance is due to TOPIX itself. The ordering
of the variables are indicated in the top row, Le., EX, CR, WPI, TOPIX and
then in the last position, AIPI. A lower triangular Cholesky decomposition

is used.

Table 1.11: Forecast Error Variance Decomposition of AIP1

h  EX CR WPI TOPIX AIPI
3 0.844 0554 2.258 1.348 94997
6 1.625 2392 3.693 4.424 87865
12 4680 2.641 4.981 4.394 83304
24 5.687 3385 5457 6.942 78530
36 5508 3575 5.970 7.472  T7475
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Table 1.12: Forecast Error Variance Decomposition of EX

h EX CR  WPI TOPIX AIPI
3 94666 0485 1224 3589  0.037
6 88.409 0850 5456 5198  (.088
12 71528 2717 15044 3439 727
24 43.018 1802 19666 3.110 32403
36 40.035 3669 18767 5141 32387

Table 1.13: Forecast Error Variance Decomposition of CR

h EX CR WPT TOPIX APl
3 5572 83541 10.760 0.033  0.095
6 11773 66.274 19.675 0.083  2.195
12 25.395 50399 14.551 0.232  9.422
24 23.118 36.392 15.733 4191  20.566
36 29.770 28514 14.616 4.820 22.280
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Table 1.14: Forecast Error Variance Decomposition of WPI

h  EX CR WPL  TOPIX AIPI

330009 0942 57.221 1.028 1801
6 50.417 1256 40.446 4.038  3.844

12 56.813 1318 23.701 2.609  15.559
24 28.009 9576 9.117  8.132  45.166
36 25909 12621 10.654 19.947  30.869

We observe that FEVD’s of TOPIX and AIPI indicate the two variables
have strong exogenous element in thern. For instance even after three years,
TOPIX has 25 percent of its FEV accounted by itself, ¢.c., FEV(T OPIX)rorrx,
po=-25. But on the other hand, FEV(TOPIX) g, n=91=.23 increasing
from FEV(TOPIX)yg, n=1=01, where ME denotes non -stock market fac-
tors combined. In Tables 1.12 to 1.14, we present FEVIYs of the rest of the
variables in the system. After h=36 months, these three variables exhibit far
less exogenous element in them; FEV(EX)px, h=36=.40 to FEV(WPIT)wp;,
w—ss=.11. Then the question is: what accounts for these variables’ FEV after
h = 367 Itis interesting to see that the bulk of FEV after 4 = 36 is accounted
by AIPI, and not by TOPIX. For instance FEV(CR)roprx, n=36=.048 while
FEV(CR)arpr, p-36=.22.
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1.5 Concluding Remarks

In this chapter we began with the question: what ought to be the right choice
of measures that the Japanese government can take so that the slumping
stock market, SM, can reverse its direction? We use Toda and Yamamoto’s

(1995) VAR specification to investigate the above question.

Using the block exogeneity test, we found ME—+5M, where ME macroe-
conomic factors combined, but not SM——ME. This may indicate that if the
government selects an appropriate set of macroeconomic policies, then that
would stimulate SM also. At the same time, SM is not a good indicator of

the future macroeconomic performance, as it is generally believed.

According to the FEVD and the IRF results, SM is pretty much exoge-
nous. This implies that if the government can identify and use aset of feasible
policies to intervene the stock market, then it should be worthwhile to do so.
However, such policies should be “surprising” to the market participants m
order to be effective, since what the FEVD does, is to decompose “forecast
error” that is an unanticipated variable. The magnitude of SM's exogene-
ity, however, is scen to diminish in the long-run after it reaches a plateau.
This fact, in addition to the above observation on the difficulty of identify-
ing correct “surprising” policies, may indicate that such policies as the PKO
are not recommended. Such direct intervention into the stock market could
be effective in the short-run, but it will likely to become ineffective in the
long-run. What needs to be implemented, is not the PKO type policy, but

a set of policies that would fundamentally strengthen the macroeconomy.

Footnotes
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*1

*2

%3

x4

*D

*6

*7

The term “fundamentals” is usually meant to represent the importance of such
variables as dividend yield and price—earning ratio, in explaining the variation in
stock returns (see, e.g., Cutler et al., 1991), and not of the macroeconomic variables.
Note, however, that such financial statement variables in turn are related to the
macroeconomic variables.

The word “P.K.0.” is obviously coined from the word “PX.Q.” and “P.K.F." of
the United Nations. Just around the same time as the Japanese government was
contemplating to send men to Cambodia, the government was in a position to decide
whether to actively put moneys into the slamming stock market or not. Ordinarily,
the term P.K.O. implies a set of government action to strengthen the stock market
by (1) changing rule of the game in the market, i.e., modifying institutional aspects
of the stock market so that stock price may be prevented from slamming, and
(2) buying up stocks using governmental agencies’ such as postal savings, funds.
Sometimes, the government even announces deliberately optimistic predictions that

they hope to be self-fulfilling.

There have been numerous studies that conclude variations in bonds and stocks
can be explained by such financial statement variables as the dividend yield, term
spread and so on. These terms are defined in Fama and French (1989). They
also survey and empirically investigate the importance of the financial variables to
explain movements in bonds and stocks. Young et al. (1991) find some financial
statement variables’ predictable power to be significant.

Stock (1995) also pointed out the possibility that T-Y’s approach produces poor
power in some situations. Recently, Kurozumi and Yamamoto (1997) suggest a bias

correction technique to improve size of T-Y's statistic.

The super consistency property of a pure random walk process case has been known
for sometime, e.g., Fuller (1976, pp.356-369). Stock (1987) is responsible for ex-
tending this property.

Morimune and Zhao (1995) discuss and compute Granger causality tests under

non-stationarity.

The main VAR results in section 1.4 were unchanged, when we employed different
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*8

set of sample periods. We, therefore, decided that we might safely ignore any prob-
ability of structural change in the whole sample period. Tsukuda and Miyakoshi
(1995) dealt with the VAR based Granger caunsality tests allowing for structural

breaks.

The structural VAR representation {see Hamilton (1994, p.330)] is one way out of
this,



Chapter 2
Comparing Predictive Performances
of Several Models of Interest Futures

2.1 Introduction

This chapter compares the forecasting performance of six models, using the
data of daily three month Euroyen interest futures. The six models include
the Heath, Jarrow, and Morton (1992) (hereafter HJIM) model, a short rate
model, an ARIMA model, two VAR models, and a prediction method based
on scasonal decomposition. We compare the in- and out-of-sample realization
of the forward rate with the predicted value. The measure of performance

that we focus on is root mean squared forecast error (RMSFE).

As is well known, in their celebrated paper, HJM proposed a continuous
time instantaneous forward rate model that gives a general and complete
description for variations of term structures of interest rates, and derived
a necessary and sufficient condition for the existence of an equivalent mar-
tingale measure under which all discount bonds and associated contingent
claims are priced or valued by the no-arbitrage concept. Although the HIM
model has attracted a great deal of theoretical interests, only a few attempts
have been made so far on the practical implementation of the model, since
the no-arbitrage condition imposes an integral restriction on the drift and
volatility functions with the market price processes of risk. Kamizono and
Kariya (1996) specified the volatility term using a step function, and thus

made the HIM model tractable.
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Chan et al. (1992) introduced a spot rate model nesting many term
structure models. They compared explanatory powers of the nested models
to that of the nesting model. Brenner, Harjes, and Kroner (1996) investi-
gated forecasting performances of several spot rate models focusing on their
volatility. Amin and Morton (1993) examined six implied volatility functions
for the HIM model. Although the HJM model is not meant to be used for
forecasting, investors use it for pricing in practice. Ouraim of this chapter
is to compare the forecasting performances of six models including the HJM
model. Section 2.2 describes our models and Section 2.3 data and estima-
tion results. Scction 2.4 reports forecasting performances and Scction 2.5

concludes this chapter.

2.2 Models and Implementation Issues
2.2.1 The HIM Model and its Specification

We briefly introduce the HIM model and its specification by Kamizono and
Kariya (1996).
HJM specify the movement of the instantancous forward rate at time !
for maturity T, f(£,7T), as the following Ito process;
n
df (¢, T) = a(t, T)dt + > o;(t, T)dWi(1), (2.1)
=)
where {W;(t)}'s are (n + 1) independent standard Brownian motions defined
on the probability space (2, F, P), and a and o;’s represent respectively the
drift and the volatility functions. « and o;’s generally depend on the entire

instantaneous forward rate for maturity sin £ < s < 7. HIM showed thal
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imposing non-arbitrage condition on the model under risk-neutral measure

is equivalent to the following constraint on the drift function;

T
a(t,T) = —ai(t,T) [qﬁi(t) - /; Ui(t,u)dujl , (2.2)

where ¢;(t)’s are stochastic processes which do not depend on T'. HJM also

showed that ¢;(t)’s can be regarded as the market prices of risk.

To make the no-arbitrage condition in (2.2) tractable, Kamizono and
Kariya (1996) made assumptions as follows. First, for functions ¢;{t)’s they

simply assumed
¢;(t) = ¢; (constant unknown parameter), i=0,...,n. (2.3)

We may note, however, that the market price of risk #;(2) is meant to express
the attitude of investors, hence it could fluctuate. Second, they assumed the
forward rates zy, j = 1,...,n for period [5;, S;+1] and the spot rate zy for
maturity Sy are available as data. Third, instead of a piecewise flat function
like Amin and Morton (1994), they specified the volatility using the following
step functions [ (1) of maturity T';

et 1

oi(t,T) = &l s)(T)+ 2_: &ij—1(t)1s; 1,5 (1), (24)

t=0,...,n.
Integrating o; (¢, T') for [S;, Sj+1] gives

1 8311
s = s [ ot win
5]( ) Sj+1 _ Sj Lj o (t u) u

At this stage, they regard the volatility £;;(t) of ith factor for period [S;, Sj41]

as an arbitrary stochastic process. Therefore, &;(¢) is the cumulative of
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ith factor's volatility variation over the interval [S;,.S;11]. Applying these
specifications to the HIM model, they made the discrete time approximation

using observable forward rates z;’s,

Ziph T A T ‘U,th/ + \/ﬁgigt+h, = D, h, ce g (,V - 1)}?/, (25)
where
Zot ot Eoo(t) .. Eonlt)
i = ’ pu*t = b Et - . 3
i Zind | Hat én[)(t) fmt(t)
Eot
& = : ~ Nn+1(0, In+1),
Ent

Hip = U;(Etajt“"@) J=0,...,n,

£o;(t) bo
ay = : 7(1)3 ]
1 fnj(t) ¢'n
Sy — ¢
Sy — 54
- ot .
2
0 S;— 51
oy = RUTES S5, J=1...mn
2
] 0 | 0
0
1 Sy
vy = FLTYT §=0,...,n
7t Sj+1 . Sj 5; ( ) J
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Since the forward rates, z;,'s, are expressed as the integration of the instan-
taneous forward rate, f{¢,T), they transform the HJM model with unob-
servable variables to the operational one with observable variables. For the

parameter vector to be estimnated, 8, the log-likelihood function given data

) is
N 1 .
InL(f|z) = —1—2— In 27 — w2~1n |AELE, ]
1
“§(Zt+h . hﬂt)’(hz‘;gt)_l(zt-M — 2 — hyy),

where N is the numbers of the samples. Maximizing the log-likelihood In L

for the parameter £ gives the maximum likelihood estimate 0.

Kamizono and Kariya (1996) applied this model to three month Eu-
royen interest futures traded at the Tokyo International Financial Futures

Exchange (TTFFE). For this empirical analysis, they specify 2, as follows;

¥, = PJ, (2.6)
1 2 A
Vi-pt 12 1p? 1-p?
1 p gl
P = 1 et
O
1

Jt - dia'g{/\ez()h .o a)‘nznt}:

where diag{-} represents the diagonal matrix, pis the correlation cocfficient
between forward rates of which maturities are next to each other. A;'s may

be regarded as volatility scale parameters.

In this chapter, since the fluctuations of spot rates heavily affected the

40



estimation results in Kamizono and Kariya (1996), we remove them. That

is, we exclude from the model the parts where 7 or j becomes zero.

2.2.2 'Fhe Short Rate Model and its Specification

To analyze the variety of models for short rate, generalized continuous short

rate model (GSR),
dr(t) = (a+ Br{t)dt + ¢]r{&)]"dW (1), (2.7)

where 7(f) is the interest rate level, W(t) is the one-dimensional Brownian
motion, and ¢, 8,1,y are parameters. The GSR model nests many popular
interest rate models (Table 2.1), and is used frequently; see, e.g., Brenner,

Harjes, and Krouner (1996, p.86).

We make the discrete time approximation of equation (2.7) using the

same method as Kamizono and Kariya {1996),
Ziteh — 20 = (05 + Bz )h + %Z’}f \/Efjﬂ—m J=123, (2.8)

where £, ~ NID(0, 1). In this chapter we estimate the parameter of the GSR
by maximum likelihood method, giving the value of v of short-term interest

models (the models (1) to (vii)) in Table 2.1; that is v = 0, %, 1, g—

2.2.3 Time Series Models

We also apply the ARIMA models and VAR (vector autoregressive)} models as
the approach of time series analysis. We select the ARIMA model dimensions

using the SBIC (Schwarz-Bayes information criterion). We estimate two VAR
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Table 2.1: Relationships between the GSR and popular interest rate models

dr = (o + S3r)dt + Y7 dW

Model a B v
i.  Merton (1973) 0 0
. Vasicek (1977) 0
iii. CIR (1985) Square Root 1/2
iv. Dothan (1978) 0 0 1
v.  Geometric Brownian Motion 0 1
vi. Brennan and Schwartz (1980) 1
vii. CIR (1980} Variable-Rate 0 0 3/2
viil.  Constant Elasticity of Variance process: 0
Cox (1975) and Cox and Ross (1976)

42



systems; a) using each of three forward rates as an endogenous variable, b)
taking account of exogenouns factors (hereafter VARE, VARx respectively). In
this chapter we regard the information from the bond and foreign exchange
markets as the factors which are thought to be fluence interest futures
markets. Hence we construct three-dimensional VAR models which include
the forward rate, the Nikkei bonds index and the Nikkei currency index as
endogenous variables for VARx. Taking account of eflects of unit roots and
co-integrations, we estimate VARF and VARXx in levels proposed by Toda and
Yamamoto (1995).

Shiba and Takeji (1994) have proposed a forecasting procedure for asset
prices, using scasonal decomposition method, e.g., SABL and X-11. Let X,
be the original series to be predicted, then SABL assumes a class of power

transformed additive process for transformed X, X,f(jD )

XP =T+ 8 +1I,

where the power transformation Xt(p ) is defined by

Xrifp>0,
X =¢ Inx ifp=0,
-Xr ifp <,

T; is the trend component, S; is the seasonal component, and [, is called
the irregular component. Shiba and Takeji (1994) have proposed that first
we forecast each component and then we get predicted value from inverse
transformation. SABL gives predicted values of the seasonal component.

They specify ARIMA model for the irregular components, and make scenarios
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for the trend components. We apply their method, using current values of the

trend components as one-step-ahead predicted values instead of scenarios.

2.3 Data and Estimation Results
2.3.1 Data

The data we use in this chapter is the set of daily three month Furoyen inter-
est futures traded at TIFFE. The maturities of the TIFFE interest futures
are March, June, September and Decernber. The underlying asset of the
three month Euroven interest futures is the three month TFokyo Interbank

Offered Rate (TIBOR).

We assume futures rates and forward rates are equivalent following Kami-
zono and Kariya (1996}, and regard (100 — TIBOR)/100 as the three month
forward rate. In our choice of maturities, we observe the three futures rate
ZG.1: 25,1, 2544 fOT each day ¢ where S < Sz < S3 correspond to the nearest
three maturities, and these zs,'s correspond to z;,’s in the Subsection 2.2.1.
(ur sample period is available for the period March 1, 1994 to August 31,

1995. We divide this period into the following 6 sample periods;

Period 1: Mar. 1, 1994 - May 31, 1994 Period 2: Jun. 1, 1994 - Aug. 31, 1994
Period 3: Sep. 1, 1994 - Nov. 30,1994 Period 4: Dec. 1, 1994 - Feb. 28, 1995
Period 5: Mar. 1, 1995 - May 31, 1995 Period 6: Jun. 1, 1995 - Aug. 31, 1995

In each period, no shift occurs among different contracts and there are about

60 daily data. For example, in period 1, the contracts from June 94 to De-
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cember 94 are used. For our analysis A is set to be 1/365 following Kamizono

and Kariya (1996).

In the estimation of VAR models, we use the Nikkei bonds index (short-
term) and the value of Japanese yen of the Nikkei currency index (hereafter

bond, cur, respectively).

2.3.2 Unit Root Tests

We investigate the integration order of our individual forward rates, bond and
cur using augmented Dickey—Fuller (ADF) tests. Inselecting the lag length,
we start with the maximallag length 5, and gradually decrease the lag length
until the coefficient of the last included lag is significant by the ¢ test; see
Campbell and Perron (1991). To compensate the low power of ADE fests,
we apply the method proposed by Dolado, Jenkinson, and Sosvilla-Rivero
(1990).

Dolado, Jenkinson, and Sosvilla—Rivero (1990) suggest a procedure to
test for a unit root when the form of the DGP is unknown. Their method is
as follows: start with the least restrictive of the plausible models (which will
generally include a trend and drift) and use the ADF test statistic. 1f the null
hypothesis of a unit root is rejected, there is no need to proceed. Conclude
that the sequence does not contain a unit root. If the null hypothesis is not
rejected, test for the significance of the trend term under the null of a unit
root. If the trend is significant, retest for the presence of a unit root using
the normal distribution. If the trend is not significant, estimate the model
without the trend and use the ADF test statistic to test for the presence of

a unit root. If the null hypothesis of a unit root is not rejected, test for the
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Table 2.2: ADE unit root test,

» Tt trend T, const. T
0 -1.236  -1.052 -0.946 0916 -0816
4 -1.750  -0.741  -1.883 1.886  -0.003
0 -1693 0095 -1.706 1.680 -0454
0 -4.215% -4355% -1.046 1035 -04830
0 -2230 0116 -2.277 2275 -0177
0 -7.809*% .1.066 -7.720% -0.585 -7.756*
3 2047 -0.980 -2.783 0.095 -2.823%
0 -7.982% -0856 -7.958% -0.03¢ -8.045*
0 -8597% -1.200 -8.488*% -0.739 -8.492%
Acur |0 -10.05% -0.397 -10.12* -0.245 -10.20%
Period 2 21g 0 -L.701 1.248  -1.626 1.622 -0134
0
0
0
0
0
0
0
0
0

Period 1 21t
Zat
Zat
hond
cur
Az
Azgy
Az

Abond

-1.716 0.871 -1.848  1.839  -0.226
-1.790 0.553  -1.888 1.88  -0.079
-2.028 1.642  -1.307  1.337 1.494

S1615 0 -0.364 -2.092  2.108%  (.885

-8.166% 1021 -8.101* 0.030 -8.167*
-0.323*% 1115 -9.241% -0.038 -G.315%
-8.578% 0638 -B.598F (.144 -8.665*
-7.6058 0351  -7.665* 1.309 -7.510*
S7.593% 0 -1.209  -7.472% 0.805  -T.449%

2ot

23t
bond

cur
Azye
Az,
Azay

Abond

Acur

Notes: 7, is the statistic based on the model with constant and trend terms,
7. is the statistic based on the model with constant term. 7 is the statistic
based on the model without trend or constant term. ‘Trend’ is the ¢ value
of trend term. ‘Const.” is the ¢ value of constant term. p is the lag length of
ADF test. A is the first-difference operator, “*" indicates that it is significant

at the five percent level.
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Table 2.2: ADF unit root test: cont,

P o trend T const. T

Period 3 it 0 -1.617  -1529 -0.677 0635  -1535
2y 0 -1.693 -1545 -0.839 0795  -1.287
23t 0 -1.354 -1398 -0.656 0616  -1.281
bond {0 -1.83 -0171 -1.828  1.822  -0.594
cur 4 -2.858 1287  -2.541  2540%  -0.0832
Azy | 2 -5.261* 0507 -5.277*  -1.696 -4.912%
Azge | 0 -7.596*% -0263 -7.661% -1.372 -7480*
Azgy 0 -8.116* -0653 -8.131* -1.403 -7.943*
Abond [ 0 -8.618* -0417 -8.673* -0.579 -8705
Acur |1 -1777 0173 -1.923 1.924 0.261
Period 4 21t 0 -1.846 -1513 -1.189 1107 -10945*
Zat 0 -2.269 -2055*% -0.972 0837 -2017*
23t ¢ -2.595 -2.328*% 1157 1009 -1.996*
bond |0 -2.617 -2560% -0475 0441 -2.359*
cur 0 -3.233% 3.451*  -1.3121 1124 0.348
Az, |0 -5.666* 0865 -7.871*% -1.731 -7.552*
Amye |0 -5.549% 0592 -8.155* -1.0974% -7.719*
Ay |0 -5.280% 0567 -7.54p% -1.783 -7.198*
Abond | 0 -8.076* -0650 -8.148% -2.379% -7495
Acur | 5 -4.767F 1717 -4.371* 1347  -4.126*

Notes: 7. is the statistic based on the model with constant and trend terms.
1. is the statistic based on the model with constant term. T is the statistic
based on the model without trend or constant term. ‘Trend’ is the ¢ value
of trend term. ‘Const.” is the ¢ value of constant term. p is the lag length of
ADF test. A is the first-difference operator. “* indicates that it is significant

at the five percent level.
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Table 2.2: ADF unit root test: cont.

P Tet trend T const. T

Period 5 o 0 -1.884 -1.513  -1.311 0.546  -4.002%
Zoy 0 -1.853 -1492 -1.180 0424 -3.830%
Z3t 0 -1.83% -1478 -1.131 0462 -3.331*
bond |0 -1.429 -1498  0.111  -0.648 -4.667*
cur 0 -2.008 0482  -2.364  2.426* 1.526
Az |0 -7.350% L1352  -T.176% -4.114*  -5.206*
Az | 0 -6482% 0500  -6.510% -2.943% -5471*
Azyy |0 -6446% 0500  -6.469* -2.633*% -5.G41*
Abond | 4 -3477%  -0201 -3.584*% -2.978% -187g9*
Acur | 0 -7.395%  -1.296 -7.241*% 1492 -7.013%
Period § z1t 0 -2215 -1.759  -1.336 1.215 -0.922
2oy 0 -2.19%  -1696 -1.416 1273  -0.969
231 0 -2.193 -1311  -1.773 0 1664 -0.794
bond | 0 -1.585 0627  -1.677 1670  -0.184
cur 0 -2342 -2707* 0.575  -0.679 -2.204*
Az |0 -9.0683F 0332 -9.127* -1.117  -9.051F
Azyy | 0 -R363* 0268 -8.632* -1.143 -8.348*
Azg, | 0 -8527¢ 0301 -8.596% -0.801 -8574*
Abond | 0 -7.961% 1060 .7.888% -0.223 -7.046*
Acur | 0 -0.675% -1.738 -9.368% -2.504* -8673*

Notes: T is the statistic based on the model with constant and trend terms.

7. is the statistic based on the modsl with constant term. v is the statistic

based on the model without trend or constant term. ‘“Trend’ is the ¢ value

of trend term. ‘Const.’ is the # value of constant tern. p is the lag length of

L

ADF test. A is the first-difference operator. “* indicates that it is significant

at the five percent level.
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significance of the constant. If the drift is significant, retest for the presence
of a unit root using the normal distribution. If the drift is not significant,
estimate the model without the trend or drift, then test for the presence of

a unit root. We set the significance level of tests to be five percent.

As shown in Table 2.2, for most of our series (in levels) we arc not able to
reject the null of a unit root at five percent significant level. (2, 2o, 23) in
period 4 reject the existence of unit roots, and scem to be trend stationary
processes.  (zi¢, 225, 23¢) in period 5, bond and cur also reject the null of
unit roots. All the first-differenced sequences except cur in period 3 reject
the existence of unit roots. Since we probably made cur in period 3 over-
differenced, it can not reject the null. We conclude, therefore, that for all
forwa.rd rates in each period the maximum order of possible integration is

One.

2.3.3 Estimation Results
We estimate following six models,

1. ARIMA model, 2. VARfmodel, 3. VARx model,
4. GSR. model, 5 HJM model, 6. SABL.

To select orders of ARIMA model, we first examine the sample autocorre-
lation and partial autocorrelation functions of each of the forward rates. In
each series, the autocorrelation function decays geonetrically, and the partial
autocorrelation function at lag 1 has a spike. This suggests, at first sight,
low-order AR models. We should, however, notice that the selection of the

order of integration using correlograms is based on the large sample theory,
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Table 2.3: ARIMA estimatoes

2y = thry 4oy

Poriod 3

Note: The figures in parenthesis are £ values.

T Pmmlz S—
21t ut Zue 2l Tae T U
¢ | 0.960 0.931 (G.912 0.929 0.914 U.S.!‘l-:*%. .[l.f]Tfi
(20.,78)  (19.33)  (16.75) | (19.74)  (17.93)  (15.75) | (27.28)
¢ (.090 0.169 0.232 0.163 0219 0.20 (3.057
(00.84) (L.43) (1.60) {1.51) (L.69) {(1.80) {0,063}
Period 4 Period 5
1t E 23 U 2t it Ty -
¢ | 0.982 0.983 0.977 0(.987 0.987 0,982 ll.‘.)-“lul
(40.67)  (39.41) (35.74) | (62.59) (54.96) (47563 | (2817}
¢ 0.040 (.0306 0.053 0.002 00008 0.006G 0.6
0.68) (0.567) (0.69} ((L08) {-0.02) ((}L(;} ( ,1.5?3,)

e
(1.96:1
(22.61)
(1.4
(1179}
Period 6
LR
0031
(21.31)
0.052

(L3S

0,404

pieY)
0.970
{19.93)

0.08%

{0.58)

Y]
(771
().081
(1.703
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Figure 2.1: HIM drift term estimates
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Table 2.4: Lag length selection Wald test: VARY

Hy : pth lag coeflicients= 0 Hy : pth lag coefficients= 0
D 3 2 1 P 3 2 1
Period 1 4.1185 12.342 68.691* Period 4 2.5976  5.7696 55.455%
(0.903) (0.195) (0) {0.978) (0.763) Q)]
P 3 2 1 P 5 4 3
Period 2 7.0026 9.4023 56.963* Period 5 2.9215 16827 22123*
(0.637) (0.401) (m {0.567) (0.996)  (.008)
7 3 2 1 P 3 2 1
Period 3 29702  5.4308 68.422* Period 6  6.1128  2.8286  38.943*
(0.965) {0.795) (0) (0.729) (0.971) (0)

4

Notes: The figures in parenthesis are P-values. ¥ indicates that it is signif-

icant at the five percent level. The critical value is given by x2 o5 (9) = 19.0.

and that in small samples, correlograms of non-stationary data also converge
quickly to zero. On the other hand, although we could not reject the null of
unit roots for most of the scries, we should not rely too much on this result
because of small size of samples. Therefore, we estimnate some models to use
SBIC, and select AR{1) in each case. Table 2.3 shows estimates of AR(1).
For example, coefficient of autoregressive term of 24 in period 1, the forward

rate of which maturity is June, 1994, is 0.960 and constant, 0.090.

To estimate VARf and VARx we take account of effects of unit roots and
co-integrations, hence we use the VAR system in levels proposed by Toda
and Yamamoto (1995). BExcept period 5 of VARL, the Wald statistic (see
Toda and Yamamoto, 1996, p.244} select the lag length 1, hence we choose

the lag length 2 according to their method!. In period 5 of VARS, the Wald



Table 2.5: Lag length selection Wald test: VARx

Hy : pth lag coefficients=

Period 1 Period 2 Period 3
21t 2t Z3t 21t Z21 Z3t 21t 22t 231
3.9562 6.7320 8.7477 | 5.8562 2.1064 2.2496 9.2284 5.0217 3.3567
(0.014)  (0.665) (0.461) | (0.754)  (0.990)  (0.987) | (0.416) (0.832)  (0.948)
2 6.2017 6.5253 4.3968 4.7531 3.3030 5.8726 19819 6.2335 3.0843
(0.720)  (0.686)  (0.883) | (0.835) (0.951)  (0.753) | {0.536) (0.716)  (0.961)
| | 86.335%  7R.016* 67.224% | 77.207F  72.305%  VR.O88% | 80.188% 76.200%  32.049%
(0) (0) (0) (0) (0) (0) (0) (0) (0)
Period 4 Period 5 Period 6
P Zi¢ 2t 3t I 13 3t 1t &2t &3t
3 7.3469 47412 3.5344 | 6.5154 4.2151 4.8204 23262 4.9302 2.2867
(0.601)  (0.856)  {0.939) | (0.687) (0.897)  (0.849) (0.985}  (0.840)  (0.986)
2 2.5851 4.0083 4.5840 16,294 6.6346 3.0144 3.7503 7.0800 8.9360
(0.979)  (0.911) {0.869) | {0.061) (0.673)  (0.964} (0.927)  (0.628)  (0.443)
1 | 55.004%  30.565% 44.505% | 214.21%  148.76%  91.404%* | 49.597*% 57.392* 50.772*
(0) {0) (0] (0) (0) ) (0 {0) (0)

Notes: The figures in parenthesis are P-values. ** indicates that it is signif-

icant at the five percent level. The critical value is given by x35(%9) = 19.0.




Table 2.6:

GSR estitnates

Period 1

Prericd 2

zu z2 Tt e Zut ERIS Syg R
I3} 0422 0,682 0915 0.612 0.874 [ a7 - 0,524
(0.70) {142 (LA8)Y © (L4l (LB (LT (051 (TR
g1 -1.396 0 27,998 0 -34.850 | -26.695 -3461T 0 -3940 SHAART 12,085
(0.73) (1) (-L59) ¢ (-141) (-8 (-1 {-0.58) {0843
i L65L* 2.695% 3.105% 2.070F 2679% 2695 IR 1avs®
(8.97y  (5.38)  (RG8) | (15.24)  (13.08)  (1421) ] (031) (4.45)
¥ 1.5 1.5 1.D 1.5 18] 1D Lo 1.5
Period 4 Period i't'l"t-(-)'(l ii‘
Zie o 3t ZL i ot Sy
x 0.243 0.204 0.304 -0.044 -0, 186 0216 HRET (; m'}.m .
(0.95)  (0.73)  (089) | (-0.410)  {-1ay (-td6) | {1Es) (125)
g 1 -10817 29,247 -12494 | -LTYT 6.354 7.508 P Erl LR I S
(L04)  {-0.86)  (-1.01) | (0.28) (673 (075 LRl {ren
U4 0.958% 1.540* 1.868* 3.996* a.120t G025 * HOLBRA® 13,084 %
(12.00) (1446} (13.54) | (1109) {1089 (994) | (1633 [1RA2)
¥ 1.5 t.5 1.5 (5] 1.5 |J 93] 1.4

Notes: The figures in parenthesis are £ values, ¥ indicates that it s signifi-

cant at the five percent level




‘Lable 2.7; HIM estinates

Period 1 Period 2 Period 3 Perdod 4 Period 3 Peri \(i[}
A | 0112F 0109 0060 0.071F G0 0313
{(17.04)  (16.20)  {(15.27)  (18.44) (1IR3 (0.7W
da | 0BT 0.146* 0.102* 0.115* 0. 187" (L3R4
(19.61)  (19.22)  {15.00) (1893  (2026) (3132
Ag (1.220* 0.153* 0.102*% (.144* 0.221% O.h22t
(12.40) {(24.10) (21.21y  (18.72) {16.24)  (16.-19)
i 1.838 0.302 3.862 5.064 0.450* 2.266
(0.67) .10 (1.47) (L9 @A (0.7

gs | -2.331 0.672 0280 1985 LA5T | AGH
(Lo4) (0300 (0a2) (067 (08} (0.63)
ds | 0.108 0.839 0.878 1002 LTET O -LO6

{0.04) (-0.28) (0.22) {0.31) {-0.46) (-0.34)
P 0.902 0.944 0.897 0.877 0.959 1958

Notes: The figures in parenthesis are ¢ values. “indicates that it is signifi-

cant at the five percent level,
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statistic selects the lag length 3, hence we choase the fag length 1. Table 2.4
indicates the values of Wald statistic for VARE, and Table 2.5 for VAR

For GSR estimation, we select Variable-Rate model{ CIR, 1980) of Table
2.1 for all series. Table 2.6 reports GSR estimates,

Table 2.7 presents HIM estimates by Kamizono and Kariva ( 196) spec-
ification. Predictability of drift terin of HIM models will effect the results,
Figure 2.1 shows estimates of drift termn of 2y n period 1, the forward rate
of which maturity is September, 1994, and itself. Sinee the estimates are

almost zero, they will hardly affect the prediction result.

2.4 Forecasting Performance

Woe define the root mean squared forecast error as

N

1 . .
RMSFE = | =S (20~ 2100,
i)‘[’ Nﬁ ;( gt jl’)

where N* is the length of forecasting period. We use this notation because
it is more convenient to see levels than mean squared forecast ervor. We
compare three cases of forecasting perforrnance; (1) in-sample forecasting,
(2) out-of-sample forecasting for the last five days before maiurity date, (3}
out-of-sample forecasting for the middle five days of each periad, e abont.
five weeks before maturity date. We must notice that we can not use SALL
for in-sample prediction since it is by seasonal decomposition meihod, and
that we can not use HJM for out-of-sample prediction since ILIN model needs

all samples of each period to estimate the drift termn.



Table 2.8: Root mean squared forecast error (< 100): in-sainple

Model | ARIMA  VARF VARx GSR WA
Period 1 21t 0.235 0.283 0236 0.240 (33!3
Zoy 0410 0388 04427 0432 040
Z3 0.547  0.490  0.552 0558 0.572
Period 2 2t 0304 0,299 0.208 0301 0.311
2z 0452 0432 0445 0453 0,165
234 0.539  0.516 0041 0542 5T
Period 3 2l 0.155 0.151 .15 0156 0157
2z 0256 0.249  0.258  0.259  0.260
Zat (L2890 0277 0289 0.290 0.292
Period 4 iy 0.149  0.147  0.148  0.450 0,152
2ot 0.263  0.253  0.255  0.262  0.265
Z31 0351 0.320 0341 0349 0354
Period 5 Z1y 0334  0.245 0307 0332 0.334
2 0412 0327 0393 0423 0415
25¢ 0509  0.412 0490 0.528  0.520
Period 6 21 0343  0.355 (L340 0359 (1366
z 0431 0447 0422 0439 069

23 0529  0.548 0531 0.064

Note: Since SABL is scasonal decompaosition method, we

in-sarmple prediction.

SALL

{1,580 ;

can't use it for




Table 2.9: Root mean squared forecast error (> 100): last 5 clays

Model | ARIMA VARf VARx GSR WM SAGBL

Period 1 zj¢ 0.0474 00523 0.0445 0.0466 00416 0.02.09 (lgii,_'{a')m
Za 0.0958  0.0988 0.0968 0.0958 0.0978  OLOLIS  (1.0,0)
3¢ 0.144 0,148  0.0143  (.144 0050 00618 (1.0.2)
Period 2 24 0.0377  0.0330 0.0208 0.0395 00331 0,072 (1.0.0)
o 0.0442  0.0518 0.0455 0.487 04314 0.0685  (4,0.0}
234 0.0582  0.0645 0.0506 0.0621 0.0435 00748 (1.0.2)
Period 3 214 0.0403  0.0409 0.0402 0.0407 00386  0.0265  (1.0.2)
Zoy 0.0740  0.0730 0.0785 (.0736 00705 0064 (10.2)
73t 0.144  0.136  0.163  0.47 0031 00914
Period 4 214 0.0169  0.0142 0.0193 0.0169 00169 0.00725  (1,0.0)
ot 0.0432  0.0563 0.058) 0.0439 00440  0.0233  {1.0,0}
3 0.0812  0.0940 0.0896 0.0830 00805 0.054  (1.0,2)
Period 5 z1¢ 0.118  0.0655 0.107  0.124 0130 0.0922
o 0177 0.124 0193 081 G189 0102 (1,0.2)
3t 0193 0.138  0.218  0.197 0199 02 (L12)
Period 6 z14 0.0616  0.0871 00623 0.0619 00581  0.047] {
21 0.0852  0.143  0.0806 0.0873 00748 0112 {1.0.0)
31 0115  0.189 0114  0.H6  0.105 0100 {100}

Note: The figures in parenthesis are selected order of ARIMA(p, d,4) model

used to forecast irregular components of the SARL method.

s}
o]




Table 2.10: Root mean squared forecast error (% 100): widdle 5 days

HEM

Note: The figures in parenthesis are selected order of

used to forecast irregul

Model | ARIMA  VARf VARx GSR
Period 1 21t 0.0397  0.0582 0.0680 0.038F 00423
Zoy 0.139 0.148  0.152  0.136 0.1
Z3t 0.174 0.199  .202 0171 0185
Period 2 21 0.0816 00755  0.116  0.0814  0.0847
Z9g 0.108 0.0919  0.163  0.107 0411
Zat 0.125 0.107  0.198  0.124 0128
i Period 3 21t 0.0463 00515 0.0636  (.0466 08439
zge | 0.07256 00659 (L0899 00725 (4701
3t 0.0793  0.0705 0.0894 0.0785 0.08206
Period 4 21t 0.0340 00354 0.0362 0.0333  0.0336
Zag 0.0793  0.0887 0.0871 0.0784  0.0751
3t 0.127 0.148  0.127  0.125 0.121
Period 5 Z)t 0.0805  0.0621 00776 0.0776¢ 0075
Zot 0.110 0.0986 0.106 0,107 (L106
Z3¢ 0.154 0.140  0.158  0.149 0151
Period 6 Z1 0.0719  0.0671 0.0842 0.0741 00685
sy | 0105 00970 0117 0.109 0402
3¢ 0.115 0.118  0.128  0.118 (Jlll

ar components of the SABL method.

0.0226
(LO60 T
0L.0O8LT

0.108

2.7

2140
(1.0136
(11320
(0.0398
0.0145
0.0827
(OGS
06450
{.0580

0.0704

ARIMA (p, d, ) wnoded

SABL

{1.0.)
(1.0.0)
(£.0.0)




Firstly, we compute the in-sample RMSFE (Table 2.8}. For example, for
z1, in period 1, the minimum RMSFE is 0.213 by VARS and the maximum
is 0.242 by HJM. We conclude from Table 2.8 that in-sample forecasting
performance of the five models is hardly different from each other. Secondly,
Table 2.9 shows out-of-sample performances for last 5 days. We insert in-
sample performances of HJIM model for comparison. For z, in period 1,
the minimum RMSFE is 0.0249 by SABL and the maximum is 0.0523 by
VARS. -In period 1, RMSFEs by SABL is almost half of other methods. In
period 2, however, RMSFEs by SABL is almost twice of others. Since trend
components of SABL will affect largely forecasting results, if the non-linear
trend of a forward rate changes drastically in the forecasting period, then
the SABL’s performance will be poor, and if the non-linear trend does not
change, it will be excellent. We conclude from Table 2.9 that SABI produce
excellent or poor results, which depend on changes of trend components.
Results of out-of-sample performances for middle 5 days (Table 2.10} give us

the same conclusion.

2.5 Concluding Remarks

We compare the in- and out-of-sample forecasting performance of Heath,
Jarrow, and Morton (1992) model, a short rate model, ARIMA, VAR, and a
prediction method based on SABL, using the data of daily three month BEu-
royen interest futures. RMSE of the forecasts from the HIM model resemble
to those of the other models, except for the SABL. SABL’s performance is
sometimes excellent, but occasionally very poor. It seems that such differ-

ences in the SABL performances have been caused by the changes in non-liner
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trend components.

Footnotes

*1 Toda and Yamamoto (1995) have proposed that VAR system be modeled possibly
in levels, 4.e., without differencing to achieve stationarity in each variable, but
augmenting the lag length by @ priord setting the maximum order of integration.
From the result of unit root tests {maximum order of integration is 1} and Wald
test (the lag length of VAR is 1), we estimate the VAR system in levels of order
2A=1+1).
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Chapter 3

A New Method to Estimate
Stochastic Volatility Models: A
Log-GARCH Approach

3.1 Introduction

Changes in asset return variance or volatility over time may be modeled using
the GARCH models, developed by Engle (1982) and Bollerslev {1986). In
GARCH models, such effects are captured by letiing the conditional volatil-
ity be a function of squares of previous observations and past volaiilities,
Since the models are formulated in terms of the conditional distribution, the
maximumn likelihood estimation may be implemented straightforwardly. A
wide range of GARCH models has now appeared in the econometric liter-
ature; see, e.g., surveys by Bollerslev, Engle, and Nelson (1995) and Palm

(1996).

An alternative to the GARCH type modeling is to use an unobserved
volatility component model. In this approach, the logarithm of an unobserved
volatility is modeled as a linear stochastic process, such as an autoregression.
Models of this kind are called the stochastic volatility (SV) models. Just
like the GARCH models, SV models are used both in mathematical finance
and financial ecconometrics. In mathematical finance, Scott (1987), Hull and
White (1987), Wiggins (1987}, Chesney and Scott (1989), and Melino and
Turnbull (1990) were interested in pricing options assuming continuous time

SV models for the underlying asset. In financial econometrics, continuous
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time SV models are usually discretized. Clark (1973), Tauchen and Pitts
(1983), and Andersen (1996) showed that asset returns follow a SV model
under the assumption that asset price is a function of a random process of
information arrival. Surveys of SV models are given by Taylor (1994) and

Ghysels, Harvey, and Renault (1996), among others.

Statistical properties of SV models are easily obtained from the prop-
erties of the process generating the volatility component. Their main dis-
advantage, however, is that they are difficult to estimate by the maximum
likelihood estimation method. Taylor (1986), Melino and Tuarnbull (1990)
and Andersen and Sgrensen (1996) used the method of moments (MM) to
avoid the integration problems associated with evaluating the likelihood di-
rectly. Nelson (1988), Harvey, Ruiz, and Shephard (1994} and Ruiz (1994)
employed approximate Kalman filtering methods i their quasi-rmaximuirl
likelihood (QML) estimation. The Monte Carlo evidence of Jacquier, Polson,
and Rossi (1994), however, implies that MM and Kalman filtering procedures
suffer from poor finite sample performance because they do not depend on

the exact likelihood.

When researchers can neglect certain computational costs, there are bet-
ter alternatives based on the exact likelihood: Danielsson and Richard (1993)
and Daniclsson (1994a) proposed simulation-based maximum likelihood (SML)
procedures; Watanabe (1997a) developed nonlinear filtering maximum like-
lihood (NFML) procedures; Jacquier, Polson, and Rossi (1994) suggested a
Baycsian inference and used the Markov chain Monte Carlo (MCMC). Shep-
hard (1995) used the simulated EM algorithm. Although these methods

are computationally intensive, experimental results of Jacquier, Polson, ancl
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Rossi (1994), Danielsson (1994b) and Watanabe (1997a) show that these

estimators outperform MM and Kalman filter approaches.

The log-GARCH models, proposed by Geweke (1986) and Pantula (1986),
are the logarithmic extension of the GARCH models. Their models may be
interpreted as a special case of the Exponential GARCH models, originally
developed by Nelson (1991). We derive a log-GARCH representation of a
class of SV models, including linear regression models with ARMA(p,g)-SV
errors. To estimate these SV models, we propose a new QML method via
the log-GARCH approach based on either a Gaussian or a standardized ¢

distribution.

We conduct Monte Carlo experiments to analyze the finite sample prop-
erty of our method to estimate simple SV models. In parameter estimation,
the performance of QML estimator via the log-GARCH approach is better
than that of GMM estimators and QML estimators via the Kalman filter;
and close to that of NEML estimator, which is a computationally intensive
method. In volatility estimation using approximate Kalman filtering meth-
ods, smoothed estimates with QML estimates via the log-GARCH approach
based on standardized ¢ distribution outperforms those with GMM estima-

tors and QML estimators via the Kalman filter.

Above simulation results show that some computationally intensive meth-
ods are preferable to the log-GARCH approach when researchers can neglect
estimation time. In this sense, it is worth developing a computationally

intensive method for ARMA-SV models; see appendix 3.G.

Organization of this chapter is as follows. Section 3.2 shows that a simple
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SV process in a sequence, say ¥, can beinterpreted as a log-GARCH process
in y,. Section 3.3 proposes a QML method via the log-GARCH approach and
presents Monte Carlo results. Section 3.4 reports a brief empirical findings

for the yen/dollar daily exchange rate and Section 3.5 concludes the chapter.

3.2 Stochastic Volatility Processes

A simple stationary SV model is given by
Yy = ht’f‘o‘t, T ~ NID(O, ].),

Inh, = =+ ¢inhey +o,0,, v~ NID(0, 1), (3.1)

where 7, is generated independently of v, and |¢# < 1. Working with loga-
rithms ensures that h; is always positive. As noted in the previous section,
MM and Kalman filter approaches are easier to conduct than computer in-
tensive methods, SML, NFML and Bayesian MCMC. Some experimental
results, however, imply that computer intensive estimators outperform MM

and Kalman filter approaches.

As pointed out by Harvey, Ruiz, and Shephard (1994) and Shephard
(-1996), the simple SV process in g, is equivalent to an ARMA(1,1) process
in Iny? with a skewed non-Gaussian noise. In this section, we first derive the
parameters of the ARMA(L,1) representation using the results of Hamilton
(1994, chapter 4). We next show that the simple SV process in ¢, is equivalent

to a log-GARCH(1,1) process in g with a symmetric non-Gaussian noise.

In the simple SV model (3.1), transforming v by taking logarithms of the

squares and concentrating out h, we obtain
Iny? = ¢yl +y+or+n - ¢lnn; . (3.2)
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The mean and variance of Inn)] are known to be

1 1 ) 1 2
¢, = Ellnn]} = [t/» (5) — In (—Q—H ~ 127036,  Var[lan] = ¢ (5> = %,

where () is the Digamma function and ¢'(-) is the Trigamma function,

defined as
(z) = dInl(2)]/dz = I'(2)/T(z), '(2) = dyp(z)/dz = d*[InT(2)]/d’;

see Abramovitz and Stegun (1970, p.943).

Equation (3.2) can be rewritten as

Iny? = (1 — d)e, + v+ oln yiy + oy -+ (lnnf — cn) — ¢ (lnni1 - (:,?),
(Inn? ~ ¢y) ~ iid(0,7%/2), (3.3)

where iid (0, 7%/2) denotes an independently identically distributed process
with mean zero and variance 72/2. Let us note that a white noise process
variable combined with an MA(1) variable reduces to an MA(1) process; sec
Hamilton (1994, chapter 4, pp.102-106). Using this fact, the last three terms

of equation (3.3} becomes an MA(1) process,
o, (lm}f — c,,) — ¢ (lnfr;pil - a,,) =gy — Oz, g0~ WN(0Q,0%) (3.4)

where WN(0, 2} denotes a white noise process with mean zero and variance

¢?, and

[

‘ 2 1 2 202\ * 9 12
=Tl gL 1+¢2+%—¢(1*¢2+ U“) L 8oy

26 2¢ w2 72
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The other solution of the quadratic equation for # does not satisfy the in-
vertibility condition. Note that equation (3.5) implies 6 > 0 and 0 < {f] <

9| < 1.

As a result, the model reduces to an ARMA(1,1) process in Iny;:
lny’ =(1—@)e, +7v+¢In yr e — ey, & WN(0,0%).  (3.6)

where ¢, is a skewed and leptokurtic white noise; see appendix 3.A.

We next show a simple SV process in g, is equivalent to a tog-GARCH(1,1)
process in g, with a symmetric non-Gaussian noise. Define a standardized

process z; and a positive predetermined variable o, by
1 00 o g)gi—1 cptl —
@= (mig[l s )exp [“W;((l - gb)) —1/.«, + 2 Z(}zw il
(3.7)
(y+ (1 - @)ey) + (@~ - OL) 'y, (3.8)

Ino; =

where
. _EL_&_M/ 1
= e‘{p{ A1-67 2 2(1—9)“(2)

_;réi [lnF ((9 ~ ) + é) ~ Il (%)H ’

and L denotes the lag operator. z is a weak stationary process that has, at
least, up to fourth order moments if |} < 1 and o, > 0; see appendix 3.B.

o, is measurable with Tespect to the time ¢ — 1 information set.

Rewriting &; in terms of z, or 0, as

e, = Inz? — Inc® = lny? — Ino} — Inc; (3.9)
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and substituting equation {3.9) to (3.6), we obtain an equivalent representa-
tion of the log-AR(1) SV process,
Y = T3¢,y Zy ™ WN(O: 1)1
Ino? = [fy + {1 ~ @)ey + (1 — 9)111(:2] + (¢ - O)lny? | + Olnof_(3.10)
Note that z is serially uncorrelated with mean zero and variance one. There-
fore the log-AR(1) SV process in y; can be interpreted as a log-GARCH(1,1)

process in 1y, which has a heavy-tailed and symmetric conditional distribu-

tion.

Reparameterizing (7, ¢,0.) as

ag = v+ {1~ @)e + (1~ 6) Inc,

o = ¢p—40,
fo= 6,
we have
e = Oid,
Ino? = e+ alny; + Filno] (3.11)

where |a; + 8] < 1 and (e + £1)5 > 0. The inverse transformations for
this mapping are

_ o (U = (o + )BT (1
7= g b oge, t (14 By) 4y B (2>

IS {mr (% _ alﬁ%) ol G)] ,

=1

¢' - O!l—%‘ﬁ},

\/(qﬁ = 0)(1 - 6g)r* _ \/aq (1— (o0 + B1)Bi)m”
26 26, ‘
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Note that

¢ = ﬁlv
v a1 = (o1 + B1) B~ 1 fh @ 1
G = O [ e AR (2)

N Z [mr (w ~ cnﬁl) tnl ( H

We now consider a linear regression model with ARMA(p,q)-SV errors,

or simply ARMA-SV model:

Y o= Xib +u, (3.12)
AL = B(Le, (3.13)
e = \/f;nt, 7, ~ NID(0, 1), (3.14)

Inh; = v+ ¢lnhy_y +o,u, v~ NID(0,1), (3.15)

where 7, is generated independently of vy, Xy is a1 % k vector, dis a k x 1
parameter vector,

ALY=1—a1L — -~ apl,

BLY=1~bL — = b LY,
and L is the lag operator. This ARMA-SV model is a straightforward exten-

sion if we take account of the empirical results that many asset return series

may be expressed as ARMA processes.

The ARMA-SV model of (3.12)-(3.15) can be interpreted as an ARMA-
log-GARCH(1,1) model in a similar fashion to the simple SV model (3.1):

o= X+,
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A(L)uy = BL)ey,

€ = Oy, Zp o~ \VN(O, 1), (316)

Ino? o+ aqlne?_, + Bilno,, {3.17)

where the definitions of the transformed parameters (g, «vy, §;) are the same
as in the simple SV case. 2z has the heavy-tailed and symmetric conditional

distribution

3.3 Econometric Methodology
3.3.1 A New QML Estimation Method

Under a set of mild regularity conditions, the quasi-maximum likelihood es-
timator proposed by White (1982) is consistent and asymptotically normal.
Lee and Hansen (1994) established the consistency and asymptotic normal-
ity properties of the quasi-maximum likelihood estimator of the GARCH(1,1)
and IGARCH(1,1) models assuming that the standardized variable z; is sta-
tionary and ergodic with a bounded fourth conditional moment. Unfortu-~
nately, as with other ARCH models including EGARCH models, a satisfac-
tory asymptotic theory for the log-GARCH is as yet unavailable. In the
remainder of this chapter, we assume that the quasi-rmaximum likelihood
estimator is consistent and asymptotically normal'. The asymptotic distri-
bution for the QML estimator of the parameter vector w = {ao; a1, b ) takes
the form

VT (@gur, — wo) & N(0, A BoAy') (3.18)

where Ag is the information matrix evaluated at the true parameter vector,

and By is the expected value of the outer product of the gradients evaluated

70



at the true parameters. Hence, the asymptotic distribution for the QML

estimator of f(w) = (v, ¢,0,) takes the form

VT(f(gur) = flwo)} ¥ N (0, (3J;$o)) Ay 'Body'! (5')%(59))') - (3.19)

As in Melino and Turnbull (1990), Harvey, Ruiz, and Shephard (1994}
and Ruiz (1994), once we have the parameter estimates, then we can obtain
smoothed estimates of lnk, by applying the approximate Kalman filter, de-
seribed in Anderson and Moore (1979, chapter 8). The smoothed estimates
of h; may be converted from the smoothed estimates of log-volatility Inh,
using standard properties of lognormal distribution?. See appendix 3.C for a
complete discussion. In case of ARMA-SY models, in addition to paramecter

estimates, we need the fitted values of e, for smoothings.

3.3.2 Monte Carlo Experiments

Tn this subsection, we investigate the finite sample property of the QML esti-
mator via log-GARCH approach for the simple SV model. Jacquier, Polson,
and Rossi (1994) have surveyed the literature and considered parameters de-
signs that seem to be adequate in empirical studics. Following Andersen
and Sgrensen (1996) and Watanabe (1997a), we focus on the following three

parameter settings of Jacquier, Polson, and Rossi (1994):

(v,d,0,) = (~0.736,0.90, 0.363)
= (—0.368,0.95, 0.260)

= (—0.147,0.98,0.166).
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While Jacquier, Polson, and Rossi (1994) consider sample size of T'= 500 in
the majority of their experiments, we use T" = 2000, which is not uncommon

in studies using daily data. The number of replications is 1000.

To construct the log-GARCH quasi-log-likelihood, we may assume z in
equation (3.10) to be either one of the following two: (a) a standard normal
variable, or {b) a standardized ¢ variable favored by Bollerslev (1987), among
others. As noted in previous section, z, has a heavy-tailed and symmetric
distribution. If the true distribution is symmetric, then the Gaussian QML
estimator obtains estimates that are close to those of the exact ML estima-
tor®. We thus use the normal distribution. Taking account of the thick tails,

we also use the standardized ¢ distribution.

When the distribution of z; conditioned on the information up to time
¢ —1 assumed to be standardized ¢ with degrees of freedom A, the conditional

quasi-distribution of y is standardized ¢ with mean zero and variance o7, i.e.,

() oot o

where f(y,) denotes the conditional quasi-density function of ;. Analytic

(A>2),

‘| —{(A+1)/2

derivatives of the log-GARCH quasi-loglikelihood are used instead of nu-

merical differentiation®.

Table 3.1 shows the mean and the root mean squared error (RMSE) of
various estimators. Results of GMM, SML and Bayesian MCMC estimators
are respectively obtained from Table 5 and Table 8 of Andersen and Sgrensen
(1996), Table 2 of Danielsson (1994b) and Table 9 of Jacquier, Polson, and
Rossi (1994). Results of QML estimators via the Kalman filter approach and
NFML estimators are obtained from Table 1 of Watanabe (1997a). Note that
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the results in Table 3.1 have been compiled from different sources, and each
author has used different random numbers. Appendices 3.C-3.F provide a
discussion and review of the Kalman filter approach, the GMM estimation,
SML and NEML methods, respectively. The Bayesian MCMC method is

discussed in appendix 3.G.

The biases of QML estimates via the log-GARCH approach based on the
normal or the standardized ¢ distribution are smaller than those of GMM es-
timates, QML estimates via the Kalman filter approach and NFML estimates
when N = 25, where N is the number of nodes used in NFML. These biases
resemble NFML estimates when N = 50, SML and Bayesian MCMC esti-
mates. The RMSE of QML estimates via the log-GARCH approach based on
the normal or the standardized ¢ distribution are smaller than those of GMM
estimates or QML estimates via the Kalman filter approach, and are larger
than those of NEML estimates when N = 50, SML and Bayesian MCMC
estimates. These results imply that 1) QML estimators via the log-GARCH
approach outperform GMM estimators and QML estimators via the Kalman
filter approach, and 2) the performance of estimators based on computation-
ally intensive methods except NFML estimators when N = 25 are mainly

superior to that of QML estimators via the log-GARCH approach.

3.3.3 Smoothing Performance

We compare the smoothing performance of approximate Kalman filtering
conditional on the true parameters, QML estimates via the log-GARCH ap-
proach based on the normal and those based on the standardized ¢ distribu-

tion. Following Jacquier, Polson, and Rossi {1994) and Watanabe (1997a),
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Table 3.1: Comparison of QML estimator via log-GARCH approach and

other estimators, 7' = 2000 (1000 replications)

Notes: ‘LGARCH-n’ denotes the log-GARCH approach based on the normal
distribution. ‘LGARCH-t’ denotes the log-GARCH approach based on the
standardized ¢ distribution. Results of GMM, SML and Bayesian MCMC
estitnators are respectively obtained from Table 5 and Table 9 of Andersen
and Surensen (1996), Table 2 of Danielsson (1994b) and Table 9 of Jacquier,
Polson, and Rossi (1994). Results of QML estimators via the Kalman filter
approach and NFML estimators are obtained from Table 1 of Watanabe
(1997a). N is the number of nodes used in NFML. The table shows the
mean and RMSE (in parentheses).

74

¥ ¢ Ty v @ Ty Y ¢ o

Method 536900 .363 | 368 950 .260 | -.147 980 166
LOARCH-n | -.766  .895  .351 | -.393 946  .253 | -175  .976  .167

(.269) (.036) (.074) | (147) (020) (.048) | (.080) (.011) (032)
[CARCH-.t | -.773  .894 363 [ -396 954  .261 | -176  .976 170

(.234) (031) (.066) | (.134) (018) (.044) | (074) (.010) (.030)
GMM 592 990 279 | -986 961  .190 | -140 981 125

(.311)  (042) (.115) | (197)  (027) (.099) | (112) (015) (068)
Kalman —§37 887 383 | -419 943 .27l | -182 975 174 |
filter (.369) (.050) (.095) | (.187) (025) (.061) | (.087) (.012) (037) |
NFML 7812 890 406 | -426 942 294 | -194 974 197
N =125 (.199) (.027) (.068) | (124) (017) (.052) ) {.083) (L011)  (043)
NFML T 805 368 | -406 945 264 | -.178 976 169
N =30 (.168) (.023) (.041) | (106) (014) (.032) | (.067) (.009)  (.024)
SML 721 902 359

(15)  (02)  (.039)
Bayesian -.762 896 359 Not Available
MCMC ((15)  (.02)  (.034) - B




Table 3.2: RMSE smoothing performance of approximate Kalman filtering,
T = 2000 (1000 replications)

¢
Method 90 95 98
True parameters 6.856 6.099 5127
LGARCH-n 6.923 6.127 5.133
LGARCH-t 6.884 6.114 5120
True parameters 6.85 6.08  5.24
KF 6.92 6.13 530

Notes: The second half of Table 3.2 are obtained from Table 2 of Watanabe
{1997a). ‘LGARCH-n" denotes the log-GARCH appreach based on the nor-
mal distribution. ‘LGARCH-t’ denotes the log-GARCH approach hased on
the standardized ¢ distribution. ‘KF’ denotes the Kalman filter approach.
RMSE x10000 is displayed.

we compute the grand RMSE,

1 1000 T—100 .
RMSE = | = o= hin)
MSE = \ fo50r < 199) & 2, ¢/

i=1 t=100
where T = 2000, h;, is the volatility simulated at period ¢ in the éth simula-
tion and fai,t is its smoothed estimate. The smoothed estimates of by may be
converted from the smoothed estimates of log-volatility Inh;, using standard

properties of lognormal distribution.

Table 3.2 presents the RMSE of smoothed estimates of volatility. The
second half of Table 3.2 are obtained from Table 2 of Watanabe (1997a).
Smoothing solutions with QML estimates via the log-GARCH approach
based on the normal distribution resemble those of the Kalman filtering
method. Smoothing solutions with QML estimates via the log-GARCH ap-
proach based on the standardized ¢ distribution dominates these two results.

Since Jacquier, Polson, and Rossi (1994) reported that RMSE of smoothing
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solutions conditional on QML estimates via the Kalman filter are smaller
than those with GMM estimates, our results show that smoothing solutions
via the log-GARCH approach based on the standardized ¢ distribution dom-

inates those with GMM estimates or QML estimates via the Kalman filter.

3.4 Test for Integration in Log-Volatility

The appropriate procedure for testing for integration in variance is not yet
clear. One possible way is to apply augmented Dickey-Fuller test and/or

Philips-Perron test to InyZ.

However, the reliability of such unit root tests
in this situation is questionable. According to Section 3.2 and Harvey, Ruiz,
and Shephard (1994), simple SV process (3.1) in g, can be interpreted as

ARMA(1,1) process in Inyf:
Inyf =v* + ¢lnyy -+ e — 051,

where 7" = v + ¢,(1 — ¢). Since the variance of €, typically dominates the
variance of o v, the parameter § will be close to unity for values of ¢ close
to one. For example, when ¢ = .98 and o, = .166, which was used in the
previous Monte Carlo experiments, 6 is .92. Asshown in Pantula (1991} and
Schwert (1989), when moving-average parameter is very close to one, unit
root tests reject the null hypothesis of a unit root too often since the model

is difficult to distinguish from white noise.

The other possible way depends on the results of Section 3.2, which
showed the simple SV process in y; of equation (3.1) can be interpreted

as a log-GARCH(1,1) model in g, of (3.11). Since ¢ = o + /31, the nuil
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hypothesis for ¢ = 1 can be tested by ¢ statistics for the null hypothesis that
ay + B = 1. As is the usual test for IGARCH (1,1} model, this test can be

easily conducted. In the following section, we present the example of ¢ test.

3.5 Empirical Example: Daily Exchange Rates

This section illustrates our log-GARCH approach by fitting SV models to
the yen/dollar exchange rates. The data consist of daily ven/dollar close

exchange rates, S, from the Tokyo interbank market. There are total of

1484 daily observations, from January 4, 1991 to December 30, 1996. We
calenlate the rate of change, ry, by taking logarithmic difference between the

close of two successive trading days.

As we noted in the introduction to this dissertation, tests in a unit root
must be carried out before estimation of a model. If we want to test hypothe-
ses about exchange rates, and if we take account of time-varying volatilities,
then we must investigate the stationarity for level and volatility of exchange
rates. A broad consensus has emerged that nominal exchange rates over
the free float period are best described as non-stationary, or I(1), type pro-
cesses; see, c.g., Baillie and Bollerslev (1989). We shall therefore concentrate
on modeling the nominal returns as an univariate SV model and testing the
efficient market hypothesis and the persistent volatility hypothesis. Note that

a fuller study of exchange rates lies outside the scope of this dissertation.

Table 3.3 provides some summary statistics of the data. T he data are
unimodal and approximately symmetric, with higher peaks and fatter tail

than the Gaussian distribution,
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Table 3.3: Summary Statistics of log price change
70 % 100 = In(S,/Si_1) x 100

Mean Std.dev.  Minimum  Maximuin
~0.0104 0.6434 -3.6258 33937
Skewness Kurtosis  Studentized NOBS
range
-0.1873 6.5473 10.9094 1484
(0.0636)  (0.0162)

Sample period: 4 January 1991 to 30 December 1996.
Standard errors in parentheses.
Note: The standard errors are computed as follows:
/6/NOBS for the coefficient of skewness,

24/NOBS for the coefficient of kurtosis.

We consider the following MA(1)-SV model:

Ty = (5(3 + 5£Wt + e — blet,l
e, =/l M~ NID(0,1),

Ik, = v + Wi — oW + by +outn, v NID(0, 1},

where W, denotes a weekend dummy equal to one following a closure of
the market. The MA(1) term is included to take account of the weak serial
dependence in the mean. Following Baillie and Bollersley (1989}, the weekend

dummy is entered in variance to allow for an impulse effect.
The above MA(1)-SV model in r; may be interpreted as an MA(1)-log-

GARCH(1,1) model in 7, with the similar discussion to Section 3.2,

ry =g + Wi+ e - bregey,
€y == Tl

1110;2 = (yp + "}’1W3 il | (OCL -+ ﬁ[)Wt.._l + m]nefﬂi + ﬁ]ln(lf___l,
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where

a0 = Yo+ (1—-d)e,+ (1 ~0) Inc,
oy = ¢ - 97
Iﬁl = 6

Table 3.4 reports the QML estimates based on the normal distribution and
the standardized ¢ distribution. The robust QML covariance estimators of
Bollerslev and Wooldridge (1992) are used to compute the standard errors.
Note that they cannot be used to test whether o, is significantly different

from zero.

The estimate of A is 4.527 and indicates the standardized ¢ distribution
is preferred to the normal distribution. In both cases, the coefficients of
weekend dummy in level, §;, are not significant at the five percent level,
and the coefficients in volatility, v, are significant. These results support
the empirical findings of Hsieh (1988,1989) and Baillie and Bollerslev (1989).
Estimates of ¢ are both significant and indicate strong degree of persistence
in volatility. For the standardized ¢ distribution case, the ¢ value forHp : ¢ =
1, which is caleulated under the log-GARCH(1,1) representation, is -2.2668
and is rejected the null of unit root in log-volatility. Ruiz (1994), however,
found much higher value for ¢ and fitted a random walk stochastic volatility
model. Tt should be pointed out that the Ruiz {1994} study was conducted
on October 1, 1981 to June 28, 1885, while our period 1s from January 4
1991, to December 30, 1996.
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Table 3.4: MA(1)-SV Models

LGARCH-n LGARCH-{
do -0.000128 -0.000020
(0.000004)  (0.000005)
01 -0.000035 0.000026
(0.000688)  {0.000778)
by -0.005212 0.04527
(0.001133) (0.00113)
Yo -0.5939 -0.4243
(0.0066) (0.0029)
Y1 0.2703 (0.3245
(0.0040) (0.0198)
@ 0.9418 0.9577
(0.04481) {0.0186)
oy 0.2077 0.1613
(0.1412) (0.0590)
A = 4.527
(0.00056)
quasi-log-
| likelihood 5432.76 6347.28

Notes: ‘LGARCH-n' denotes the log-GARCH approach based on the normal
distribution. ‘LGARCH-t’ denotes the log-GARCH approach based on the
standardized # distribution. Standard error is in parentheses.

80



3.6 Concluding Remarks

This chapter derived a log-GARCH representation of a class of SV models,
including linear regression models with ARMA(p,q)-SV ervors. To estimate
these SV models, we proposed a new QML method via the log-GARCH
approach based on either a Gaussian or a standardized ¢ distribution. We
conducted Monte Carlo experiments to analyze the finite sample property of
our method to estimate simple SV models. In parameter estimation, the per-
formance of QML estimator via the log-GARCH approach is better than that
of GMM estimators and QML estimators via the KKalman filter; and close to
that of NFML estimators, which is a computationally intensive method. It
should be emphasized that both Bayesian MCMC and SML estimators out-
perform QML estimator via the log-GARCH approach when the results are
available, and that since the performance of NFML estimators depends on the
number of nodes, increasing the number may provide better performance. In
volatility estimation using approximate Kalman filtering methods, smoothed
estimates with QML estimates via the log-GARCH approach based on stan-
dardized t distribution outperforms those with GMM estimators and QML
estimators via the Kalman filter. We also provided the testing procedure of
unit root in log-volatility. The empirical example of daily obscrvations on
the yen/dollar exchange rate returns indicates that, for the period which we
analyzed, 1) the log-volatility process is stationary and 2) volatility is higher
on the day that follows weekend or holiday compared to that of the other

days, and that 3) the market is ineflicient.

Monte Carlo experiments show that there are better alternatives to es-

timate simple SV models than the log-GARCH approach when rescarchers
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can neglect such computational costs as below. Jacquier, Polson, and Rossi
(1994) reported that typical estimation time of a simple SV model via the
Bayesian MCMC is approximately 14 minutes of CPU time by the newest
workstation at the time. The SML method takes much more CPU time
than the Bayesian MCMC. The NFML method is faster than the Bayesian
MCMC, but it requires about half an hour on a PC. Rapid advance in com-
puters will eliminate these costs in the near future. Appendix 3.G developed
methods of analyzing ARMA(p,q)-SV regression error models in a Bayesian

framework via the Markov chain Monte Carlo.

Using the daily yen/dollar exchange rate, we showed that our Bayesian
MCMC technique performs well. This empirical results supports the above
findings. While estimates by the Bayesian MCMC technique are slightly
different from those by the log-GARCH approach, standard errors by the
former are smaller than those by the latter. In this estimation the Bayesian
MOMC method on Pentium II PC 330 MHz takes about four hours. Thus, in
practice, one should use the Bayesian MCMC technique rather than the log-
GARCH approach whenever a fast speed computer server is available. The
log-GARCH approach is still useful if one is only interested in parameter

estimates.

Both methods have certain advantages, but they still leave room for exten-
sions. First, using a generalized ¢ distribution as the conditional distribution
in the log-GARCH approach may improve the finite sample performances of
QML estimators, since a gencralized ¢ distribution has two shape parameters
while a standardized ¢ distribution contains only one shape parameter. Sec-

ondly, some authors are interested in capturing comovements in volatility; see
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Harvey, Ruiz, and Shephard (1994) and Jacquier, Polson, and Rossi (1995),
among others. Thus, both of the log-GARCH approach and the Bayesian
MCMC technique should be extended to multivariate SV models. These

tasks await further research.

Appendix

The derivation of the moments of £, and z in this chapter is available

upon request.

3.A ¢ and its Moments
In terms of 1, and 7, £, can be expressed as

g = o+ o,y B+ (lm;r,:2 - c,,) +> (0~ )6t (lmfﬂ- - c,,) .
i=1

=1
Since |8] < || <1, £2, 10° < oo and Y222, |8 — ¢]|0F " < 0. Therefore <,
is a weak stationary process. Its moments up to fourth order are given by

w2
E(e) =0, E() = ETh

[5((;?))1“‘ =[] e

1 -84
E(Etgt_..j) = (), fOTj > 1.

3.B z and its Moments

First we show that ¢, < o0, that is

r(©- 00+ %) 50 and 3 e (6 - ¢)0' + %) Y (%)} <,

i=1
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Since ¢ and @ always have the same sign and 0 < |8] < [¢] < 1,

2
1 202 , 202\ 842 o 1
e o —_— e e < -
0 < (=)0 = - 4QSQ[HTr2 L= =)+t | < <

(i) If 0 > 0, then 0 < (¢— 0)8" < (¢~ 0)8 <1/4.
(ii) If @ < 0 and i is odd, i = 2j +1, then 0 < (¢ — 0)f- g% < 1/4
since 8] < 1.

(iii) If 8 < 0 and i is even, i = 2j, then (6 — 9% > 0.

Therefore (0 — ¢)0* +1/2 > 0, and thus I'((6 — ¢)¢" + 1/2) > 0.
Define a sequence,

1

s; = InT ((9 — P + 5) — I’ (%) .

By the Taylor expansion, s; can be expressed as
i (1 i
si = (0 — D) (5) + o8,

Note that b; = o{e;) implies lim; o b;/e; = 0, and that the Digamma func-

tion, 9(-), is the first derivative of InI'(-). Thus

Sivl (6 — 9O 1(1/2) + o(0)
$i (8 — )0 (1/2) + o(87)
6(1/2) + o(1)

(1/2) ¥ o(1)

and limm; e 8i41/8; = 6. Since there exists a positive constant K such that
|sin1/si] < K <1 for a sufficiently large 7, 5232, s; converges absolutely. We

have shown that ¢, < co.
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Second we show the weak stationarity of z;. z can be rewritten by

Zp = CL:E‘XP ;(9 - é)giml 77 Cn((ll 33)

Therefore z, is a weak stationary process since 72,10 — S||8]" < oo and

+“‘“‘ t+_—281-’/i1 .

X" < o0.
The moments of z, are given by

E(z) =0, E(Z)=1, E(#)=0,

_ 3 - 207 20 — Y8 /1
Bl = g o L T =5 ()

|

E(zz.4) =0, fory>1

Similar way to show ¢, < oc reveals that E(z/) < ccif ¢ < 1 and o, > 0. All

odd-order moments are equal to zero. For even-order moments, rth moment

(r=6,8,...) exists if (¢ — )0 < 1/r.

3.C Approximate Kalman Filtering and QML Estima-
tion
The simple SV model,
v = Vhan mo~ NID(O,1),
Inhy = v+ ¢inhe +o,p, v~ NID(O,1),

can be rewritten as

fl

In y? ~1.27 +In ht + Ct) E(Ct) - 0) Vm‘(gt) - W2/23
Inh, = v+olnhy, +o,v, v~ NID(O,1).
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If the distribution of {; is approximated by anormal distribution, the preced-
ing system becomes a standard dynamic linear model, to which the Kalman
filter can be applied. The Kalman filter requires three sets of equations; a
prediction and updating set which are run forward through the data, and
smoothing equations, which are run backward through the data. We follow
the standard notation of Anderson and Moore (1979). Let Infy,_; be the
prediction of Inh; based on the information available at time £ — 1.
is the variance of the prediction. Let m be the update that uses the in-
formation at time ¢ and €2y, the variance of the update. The equations that

recursively compute the predictions and updatings are given by

Ay = v+ohe e,

Qt;t.ml = ¢29'tf1|t-~1+031

and

-1

Inhy = Inky+ [1[1 yf +1.27 — Inhye 1|,

Qt[t = Qttt—l(l - Qtihl/ft)a

where f; = .1 + 72/2. Once the predictions and updates arc computed
for t = 1,...,T, we can obtain the smoothed estimates, lnhgyr, which s
the estimate of In & given all information in the sample. €yr denotes the

variance of In hyp. The smoothing equations are

In h’t{T = In h‘tit -+ Ptiiﬂ ht—k-liT —In ht-ﬁl\t]:

Qr = Qe+ P e — Qo)

where P, = ¢y /€4 The system is initialized at the unconditional values,

Qo= 02/(1 — ¢) and Ty = 7/(1 - 6).
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The prediction, updating, and smoothing estimates of he are computed

using standard properties of the lognormal distribution.

The quasi-likelihood is defined and computed using the prediction error

decomposition (sce Harvey, 1939)

1 T 1 T ,
L(nﬁgbao'u '_"2”2 - 52
t= t=
where f; is the prediction error variance just defined and v, is the onc-step-

ahead prediction error, v; = Ing? + 1.27 — In Ags 1.

3.D GMM Estimation

We briefly survey the GMM estimation wsed in Andersen and Sgrensen
(1996). We concentrate on 14 moments case, since their Monte Carlo re-
sults suggest that the inclusion of their full 24 moments provides very little
information regarding the parameters relative to what is contained in the

initial 14 moments.

The SV model is

Yy = \/Em, ne ~ NID(0, 1),
h’lhg = -+ Qbhlhg_.l + o, Vg ~ NID(O, l)

Then,

2
7 o, ‘
Inhy ~ N (1 ek ¢2) o N(pin, 0.

Since the correlation between v, and 7, is assumed to be 0, this makes the
calculation of moments easy, e.g., E[jy]"] becomes Eljn|"1E{h; . The 14

moments used in Andersen and Sgrensen {1996) are as follows: Efly| =
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2/ exp(pn /2407 /8), Ely?] = explpn+03/2), Ellunl’) = 2y/2/% exp(3iun/2+
952/8), Elyi] = 3exp(2un + 208), Ellyanil] = (2/7) explpun + 0 (1 +¢')/4)
(i =2,4,6,8,10), Elylyl,] = exp(2pn + 0h(1 + ¢) (1 =1,3,5,7,9).

(MM estimation exploits the convergenee of selected sample moments to
their unconditionally expected values. We denote, hereafter, w = (v, 6, 0,).
Let the vector of sample realizations of the moments at time £ be m(w) =
(mylw), ..., mufw)), and let the sample moments be Mr(w) = (Myp,. .., Miar),
where Mip(w) = S i ma(w)/ (T = j), fori =1,..., 14, and j is the maxi-
mum lag between the variable defining the sample moments. The correspond-
ing vector of analytical moments is denoted A(w). The GMM estimator, &y,
minimizes the distance between A(w) and My(w) in the following quadratic
form: @y = arg min, (Mp(w)—AW)) A7 (My(w) - A{w)), where Ay Is a pos-
itive definite and possibly random weighting matrix. Hansen (1982) showed
that, under suitable regularity conditions, & is consistent and asymptoti-
cally normal: TY2(@r — wo) ~ N(0,€2). The optimal choice of weighting
matrix, A™", in the sense of minimizing the asymptotic covariance malrix,
(), is given by the inverse of the covariance matrix of the appropriately stan-

dardized moment conditions:

7
A= lim B S (my — Alwo))(my — Alwo)) /T
e br=1

This matrix may be estimated by a kernel estimator for the spectral density
of the vector of sample moments at frequency 0. The use of an appropriate
weighting matrix is important. Andersen and Sgrensen (1996) found that:
(1) estimation using a fixed number of lags in the weighting matrix gen-

erally is inferior to using the plug-in estimator of lag length suggested by
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Andrews (1991), and that (2) the prewhitening method for the weighting
matrix suggested by Andrews and Monahan (1992) can be helpful in several
settings, and that (3) the automatic bandwidth choice proposed by Newcey
and West (1994) is appropriate for large samples in which the GMM Bartlett-
kernel procedure combined with this automatic bandwidth choice provides
inference of a quality that other practical methods will be hard pressed to

improve on.

3. F Simulated Maximum Likelihood Methods

The simple SV model is

w = Jhon, 1~ NID(, 1),

Inh, = ~+¢lnhy+o,, v ~NID(O,1),

where 7, is generated independently of 1. A is a latent variable and the
first task is estimation of the parameter vector w = (v, ¢, 7,)'. As Jacquier,
Polson, and Rossi (1994) pointed out, this model cannot be easily estimated
because the vector of latent observations, {h }1_,, has to be integrated out of

the joint density of volatility and returns in one T-dimensional integration,

(o) = /{ T, hw)dh,

to obtain the likelihood function I{w). This integral may not have an ana-

lytical solution, and numerical methods must be employed for evaluation.

In Simulated maximum likelihood (SML) estimation of the SV model, the

integration in {(w) is evaluated by simulation and subsequently maximized
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with respect to parameters. Define two functions, a remainder function (RF)
h(A,Y) and an importance function (IF) p(A}Y"), where A o= Inhy, A =
{M)T,, and ¥ = {4 }7,, such that their product equals the jomt density of

the latent and observable variables,
FUY, Alw) = (A, Y)p(A]Y), (3.A1)
and the conditional expectation of A{A, Y} with respect to u{A[Y') is

fY|w) = Euh(AY)]
= LTh(A,Y);L(MY)dA

= [R AV, Aw)dA (3.A2)

An Monte Calro sample for {{w) can be constructed by sampling N vectors
of the simulated latent variable, A,, from p(A|Y) and inserting each into

h(A,Y ). Under appropriate conditions
1 ¥ .
i Z_:lh(An, Y) = Iy(w) = lw),

where -2 denotes almost sure convergence. Subsequently Iy(w) is maxi-
mized to obtain parameter estimates. The error in the Monte Calro estimate
of the likelihood, Iv(w), and the parameter, @, can be made arbitrarily small
by increasing the number of simulations, /N. The initial functions that fulfill
conditions (3.A1) and (3.A2) can be obtained from a simple factorization of

the joint density:

—=
S

po(AY) =[] f(xw, M)

i
i

o

(A YY) = FWedw, 1, As)-

3

e}
<



Although analytically tractable, these initial RF’s and IF’s are not efficient
because millions of simulations are required to achieve reasonable accuracy
in the Monte Calro estimate of {{w), thus effectively rendering the compu-
tation time infinite. To overcome the inefficiency, Danielsson and Richard
(1993) proposed an acceleration method whereby the initial RF’s and IFs
are rewritten in a way that preserves conditions (3.A1) and (3.A2]) while

minimizing the Monte Calro sampling variance Var{{y(w}). This requires

solving
arg min,, '/RT[h(Y, A) — F(Y|w) (A Y )dA. {3.A3)

An analytical solution to this optimization problem is not available, so nu-
merical method must be employed. Define an auxiliary function, &(A, ),
where Q is a matrix of parameters, and multiply and divide it into theinitial
IF and RF, respectively. The ratio of the remainder and auxiliary func-
tions and the product of the auxiliary and importance functions form new

remainder and importance functions:

V) = [RT(%)W(A|Y>5(A,WA

- [ h(A, V)u(A]Y)dA.
RT

The expectation in (3.A2) is not affected, but the variance in (3.A3) changes.
The optimization problem in (3.A3) is, therefore, equivalent to finding the
auxiliary function that minimizes the sampling variance Var(ly(w)). Ana-
Iytical and computational considerations dictate that the choice of §(A, Q)
be tractable and thus imply the £(A, @) selected is not necessarily the best
but only sufficiently good. The function chosen for £(A, Q) is an exponential

second-order polynomial of the latent variables. The number of elements
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in Q is then 27 + 1, all of which have to be estimated. These parameters
could be estimated in a single global nonlinear optimization, but the com-
putatidnal cost could be prohibitive. Instead the parameters are estimated
using a linear regression of the log remainder function in each time period on
a constant, the simulated latent variable, and the simulated latent variable

squared. This process requires iteration until the matrix 2 has converged.

Danielsson (1994b) reported that typical estimation time of an SV model

is 5 to 20 minutes of workstation time.

3.F Nonlinear Filtering Maximum Likelihood Estima-
tion

A nonlinear filtering technique proposed by Kitagawa (1987) can directly
be applied to estimation SV models without any transformation and vields
the exact likelihood. Watanabe (1993, 1997) referred to it as the nonlinear

filtering maximum likelihood (NFML) estimation.
The simple SV model is
Y = h’t"r]t: e~ NID(03 1)’
Inhy = v + ks + oy, v ~NID(O, 1),

where 7, is generated independently of ». Define z, = Ink, and ¥, =

(41, ,4). Then we obtain two conditional probability density functions,

1 Ty — 7Y — T 2
Hadwe o, Yer) = \/Wexp (—( (oY) )}

202
. 1 2
Flnlos, Yis) = ————exp (_.._%W)
2mexp(xzy) 2 exp(z,)



Although f(z¢]2i-1, Yioi) = fle|zia) and f(ydee, Ve () = flz:) in the
simple SV model, we will keep writing Y, for more general models. The

prediction and updating equations are given by

f(CUzLYsﬁl) = [O:Of(fﬂt,iﬂzﬁlml)difz—l

00

= / flxidae 1, Yeei) f (@1 |y )dzey, (3.A4)

-5

and

FledYs) = flmdy, Yo)
f($t,$t~1lYt71)
fllYea)
_ f($t|$t—1athl)f(-i'ft—liytﬁl) \K
- Fli) 049

where the denominator (3.A5) is given by

flYio) = .[vo:of(ytgmtlm—-i)dl't

= /:); Flylze, Yior) (@Yo 1)dee. (3.A6)

The problem with this filter is that it is difficult to solve analytically.
Kitagawa (1987) has suggested a liner spline technique for solving this filter.
The basic idea is to approximate the relevant probability density functions
for each period by piecewise linear functions. Specifically, f {x;]Yi—1) and
FlylY, 1) for £ = 1,...,T are approximated by piecewise lincar functions,
specifying the corresponding number of segments, focation of nodes, and
values of the density function at each node. If, For each period, N +1
number of nodes is selected, then they are sorted in order of size. We denote

them as :r:ﬁ“), :Cgl), . ,a:EN) fort=1,...,T.
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Using the trapezoid rule, we approximate equations (3.A4)-(3.A6) as fol-

lows:

Fa o) = [ e Yo SV daey

f; :cg’_‘)l G
= Z/{n_” f(mtﬂl-ftnl;yt DS (@] Ve 1)dE -

=1 11

1w @[ (n-1) )
eI Y (£GP0, Vi) flatt V1Y)

n=1
+f P, Y )@Y D)), =01, N (B.AT)
and

_ @) G
fal vy = (m'fa;f ()'” (=01, N,  (3.A8)

where

f(yt|Yt-—-1) = fm f(yt|33tam—a)f(ﬂfﬂys—l)dib't

&

2,
Z_[(n L Flyelmy, Yeor) flz | Yio)dey

n—

L3 (o)) (Sl Vi) (i)
+F ™ Yoo (@ Yien) L6 = 0,1, N). (3.A9)

Yo))

is set, equations {3.A7)-(3.A9) can be solved recursively. The unconditional

2

Once the distribution of the initial state variable, i.e., f{z;)(= f

distribution of z, is the normal with mean /(1 — ¢) and variance o2/ {1—¢%),

which is used for the distribution of the initial state variable.

The log-likelihood is defined as:
In L{w Zinf (] Yi1). (3.A10)

94



Given the parameter values, executing our filter yields the value of f(y]Ye 1)
for each period. Using these values, we can evaluate the log-likelihood defined
by equation (3.A10). The SV parameters are estimated by maximizing this

log-likelihood.

Watanabe (1997) reported that, for the simulation design used in Sub-
section 3.3.1, estimating the SV parameters by the NFML procedure using
GAUSS version 3.1 on Pentium PC’s takes approximately 10 minutes when

N =95 and a half hour when N = 350.

3.G Bayesian Markov chain Monte Carlo

Monte Carlo simulations in chapter 3 suggest that some computer intensive
methods performs better compared to the log-GARCH approach when re-
searchers can afford to neglect computational costs. In this sense, it is worth
developing a computationally intensive method for ARMA-SV models.

In this appendix we develop a new method of analyzing ARMA(p,g)-SV
regression error models using the MCMC technique in a Bayesian frame-
work. To this effect, we modify a Markov chain sampling scheme developed
by Jacquier, Polson, and Rossi (1994) and Nakatsuma (1996). Nakatsuma
(1996) designed a Markov chain sampling scheme fora linear regression model
with an ARMA(p,q)-GARCH(r,s) error. He used a particular state space rep-
resentation of an ARMA model with a heteroskedastic variance, and modified
the method of Chib and Greenberg (1994) for an ARMA error. While Nakat-
suma’s (1996) model is a deterministic GARCH type, we modify his sampling

scheme to the case that allows a stochastic variance.
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State Space Model and Prior Assumptions

We consider the ARMA-SV model,(3.12)-(3.15). Let e = (a1, ) :
px L b o= (b, by g x 1w = (8d ) (k+pt q) %X 1, wy =
(v, ¢, 02) 1 3x 1, w= (whws) :(k-+ptg+3x 1LY = (y, - yr)  Tx 1,
X=X, X)) Txk and h = (hyy -y he) T L

We consider a state space expression of the ARMA model (3.12)-(3.14)

given the latent variable vector h:

U = Xté + zZey +tht= (SAll)
gy = Loy + Hom, (3.A12)
where z = [1,0,---,0] : L x m, Gy = n'?,

-~ B r =

@ a1 — b
- Qg - . 172 | @2~ by
T = SmXom, thh,t/ mox 1,
| Om o - 0_ Lafrz_bm_

m = max{p,q}, a; = 0 for j > p, by =0 for 7> ¢, and 1 ~ NID(0,1). We
assume o = 0. Obviously, & = Vhen. This state space expression® is not
the same as the typical expression of the ARMA model given in textbooks
such as Harvey (1993) or Hamilton (1994). We can, however, easily verify

that this expression reduces to equations (3.12)-(3.14).

We make the following assumptions.

Assumption 1 The latent variable vector h are generated by (3.15), and
the data ¥ are generated by (3.12)-(3.14), with p,¢ known and non-

stochastic X.
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Assumption 2 All roots of A(Z) =0 lie outside of the unit circle.
Assumption 3 All roots of B(L) = 0 lie outside of the unit circle.
Assumption 4 |¢| < 1.

Assumption 5 The prior distribution of the vector w, p(w), is given by

p(w) = plw)plws),
plw) = pd)pla)p(b),
& Nk(ﬁg, Dal), fi ~ Np(ag,AJI)Iga, b~ Nq(bg, BJI)[SM

plwn) = pldlod)plol),

dlo2 ~ No(¢o, 02 Py )s,, o) ~ IG(1o/2,50/2),

where ¢ = (v,¢) : 2 < 1, N; is the i-variate Gaussian distribution, I¢
is the inverted gamma distribution, I, is the indicator function of the
set A, S, is the set of a that satisfies Assumption 2, S is the set of b
that satisfies Assumption 3, Sy is the set of ¢ that satisfies Assumption

4, the hyperparameters 8o,2q,a0,40,80, B0, ¢o, By, 0,and sp are known.

Assumption 2 and 3 are related to the stationarity and invertibility of the
error term. Assumption 4 guarantees the stationarity of the latent variable

Inhy.

Nakatsuma (1996) shows that 9 is given by

r q
Yy = X0+ Zaj(yt_j - Xt_j(S) + e — ijet_j + (0}5 - bt)eg, (3\13)
j=1 j=1

and y, does not depend on e for ¢ > m (= max{p,q}). One of advantages

of our state space expression is that we only need to obtain ep, which is a
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scalar, in order to start the recursion of the state space model. Chib and
Greenberg (1994) derived a similar expression for a regression model with an
ARMA(p, q) error. Their expression, however, is based on the iitial state
variable cyg, instead of the initial error term eg. Another advantage of our
state space model is that we can evaluate ¢ given the data, unobscrved
volatilities and the rest of the parameters without using any smoothing.

Using cquation (3.A13}, we obtain the following equations:
- X8 = (a1 — b)e+ep,
yo = Xob — a1y — X16) = (az — b)eg +e2 ~ biey,

ys — X360 —a1(y2 — Xo8) — ao(yn — X10) = (a3 — bs)eg +es — bieg — hey,

p q
Yr — chs — Z aj(yfp,j - XTuj(S) = ((LT - bj')e() + e — Z bj(,’;r,,..j,
j=1 j=1

or

Pu = Zey + Quy,
where v = (y; — X168, 42 — Xob,- -, yr — XY : T'x 1, Z = (ay ~ by, a9 ~
bo, - ap—bp) i TxX1,n= (M, nr) : Tx 1, N = diag{hy, by, - he }
T =T,

—{7 1

—e —d 1

B>
Hl

T xT,

] .__ap PN —Gy 1
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1

-by 1

—by —bp 1

= Tx T,
~bg —by b 1
0 —by —by —b1 1|
and 1, ~ NID(0,1). The estimate of ¢y by the GLS,

& = [Z2(QLQ) ' 271 Z(QuQ) 7 Pu. (3.A14)

As noted above, we can start the recursion of (3.A12) and (3.A13) once we

obtain ey by (3.A14).

Full Conditional Distribution
The joint posterior of (h,w) is given by the Bayes theorem,

w{h,w|Y) o p(Y|h, wi)p(hlws)plw)

where

I':H

plhlwa) =

1
exp —T(]nhi Y- ¢1ﬂht1)2} )

L

=14/ 27r0,,
1 1

\/m exp [_é-r(yt ytEhl)Q] s
Ytje—1 = _th’s =+ (1 - A(L))( (I *Xté') —+ (B(L) - 1)6;,

p(Ylhw) =

p.
=

and 1 15 the one-step-ahead prediction of 3, given X; and information
up to the period t — 1. Breaking the joint posterior into various condi-

tional distributions is the key to constructing the appropriate Markov chain
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sampler. We simulate w and h from the following conditional densities:
7(81Y,w_g h), wlalY,w_q h), 7(b|Y,w.s,R), (|, w_g, h), m(oZY, w_g. )
and w(heys, w, hio1, heyt), where, e.g., w_s denotes all the parameters in w
other than 4.

We introduce two lemmas shown by Nakatsuma (1996). In the paper, he
diagonalized the density f(¥ |w;, /) by recursive transformations of the data,

and produced a regression relationship for 4 and a.

Definition 1 Let the scalars Yo = up, ys = y; = 0 for s < 0 and the vectors

X, =X =0,5 <0. For t=1,...,T, define
p a
Y = Zazyt-i - ijyf_j,
i=1 g=1
P g
X: = Xt - Z G@Xt_i - Z(’J]X:‘_j
i=1 j=1

Using this definition, we obtain the following lemma:

Lemma 1 [Nakatsuma (1996, p.14)] Let Y™ be the 7" x Ivector of the yy

and let the T x k matrix with X} as its¢ th row. Then

1 ‘
p(Y*|h, wy) = (2m) 122 Y 2exp [—5(1/* ~ XFH)EH YT - X))

Proof. Verify that yf — X}§ = and proceed by induction, making use of
P
i Xp6 == Xib = D ailyes — Xe-d) - Dby — X5 58)-///
i=1 F=1
If we note the regression relationship Y™ = X*§ + e, where e ~ Np(0, 3),
the full conditional distribution of d immediately follows. By repeatedly
applying transformations given in Definition 2 below, we arrive at the [ull

conditional distribution of a.
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Definition 2 Let i = ¢, and let the scalars y, = #; = 0, s < 0. For s < 0,
let the scalars y, = s = 0. For ¢ =1,..., 7T, define

i
Yo = Yt — Xib — Z bjﬂz—j,

j=1
Xt = (ﬁt-—-l:"';gtm;ﬁ) 11 x b

With this definition we can prove the following lemma.

Lemma 2 [Nakatsuma(1996, p.15)] Let Y be the T x 1 column vector and
let X = (X!,.--,Xp) :Txp, S=diag{hy,---, hr}: T xT. Then

. 1.~ ~ . -
F(Yih,wy) = (20) 72712 exp WE(Y — Xa)T Y - Xa)l.

Proof. Verify that 77, - X,a = e; and proceed by induction, making use of
that

~ p —~
gt - X;a = — thi — Zaj(yt—j - thjé) - ij(@tmj — Xg_ja,). ///

q
j=1 g=1

A corollary of this result is that Y = Xa+e, where e ~ Np(0,X). Lemma 1
and 2 shown by Nakatsuma (1996) are expansions of the results of Chib and
Greenberg (1994).

1

1 ...
Let LH = (Inhy,- -+, Inhp) : T x 1, LX = T x 2,
Inhg --- Inhp

1 = (7(1 = @) + @(Inhyyy + k) /(1 + ¢%) and of = oZ/(1 +¢°).

We now present the full conditional distributions that are used in the

simulation of the regression model with ARMA(p, ¢}-SV errors.

Proposition 1 Under Assumptions 1-5, the full conditional distributions

for (6,a,b,¢,0,) and h; are given by
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(1) S|V weg, by~ Ni (Do + X*E7EX) " (Dybo + XSV, (Do + 1’(*'5“71)(*)_1) ,
(Ag + X=X (Apag + XB719), (4o + X’E“X)"i) Is,,

1 ex met(b)z
ok, P\ T Top,

«(25) /2(Bo| 2exp [ 36 ~ bo) Balb ~ )] I,

AT~

(1) alY,w_a, h ~ Ny

(i) w(bY,w_p, h) x t

(iv)  BlY,w_g,h~ Ny ((LX'LX + ®0) (LX'LH + @yeho), oy (LX'LX + 80) ") Is,
(v) 02V uo g, b IG (T + 0+ 1)/2,((8 ~ $0) ®o(® — )

+(LH — LX$)(LH — LX) + s0) /2) ,
(3 “yﬂiil)Q} exp [_ (Ink, - M} |

. —1/2
(vi)  w(hulyen w, b, hesr) o By exp [” o %07

Proof.

Given Y, w_g, and h, the regression relationship ¥Y* = X*0 + ¢, where
e ~ Np(0, %), is derived by Lemma 1. Thus the full conditional distribution

of § is given by (i). Similarly, (ii) follows from Lemma 2 and Assumption 1.

The full conditional distribution is proportional to the joint posterior of
(h,w), by its definition. Thus (iii), (v), and (vi) are given straight-forwardly.
(iv) follows from the definition of the full conditional distribution and As-

sumption 3. ///

Finally, let us note that we may easily obtain the full conditional dis-
tributions if we use the vague priors instead of the informative priors of

Assumption 5.

Assumption 6 The prior distribution P(w) is given by

p(w) = ISQISE,I.S'Q;/UE-
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Corollary 1 Under Assumptions 1-4 and 6, the full conditional distributions

for (8,a,b,6,a,) and h, are given by

() olYsw_g b~ Ny ((X7E7X)TIXE7Y Y (XSTX) ),
(X

(i) alY,w ah~ N (XETX)TIXE g (X571 0) I,
T 1 e ()’

7w (b]Y, w_y, } - Is,,
(111) ) ] Wp, 3) X H mexp[ 2y l Sy

Gv)  GlY,w_gh~ Ny (LX'LX) ' LX'LH, oHLX'LX) M) Is,,
() oBY,w_gp,h~ G ((T+1)/2,(LH — LX) (LH - LX)/2),

_ Y
(vi)  w(helye, wy hee1s he) o by 2exp ——"‘—'—“—“( ) exp _ Ay~ ) 2,u,¢) :
2h; 207,

Proof. Similar to the Proof of Proposition 1. ///

Implementation Issue
Proposition 1 implies that while sampling from the full conditional dis-
tributions of 6, a, ¢, o2 can be done by Gibbs sampling algorithm, sampling

from b and h, requires MH accept/reject algorithm.

Generation of b is a little more complicated since the error term, e, is
a nonlinear function of b given h and w_,. Note that e, = 0 for £ < 0 by
Definitions 1 and 2. To deal with this complexity, Chib and Greenberg (1994)

proposed to lincarize e; by the first-order Taylor expansion:
Et(b) Qﬁt(b*) + ¢g(b - b*), (35&15)

where

* * * * * o 8/
e(6%) =y () — X7 (07)8, v =[thus, -, g = —é%i 11 g,
b
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and 7y is the first order derivative of e, evaluated at &" given by the following
recursion:
Py = —e () - ib;wi,téja (t=1,...,q)
=
where 1;; = 0 for all ¢ < 0. The remaining problem is at which point Taylor
series expansion should be carried out. Nakatsuma (1996) used the following
weighted nonlinear least squares estimator of &:
L
b* = argmin ¥ — (y;(b) — X*(b)0)?, (3.A16)
b it
to approximate p(Y|X,h,w;). By assuming a natural conjugate prior for
b, the approximation of the full conditional distribution of b is given as a

truncated Gaussian distribution,

N ((Bo + U'S~19) " [Bobe + VETH (W — e(t")], (Bo + e I,
(3.A17)
where U = (¢}, ¢h) : T xqgand e = (e, --,er) : T x L. We use
it as a candidate generating density g(b|Y, X ,w.p, k) in order to generate a
candidate for b
Similarly, by assuming a flat prior for b, the approximation of the full

conditional distribution of b is given as a truncated Gaussian distribution,

N (W e s - o)), (WS I, (3.418)

Although Jacquier, Polson, and Rossi (1994) argued that it was difficult

to find the bounding function of m(h|y;, Xi, w, hy_1,hesr), we can derive it
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using the idea of Pitt and Shephard (1995). The logarithm of the density of

hi|ye, Xi, w, hyy, hugr is by (vi) of Proposition 1,
ln('fr(hdyt, T, W, h-g_l, ht+1)) = const + lIl(pt*),

where

1 — Ypp1 ) 1 .
) =~ g - Y D @A)
h

Let h; = exp v, and using the first-order Taylor series expansion of exp(—v,)
around v (= In h}), we obtain

1 *
o=exp(—v) 2 exp(=v) - (v = vg)exp(~vy)
t

1
= -};,-; - (]Il ht —In hr)/hf:

i

Rewriting (24) using the above inequality, we have a bounding function, .

1 ~ Yj—1)® [ 1 1 =
In(p;) < ""§ln hy — w {——(1 +Inh; —In ht)} - 5“5(111 By — p10)°
g

2 hi :
= In(g})-

The normalized version of g¢ is a Gaussian density which has the mean and

the variance

(4 — yt|t—1)2f7121 _ 3_‘7_%:

oh;

my = pe + and o}

Hence, we can sample from p(h,|-) by proposing h; ~ N (i}, 07) and accept-

ing with probability p}/g;. The remaining problem is at which point Taylor
scries expansion should be carried out. Watanabe (1996) choose by for effi-
cient draw in the sense that it accepts the draw with higher probability. The
closer to one is p}/g, the more efficiently can we draw. Following Watan-

abe (1996), we first derive the value of &, which corresponds to the peak of
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p; very roughly by iterating the Newton method for a few times. Then we

choose hf so that the peaks of p} and g; coincide with each other.

Empirical Example: Daily Exchange Rates

We developed a method of analyzing ARMA(p,q)-SV regression error
models using the Markov chain Monte Carlo technique. In the following we
use the same data in Section 3.4 and investigate performances of the Bayesian
MCMC method. Tt should be noted that we do not intend to examine statis-
tical difference between the Bayesian MCMC and the log-GARCH approach,
since our MCMC method is developed under the Bayesian framework and
since it is not an easy task to test the difference between the Bayesian and
frequentist’s results. Again, the data consist of daily yen/dollar close ex-
change rates, Sy, from the Tokyo interbank market. There are total of 1434

daily observations, from January 4, 1991 to December 30, 1996.

In spite of prefiltering the return series to take out AR terms and day-of-
the-week effects in the mean returns, we consider the following ARMA(1,1)-

SV model:
InS; = & +épDyn + §p Dy + 0w Dy + dpDpe + dgr Holy + aq InSy_y -+ wy,

Uy = er — bieg1,

e = yJhaw, m~NIDO,1),
Inh; = v+o@lnh, +ow, v~ NID(O,1},

where Dag, Dri, Dwe and Dpg, are dummy variables for Monday, Tuesday,
Wednesday and Thursday. Hol, is the number of holidays (excluding week-
ends) between the (t — 1)st and fth trading day. Taking account of the unit
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root case for ¢, we relax Assumption 4. Compared to the model in Section
3.4, this model is slightly extended with respect to the level specification,
i.e., we consider an ARMA(1,1)-SV model in In S, instead of the MA(1)-SV
model in r, =1n S, — In S;_,. This specification enables us to check whether

In S is'an I(1) process.

For our implementation of the MCMC algorithm, we use QML estimates
and standard errors via the log-GARCH approach as the prior information.
The Markov chain sampler is run for 25000 draws such that the first m
draws are discarded and then the next n (= 25000 — m) are retained. All
sample moments are computed as sample averages. It has sometimes heen
suggested that inferences should be based on every & th iteration of cach
sequence, with k& set to some value high enough that successive draws of the
parameter vector, w, are approximately independent. This strategy can not
be used in this situation since the set of simulated values is not so large that
reducing the number of simulations by a factor of & gives important savings

in storage and computation time.

Nurherical standard errors are computed for the posterior mean by the
batch means method described in Ripley (1987). In particular, the n sim-
ulated values were placed into v batches of n/v observations. The batch
size is increased until the lag 1 correlation of the batch means is less than
0.05. The numerical standard errors are estimated as s/\/v, where s is the
standard deviation of the batch means. Alternatively, the spectral density
approach of Geweke (1992) can be used to compute the numerical standard
errors. Following Watanabe (1997b), We do not use Geweke’s (1992) nu-

merical standard error because of its sensitivity to the specification of the
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spectral window.

Geweke (1992) has constructed a convergence diagnostic after m+n iter-
ations, where the first mm draws discarded and next n draws retained. Though
created for the Gibbs sampler, Geweke’s (1992) method may be applied to
the output of any MCMC algorithm; see, for example, Cowles and Carlin
(1996). Markov chain sampler yields draws from the posterior only as the
nurnber of passes gets large, and hence comparison of early ny passes with
late np passes can reveal failures of convergence. Let w'(")’ be the ith draw of
a parameter and let

1 A

. na = .
1 n )
A )
N8 j=no

where ne- = n — ng + 1, and let nse,4 and nsep are the numerical standard
errors for the two estimates, u“J_A and &8, calculated as in the previous para-
graph. If the sequence of w® is stationary, the ratios ny /n and np/n are held
fixed, and 174+ np < n, then by the central limit theorem, the distribution

of the convergence diagnostic (CD),

(@t — &P /\/nse% + nseg ,

approaches a standard normal as n tends to infinity. Following the suggestion
of Geweke (1992), we calculated this statistic by setting ny = 0.1n and

np = 0.5n.

Table 3.5 presents the log-GARCH approach and the Bayes results for
the ARMA-SV model. For the log-GARCH approach, the robust QM1 co-
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Table 3.5: ARMA(L1,1)-SV Models

Posterior distribution

Notes: Numerical standard error of posterior mean is in parentheses. Correlation de-

notes the first-order correlation of the Markov chain run. For the log-GARCH approach,

standard error is in parentheses. 1500 simulations.
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log-GARCH Std. Lower Upper
Parameter estimate Mean dev. 95% limit  95% limit  Corr. CD

dg 0.01048 0.01048 0.00079  (0.00916 0.00118 0.013 (.296
(0.00081)  (0.000018)

O -0.00027 -0.00017  0.00024 -6.00056 0.00021 (0.009 1.314
(0.00070)  (0.000006)

o7 -0.00083 -0.00080  0.00025 -0.00131  -0.00049  0.614 0.921
(0.00073)  (0.000007)

dw (0.00027 0.00018 0.00026 -0.00025 0.00059 0.001 0.603
(0.00063)  (0.000007)

dn 0.00014 -0.00014 0.00026 -0.00057 0.00029  -0.026 0.969
_ (0.00067)  (0.000013)

dy 0.00162 0.00100 0.00032  0.00046 (.00154 0.070 0.271
(0.00066)  (0.000009)

y 0.9978 0.9978 0.00017 0.9856 0.9981 0.011 -0.577
(0.0021)  (0.000004)

by -0.0184 T0.0006  0.00090  -0.0022  0.0008 0343  -0.449

(0.0011)  (0.000025)

¥ -0.949 -1.008 0.00895 -1.023 -0.994 0.037 0.480
(1.299)  (0.000265)

& 0.908 0.910 0.00075 0.908 (.011 0.018 -1.095
(0.030)  (0.000036)

03 0.0775 0.0293 0.00500 0.0226 0.0391 0.950 -0.243
(0.0289)  (0.000674)



variance estimators of Bollerslev and Wooldridge (1992) are used to com-
pute the standard errors. Note that they camnot be used to test whether
o’ is significantly different from zero. According to convergence diagnostics
values, the null hypothesis that the sequence of 1500 samples is station-
ary cannot be rejected at five percent significance level for all parameters.
Therefore m = 23500 and n = 1500 are chosen. With this statistics, we se-
lect m = 23500 and n = 1500. The marginal posterior means for dg, oy, dy,
Sw, g, and 6y are nearly zero. These results support the empirical findings
of Hsieh (1988,1989) and Baillic and Bollerslev (1989). Marginal posterior
mean of a; i$ nearly one, and this implies a unit root in InS;. The marginal
posterior means for SV parameters (y,4,02) are {—1.008,0.910,0.0275). Ruiz
(1994) found much higher value for ¢. It should be pointed out that the
Ruiz (1994) study was conducted on October 1, 1981 to June 28, 1885, while
our period is from January 4 1991, to December 30, 1996. The ven/dollar
exchange rate data exhibit a high degree of persistence in volatility although

posterior is massed well away from the unit root case.

In this appendix, We developed methads of analyzing ARMA(p,q)-5V
regression error models in a Bayesian framework via the Markov chain Monte
Carlo. Using the daily yen/dollar exchange rate, we showed that our Bayesian

MCMC technique performs well.
Footnotes

%1 'This is the usual practice in papers that use ARCH models. See, e.g., Bollerslev,

Engle, and Nelson (1995).
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*3
*4

*6

There are two more accurate computationally intensive smoothing procedures. Jacquier,

Polson, and Rossi (1994) used a method based on Bayesian Markov chain Monte
Carlo, Watanabe (1997a) proposed a smoothing procedure based on a nonlinear
filtering method. Watanabe's (1997a) Monte Carlo evidence indicates that his non-
linear smoothing conditional on NFML estimates produces more efficient volatility
estimates than the approximate Kalman filtering conditional on true parameters.
Seo Bollerslev, Engle, and Nelson (1995, pp.2983-2984).

Fiorentini, Calzolari, and Panattoni (1996) establish a computational advantage of
analytic derivatives of the GARCH log-likelihood over the numerical differentiation.
The advantage is large especially when second-order derivatives are involved in the
computation.

The data are offered by the Ueda Harlow co. for the acadeniic purpose.

The state space representations of this type are foand in De Jong {1991), Koopmari

(1993), De Jong and Shephard (1995), Nakatsuma {1996), among others.
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