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Abstract 

Rodents have brownish-yellow incisors whose color represents their iron content.  Iron 

is deposited into the mature enamel by ameloblasts that outline enamel 

surface of the teeth.  Nrf2 is a 

basic region-leucine zipper type transcription factor that regulates expression of 

a range of cytoprotective genes in response to oxidative and xenobiotic stresses.  

We found that genetically engineered Nrf2-deficient mice show decolorization 

of the incisors.  While incisors of wild type mice were brownish yellow, incisors of 

Nrf2-deficient mice were grayish white in color.  

Micro X-ray imaging analysis revealed that the iron content in Nrf2-deficient 

mouse incisors were significantly decreased compared to that of wild type mice.  

We found that iron was aberrantly deposited in the papillary layer cells of enamel organ 

in Nrf2-deficient mouse, 

suggesting that the iron transport from blood vessels to ameloblasts was disturbed.  

We also found that ameloblasts of Nrf2-null 

mouse show degenerative atrophy at the late maturation stage, which 

gives rise to the loss of iron deposition to the surface of mature enamel.  

Our results thus demonstrate that the enamel organ of Nrf2-deficient 

mouse has a reduced iron transport capacity, which results in both the enamel cell 

degeneration and disturbance of iron deposition onto the enamel surface.
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Introduction 

The brownish yellow color of the rodent incisors is owing to iron deposition in the enamel 

surface layer (Halse, 1973; Halse, 1974; Halse & Selvig, K. A. 1974; Kallenbach, 

1970).  In the enamel organ of rodents, where the tooth develops, a layer of cells that 

outline the enamel surface called ameloblasts contain the entire sequence of cell 

development stages.  From the apical end toward the incisal 

end these stages are classified regionally into presecretory, secretory, transition, and 

maturation stages.  Secretory ameloblasts produce enamel matrix proteins, 

whereas ameloblasts at the maturation stage act to incorporate iron and deposit it 

into the surface of the mature enamel, in addition to their fundamental roles in 

enamel formation.  In this unique iron transport system, ferritin functions as a transient 

iron reservoir in the cell, sequestering iron into the cytoplasmic granules (Karim & 

Warshawsky, 1984).  This particle first appears free in the cytoplasm, and then 

gradually becomes confined to the membrane bound ferritin-containing vesicles with the 

progression of cell developmental stages.  Finally, the iron 

is secreted from ameloblasts into the enamel surface at the end of 

maturation, presumably through the process of lysosomal digestion of ferritin (Takano & 

Ozawa, 1981). 

Iron is critically involved in a wide variety of cellular events ranging from DNA 

synthesis to cellular respiration (Cammack et al. 1990).  However, 

at the same time, free iron generates highly reactive oxygen species via Fenton 

chemistry and causes an oxidative stress to cells (Linn et al. 1998).  Thus, the cellular 

iron metabolism should be strictly regulated in the presence of various transport and 
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storage proteins (McCord, 1998). 

Nrf2 belongs to the CNC transcription factor family which share a characteristic 

basic domain first identified in the Drosophila cap’n’collar (CNC) protein (Itoh et al. 1995, 

Mohler et al. 1991).  Nrf2 is essential for the coordinate transcriptional induction 

of phase II enzymes and antioxidant genes via antioxidant responsive element (ARE) 

(Itoh et al. 1997, Ishii et al. 2000).  Furthermore, Nrf2 constitutes a crucial cellular 

sensor for oxidative stress together with its cytoplasmic repressor Keap1, and 

mediates a key step in the signaling pathway by a novel Nrf2 nuclear 

shuttling mechanism (Itoh et al. 1999b).  Activation of Nrf2 leads to the induction 

of phase II enzyme and antioxidant stress genes in response to various stresses (Ishii et 

al. 2000; Itoh et al. 1999a). 

Whereas Nrf2-deficient mice (Nrf2–/–) grow normally and are fertile (Itoh et al. 

1997), the mice are susceptible to various oxidative stresses including acetaminophen 

intoxication (Enomoto et al. 2001; Chan et al. 2001), BHT intoxication (Chan et al. 1998), 

chemical carcinogenesis (Ramos-Gomez et al. 2001), hyperoxia (Cho et al. 2002), and 

diesel exhaust inhalation (Aoki et al. 2001).  The Nrf2–/– 

mice are also susceptible to lupus-like autoimmune nephritis (Yoh et al. 

2001).  However, no apparent phenotype has yet been described (Itoh et al. 

1997; Kuroha et al. 1998).  In this study, we found that incisors of the Nrf2–/– 

mice are decolorized and become grayish white.  The examination 

of the mechanisms leading to the decolorization in the Nrf2–/– 

mouse revealed that the iron transport is defective in the developing enamel organ of 

Nrf2–/– mice. 
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Results 

Decolorization of the maxillary incisors of Nrf2–/– mice 

In an attempt to find subtle anatomical changes in the germ line Nrf2–/– mice (Itoh et al. 

1997), we noticed that the incisors of Nrf2–/– mice are always grayish white (Fig. 1B), 

while in contrast, incisors of wild-type and heterozygous mutant (Nrf2+/–) 

mice are always brownish yellow (Fig. 1A).  In 

order to examine the decolorization phenotype in more detail, we mated Nrf2+/– 

male with Nrf2+/– female mice and examined 50 mice for the relationship between Nrf2 

genotype and the incidence of decolorization by macroscopic examination.  Fourteen 

mice had grayish-white incisors and all of them were homozygous for the Nrf2 

germ line mutation.  On the contrary, of the 36 mice with brownish yellow incisors, 26 

were Nrf2 heterozygous and 10 were wild type.  Thus, the penetration of 

decolorization phenotype in Nrf2–/– mice was 100% (P<0.001). 

 

Iron content in enamel surface was specifically decreased in Nrf2–/– mice 

Scanning electron microscopic analysis detected no significant structural 

differences in the tooth surface between wild-type (Fig. 2A) and Nrf2–/– mice (Fig. 

2D).  However, X-ray microanalysis revealed an apparent difference in the iron content 

on the enamel surfaces between the Nrf2–/– and wild-type mice (Table 1).  A dot-map 

image analysis revealed the remarkable decrease of iron content in the enamel 

surface of Nrf2–/– mouse incisors (Fig. 2F) compared to those of wild-type mice (Fig. 

2C).  Calcium content was within comparable range between wild-type (Fig. 2B) and 

Nrf2–/– mice (Fig. 2E). 
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Table 1 summarizes the calcium, phosphorus and iron contents of the incisors that 

were quantified by X-ray microanalysis.  Importantly, we found that the mean iron 

content (weight %) of the Nrf2–/– mouse enamel was less than one-tenth of that 

of the wild-type mouse.  The decrease shows gene copy number 

dependence such that in the Nrf2+/– mouse incisors the mean iron content was about 

one half of that of the wild-type mice.  In contrast, no significant 

difference was observed in the content of calcium and phosphorus amongst Nrf2–/–, 

Nrf2+/– and wild-type mice.  Similarly, the molar ratio (MR) as well 

as weight % ratio (WR) of 

calcium to potassium was unaffected.  These results indicate that the iron 

metabolism is specifically affected in the Nrf2–/– mouse teeth. 

 

General iron status in Nrf2–/– mice 

To examine the reason why the iron metabolism of enamel organ was impaired in Nrf2–/– 

mice, we measured the general iron status in Nrf2–/– mice.  We did not find 

any significant differences in hematocrit, serum iron concentration, total iron 

binding capacity (TIBC) and transferrin saturation (Table 2), indicating that the general 

iron status of Nrf2–/– mice is not affected.  In contrast, non-heme iron content of liver 

was found to be significantly higher in Nrf2–/– mice than that in 

wild-type liver.  The precise reason of this iron 

increase in the liver remains to be clarified. 

 

Ameloblasts of Nrf2–/– mice show premature degenerative atrophy 
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We next examined development of ameloblasts in Nrf2–/– mouse, since it 

is ameloblasts that deposit iron into the enamel surface.  A histological examination 

with lower magnification of wild-type mouse tissues with hematoxylin and eosin 

staining showed slight signs of degenerative atrophy in the late maturation 

stage of the ameloblast development (lm, Fig. 

3A).  Compared to the wild-type mice, however, these changes in the Nrf2–/– 

mouse ameloblasts were abrupt and premature (below).  We found that, 

while ameloblasts of Nrf2–/– mice showed very similar morphological appearance to that 

of the wild-type mice during the transition (t) stage and the early maturation (em) stage, 

ameloblasts of Nrf2–/– mice suffered 

severely from premature degenerative atrophy at the late maturation stage (Fig. 3B; 

green arrow).  The late maturation stage is the time when iron 

is excreted from ameloblasts to the enamel surface.  At higher magnification, 

cell heights of ameloblasts gradually reduced from the early maturation 

stage to the late maturation stage in wild type ameloblasts.  At the stages of reduced 

ameloblasts, they were changed to atrophic flat squamous cells on the most incisal 

side.  In agreement with the observations with the lower magnification sections (Fig. 

3B), Nrf2–/– mice ameloblasts showed similar morphological 

appearance to the wild-type ameloblasts during the transition stage (Fig. 4A 

and C).  However, the Nrf2–/– 

ameloblasts suffered from premature degenerative changes at the late maturation 

stage (Fig. 4D; compare with those in the wild type mouse, Fig. 4B) and the flat 

squamous epithelia largely disappeared in the mutant mouse tissues (data not 
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shown).  These results thus demonstrate that the normal differentiation of 

ameloblasts are severely disturbed at the late maturation stage in the Nrf2–/– mice. 

 

Iron transport is defective in Nrf2–/– mice 

To examine whether the incomplete differentiation affects the ameloblasts function, iron 

metabolism during the ameloblast development was examined in Nrf2–/– mice.  

We carried out Berlin blue staining of wild type and Nrf2–/– mouse incisors (Fig. 

4, panels E-H).  In the wild-type mouse incisors, positive staining of Berlin blue, which 

indicates the accumulation of iron, was detected in the ameloblast cytosol 

during the transition stage and early maturation stage (Fig. 4E).  The accumulation of 

iron was then shifted to the plasma membrane on the enamel side at the late maturation 

stage, reflecting the iron excretion process into the enamel surface at this stage (Fig. 4F).  

No Berlin blue-positive staining was detected at the reduced ameloblast stage (data not 

shown).  In the Nrf2–/– enamel organ, iron was detected both in the papillary layer 

cells and ameloblasts during the transition and early maturation stages, and the iron 

accumulation in the ameloblast cytosol was markedly decreased (Fig. 

4G).  This may be due to defect 

of the iron transport from blood vessels to the ameloblasts.  

We also found that the aberrant iron deposition overlapping with the degenerated 

cells (Fig. 4H), suggesting that the abnormal accumulation of iron might provoke, at least 

in part, the degeneration of papillary cells and ameloblasts of Nrf2–/– enamel organ. 

 

Ferritin expression was decreased in Nrf2–/– papillary layer cells 
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Since ferritin is known to play an important role in the cellular iron metabolism, we next 

examined the expression the ferritin by immunohistochemical and in situ hybridization 

analyses.  Ferritin heavy chain mRNA was expressed 

exclusively in the ameloblasts during transition and early maturation 

stages.  The Nrf2–/– ameloblasts show similar level 

expression to the wild-type ameloblasts (Fig. 5C 

and A, respectively).  However, ferritin heavy chain mRNA expression was very faint 

or not observed in the late maturation stage and reduced ameloblast stage (data not 

shown) of the ameloblast development in both wild type and Nrf2–/– mice (panels B 

and D, respectively). 

We also performed immunohistochemical analysis of ferritin expression, utilizing an 

anti-rat liver ferritin antibody that cross-reacts with mouse ferritin (Miyazaki et al. 

1998).  The analysis revealed that the expression level of ferritin protein 

was comparable between ameloblasts and papillary layer cells at the transition and 

early maturation stages in the wild-type mouse (Fig. 5E).  Importantly, however, 

in the Nrf2–/– mouse the expression of ferritin in the papillary layer 

cells was significantly reduced compared to that in the ameloblasts (Fig. 

5G).  Consistent with the results of in situ ferritin heavy chain mRNA analysis, ferritin 

was expressed only faintly in the more advanced stages of ameloblasts (Fig. 5F 

and H).  These results clearly indicate that although ferritin is expressed 

in the ameloblasts, it is not transferred 

efficiently from the ameloblasts to the papillary layer cells in Nrf2–/– animals. 
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Nrf2–/– teeth have decreased acid resistance 

To assess changes in the quality of the teeth, we first 

examined the Knoop hardness of the teeth.  However, we could not detect significant 

difference between wild-type and Nrf2–/– teeth.  We next examined acid resistance of 

Nrf2–/– teeth.  For this purpose, the teeth were exposed to 0.1 M acetate buffer at pH 

4.0 and amounts of eluted calcium ion were quantified at 

several time points by the methylxylenol blue method.  As shown 

in Figure 6, the concentration of eluted calcium ion from Nrf2–/– teeth 

was significantly higher than that from the wild-type teeth.  The initial 

elution velocity increased rapidly, but the elution seems to be saturated at 30 and 40 

min time points in Nrf2–/– teeth.  The calcium concentration level from the Nrf2–/– teeth 

is significantly higher than that from the wild-type teeth 

(P<0.05: Student’s t-test).  Thus, the acid resistance of Nrf2–/– teeth 

was significantly decreased compared to that of the wild-type mice, 

suggesting that the Nrf2–/– teeth is susceptible to dental caries.  
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Discussion 

Closer examination of the Nrf2–/– mice unveiled that the surface color of 

maxillary incisors of the Nrf2–/– mice is grayish white, which is a marked 

contrast to the yellowish brown color of the wild-type mouse incisors.  Our 

analyses further revealed that this decolorization is due to the decrease in the iron 

content of the mature enamel.  The analysis of iron metabolism in the enamel organ 

showed that the iron transport from blood vessels to the ameloblasts was disturbed 

in the Nrf2–/– mouse during the ameloblast maturation stages.  In the Nrf2–/– mouse, 

ameloblasts underwent severe degenerative changes and 

disappeared prematurely during their maturation stages, 

so the loss of the ameloblast function resulted in the failure of iron 

deposition to the enamel surface and the decolorization of the incisors.  To our 

knowledge, this is the first report describing the iron metabolism disorder in the Nrf2–/– 

mouse. 

Iron is critically involved in various cellular events ranging from DNA 

synthesis to cellular respiration (Cammack et al. 1990).  Among them, the iron 

utilization in the rodent enamel organ illustrates one of the most interesting examples of 

iron usage in mammals.  Iron deposited onto the enamel 

surface seems to contribute to the formation of 

acid resistance and hardness of the rodent incisors, which is advantageous for 

grinding the hard seeds in the environment (Halse et al. 1974; Stein et al. 

1959).  In fact, the diminished acid resistance of iron-poor Nrf2–/– teeth (Fig. 6) 

supports the notion that the iron deposition to the enamel surface is an important 
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event to preserve the rodent tooth function. 

In terms of the iron and calcium transport, as well as matrix and 

water removal, the papillary layer cells have been shown to form an intimate functional 

unit with the ameloblasts during early to late stages of the enamel maturation (Ohshima 

et al. 1998; Grant et al. 1968; Skobe et al. 

1974).  Importantly, transferrin receptors are found to be mainly expressed 

in the papillary layer cells of the enamel organ of rat incisors (Mataki et al. 1989), 

suggesting that the papillary layer cells uptake iron 

efficiently from the circulating blood.  Although 

mechanism of the next transfer process of iron, i.e. from the papillary layer 

cells to ameloblasts, is not well understood at present, 

one plausible explanation for this is that the transferrin-bound 

iron from the circulating blood may be transferred to ferritin within the papillary layer cells, 

and subsequently the ferritin-bound iron is transferred to ameloblasts.  Consistent 

with this contention, we observed high ferritin protein accumulation both 

in the ameloblasts and papillary layer cells in the wild-type enamel organ. 

Ferritin serves as the transient iron reservoir in mature ameloblasts, and 

surprisingly the ameloblasts express ferritin mRNA most 

abundantly amongst rat tissues (Miyazaki et al. 1998).  Ferritin is a 480-kDa 

intracellular protein that can store up to 4500 atoms of iron.  The protein 

consists of heavy and light chains.  The ratio of subunits within a ferritin 

molecule varies widely from tissue to tissue, which in turn modulates the ferritin function 

(Miyazaki et al. 1998).  Although ferritin is expressed at equal levels both in 
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ameloblasts and papillary layer cells in the wild type enamel organ, the in 

situ analysis of ferritin heavy chain mRNA expression demonstrates that the mRNA 

is exclusively expressed in the ameloblasts.  This observation suggests that the ferritin 

synthesized in the ameloblasts may be transferred to the papillary cells (Mataki, S. et al. 

1989).  An alternative, and less likely, possibility is that the expression of ferritin mRNA 

in papillary cells might be under the detection limit of the in situ hybridization method and 

efficient translation compensated for the weak expression of the gene at mRNA level. 

While ferritin is abundantly accumulated, iron accumulation is scarcely observed 

in the papillary layer cells of the wild type mouse.  This observation 

suggests that the iron transfer process from the papillary layer 

cells to ameloblasts may be very efficient in the wild-type enamel organ.  

We envisage that ferritin may be loaded with iron in the papillary layer 

cells and rapidly transferred to the ameloblasts. 

An important observation is that the accumulation level of ferritin 

is abnormally reduced, but accumulation level of iron is abnormally increased, 

in the Nrf2–/– papillary layer cells, 

suggesting that the iron transfer process is somehow disturbed in the Nrf2–/– enamel 

organ.  We envisage the following scenario to explain the observation, which 

is depicted 

schematically in Figure 7.  Since the expression levels of ferritin heavy chain mRNA 

and ferritin protein in the Nrf2–/– ameloblasts was almost 

comparable to those of the wild-type ameloblasts (see Fig. 5), a translocation 

or recycling step of ferritin from the ameloblasts to the papillary layer cells might 
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be affected in the Nrf2–/– mice (Radisky et al. 1998; Kwok et al. 

2003).  Although the translocation of ferritin from ameloblasts to papillary layer 

cells has not been evidenced to date, such a mechanism might be affected in Nrf2–/– 

enamel organ most probably because of the enhanced oxidative stress in ameloblasts. 

An alternative explanation is that the decrease in the ferritin mRNA expression 

may be involved in the decrease of ferritin in the Nrf2–/– papillary cells.  Indeed, it 

was recently reported that the chemical activators of Nrf2 

upregulates the ferritin heavy and light chain gene expression in vivo, 

indicating that the ferritin gene expression is under the regulation of 

Nrf2/ARE pathway (Primiano et al. 1996; Tsuji et al. 2000, Pietsch et al. 

2003).  Supporting this contention, it was also reported that the expression of ferritin 

genes is not induced, but basal level of the gene expression is rather reduced in Nrf2–/– 

mouse embryonic fibroblasts (Pietsch et al. 2003).  Moreover, decrease in the basal 

expression as well as the induction of ferritin gene was found in Nrf2–/– 

astrocytes (Lee et al. 2003).  The basal level expression of ferritin mRNA in Nrf2–/– 

small intestine was also decreased in a microarray analysis (Thimmulappa et al. 

2002).  Thus, further analyses is required to clarify the underlying mechanisms of 

iron transport defect observed in Nrf2–/– enamel organ. 

The aberrant accumulation of iron in 

Nrf2–/– papillary cells seems to lead the ameloblasts to premature degeneration 

by oxidative stress, as iron generates highly reactive oxygen species via Fenton 

chemistry and causes an oxidative stress to cells (Linn et al. 1998).  Upon utilization of 

iron, therefore, cells need to be equipped with an array of antioxidant systems to prevent 
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its toxicity.  Since Nrf2 regulates expression of the genes that protect 

cells from oxidative stress (Ishii et al. 2000; Itoh et al. 1999b), there is a possibility that 

defective expression of certain Nrf2/ARE-regulated gene(s) might be involved 

in the degenerative changes observed in the Nrf2–/– enamel 

organ.  For the understanding of the iron transport system that is defective in the Nrf2–/– 

mouse, comprehensive as well as quantitative analyses of the expression 

of ARE-regulated genes in the enamel organ is critically important.  However, we need 

a technical breakthrough for collecting enough amounts of mouse enamel organs for 

such analyses. 
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Experimental procedures 

Macroscopic observation 

The generation of Nrf2 gene mutant mice was previously described (Itoh et al. 

1997).  The incidence of decolorization phenotype was analyzed by the chi square test. 

 

Scanning electron microscopic observation and micro x-ray analysis 

The murine incisors, including maxillary bones, were fixed in 100% ethanol and 

dehydrated by the critical point drying method.  The incisors from Nrf2+/– and Nrf2–/– 

mice were examined using a scanning electron microscope (Hitachi S-2500CX) 

operated at 15 kV.  Micro x-ray analysis was performed to determine the chemical 

components of the incisors.  For energy-dispersive x-ray analysis, an x-ray detector 

system (Kevex Quantum Delta IV) attached to a scanning electron 

microscope was used.  The micro x-ray analysis system was operated at a 15-kV 

accelerating voltage and a 0.1-nA probe current, with a 20- nm probe size and a 100-sec 

counting time.  Five points on the enamel surface were selected and 

analyzed for the amounts of calcium, phosphorus and iron.  The iron concentration 

was detected in 1 μm depth of enamel surface. 

 

In situ hybridazation, immunohistochemistry and iron staining 

Ferritin heavy chain cDNA was subcloned into the pBluescript KS+ vector and used 

as a template for cRNA production.  DIG-11-UTP-labeled single-strand antisense and 

sense RNA probes were prepared by DIG-RNA Labeling Kit (Boehringer Mannheim) 

according to the manufacturer’s instruction.  Samples were fixed with 
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4% paraformaldehyde with PBS overnight at 4ºC and decalcified in 10% EDTA (pH 

7.4) for two weeks, embedded in paraffin and sectioned.  In situ hybridization 

was performed as previously described (Shibata et al. 2000).  After treatment with 0.2 

N hydrochloric acid and Proteinase K (10 μg /ml), hybridization was performed 

with the probe (1 μg/ml) at 50°C overnight.  After 

extensive washing and RNase A treatment, the hybridized DIG-labeled probes were det

ected with alkaline phosphatase-conjugated anti-DIG antibody and 

5-bromo-4-chloro-3-indolyl phosphate as the substrate, using a nucleic acid detection kit 

(Boehringer Manheim).  

Immunostaining was performed using the labeled streptavidin biotin method (LsAB 

method: Nichirei).  Sections were immersed in 0.3% hydrogen peroxide in methanol for 

30 min, and incubated with 5% normal goat serum for 30 min 

at room temperature.  The sections were then incubated with 

anti-rat liver ferritin rabbit polyclonal antibody (1:200 v/v) in PBS at 4˚C overnight 

(Miyazaki et al. 1998).  The slides were reacted with biotinylated goat anti-rabbit 

antibody for 30 min at room temperature, followed 

by horseradish peroxidase conjugated with 

streptavidin.  The peroxidase activity was visualized by the 3-amino-9-ethylcarbasol 

substrate-chromogen system (Nichirei, Tokyo).  The sections were counterstained 

with hematoxylin, dehydrated, and mounted.  Control staining was performed 

with non-immune rabbit serum.  Berlin blue staining was performed to detect iron 

deposits. 
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Serum iron parameters and liver iron content  

Blood was obtained from abdominal aorta of anesthetized mice and 200 μl of 

serum from each animal was used for analysis of iron and total iron 

binding capacity.  These assays were performed by SRL Inc. (Tokyo) using an 

automatic chemical analyzer (Hitachi).  Non-heme iron in the liver was measured 

as previously described (Foy et al. 1967). 

 

Analysis of acid resistance and Knoop hardness  

Hardness test of the enamel surface was performed by using a hardness tester 

equipped with a Knoop diamond penetrator.  Six kg load was applied to each tooth for 

10 s.  To measure the acid resistance of the teeth, a 5 mm x 0.5 mm of the buccal 

surface of the murine incisors was exposed to 100 μl of acetate buffer (100 mM) at pH 

4.0 at room temperature.  The eluted calcium ion was measured by the methylxylenol 

blue method (Calcium E test Wako, Wako) at 5, 10, 15, 20, 30 and 40 

min.  The means from five independent incisors from 8-12 week old 

mice were presented with standard errors. 
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Table 1.  Micro x-ray analysis of the incisors of Nrf2–/– mutant mice 

 
 Nrf2 genotype 

      +/+               +/-                -/- 

 

Fe (% (w/w)) 

Ca (% (w/w)) 

P  (% (w/w)) 

Ca/P WR 

Ca/P MR 

 

5.143±0.754       2.748±0.454*      0.396±0.076 * 

 36.389±0.222      36.073±0.039      36.161±0.067 

 18.057±0.091      17.808±0.104      17.954±0.047 

 2.0158±0.006      2.0262±0.011      2.0149±0.007 

 1.5578±0.005      1.5659±0.008      1.5550±0.007  

 

The calcium, phosphorus, and iron contents of the enamel surface of wild-type, Nrf2+/–, 

or Nrf2–/– incisors determined 

by micro x-ray analysis.  The means from five incisors are presented with standard 

deviations.  Student's t-test was used for the statistical 

analysis.   Asterisks indicate significant difference compared with wild type (P＜0.001). 
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Table 2.  General iron status of Nrf2–/– mice 

 
 
 Nrf2 genotype 

         +/+                 -/- 

 

Hematocrit (%) 

Serum iron (μg/dl) 

TIBC (μg/dl) 

Transferrin saturation (%) 

Liver iron content (ng/mg) 

 

     52.2±2.9           52.7±2.9  

    219.5±40.6         271.0±50.5 

    407.8±52.6         460.3±71.2 

     54.4±11.8          59.1±8.7 

     55.0±18.0          90.0±11.7* 

 

Hematocrit, serum iron concentration, total iron binding capacity (TIBC), transferrin 

saturation and liver iron content were measured in wild-type and Nrf2–/– 

mice.  The means from 6 mice are presented with standard 

deviations.  Student's t-test was used for the statistical 

analysis.  Asterisks indicate significant difference compared with wild type (P＜0.01).
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Figure legends  

Figure 1  Incisors of Nrf2–/– mice are decolorized.  The incisors of 

wild-type mouse show the normal brownish-yellow color (A), whereas the incisors of 

Nrf2–/– mice have grayish white color (B). 

 

Figure 2  Scanning electron microscopic and 

micro x-ray analysis of the surface of the mouse incisor.  (A and D) Scanning electron 

microscopic images of incisors of wild-type (A) and Nrf2–/– mouse (D).  (B 

and E) Dot-map images of calcium on the surface of wild-type (B) and Nrf2–/– 

incisors (E) by micro x-ray analysis.  (C and F) Dot-map images of iron 

on the surface of wild-type (C) and Nrf2–/– mouse incisors (F). 

 

Figure 3  Nrf2–/– ameloblasts show degenerative atrophy at the late maturation stage.  

(A and B) Hematoxylin and eosin staining of wild type (A) and Nrf2–/– (B) mouse enamel 

organs.  The ameloblasts of Nrf2–/– 

mouse show severe premature degenerative atrophy at the late maturation stage (40 x 

original magnification).  Abbreviations are t, transition stage; em, early maturation 

stage; lm, late maturation stage; ra, region of reduced ameloblasts.   

 

Figure 4  Defective iron transport in Nrf2–/– mouse enamel organ.  

(A to D) Hematoxylin and eosin staining of wild type (A and B) and Nrf2–/– (C and D) 

mouse enamel organs. (E to H) Berlin blue staining of wild type (E and F) and Nrf2–/– (G 

and H) mouse enamel organs.  Panels A, C, E and G show the transition stage, 
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while panels B, D, F and H show the late maturation stage of ameloblast maturation. AM, 

ameloblasts; PA, Papillary cell layer. 

 

Figure 5  Expression of ferritin and ferritin heavy chain mRNA in Nrf2–/– enamel organ.  

(A to D) In situ hybridization analysis of ferritin heavy chain mRNA of wild type (A and B) 

and Nrf2–/– (C and D) mouse enamel organs. (E to H) Immunohistochemical 

analysis of ferritin in the wild type (E and F) and Nrf2–/– (G and H) mouse enamel organs. 

Panels A, C, E and G show the transition stage, while panels B, D, F and H 

show the late maturation stage of ameloblast maturation. AM, ameloblasts; PA, 

Papillary cell layer. 

 

Figure 6  Nrf2–/– mice incisors have diminished acid resistance. 

A 0.5 mm x 5 mm area of the buccal surface of 

murine incisors was exposed to acetate buffer at pH 4.0, and the amount of eluted 

calcium ion was determined.  The surface of the Nrf2–/– tooth (open square) eroded 

significantly earlier in acetic acid than that of the wild-type mice (open circle).  ＊

P<0.05: Student's t-test. 

 

Figure 7  Nrf2–/– mice were defective in iron utilization in developing enamel organ.  

Nrf2–/– teeth were grayish white (bottom panel), whereas those of 

wild type mice were brownish yellow (middle panel).  This decolorization 

is owing to the defect of iron deposition in the mature enamel surface.  Nrf2–/– enamel 

organs have iron transport defect that leads to both enamel cell degeneration and 
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disturbed iron deposition onto the enamel surface.  Brown 

arrows designate the direction of iron transport and subsequent deposition. 
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