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Nonperturbative determination of anisotropy coefficients in lattice gauge theories

S. Ejiri, Y. Iwasaki, and K. Kanaya
Center for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

~Received 8 June 1998; published 6 October 1998!

We propose a new nonperturbative method to compute the derivatives of gauge coupling constants with
respect to anisotropic lattice spacings~anisotropy coefficients!, which are required in an evaluation of thermo-
dynamic quantities from numerical simulations on the lattice. Our method is based on a precise measurement
of the finite temperature deconfining transition curve in the lattice coupling parameter space extended to
anisotropic lattices by applying the spectral density method. We test the method for the cases of SU~2! and
SU~3! gauge theories at the deconfining transition point on lattices with the lattice size in the time direction
Nt54 – 6. In both cases, there is a clear discrepancy between our results and perturbative values. A long
standing problem, when one uses the perturbative anisotropy coefficients, is a nonvanishing pressure gap at the
deconfining transition point in the SU~3! gauge theory. Using our nonperturbative anisotropy coefficients, we
find that this problem is completely resolved: we obtainDp/T450.001(15) and20.003(17) onNt54 and 6
lattices, respectively.@S0556-2821~98!05521-0#

PACS number~s!: 11.15.Ha, 05.70.Ce, 12.38.Gc, 12.38.Mh
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I. INTRODUCTION

In order to study the nature of the quark-gluon plasma
heavy ion collisions and in the early Universe, it is importa
to evaluate the energy densitye and the pressurep near the
transition temperature of the deconfining phase transit
These quantities are defined by derivatives of the parti
function in terms of the temperatureT and the physical vol-
umeV of the system:

e52
1

V

] ln Z

]T21 , p5T
] ln Z

]V
. ~1!

The lattice formulation of QCD provides us with a nonpe
turbative way to compute these quantities by numer
simulations. On a lattice with a sizeNs

33Nt , V and T are
given by V5(Nsas)

3 and T51/(Ntat), with as and at the
lattice spacings in spatial and temporal directions. Beca
Ns andNt are discrete parameters, the partial differentiatio
in Eq. ~1! are performed by varyingas andat independently
on anisotropic lattices.

The anisotropy on a lattice is realized by introducing d
ferent coupling parameters in temporal and spatial directio
For an SU(Nc) gauge theory, the standard plaquette act
on an anisotropic lattice is given by

S52bs (
x,i , j Þ4

Pi j ~x!2b t (
x,iÞ4

Pi4~x!, ~2!

where Pmn(x)5 (1/Nc)Re Tr$Um(x)Un(x1m̂)Um
† (x

1 n̂)Un
†(x)% is the plaquette in the~m,n! plane. With this

action, the energy density and pressure are given by@1,2#

e52
3Nt

4T4

j3 H S at

]bs

]at
2j

]bs

]j D ~^Ps&2^P&0!

1S at

]b t

]at
2j

]b t

]j D ~^Pt&2^P&0!J , ~3!
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j3 H j
]bs

]j
~^Ps&2^P&0!1j

]b t

]j
~^Pt&2^P&0!J ,

~4!

where^Ps(t)& is the space-~time-!like plaquette expectation
value and^P&0 the plaquette expectation value on a ze
temperature lattice. Here, for later convenience, we h
chosenat andj[as /at as independent variables to vary th
lattice spacings, instead ofas andj adopted in Ref.@2#.

In order to computee andp from Eqs.~3! and ~4! using
numerical results from simulations, the values for the deri
tives of gauge coupling constants with respect to the an
tropic lattice spacings,

at

]bs

]at
, at

]b t

]at
,

]bs

]j
,

]b t

]j
, ~5!

which we call the anisotropy coefficients, are required. Th
can be computed from a requirement that, in the scaling
gion, the effects of anisotropy in the physical observab
can be absorbed by a renormalization of the coupling par
eters. Similar to the case of the renormalization group be
function, the anisotropy coefficients do not depend on
temperature, because the renormalization is independen
the temperature.

The calculation of these anisotropy coefficients in t
lowest order perturbation theory has been done by Kar
@2#. However, the perturbative coefficients are known to le
to pathological results such as a negative pressure and a
vanishing pressure gap at the deconfining transition in SU~3!
gauge theory. Therefore, nonperturbative values of the
isotropy coefficients are required in order to study the th
modynamic quantities near the phase transition whenNt is
not sufficiently large.

We are interested in the values of the anisotropy coe
cients for isotropic lattices (bs5b t[b, i.e., j51) where
most simulations are performed. In this case, we have

S at

]bs

]at
D

j51

5S at

]b t

]at
D

j51

5a
db

da
52Nca

dg22

da
,
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wherea(dg22/da) is the beta function atj51, whose non-
perturbative values are well studied both in SU~2! and SU~3!
gauge theories@3–6#. Furthermore, a combination of the re
maining two anisotropy coefficients is known to be related
the beta function@2# by1

S ]bs

]j
1

]b t

]j D
at :fixed,j51

5
3

2
a

db

da
. ~6!

Therefore, only one additional input is required to determ
the anisotropy coefficients for isotropic lattices.

A nonperturbative determination of the anisotropy coe
cients was attempted in Refs.@7–10# using a method that we
call ‘‘the matching method’’ in the following. One first de
terminesj as a function ofbs andb t by matching spacelike
and timelike Wilson loops on anisotropic lattices, and th
numerically determines]g/]j at j51, whereg5Ab t /bs.
Interpolation of the Wilson loop data at different sizes
interpolation ofj at differentg’s using an Ansatz is require
to evaluate]g/]j at j51.

Alternatively, we can evaluate a nonperturbative value
pressure directly from the Monte Carlo data by ‘‘the integ
method’’ @11#: Assuming homogeneity expected when t
spatial lattice size is sufficiently large, we obtain the relat
p52 f , where f 52 (T/V)ln Z is the free energy density
which can be evaluated by numerically integrating t
plaquette differencê Ps&1^Pt&22^P&0 in terms of b on
isotropic lattices. The resulting value of the pressure, in tu
provides us with a nonperturbative estimate of an anisotr
coefficient @4,5#. In actual numerical simulations, as th
value of p in the confining phase and near the deconfin
transition point is quite small compared with the magnitu
of errors, it is difficult to determine the anisotropy coef
r
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cients near the transition point@9#.
In this paper, we propose a new method to directly co

pute the anisotropy coefficients at the deconfining transit
point. Our method is described in Sec. II. We test the meth
in the cases of SU~2! gauge theory in Sec. III. The mor
realistic case of SU~3! gauge theory is studied in Sec. IV. A
an application of our nonperturbative anisotropy coefficien
we study the gaps fore and p at the SU~3! deconfining
transition forNt54 and 6. A summary is given in Sec. V.

II. METHOD

Our method is based on an observation that, in the sca
region, the transition temperatureTc51/$Ntat(bs ,b t)% must
be independent of the anisotropy of the lattice. Therefo
when we change the coupling constants along the trans
curve in the (bs ,b t) plane as (bs ,b t)→(bs1dbs ,b t
1db t) on a lattice with fixedNt , the lattice spacing in the
time directionat does not change:

dat5
]at

]bs
dbs1

]at

]b t
db t50. ~7!

We denote the slope of the transition curve atj51 by r t ,

r t5
dbs

db t
52S ]at

]b t
D

j51
Y S ]at

]bs
D

j51

5S ]bs

]j D
j51

Y S ]b t

]j D
j51

, ~8!

where we used an identity
S ]bs

]at

]b t

]at

]bs

]j

]b t

]j

D 5
1

~]j/]b t!~]at /]bs! 2 ~]j/]bs!~]at /]b t! S ]j

]b t
2

]j

]bs

2
]at

]b t

]at

]bs

D . ~9!
ef-
Hence, the derivatives ofbs and b t in terms of j are ex-
pressed as

S ]bs

]j D
j51

5
3r t

2~11r t!
a

db

da
,

S ]b t

]j D
j51

5
3

2~11r t!
a

db

da
. ~10!

1In Ref. @2#, a corresponding equation is given fo
(]bs(t) /]j)as :fixed.
Introducing the conventional notationg5Ab t /bs and b
5Absb t, we obtain

S ]g

]j D
at :fixed,j51

5S ]g

]j D
as :fixed,j51

5
3

4b

12r t

11r t
a

db

da
.

~11!

Finally, the customarily used forms for the anisotropy co
ficients ~Karsch coefficients! @2# are given by

cs5S ]gs
22

]j D
as :fixed,j51

5
1

2Nc
H b1

r t22

2~11r t!
a

db

da J ,
5-2
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ct5S ]gt
22

]j D
as :fixed,j51

5
1

2Nc
H 2b1

122r t

2~11r t!
a

db

da J ,

~12!

wherebs52Ncgs
22j21 andb t52Ncgt

22j. Therefore, when
the value for the beta function is available, we can determ
these anisotropy coefficients by measuringr t from the finite
temperature transition curve in the (bs ,b t) plane.2

In order to determine the transition curve in the coupli
parameter space, we compute the rotated Polyakov loop

L5z
1

Ns
3 (

xW

1

Nc
Tr)

t51

Nt

U4~xW ,t ! ~13!

as a function of (bs ,b t), wherez is a Z(Nc) phase factor
(zNc51) such that arg(L)P(2p/Nc ,p/Nc#. We define the
transition point as the peak position of the susceptibilityx
5Ns

3(^L2&2^L&2) in b for each fixedg.
We compute the coupling parameter dependence ofx in

the (bs ,b t) plane by applying the spectral density meth
@13# extended to anisotropic lattices. This enables us to c
pute the anisotropy coefficients directly from simulations
j'1 without introducing an interpolationAnsatz. Another
good feature of the spectral density method is that
method works well even with data obtained only on isotro
lattices. Therefore, we can use data from previous high
tistic simulations performed on isotropic lattices, when t
time histories of the Polyakov loop and spacelike and tim
like plaquettes are available near the transition point.

Fitting the transition curve with a polynomial

bc~g!5 (
n50

nmax

f n~g21!n, ~14!

with f n the fitting parameters, the sloper t is given by

r t5S d~bc /g!

d~bcg! D
j51

5
~dbc /dg!j512bc

~dbc /dg!j511bc
, ~15!

where (dbc /dg)j515 f 1 . The range ofb andg in which the
spectral density method is reliable is estimated by the co
tion that the statistical error for the reweighting factor~which
is ^e2DS& when the number of simulation points is 1! is less
than 0.5%. We confirm that the results are completely sta
under a variation ofnmax when we restrict ourselves to th
range discussed above. Choosing a range ofg around 1 in
such a way that the transition curve is almost straight, we
nmax53 for the final results.

III. RESULTS FOR SU „2…

We first test the method for the case of SU~2! gauge
theory at the transition pointbc for Nt54 and 5. Although
the method should work well with data only from isotrop
lattices, in order to confirm it, we perform Monte Car

2A similar approach was proposed in Ref.@12#.
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simulations also on several anisotropic lattices for SU~2!. On
a 16334 lattice, we perform simulations at (bs ,b t)
5(2.300,2.300),~2.302, 2.302!, ~2.296, 2.306!, and ~2.307,
2.298!. On a 20335 lattice, we simulate at (bs ,b t)
5(2.373,2.373),~2.375, 2.375!, ~2.380, 2.370!, and ~2.368,
2.378!. At each (bs ,b t) on theNt54 ~5! lattice, we accu-
mulate 500 000~1 250 000! configurations, each separate
by 10 heat-bath sweeps, after thermalization. The statis
errors are estimated using the jackknife method with the
size of 1000 configurations. We confirm that the errors
stable under a wide variation of the bin size around t
value.

Computing the susceptibility in the (bs ,b t) plane using
data at each simulation point, we check that the results a
well with each other, i.e., the results for the susceptibil
from isotropic lattices coincide with the results from anis
tropic lattices. For the rest of this section, we combine
results for all four (bs ,b t) combinations to compute the su
ceptibility with the spectral density method. In Fig. 1, w
plot the susceptibility forNt54 at g50.995, 1.000, and
1.005. The results for the peak positionbc of the suscepti-
bility computed at various values ofg are summarized in
Fig. 2 for Nt54 and 5.

Fitting the results for the transition curve, we obtain t
values for bc and r t at j51, as summarized in Table I
Combining the values ofr t with a result of the SU~2! beta
function @4# at bc(j51), we obtain the anisotropy coeffi
cients~11! and~12!. The results are summarized in Table
Because no errors for the beta function are given in Ref.@4#,
we disregard their contribution to the errors of the anisotro
coefficients.

In Fig. 3, we compare our results for the Karsch coe
cients with the results of the perturbation theory~dot-dashed
curves! @2# and the integral method~dotted curves! @4#. We
find significant discrepancies between our results and the
sults of the perturbation theory. On the other hand, our
sults are consistent with the results from the integral meth

FIG. 1. Polyakov loop susceptibility in the SU~2! gauge theory
on a 16334 lattice atg50.995, 1.0, and 1.005. Errors are es
mated by a jackknife method.
5-3
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FIG. 2. Polyakov loop susceptibility in the SU~2! gauge theory
as a function of (bs ,b t) obtained on~a! 16334 and ~b! 20335
lattices. Simulation points are shown by filled circles. The bo
lines represent the peak position of the susceptibility and the das
lines their errors. The magnitude of the susceptibility is shown
tone for the range~a! 8.2,x,10.4 and~b! 9.0,x,11.2, respec-
tively, where different tone corresponds to a differenceDx50.2.

TABLE I. Results forbc and the slopes atj51 in the SU~2!
gauge theory. The column ‘‘g range’’ is for the range ofg used in
the fit for the slopedbc /dg.

lattice bc g range dbc /dg r t

16334 2.30177~9! 0.995–1.005 20.370(12) 21.384(14)
20335 2.37430~8! 0.995–1.005 20.312(15) 21.303(17)
09450
IV. RESULTS FOR SU„3…

Let us now study the more realistic case of the SU~3!
gauge theory. We analyze the high statistic data for
SU~3! gauge theory obtained by the QCDPAX Collaborati
@14#. Simulations were performed at the deconfining tran
tion point for Nt54 and 6. ForNt54, the lattice sizes are
24233634 and 12332434, with 712 000 and 910 000
pseudo-heat-bath iterations, respectively. ForNt56, data on
36234836, 24336, and 20336 lattices with 1 112 000,
480 000, and 376 000 iterations are available. The Polya
loop and the plaquettes are measured every iteration. De
of the simulation parameters are given in Ref.@14#. For the
bin size in the jack-knife analysis, we adopt the same val
as in Ref.@14#.

A. Anisotropy coefficients

The results for the susceptibility on the largest spatial
tices are given in Figs. 4 and 5. Because the transition i
first order for SU~3!, the peak of the susceptibility is quit
clear when the spatial lattice size is large enough, as sh
in Figs. 4 and 5.~Note the difference in the vertical scale
between Figs. 1 and 4.!

ed
y

TABLE II. SU~2! anisotropy coefficients atj51 using the beta
function adg22/da obtained by the Bielefeld group@4#.

lattice ]g/]j cs ct adg22/da

16334 0.683~21! 0.203~12! 20.161(12) 20.08439
20335 0.725~35! 0.182~21! 20.144(21) 20.07544

FIG. 3. Anisotropy coefficientscs and ct for the SU~2! gauge
theory. Our nonperturbative results are given by filled circles. T
dot-dashed curves are the results of the perturbation theory@2#. The
dotted curves are the results from the integral method@4#. No errors
are published for these curves.
5-4
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NONPERTURBATIVE DETERMINATION OF ANISOTROPY . . . PHYSICAL REVIEW D 58 094505
Our results for the sloper t are summarized in Table III
Except for the case of the 24336 lattice where the simula
tion point is slightly off the transition point, the errors b
come larger with decreasing spatial volume, because
peak of the susceptibility becomes less clear on small
tices. From Table III, we find that the slopes atNt54 with
different spatial lattice volumes completely agree with ea
other. As shown in Figs. 4 and 5, the peak of the susce
bility for Nt56 is less sharp compared with that forNt54
with the same relative spatial volume (Ns /Nt)

3 due to the
fact that the transition is weaker forNt56 @14#. Therefore,
with comparable statistics,r t has a larger statistical error fo
Nt56. Unlike in the case ofNt54, the central values for the
slope forNt56 given in Table III vary with the spatial vol

FIG. 4. Polyakov loop susceptibility in the SU~3! gauge theory
obtained ~a! on the 24233634 lattice at g50.9975, 1.0, and
1.0025, and~b! on the 36234836 lattice atg50.999, 1.0, and
1.001.
09450
he
t-

h
ti-

ume by about one standard deviation. However, because
volume dependence is not uniform, we consider that it
caused by statistical fluctuations. We use the values obtain
on the largest spatial lattices for our final results.

Our results for the anisotropy coefficients are summariz
in Table IV. For our final results, we adopt the beta functio
computed from a recent string tension data by the SC
group@6#. See a subsection below for a discussion about t
influence on the results from the choice of the beta functio

B. Pressure gap and latent heat

As an application of our nonperturbative anisotropy coe
ficients, we reanalyze the thermodynamic quantitiese andp

FIG. 5. The same as Fig. 2 for the SU~3! gauge theory on~a!
24333634 and~b! 36234836 lattices. The range ofx plotted and
the widthDx for a tone are~a! 0.0–45.0, 5.0 and~b! 2.5–22.5, 2.5,
respectively.
5-5
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TABLE III. The same as Table I for SU~3! using the data by the QCDPAX Collaboration@14#.

lattice bc g range dbc /dg r t

24233634 5.69245~23! 0.9975–1.0025 20.5193(23) 21.2008(10)
12232434 5.69149~42! 0.995–1.005 20.5183(52) 21.2004(22)
36234836 5.89379~34! 0.999–1.001 20.5844(83) 21.2201(35)
24336 5.89292~87! 0.999–1.001 20.542(33) 21.202(14)
20336 5.8924~14! 0.9975–1.0025 20.622(34) 21.236(14)
b

or
re
nt
ga

V

m-
ffi-

e

ata
-

d

ld
of

ly,
atic
at the deconfining transition point using the plaquette data
the QCDPAX Collaboration@14#. In terms of the sloper t
and the beta function, the conventional combinationse
23p ande1p are given by

~e23p!/T4523Nt
4a

db

da
$^Ps&1^Pt&22^P&0%, ~16!

~e1p!/T453Nt
4a

db

da

r t21

r t11
$^Ps&2^Pt&%.

~17!

At a first order transition point, we have a finite gap f
energy density, the latent heat, but expect no gap for p
sure. It is known that the perturbative anisotropy coefficie
have a difficulty which leads to a nonvanishing pressure
at the deconfining transition point:Dp/T4520.32(3) and
20.14(2) atNt54 and 6@14#.

New values for the gaps ine andp using our nonpertur-
bative anisotropy coefficients are summarized in Table
For the pressure gap, we obtain

Dp/T45H 0.001~15! for Nt54,

20.003~17! for Nt56.
~18!
09450
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.

We find that the problem of nonzero pressure gap is co
pletely resolved with our nonperturbative anisotropy coe
cients.

C. Choice of the beta function

In Table IV, we study the influence of the choice of th
beta function on the anisotropy coefficients. We compare~i!
the beta function computed from a recent string tension d
by the SCRI group@6#, ~ii ! that from a Monte Carlo renor
malization group~MCRG! study by the QCDTARO Col-
laboration@3#, and ~iii ! that from a study ofbc(Nt) by the
Bielefeld group@5#. The SCRI beta function is compute
using a fit of the string tension for 5.6<b<6.5. We note that
the QCDTARO beta function is based on a fit of mean-fie
improved gauge coupling constant using the results
plaquette atb.5.8; i.e.,bc(Nt54)'5.69 is slightly off the
range of validity @3,15#. Also the beta function by the
Bielefeld group seems to be problematic aroundbc(Nt

54), because it is largely affected by the data ofbc(Nt
53) where we cannot expect universal scaling. According
the beta-function of the Bielefeld group shows a system
deviation from the data of a MCRG study atb&6 @5#.
the beta
ficients
TABLE IV. SU~3! anisotropy coefficients atj51, using the values for the beta functionadg22/da by the
SCRI group@6#, the QCDTARO Collaboration@3#, and the Bielefeld group@5#. For our final results, we take
the values obtained on the largest spatial lattices using the SCRI beta function. Because the errors for
function are not given in the papers, we disregard their contribution to the errors of the anisotropy coef
in this table. See text for details.

lattice ]g/]j cs ct adg22/da

24233634 0.6159~27! 0.3822~26! 20.3466(26) 20.07108 SCRI
0.5575~25! 0.4359~23! 20.4037(23) 20.06434 QCDTARO
0.6728~30! 0.3299~28! 20.2910(28) 20.07764 Bielefeld

12232434 0.6161~62! 0.3819~59! 20.3464(59) 20.07097 SCRI
0.5573~56! 0.4360~53! 20.4039(53) 20.06418 QCDTARO
0.6738~68! 0.3288~64! 20.2900(64) 20.07761 Bielefeld

36234836 0.7068~100! 0.3109~98! 20.2650(98) 20.09179 SCRI
0.6936~98! 0.3235~96! 20.2784(96) 20.09008 QCDTARO
0.6826~96! 0.3340~95! 20.2897(95) 20.08864 Bielefeld

24336 0.762~47! 0.257~46! 20.211(46) 20.09172 SCRI
0.747~46! 0.271~45! 20.226(45) 20.08999 QCDTARO
0.736~45! 0.282~45! 20.237(45) 20.08857 Bielefeld

20336 0.663~36! 0.354~35! 20.308(35) 20.09167 SCRI
0.651~35! 0.366~35! 20.321(35) 20.08994 QCDTARO
0.640~35! 0.375~34! 20.331(34) 20.08853 Bielefeld
5-6
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NONPERTURBATIVE DETERMINATION OF ANISOTROPY . . . PHYSICAL REVIEW D 58 094505
These beta functions are plotted in Fig. 6. Atbc(Nt
56), different beta functions coincide with each other with
5%, while, atbc(Nt54), they vary by about 20%. Becaus
only the SCRI beta function is reliable atbc(Nt54) as dis-
cussed in the previous paragraph, we adopt the SCRI b
function for our final results.

In order to compare the anisotropy coefficients from d
ferent references, however, it is important to check the ef
of the beta-function on the results. From Table IV, we s
that the results for the anisotropy coefficients using differ
beta-functions agree well with each other atNt56. At Nt
54, however, the anisotropy coefficients depend very m
on the choice of the beta function. Accordingly, we find th
the results for the latent heat are consistent with each oth
Nt56: De/T451.569(40), 1.539~39!, and 1.515~38! with
SCRI, QCDTARO, and Bielefeld beta functions, respe
tively. At Nt54, we find a sizable dependence on the cho
of the beta function:De/T452.074(34), 1.877~30!, and
2.265~37! using SCRI, QCDTARO, and Bielefeld beta fun
tions. For the pressure gap, on the other hand, becaus
beta function appears only as a common overall facto
Eqs.~16! and~17!, the conclusion thatDp vanishes with our
anisotropy coefficients does not depend on the choice of
beta function.

TABLE V. Gaps for thermodynamic quantities in the SU~3!
gauge theory at the deconfining transition point using our n
perturbative anisotropy coefficients. Plaquette data are taken
Ref. @14#. The low-temperature hadronic phase and the hi
temperature quark-gluon-plasma phase are separated as descri
Ref. @14#. We reanalyze (e23p)/T4 also, using the SCRI beta
function.

lattice
b

24233634
5.6925

36234836
5.8936

D(e1p)/T4 2.075~42! 1.565~51!

D(e23p)/T4 2.072~43! 1.578~42!

De/T4 2.074~34! 1.569~40!

Dp/T4 0.001~15! 20.003(17)

FIG. 6. Nonperturbative beta functions in the SU~3! gauge
theory.
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D. Comparison with other methods

In Fig. 7, we summarize our results for the Karsch co
ficients together with previous values; the perturbative
sults@2#, results from the integral method@5#, and those from
the matching of Wilson loops on anisotropic lattices@9,10#.
No errors are published for the results from the integ
method. We find that all nonperturbative methods give v
ues which deviate from the results in the perturbation theo

Comparing the results from different nonperturbati
methods, we find that, although the deviations from the p
turbation theory are roughly consistent with each other,
central values are different by more than three standard
viations, when we take the published errors.

We think that one origin of the variation among differe
methods atbc(Nt54) is the beta function. Note that th
results from Refs.@9# ~matching method! and @5# ~integral
method! are computed using the beta function of t
Bielefeld group, while our results and the results from R
@10# ~matching method! are using the SCRI beta function
From Table IV, we note that, if we adopt the beta-function
the Bielefeld group, our results are consistent with those
Ref. @9# at bc(Nt54).

At bc(Nt56), on the other hand, the difference in th
results is not due to the beta function, because the system
error due to the choice of the beta function is small as d
cussed in the previous subsection. In order to see this,
study]g/]j, which can be computed without using the be
function in the matching method. The values of]g/]j ob-

-
m
-
d in

FIG. 7. Anisotropy coefficients in the SU~3! gauge theory. Our
nonperturbative results are given by filled circles. The dot-das
curves are the results of the perturbation theory@2#. The open
squares are those from a matching of Wilson loops@9#. Open tri-
angles and thin lines are the results of a matching method@10#
combined with the SCRI beta function@6#. The dotted curves are
the results from the integral method@5#. No errors are published fo
the results from the integral method.
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tained in Ref.@10# are reported to be consistent with tho
from the integral method@5#, but are different to anothe
result from the matching method@9#. Performing a quadratic
interpolation inb, we find]g/]j.0.64(1) @10#, 0.66~2! @5#,
and 0.74~2! @9# at bc(Nt56). Our result 0.707~10! given in
Table IV is around the center of these values. A careful st
of systematic errors in each method is required to unders
the variation between different methods.

V. CONCLUSIONS

We have computed the anisotropy coefficients for
SU~2! and SU~3! gauge theories by measuring the transiti
curve of the deconfining transition in the (bs ,b t) plane. One
of the essential ingredients of our approach is the applica
of the spectral density method, which enables us to de
mine the anisotropy coefficients directly from simulations
j'1. We note that the spectral density method is usefu
avoid interpolationAnsätzealso in the matching method.

Our nonperturbative results for the anisotropy coefficie
are summarized in Tables II and IV. Our results shown
ys

ys

c
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n

Fig. 7 suggest that the Karsch coefficients converge to
perturbative values slightly faster than that suggested by
central values from Refs.@5# and @10#. Applying the results
for SU~3!, we reanalyzed the thermodynamic quantities
the deconfining transition point onNt54 and 6 lattices. We
obtain vanishing pressure gaps with our nonperturbative
isotropy coefficients, thereby solving a long standing pro
lem of nonzero pressure gap with the perturbative coe
cients.
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