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Pion decay constant for the Kogut-Susskind quark action in quenched lattice QCD
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We present a study for the pion decay constantf p in the quenched approximation to lattice QCD with the
Kogut-Susskind~KS! quark action, with the emphasis given to the renormalization problems. Numerical
simulations are carried out at the couplingsb56.0 and 6.2 on 323364 and 483364 lattices, respectively. The
pion decay constant is evaluated for all KS flavors via gauge invariant and noninvariant axial vector currents
with the renormalization constants calculated by both the nonperturbative method and perturbation theory. We
obtain f p589(6) MeV in the continuum limit as the best value using the partially conserved axial vector
current, which requires no renormalization. From a study for the other KS flavors we find that the results
obtained with the nonperturbative renormalization constants are well convergent among the KS flavors in the
continuum limit, confirming restoration of SU(4)A , flavor symmetry, while perturbative renormalization still
leaves an apparent flavor breaking effect even in the continuum limit.

PACS number~s!: 12.38.Gc, 11.15.Ha, 13.20.Cz, 14.40.Aq
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I. INTRODUCTION

In recent large-scale simulations of lattice QCD, statisti
errors of physical quantities have become quite small.
deed, for some hadronic matrix elements the precision
been so high that we cannot ignore uncertainties com
from the renormalization factor of lattice operators. Thus
has become increasingly important to reduce uncertain
from this source.

Renormalization factors can be evaluated in perturba
theory. Pushing the calculation beyond the one-loop leve
usually difficult, however, and hence, the uncertainties a
ing from higher-order corrections remain. We expect t
problem of higher-order uncertainties to profit fully from
nonperturbative treatment. A nonperturbative method for c
culating renormalization factors was proposed@1#, and has
been applied to the quark mass@2#, decay constants@3#, and
four-fermion operators@4#, with the Wilson and the clove
quark actions and to the quark mass with the Kogut-Suss
quark action@5#.

An important point to check with nonperturbatively ca
culated renormalization factors is their reliability and the d
gree of improvement achieved in the final physical resu
For this purpose the pion decay constant is perhaps the
choice because the reference experimental value is know
a high precision. A verification that nonperturbative determ
nation works for simple quark bilinear operators is a fi
step to ensure validity of more general applications to fo
quark or other operators.

In this work, the pion decay constant is examined with
Kogut-Susskind~KS! quark action via gauge invariant an
0556-2821/2000/62~9!/094501~15!/$15.00 62 0945
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noninvariant operators using all KS flavors. The KS acti
has the well-known feature that SU(4)A flavor symmetry is
broken down to U(1)A subgroup at a finite lattice spacing
We orient our study mainly toward the following two poin
provided by this feature. First, due to the remaining U(1A

symmetry, the renormalization constant for the correspo
ing axial vector current equals exactly unity, and hence
pion decay constant calculated in this channel receives
renormalization. This makes it possible to attain a hig
precision calculation of the pion decay constant without u
certainties from renormalization. Second, we can calcu
the pion decay constant using axial vector currents in
other KS flavor channels. Symmetry is broken in the dec
constants at a finite lattice spacing, but restoration is
pected in the continuum limit. Such restoration of full flav
symmetry has been previously examined for pion mass@6,7#.
Here we extend the study to the pion decay constant, the
feature being the necessity of renormalization constants. T
can be used to investigate the reliability of nonperturbat
methods for the calculation of renormalization factors, co
pared to perturbative treatments. We also compare the re
obtained with gauge invariant operators to those with non
variant ones.

The paper is organized as follows. In Sec. II we estab
our notations and formalism. The method employed for o
calculations is explained in Sec. III, followed by discussi
of perturbative and nonperturbative renormalization fact
in Sec. IV. We summarize the simulation details in Sec.
and present the results on the chiral and continuum extra
lations in Secs. VI and VII. We close with a brief conclusio
in Sec. VIII.
©2000 The American Physical Society01-1
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II. FORMULATIONS

A. Kogut-Susskind quark action

The Kogut-Susskind quark action is defined in terms
one-component fermion fieldsx̄(n) and x(n) on a lattice
whose site is labeled bynm50,1,2, . . . ,L21,

Sq
KS5a4(

n
F(

m
hm~n!

1

2a
@ x̄~n!Um~n!x~n1m̂ !

2x̄~n1m̂ !Um
† ~n!x~n!#1mqx̄~n!x~n!G , ~1!

where mq is the bare quark mass andhm5
(21)n11•••1nm21 is the KS sign factor. Color sums are a
sumed for simplicity. Dividing the lattice into 24 hypercubes
which are labeled byxm50,2,4, . . . ,L22, and whose cor-
ners are specified by a four-vectorA with Am50 or 1, we
introduce sixteen-component fields

f̄A~x!5
1

4
x̄~x1A!, fA~x!5

1

4
x~x1A!. ~2!

In terms of these hypercubic fields, the action~1! is rewritten
as

Sq
KS5~2a!4 (

x,AB
F(

m
@f̄A~x!~gm ^ I !AB¹mUABfB~x!

1af̄A~x!~g5^ jmj5!ABDmUABfB~x!#

1mqf̄A~x!~ I ^ I !ABUAB~x,x!fB~x!G . ~3!

Here a hypercube matrix referring to the Dirac spinorgS

5g1
S1
•••g4

S4 and the KS flavorjF5g1
* F1

•••g4
* F4 is defined

by

~gS^ jF!AB5
1

4
Tr~gA

†gSgBgF
† ! ~4!

and the lattice derivatives are given by

¹mUABfB~x!5
1

2a
@UAB~x,y!fB~y!uy5x12m̂

2UAB~x,y!fB~y!uy5x22m̂#, ~5!

DmUABfB~x!5
1

2a2
@UAB~x,y!fB~y!uy5x12m̂

1UAB~x,y!fB~y!uy5x22m̂

22UAB~x,x!fB~y!#, ~6!

whereUAB(x,y) is the average of ordered products of gau
link variables over the shortest paths fromx1A to y1B.
09450
f
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A gauge-invariant meson operator with zero spatial m
mentum is defined in this hypercubic notation by

OS
F~x4!5(

xW
(
AB

f̄A~x!~gS^ jF!ABUAB~x,x!fB~x!.

~7!

For instance,OS5Am , p, and rk , respectively, forgS
5gmg5 , g5, andgk . Here we have 243245256 operators,
which are classified into irreducible representations@8# in
terms ofdm5Sm2Fm (mod2).

The form of the action~3! shows that the flavor-mixing
term (g5^ jmj5) breaks SU(4)A flavor symmetry down to
U(1)A subgroup for the flavor channelj5 at a finite lattice
spacing. A lattice analog of the PCAC~partial conservation
of axial vector current! relation holds in thej5 channel cor-
responding to U(1)A symmetry:

¹mAm
5 ~x!52mqp5~x!, ~8!

where the superscript 5 refers toj5. On the other hand, ther
appear additional terms in the PCAC relation for other ch
nels, which vanish only in the continuum limit.

B. Pion decay constant

The pion decay constant is defined in the continu
theory by

A2 f pmp5^0uūg4g5dup1~pW 50!&. ~9!

We adopt the normalizationf p
(exp).93 MeV. If we use the

PCAC ~partial conversation of axial vector current! relation,
this may be rewritten as

A2 f pmp
2 5~mu1md!^0uūg5dup1~pW 50!&. ~10!

The lattice pion decay constant for the KS flavorjF is
defined by

A2 f p
Fmp

F5^0uA4
FupF~pW 50!&. ~11!

In the j5 channel where the PCAC relation~8! holds, we
may use an alternative formula corresponding to Eq.~10!:

A2 f p
(P)5~mp

5 !252mq^0up5up5~pW 50!&, ~12!

where we have added the superscript~P! to distinguish ex-
plicitly the pion decay constant obtained with a pion opera
from that with an axial vector current.

III. EXTRACTION OF PION DECAY CONSTANT

We employ the wall source technique to enhance sign
@9#. The meson operator for the wall source at the origin
defined by
1-2
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PION DECAY CONSTANT FOR THE KOGUT-SUSSKIND . . . PHYSICAL REVIEW D62 094501
OSW
F ~0!5(

xW ,yW
f̄A~xW ,0!~gS^ jF!ABfB~yW ,0!, ~13!

where we assume that gauge configurations are fixed to s
gauge. The matrix elements appearing in the definition of
pion decay constant are extracted from the large-time be
ior of the correlation function at zero spatial momentum:

^OS
F~ t !pW

F ~0!&

;COSpW

F ~s t!
t$exp~2mp

Ft !6exp@2mp
F~T2t !#%,

H 1sign forOS5p,pW ,

2sign forOS5A4 ,
~14!

wheremp
F is pion mass common to the three cases, ands t is

parity for the transformationĴ45Ŝ4T̂21/2 with Ŝ4 the unit
shift in the time direction andT̂5Ŝ4

2 the transfer matrix@8#.
Here we extend the time slice of meson operator define
x450,2,4, . . . ,T22 to havet50,1,2, . . . ,T21 extensions
with the temporal lattice sizeT. The extension is done b
OS

F(t)5OS
F(x4) for even t5x4 and OS

F(t)5Ŝ4OS
F(x4) for

odd t5x411.
We can isolate the contribution of parity partner from t

correlation function by using meson operators over dou
time slice, in contrast to the single time slice case that c
relation functions generally involve contributions from bo
parities. The amplitudeCOSpW

F can be written up to an over

all sign factor as

COSpW

F 5
^0uOS

FupF~pW 50!&^pF~pW 50!upW
F u0&

2mp
FVs

, ~15!

with Vs the spatial lattice volume. Using the amplitude of t
correlation functions with the axial vector current (OS
5A4) and the pion operator for the wall source (OS5pW),
the pion decay constant is calculated as

f p
F5

AVs

Amp
F

CA4pW

F

ACpWpW

F
, ~16!

where the pion mass obtained by the correlation funct
with the pion operator (OS5p) is used in this work. For
comparison, the gauge noninvariant axial vector current
pion operator to obtain the amplitude and pion mass, res
tively,

A48
F~x4!5(

xW
(
AB

f̄A~x!~g4g5^ jF!ABfB~x!, ~17!

p8F~x4!5(
xW

(
AB

f̄A~x!~g5^ jF!ABfB~x!, ~18!
09450
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is also examined. Alternatively, an extraction of the dec
constant from the pion operator (OS

F5p5) requires the com-
bination given by

f p
(P)55

2mq

mp
5

AVs

Amp
5

CppW

5

ACpWpW

5
. ~19!

IV. RENORMALIZATION

A. General considerations

Renormalization is necessary to extract the physical p
decay constant from the lattice calculations. This proced
is made for each flavor in the case of the KS action. It
expected that the renormalization eliminates the KS fla
dependence in a way that the decay constant calculated
various KS flavors takes a unique value in the continu
limit.

Let us define a multiplicative renormalization constantZA
F

for the lattice axial vector currentAm
F u lat through

Am
F uphys5ZA

FAm
F u lat . ~20!

According to the definition~11! the pion decay constant ca
culated with the axial vector current is renormalized as

f p
F uphys5ZA

F f p
F u lat . ~21!

As a special case, we have

ZA
551 ~22!

in the j5 channel due to the lattice PCAC relation~8!. Thus
the pion decay constant can be calculated with out any
certainties of renormalization in this channel, while the oth
channels can be used to check the reliability of renormal
tion constants by examining the expected convergence o
renormalized pion decay constants to a single value in
continuum limit.

The decay constant defined with the pion operator~12! is
renormalized as

f p
(P)5uphys5~ZP

5 /Zm! f p
(P)5u lat , ~23!

where Zm is the renormalization constant for quark mas
Using the identitiesZm51/ZS

I andZS
I 5ZP

5 , where the super-
script I refers to the KS flavor for a unit matrix, we find tha
this relation is identical to

f p
(P)5uphys5 f p

(P)5u lat , ~24!

which is equivalent to Eq.~22!.

B. Perturbative and nonperturbative renormalization factors
for axial vector currents

We employ two sets of the renormalization factorZA
F for

the KS axial vector current. One of them is perturbative
1-3
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S. AOKI et al. PHYSICAL REVIEW D 62 094501
calculated at one-loop order@10#. We apply tadpole improve
ment to the axial vector current operator using the fourth r
of plaquette as the tadpole factor, and evaluate the renor
ization constants with the tadpole-improvedMS coupling at
q* 51/a. The other is nonperturbatively evaluated with t
regularization independent~RI! scheme of Ref.@1#, which
was developed for the Wilson and clover actions. In the
scheme, the renormalization factor is obtained from the a
putated Green function in momentum space

GOS

F ~p!5S~p!21^0uf~p!OS
Ff̄~p!u0&S~p!21, ~25!

where the quark two-point function is defined byS(p)
5^0uf(p)f̄(p)u0&, and the momentum of the hypercub
field f(p) takes values of the formpm52pnm /(aL) with
2L/4<nm<L/421. The renormalization condition im
posed uponGOS

F (p) is given by

TABLE I. Calculation parameters for evaluation of nonpertu
bative renormalization constants.

b L33T mqa a21 (GeV) No. Conf.

6.0 323332 0.010, 0.020, 0.030 1.88~4! 30
6.2 323332 0.008, 0.015, 0.023 2.65~9! 30
09450
t
al-

I
-

ZOS

(RI)F~p!Zf~p!5Tr@~POS

F !†GOS

F ~p!#, ~26!

where (POS

F )†5(gS
†

^ jF
†) is the projector onto the tree-leve

amputated Green function. The wave function renormali
tion constantZf is calculated by imposing the conditio
ZV

I (p)51 for the conserved vector current for (gm ^ I ). The
relation between the overall renormalization constantZA

F ap-
pearing in Eq.~20! andZA

(RI)F is simply

ZA
F51/ZA

(RI)F , ~27!

because the continuum axial vector current is not renorm
ized.

The calculations for the non-perturbative renormalizat
constants were carried out in quenched QCD in our previ
publication @5#. The results for the scalar and pseudosca
operators have been used in our analysis of light qu
masses for the KS quark action in quenched QCD@5#. Here
we use them for the axial vector renormalization factors.

The calculational parameters are summarized in Tabl
We evaluate the Green function~25! for 15 momenta in the
range 0.038533<(pa)2<1.9277 using quark propagator
evaluated with a source in a momentum eigenstate. In Fi
-
r

-

FIG. 1. Nonperturbative renor
malization constants for vecto
ZV

F(p) and axial vector currents
ZA

F(p) examined with gauge in-
variant current for~a! b56.0 and
~b! b56.2, and by gauge non
invariant current for~c! b56.0
and ~d! b56.2.
1-4
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PION DECAY CONSTANT FOR THE KOGUT-SUSSKIND . . . PHYSICAL REVIEW D62 094501
we present the renormalization constant for both vector
axial vector currents, respectively denoted byZV

(RI)F(p) and
ZA

(RI)F(p), in the chiral limit.
A practically important issue with the nonperturbati

method employed here is the choice of the momentum
which the renormalization factors are evaluated. In gen
the momentum should satisfyLQCD!p!O(a21) in order to
keep under control the nonperturbative hadronization effe
and the discretization error on the lattice. Since these eff
appear asp dependences of renormalization factors,
should avoid the range where a momentum dependenc
visible. Another point to consider is the relationZV

(RI)F5(p)
5ZA

(RI)F(p) with the superscriptF5 referring jFj5, which
we would expect to hold for all momentap in the chiral limit
due to U(1)A chiral symmetry of the KS quark action.

For b56.2 Fig. 1 shows that these two requirements
satisfied for p2.5 GeV2, which corresponds to (pa)2

.0.5. In order to satisfyp!O(a21), we take (pa)2

51.0024 (p257.0392 GeV2 in physical units! to calculate
the renormalization factors used for the pion decay const
The same value of lattice momentum (pa)251.0024 is cho-
sen for b56.0, which corresponds top253.5428 GeV2.
The numerical values of the renormalization factors are s
marized in Table II.

V. DETAILS OF SIMULATION

A. Simulation parameters

We carry out our calculations in quenched QCD using
standard plaquette action for gluons. As we summarize

TABLE II. Renormalization constantsZA
F used for renormaliz-

ing pion decay constants.

~a! b56.0
Perturbative Nonperturbative

Operator Gauge inv. Noninv. Gauge inv. Noninv.

(g4g5^ j5) 1 0.8917 1 0.85019~7!

(g4g5^ jkj5) 1.1436 0.8547 1.2008~1! 0.8527~1!

(g4g5^ jkj4) 1.3749 0.8556 1.4799~2! 0.8656~1!

(g4g5^ j4) 1.4950 0.8569 1.8242~3! 0.8736~2!

(g4g5^ j4j5) 0.7908 0.7908 0.7976~2! 0.7976~2!

(g4g5^ j l jm) 0.9294 0.8277 0.9860~1! 0.8508~1!

(g4g5^ jk) 1.1440 0.8550 1.2294~3! 0.8767~2!

(g4g5^ I ) 1.3837 0.8605 1.5145~5! 0.8835~2!

~b! b56.2
Perturbative Nonperturbative

Operator Gauge inv. Noninv. Gauge inv. Noninv.

(g4g5^ j5) 1 0.8917 1 0.86430~7!

(g4g5^ jkj5) 1.1338 0.8643 1.1783~1! 0.86363~7!

(g4g5^ jkj4) 1.3434 0.8651 1.4221~2! 0.8739~2!

(g4g5^ j4) 1.4567 0.8663 1.7164~3! 0.8803~2!

(g4g5^ j4j5) 0.8065 0.8065 0.8136~1! 0.8136~1!

(g4g5^ j l jm) 0.9369 0.8401 0.9838~1! 0.8600~1!

(g4g5^ jk) 1.1342 0.8646 1.1999~1! 0.8825~2!

(g4g5^ I ) 1.3508 0.8696 1.4472~4! 0.8882~2!
09450
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Table III, numerical simulations are carried out atb[6/g2

56.0 and 6.2 on 323364 and 483364 lattices, respectively
Gauge configurations are generated with the five
pseudoheatbath algorithm, and hadron correlation functi
are calculated on 100~60! configurations separated by 200
sweeps atb56.0(6.2).

Gauge configurations are fixed to the Landau gau
through maximization of

FL5(
n,m

tr@Um~n!1Um
† ~n!#. ~28!

This is realized by iterating the steepest descent method
the first 2000 steps and the over-relaxation method for
subsequent 3000 steps until the condition

D5
1

6V
(

n
tr@GL

†~n!GL~n!#,10214 ~29!

is satisfied, whereV is the lattice volume and

GL5(
m

1

2
@Um~n!2Um~n2m̂ !2H.c.2trace#. ~30!

We take three values for quark mass,mqa50.030, 0.020,
0.010 atb56.0 and 0.023, 0.015, 0.008 atb56.2. Quark
propagators are evaluated for 16 types of wall sources, e
corresponding to a corner of a hypercube, defined by

(
y,B

DAB~x,y!(
zW

GBC~y,z!5(
zW

dxzdAC , ~31!

whereDAB(x,y) is the quark matrix for the KS action. W
solve the equation independently for eachC by the conjugate
gradient method with the stopping condition

uuremnant vectoruu2,1025. ~32!

The 16 quark propagators are combined to construct the
meson correlation functions in the KS flavor basis specifi
by the hypercube matrixjF . Averages are taken of the me
son correlation functions over 23 ways of choosing the spa
tial origin of hypercubes on the lattice. We also average th
over all states belonging to the same irreducible represe
tion @8#.

B. Fitting procedure

In fitting the meson correlation functionC(t) to the
asymptotic formCfit(t) for an extraction of the mass an
amplitude, we symmetrize the correlator att and T2t, and
carry out a standard correlated fit minimizing

TABLE III. Calculation parameters of our simulation.

b L33T mqa a21 (GeV) No. Conf.

6.0 323364 0.010, 0.020, 0.030 1.92~2! 100
6.2 483364 0.008, 0.015, 0.023 2.70~5! 60
1-5
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FIG. 2. Typical comparison of the effective mass of axial vector current~open symbols! and pion~filled symbols! correlation functions
with its global mass~horizontal lines! for jF5j5 at ~a! b56.0 and~b! b56.2. Circles, squares and diamonds refer to the quark mass
descending order at each coupling, respectively. Note that result does not depend on gauge invariance of the operator in the case u
operator such as in this case.

FIG. 3. Typical comparison of the effective mass of the wall-to-wall correlation function~open symbols! and that for pion correlation
function ~filled symbols! with its global mass~horizontal lines! for jF5j5 at ~a! b56.0 and~b! b56.2.

FIG. 4. Typical comparison of the amplitude of wall-to-wall pion correlation function forjF5j5 at b56.2 obtained by~a! the single
pole fit and~b! the double pole fit.

FIG. 5. Typical comparison ofx2/NDF for ~a! the single pole fitting and~b! the double pole fitting of wall-to-wall pion correlation
function for jF5j5 at b56.2.
094501-6
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PION DECAY CONSTANT FOR THE KOGUT-SUSSKIND . . . PHYSICAL REVIEW D62 094501
x25(
t,t8

DC~ t !S21~ t,t8!DC~ t8!, ~33!

where

S~ t,t8!5^C~ t !C~ t8!&2^C~ t !&^C~ t8!& ~34!

is the covariance matrix of the correlator andDC(t)5C(t)
2Cfit(t). The fitting ranget5tmin , . . . ,tmax is chosen by
fixing tmax5T/2 and varyingtmin so that x2/NDF takes a
value near unity, whereNDF is the degree of freedom of th
fit. Finally, errors in this work are estimated by the sing
elimination jackknife procedure.

C. Wall-to-wall amplitude

We check the validity of the asymptotic form of the m
sonic correlation function~14! which is based on the as
sumption of a single pole dominance by an inspection of
effective mass. Typical results for the effective mass
tracted from the correlators ^pF(t)pW

F (0)& and
^A4

F(t)pW
F (0)& are compared in Fig. 2. We observe a wi

plateau and an expected agreement of the effective ma
from the two correlation functions. We then find no proble
in fitting these correlation functions by a single pole.

The situation is different for the wall-to-wall correlatio
function ^pW

F (t)pW
F (0)&, particularly atb56.2. As we show

in Fig. 3, the effective mass for̂pW
F (t)pW

F (0)& does not
reach a plateau atb56.2 even att;T/2, and agreement with
the effective mass of̂pF(t)pW

F (0)& is not seen. This behav
ior is most likely caused by a lack of sufficient temporal s
of the lattice, and poses a practical problem of how o
extracts the wall-to-wall amplitudeCpWpW

F which is needed

in Eq. ~16! to calculate the pion decay constant.
To solve this problem, we perform a double pole fit f

^pW
F (t)pW

F (0)& given by

^pW
F ~ t !pW

F ~0!&

;CpWpW

F ~s t!
t$exp~2mp

Ft !1exp@2mp
F~T2t !#%

1Cqq̄
F

~s t!
t$exp~2mqq̄

F
t !1exp@2mqq̄

F
~T2t !#%. ~35!

Ideally one likes to make a fit with four parametersCpWpW

F ,

mp
F , Cqq̄

F , andmqq̄
F . This fit, however, is quite unstable be

cause the fitting function consists of a sum of two expon
tials with not much different massesmp

F andmqq̄
F . Therefore,

we fix the pion mass parametermp
F to that obtained from

^pF(t)pW
F (0)&.

As we now can no longer compare the effective pion m
for ^pW

F (t)pW
F (0)& to that for ^pF(t)pF(0)&, we present a

typical comparison of the amplitudes, extracted with the
ting range fromt to T/2 with the single and double pole fits
in Fig. 4. We also comparex2/NDF for the two fits in Fig. 5.
From these figures, we consider that the double pole fit p
vides a good determination of the amplitudeCpWpW

F of the

pion to the wall operator with a wide plateau of the amp
tude and a reasonable value ofx2/NDF;O(1).
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A possible interpretation for the dominant source of co
tamination to the wall-to-wall correlation function is an u
bound quark-antiquark pair. Such an unphysical state
contribute since gauge configurations are fixed to the Lan
gauge~this behavior was not observed in the Coulomb gau
@11#!. Indeed thet dependence given by the second term
Eq. ~35! can be easily confirmed for free quarks„i.e., for a
trivial configuration @Um(x)[1#…. In this casemqq̄

F
52mq

does not depend upon the KS flavor.
In Fig. 6 we plot the value of the second pole massmqq̄

F as
a function of quark mass. The fact that the results dep
little on the KS flavor of the meson operators is consist
with the interpretation discussed above. In the chiral lim
one obtainsmqq̄;23440 MeV, which is a reasonable valu
for a constituent quark mass.

Finally, we summarize the fitting rangestmin common for
all flavors andx2/NDF for our global fits in Table IV. Here,
we have used the alternative fitting range of the wall-to-w
correlation function to improve the fitting quality forjF
5j4, because the common fitting range does not give a
isfactory result@12# caused by worse fitting.

VI. CHIRAL BEHAVIOR

A. Pion masses

We show values of (mp
Fa)2 as a function ofmqa in Fig. 7.

Pions for the 16 KS flavors are classified into 8 irreducib
representations. These consist of four one-dimensional
resentations given byj5 , j4j5 , j4 , I and four three-
dimensional representations given byjkj5 , jkj4 , jkj l , jk
(k,l 51,2,3;k, l ). We observe very clearly in Fig. 7 tha
these irreducible representations form a degeneracy pa
specified by

j5 ,~jkj5 ,j4j5!,~jkj4 ,jkj l !,~j4 ,jk!,I . ~36!

This pattern was observed a long time ago in Ref.@9#. A
theoretical explanation based on the effective chiral Lagra
ian analysis for KS quark action was provided recently
Ref. @13#.

Another notable feature in Fig. 7 is a linear behavior
pion masses as a function of quark mass from the correla
function with the gauge invariant pion operator. With a li
ear extrapolation we observe a nonvanishing value atmqa
50 in channels other thanj5 for which U(1)A symmetry
holds. The gauge noninvariant case, not presented in the
ure but in Table V for the numerical values, also sho
almost the same result as in Fig. 7.

The chiral behavior ofr meson mass for various KS fla
vors is shown in Fig. 8. We find the difference of mass
among various flavor channels to be small, less than 1% e
in the chiral limit obtained by a linear extrapolation. W
therefore choose ther meson mass in the flavor chann
(gk^ jk), for which ther meson operator is local, to set th
scale using the experimental valuemr5770 MeV. We then
find that a2151.92(2) GeV for b56.0 and a21

52.70(5) GeV forb56.2.
1-7
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FIG. 6. Chiral behavior of the alternative pole masses appearing in the wall-to-wall correlation function at~a! b56.0 and~b! b56.2.
Shape of symbols refers to the distance of the operator. Some symbols~square, diamond, and up triangle! denote two flavors; the former on
refers time-local operators~filled symbols! including flavorj5, and the latter one refers time-separated operators~open symbols!.
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B. Pion decay constant

In Fig. 9 we illustrate the chiral behavior of the bare pi
decay constants calculated with Eq.~16!. As with the case
for pion masses, we use a linear extrapolation toward
chiral limit.

The pion decay constants obtained for eight irreduci
representations again form a degeneracy pattern, wh
however, is different from that for pion masses. This is d
to the fact that the pattern for the decay constant reflects
distance of the axial vector current operator rather than
of the pion operator: the two operators differ because of
Dirac factorg4g5 for the axial vector current andg5 for the
pion. We also observe that the KS flavor dependence of
decay constant is much larger for the gauge invariant op
tors than that for the noninvariant ones. In contrast to
case of mass, for which no renormalization is required a
lattice symmetry group controls, the pattern for pion dec
constants mainly comes from the insertion of gauge l
variables, which is roughly written as relation between
continuum and lattice axial vector currents:

Amucont;S 1

3
^Tr Uh& D (d21)/4

Am
F u lat . ~37!

Hered is the distance of the axial vector current operator
the gauge invariant case, while the noninvariant operator
responds tod50.

We show the decay constants after renormalization
Figs. 10 and 11. With the use of perturbative renormalizat
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constants~Fig. 10!, the discrepancy among different KS fla
vor channels becomes smaller toward the continuum.
reduction of the discrepancy, however, is significantly mo
dramatic with the use of nonperturbative renormalizat
constants as shown in Fig. 11. In particular, the large diff
ence among bare results obtained with gauge invariant
erators almost disappears.

The numerical values for pion decay constants are c
lected in Tables VI–VIII. In contrast to the case of pio
mass, there is no flavor channel to give the same results
the gauge invariant and noninvariant case, because the si
taneous local channel does not exist for the axial vector c
rent and the pion operator both appearing in the calcula
of the pion decay constant.

VII. CONTINUUM EXTRAPOLATION

In Fig. 12, we present thea dependence of (mp
F)2 qua-

dratically extrapolated tomqa50, according toO(a2) scale
violation expected for the KS quark action. We observe cl
evidence that the nonzero values of (mp

F)2 for the non-
Nambu-Goldstone channels vanish asa2 toward the con-
tinuum limit, supporting the restoration of full flavor symme
try of the KS action.

The continuum extrapolation of the pion decay consta
renormalized perturbatively or nonperturbatively, is sho
in Fig. 13 as a function ofa2. In this figure with an enlarged
vertical scale as compared to Figs. 10 and 11, we obser
TABLE IV. Minimum time slice tmin common for all flavors except forjF5j4 in the parenthesis~See
text for reason!, andx2/NDF of global fits for the local channel.

^A4
F(t)pW

F (0)& ^pF(t)pW
F (0)& ^pW

F (t)pW
F (0)& ^rk

F(t)rkW
F (0)&

b mqa tmin x2/NDF tmin x2/NDF tmin x2/NDF tmin x2/NDF

6.0 0.030 17 1.37 17 1.24 14 1.07 18 1.34
0.020 17 1.05 17 0.95 15 1.27 17 0.87
0.010 16 0.97 16 0.99 15 0.83 15 1.27

6.2 0.023 17 1.40 24 1.06 17~16! 0.92 23 0.79
0.015 16 1.07 23 0.85 19~19! 0.97 23 0.94
0.008 15 1.33 22 0.99 19~20! 1.21 22 0.58
1-8
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FIG. 7. Chiral behavior of pion masses obtained with the gauge invariant pion operators at~a! b56.0 and~b! b56.2. Shape of symbols
refers to the distance of the operator. Some symbols denote two flavors; the former one refers time-local operators~filled symbols! including
flavor j5, and the latter one refers time-separated operators~open symbols!. For gauge noninvariant result, see Table V.

FIG. 8. Chiral behavior of
gauge-invariantr meson masses
at ~a! b56.0 and ~b! b56.2.
Symbols refer to the distance o
the operator. Some symbols de
note four flavors; the first two fla-
vors refer time-local operators
~filled symbols!, and the last two
flavors refer time-separated oper
tors ~open symbols!.

TABLE V. Pion mass squared (mp
F)2 in lattice units. Note that the correlation function with the local pion operator in thej5 channel

gives exactly the same results for the gauge invariant and noninvariant case.

~a! b56.0
Gauge invariant Noninvariant

Operator mqa50.030 mqa50.020 mqa50.010 mqa→0 mqa50.030 mqa50.020 mqa50.010 mqa→0

(g5^ j5) 0.1687~3! 0.1129~3! 0.0575~2! 0.0018~2! ← ← ← ←
(g5^ jkj5) 0.2077~4! 0.1454~4! 0.0846~4! 0.0228~4! 0.2077~4! 0.1454~4! 0.0846~4! 0.0228~4!

(g5^ jkj4) 0.2194~4! 0.1561~5! 0.0946~6! 0.0317~6! 0.2194~4! 0.1562~5! 0.0947~6! 0.0317~5!

(g5^ j4) 0.2260~5! 0.1630~6! 0.1023~8! 0.0396~9! 0.2261~5! 0.1630~6! 0.1024~8! 0.0396~9!

(g5^ j4j5) 0.2086~5! 0.1459~5! 0.0848~5! 0.0226~5! 0.2087~4! 0.1460~5! 0.0848~5! 0.0226~5!

(g5^ j l jm) 0.2203~6! 0.1567~6! 0.0948~5! 0.0318~4! 0.2203~5! 0.1567~5! 0.0947~5! 0.0317~3!

(g5^ jk) 0.2268~6! 0.1633~7! 0.1021~7! 0.0393~4! 0.2268~6! 0.1634~6! 0.1021~7! 0.0392~4!

(g5^ I ) 0.2324~8! 0.170~1! 0.110~1! 0.048~1! 0.2325~7! 0.1699~9! 0.110~1! 0.048~1!

~b! b56.2
Gauge invariant Noninvariant

Operator mqa50.023 mqa50.015 mqa50.008 mqa→0 mqa50.023 mqa50.015 mqa50.008 mqa→0

(g5^ j5) 0.0927~3! 0.0604~2! 0.0326~3! 0.0004~4! ← ← ← ←
(g5^ jkj5) 0.1017~3! 0.0679~3! 0.0394~3! 0.0058~4! 0.1017~3! 0.0679~3! 0.0393~3! 0.0058~4!

(g5^ jkj4) 0.1046~4! 0.0706~3! 0.0420~4! 0.0083~4! 0.1046~4! 0.0706~3! 0.0420~4! 0.0083~4!

(g5^ j4) 0.1062~4! 0.0724~3! 0.0438~4! 0.0102~4! 0.1063~4! 0.0723~3! 0.0438~4! 0.0102~4!

(g5^ j4j5) 0.1019~3! 0.0680~3! 0.0393~3! 0.0057~4! 0.1021~4! 0.0681~3! 0.0394~3! 0.0056~3!

(g5^ j l jm) 0.1047~3! 0.0706~3! 0.0419~3! 0.0081~4! 0.1049~4! 0.0706~3! 0.0420~4! 0.0081~4!

(g5^ jk) 0.1064~4! 0.0724~3! 0.0438~3! 0.0101~4! 0.1066~4! 0.0724~3! 0.0439~4! 0.0100~4!

(g5^ I ) 0.1080~4! 0.0742~3! 0.0461~4! 0.0127~4! 0.1082~4! 0.0742~4! 0.0461~5! 0.0125~4!
094501-9
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FIG. 9. Chiral behavior of the bare pion decay constants obtained by gauge invariant axial vector current for~a! b56.0 and~b! b
56.2, and by gauge noninvariant current for~c! b56.0 and~d! b56.2. Omitted legends in the top two figures are the same as that in
bottom figures. Shape of symbols refer to the distance of the operator. Some symbols denote two flavors; the former one re
separated operators~filled symbols! including flavorj5, and the latter one refers time-local operators~open symbols!.

FIG. 10. Pion decay constant renormalized by one-loop perturbative renormalization factorZA
(P)F f p

F . ~a!–~d! correspond to those in
Fig. 9.
094501-10
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FIG. 11. Pion decay constant renormalized by nonperturbative renormalization factorZA
(N)F f p

F . ~a!–~d! correspond to those in Fig. 9.

TABLE VI. Bare pion decay constantf p
F in lattice units. The bottom line shows results obtained from pion operatorf p

(P)5 .

~a! b56.0
Gauge invariant Noninvariant

Operator mqa50.030 mqa50.020 mqa50.010 mqa→0 mqa50.030 mqa50.020 mqa50.010 mqa→0

(g4g5^ j5) 0.0770~5! 0.0686~6! 0.0586~4! 0.0495~6! 0.0859~6! 0.0772~6! 0.0673~6! 0.0582~8!

(g4g5^ jkj5) 0.0606~8! 0.0551~6! 0.0482~4! 0.0420~5! 0.081~1! 0.0743~9! 0.0659~6! 0.0581~7!

(g4g5^ jkj4) 0.0481~8! 0.0440~7! 0.0389~4! 0.0342~5! 0.078~1! 0.071~1! 0.0640~7! 0.0572~9!

(g4g5^ j4) 0.0390~8! 0.0357~8! 0.0308~4! 0.0267~6! 0.076~2! 0.069~2! 0.0613~7! 0.0541~9!

(g4g5^ j4j5) 0.093~2! 0.084~2! 0.073~1! 0.064~1! 0.093~2! 0.084~2! 0.073~1! 0.064~1!

(g4g5^ j l jm) 0.076~1! 0.069~1! 0.0603~8! 0.0524~9! 0.086~1! 0.079~1! 0.0684~8! 0.060~1!

(g4g5^ jk) 0.061~1! 0.056~1! 0.0477~6! 0.0410~7! 0.082~2! 0.075~1! 0.0646~8! 0.0559~9!

(g4g5^ I ) 0.049~1! 0.045~1! 0.038~1! 0.033~1! 0.080~2! 0.072~2! 0.062~2! 0.054~2!

(g5^ j5) 0.0789~6! 0.0697~6! 0.0602~5! 0.0509~6! ← ← ← ←
~b! b56.2

Gauge invariant Noninvariant
Operator mqa50.023 mqa50.015 mqa50.008 mqa→0 mqa50.023 mqa50.015 mqa50.008 mqa→0

(g4g5^ j5) 0.0524~8! 0.0454~4! 0.0404~4! 0.0341~6! 0.0594~6! 0.0520~5! 0.0468~6! 0.040~1!

(g4g5^ jkj5) 0.044~1! 0.0381~6! 0.0344~5! 0.0294~6! 0.058~1! 0.0511~7! 0.0463~6! 0.040~1!

(g4g5^ jkj4) 0.0362~9! 0.0315~6! 0.0284~4! 0.0243~5! 0.058~1! 0.0502~8! 0.0455~6! 0.0391~9!

(g4g5^ j4) 0.031~1! 0.0263~5! 0.0235~5! 0.0195~5! 0.059~2! 0.050~1! 0.045~1! 0.0376~7!

(g4g5^ j4j5) 0.068~3! 0.057~1! 0.0509~6! 0.043~1! 0.068~3! 0.057~1! 0.0508~6! 0.043~1!

(g4g5^ j l jm) 0.057~2! 0.048~1! 0.0425~6! 0.035~1! 0.064~3! 0.054~1! 0.0479~7! 0.040~1!

(g4g5^ jk) 0.047~2! 0.0390~9! 0.0346~5! 0.029~1! 0.062~3! 0.052~1! 0.0461~7! 0.038~2!

(g4g5^ I ) 0.039~2! 0.0322~7! 0.0285~5! 0.024~1! 0.062~3! 0.051~1! 0.0452~7! 0.037~2!

(g5^ j5) 0.055~1! 0.0485~4! 0.0425~6! 0.036~1! ← ← ← ←
094501-11
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TABLE VII. Perturbatively renormalized pion decay constantsZA
(P)F f p

F in lattice unit.

~a! b56.0
Gauge invariant Noninvariant

Operator mqa50.030 mqa50.020 mqa50.010 mqa→0 mqa50.030 mqa50.020 mqa50.010 mqa→0

(g4g5^ j5) 0.0770~5! 0.0686~6! 0.0586~4! 0.0495~6! 0.0766~5! 0.0688~6! 0.0600~5! 0.0519~7!

(g4g5^ jkj5) 0.0693~9! 0.0630~7! 0.0551~5! 0.0480~6! 0.0695~9! 0.0635~7! 0.0563~5! 0.0497~6!

(g4g5^ jkj4) 0.066~1! 0.0605~9! 0.0534~5! 0.0471~7! 0.066~1! 0.0609~9! 0.0548~6! 0.0490~8!

(g4g5^ j4) 0.058~1! 0.053~1! 0.0461~6! 0.0399~9! 0.065~1! 0.059~1! 0.0525~6! 0.0463~8!

(g4g5^ j4j5) 0.074~2! 0.067~1! 0.0580~8! 0.0502~8! 0.073~1! 0.067~1! 0.0580~8! 0.0503~9!

(g4g5^ j l jm) 0.071~1! 0.065~1! 0.0560~7! 0.0487~8! 0.071~1! 0.065~1! 0.0566~7! 0.0493~8!

(g4g5^ jk) 0.070~2! 0.064~1! 0.0546~7! 0.0469~8! 0.070~1! 0.064~1! 0.0552~7! 0.0478~8!

(g4g5^ I ) 0.068~2! 0.062~1! 0.052~2! 0.045~2! 0.068~2! 0.062~1! 0.053~2! 0.047~2!

~b! b56.2
Gauge invariant Noninvariant

Operator mqa50.023 mqa50.015 mqa50.008 mqa→0 mqa50.023 mqa50.015 mqa50.008 mqa→0

(g4g5^ j5) 0.0524~8! 0.0454~4! 0.0404~4! 0.0341~6! 0.0530~6! 0.0464~4! 0.0417~5! 0.0355~9!

(g4g5^ jkj5) 0.049~1! 0.0432~7! 0.0390~6! 0.0334~7! 0.051~1! 0.0442~6! 0.0400~5! 0.0344~9!

(g4g5^ jkj4) 0.049~1! 0.0424~7! 0.0381~5! 0.0326~7! 0.050~1! 0.0435~7! 0.0393~5! 0.0338~8!

(g4g5^ j4) 0.045~2! 0.0383~8! 0.0342~8! 0.0284~8! 0.051~2! 0.0433~9! 0.0390~8! 0.0326~6!

(g4g5^ j4j5) 0.055~2! 0.046~1! 0.0411~5! 0.0344~9! 0.055~2! 0.046~1! 0.0410~5! 0.034~1!

(g4g5^ j l jm) 0.054~2! 0.045~1! 0.0398~6! 0.033~1! 0.054~2! 0.0453~9! 0.0402~5! 0.034~1!

(g4g5^ jk) 0.053~2! 0.044~1! 0.0392~6! 0.033~2! 0.054~2! 0.0450~1! 0.0399~6! 0.033~2!

(g4g5^ I ) 0.052~3! 0.043~1! 0.0385~7! 0.032~2! 0.054~3! 0.0444~9! 0.0393~6! 0.033~2!

TABLE VIII. Nonperturbatively renormalized pion decay constantsZA
(N)F f p

F in lattice unit.

~a! b56.0
Gauge invariant Noninvariant

Operator mqa50.030 mqa50.020 mqa50.010 mqa→0 mqa50.030 mqa50.020 mqa50.010 mqa→0

(g4g5^ j5) 0.0770~5! 0.0686~6! 0.0586~4! 0.0495~6! 0.0731~5! 0.0656~5! 0.0572~5! 0.0494~7!

(g4g5^ jkj5) 0.0728~9! 0.0661~8! 0.0579~5! 0.0504~6! 0.0693~9! 0.0633~8! 0.0562~5! 0.0495~6!

(g4g5^ jkj4) 0.071~1! 0.065~1! 0.0575~6! 0.0507~8! 0.067~1! 0.0616~9! 0.0554~6! 0.0495~8!

(g4g5^ j4) 0.071~1! 0.065~1! 0.0562~8! 0.049~1! 0.066~1! 0.060~1! 0.0535~6! 0.0472~8!

(g4g5^ j4j5) 0.074~2! 0.067~1! 0.0585~8! 0.0507~8! 0.074~2! 0.067~1! 0.0585~8! 0.0507~9!

(g4g5^ j l jm) 0.075~1! 0.068~1! 0.0594~8! 0.0516~9! 0.073~1! 0.067~1! 0.0582~7! 0.0507~8!

(g4g5^ jk) 0.075~2! 0.068~1! 0.0586~8! 0.0505~8! 0.072~1! 0.066~1! 0.0566~7! 0.0490~8!

(g4g5^ I ) 0.074~2! 0.068~2! 0.057~2! 0.050~2! 0.070~2! 0.064~1! 0.055~2! 0.048~2!

~b! b56.2
Gauge invariant Noninvariant

Operator mqa50.023 mqa50.015 mqa50.008 mqa→0 mqa50.023 mqa50.015 mqa50.008 mqa→0

(g4g5^ j5) 0.0524~8! 0.0454~4! 0.0404~4! 0.0341~6! 0.0513~6! 0.0450~4! 0.0404~5! 0.0344~9!

(g4g5^ jkj5) 0.051~1! 0.0449~8! 0.0405~6! 0.0347~7! 0.051~1! 0.0441~6! 0.0400~5! 0.0344~9!

(g4g5^ jkj4) 0.052~1! 0.0448~8! 0.0403~5! 0.0345~7! 0.050~1! 0.0439~7! 0.0397~5! 0.0342~8!

(g4g5^ j4) 0.053~2! 0.0451~9! 0.0403~9! 0.0335~9! 0.052~2! 0.0440~9! 0.0396~8! 0.0331~6!

(g4g5^ j4j5) 0.055~2! 0.047~1! 0.0414~5! 0.035~1! 0.055~2! 0.046~1! 0.0413~5! 0.035~1!

(g4g5^ j l jm) 0.056~2! 0.047~1! 0.0418~6! 0.035~1! 0.055~2! 0.046~1! 0.0412~6! 0.034~1!

(g4g5^ jk) 0.056~3! 0.047~1! 0.0415~7! 0.034~2! 0.055~2! 0.046~1! 0.0407~6! 0.034~2!

(g4g5^ I ) 0.056~3! 0.047~1! 0.0412~7! 0.034~2! 0.055~3! 0.045~1! 0.0401~7! 0.033~2!
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general trend that the difference of values among various
flavors becomes smaller toward the continuum limit. In p
ticular, for nonperturbatively renormalized decay consta
the central values in the continuum limit agree within a 2
accuracy, which is well below the statistical errors
5–10 %. On the other hand, the convergence is worse for
perturbatively renormalized decay constants. The sprea
the continuum limit is 3–4 %, which is roughly the magn
tude of uncertainty one expects from higher-order corr
tions in the renormalization factors. We consider that th
results provide evidence for both restoration of SU(4)A fla-
vor symmetry of the KS action in the continuum limit an
the effectiveness of the nonperturbatively evaluated ren
malization constants.

FIG. 12. Continuum limit of pion mass squared. Symbols
same as those in Fig. 7.
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The values of pion mass squared for various KS flav
are listed in Table IX, and those for pion decay constants
collected in Tables X and XI. As our best value for the dec
constant, we takef p589(6) MeV obtained with the gaug
invariant axial vector current in thej5 channel which re-
quires no renormalization. This value is compared with
experiment 92.4~3! MeV @14#. Possible quenching errors ar
not visible within the statistical error of 6 MeV.

Let us recall that the decay constant in thej5 channel can
also be calculated from the pion operator using Eqs.~19! and
~24!. Results are added in the bottom lines of Table X~and
XI for the convenience of the reader!, which show reason-
able agreement with those from the axial vector current
the j5 channel, as expected.

VIII. CONCLUSION

In this article we have presented an analysis of the p
decay constant in quenched QCD using the Kogut-Suss
quark action. Our best estimate for the decay constant in
continuum limit is 89~6! MeV, which is obtained with the
gauge invariant axial vector current which respects U(1A
symmetry.

We have carried out a detailed comparison of perturba
and nonperturbative axial vector renormalization treatme
We conclude that the nonperturbative renormalization f
tors efficiently eliminate the flavor breaking effect in the d
cay constant in the continuum limit, while an appare
flavor-dependent difference still remains with the perturb
tive factors.

e

for
FIG. 13. Continuum limit of renormalized pion decay constants. Results obtained with perturbative renormalization factors~a!
gauge-invariant and~b! noninvariant operators, and those with nonperturbative factors for~c! gauge-invariant and~d! noninvariant operators
are shown. Symbols are the same as those in Figs. 9–11.
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TABLE IX. Pion mass squared (mp
F)2 in GeV2.

Gauge invariant Noninvariant
Operator b56.0 b56.2 a→0 b56.0 b56.2 a→0

(g5^ j5) 0.0066~9! 0.003~3! 0.000~6! ← ← ←
(g5^ jkj5) 0.085~2! 0.042~4! 0.002~8! 0.085~2! 0.042~4! 0.002~8!

(g5^ jkj4) 0.118~3! 0.061~4! 0.006~9! 0.118~3! 0.061~4! 0.005~9!

(g5^ j4) 0.147~6! 0.074~5! 0.000~10! 0.147~6! 0.074~5! 0.000~10!

(g5^ j4j5) 0.084~2! 0.042~3! 0.001~6! 0.084~2! 0.041~3! 0.000~6!

(g5^ j l jm) 0.118~3! 0.059~4! 0.002~8! 0.118~3! 0.059~4! 0.002~8!

(g5^ jk) 0.146~4! 0.074~4! 0.004~9! 0.146~4! 0.073~5! 0.000~10!

(g5^ I ) 0.178~5! 0.092~4! 0.009~9! 0.178~6! 0.091~5! 0.010~10!

TABLE X. Perturbatively renormalized pion decay constantsZA
(P)F f p

F in MeV. The bottom line shows
results obtained with the pion operator in thej5 channelf p

(P)5 .

Gauge invariant Noninvariant
Operator b56.0 b56.2 a→0 b56.0 b56.2 a→0

(g4g5^ j5) 95~2! 92~3! 89~6! 100~2! 96~4! 92~7!

(g4g5^ jkj5) 92~1! 90~3! 88~5! 96~2! 93~3! 90~6!

(g4g5^ jkj4) 91~2! 88~3! 85~5! 94~2! 91~2! 88~5!

(g4g5^ j4) 77~2! 77~3! 77~5! 89~2! 88~2! 87~4!

(g4g5^ j4j5) 97~2! 93~3! 89~7! 97~2! 93~4! 88~7!

(g4g5^ j l jm) 94~2! 90~3! 86~7! 95~2! 91~4! 86~7!

(g4g5^ jk) 90~2! 88~4! 85~9! 92~2! 89~5! 87~9!

(g4g5^ I ) 87~4! 86~5! 85~10! 90~4! 88~5! 86~11!

(g5^ j5) 98~1! 94~3! 89~6! ← ← ←

TABLE XI. Nonperturbatively renormalized pion decay constantsZA
(N)F f p

F in MeV unit. The bottom line
for f p

(P)5 is reproduced from Table X for convenience.

Gauge invariant Noninvariant
Operator b56.0 b56.2 a→0 b56.0 b56.2 a→0

(g4g5^ j5) 95~2! 92~3! 89~6! 95~2! 93~3! 91~7!

(g4g5^ jkj5) 97~2! 94~3! 90~6! 95~2! 93~3! 90~6!

(g4g5^ jkj4) 98~2! 93~3! 89~6! 95~2! 92~2! 89~5!

(g4g5^ j4) 94~2! 90~3! 87~6! 91~2! 89~2! 88~4!

(g4g5^ j4j5) 98~2! 94~3! 90~7! 98~2! 93~4! 89~7!

(g4g5^ j l jm) 99~2! 94~3! 89~7! 98~2! 93~4! 88~8!

(g4g5^ jk) 97~2! 93~5! 89~9! 94~2! 91~5! 88~9!

(g4g5^ I ) 96~5! 92~5! 89~11! 92~4! 90~5! 88~11!

(g5^ j5) 98~1! 94~3! 89~6! ← ← ←
094501-14
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B531, 429 ~1998!; M. Göckeler, R. Horsley, H. Oelrich, H
Perlt, D. Petters, P. E. L. Rakow, A. Scha¨fer, G. Schierholz,
and A. Schiller,ibid. B544, 699 ~1999!.
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