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Spectral function and excited states in lattice QCD with the maximum entropy method
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We apply the maximum entropy method to extract the spectral functions for pseudoscalar and vector mesons
from hadron correlators previously calculated at four different lattice spacings in quenched QCD with the
Wilson quark action. We determine masses and decay constants for the ground and excited states of the
pseudoscalar and vector channels from the position and area of peaks in the spectral functions. We obtain the
resultsmp1

5660(590) MeV andmr1
51540(570) MeV for the first excited state masses, in the continuum

limit of quenched QCD. We also find unphysical states that have an infinite mass in the continuum limit, and
argue that they are bound states of two doublers of the Wilson quark action. If the interpretation is correct, this
is the first time that the state of doublers has been identified in lattice QCD numerical simulations.
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I. INTRODUCTION

The spectral function of hadron correlation functions co
tains information not only on the mass of the ground st
but also on other quantities such as the masses for ex
states, and decays and scatterings of hadrons. In lattice Q
simulations one can numerically obtain a Euclidean time c
relation functionD(t) of an operatorO(t), which is related
to the spectral functionf (v) of this correlator through

D~t!5^0uO~t!O†~0!u0&

5E dv f ~v!K~v,t!, ~1!

where K(t,v) is a kernel of the Laplace transformatio
given by

K~v,t!5e2vt1e2v(T2t)

for 0<t<T with the periodic boundary condition, whereT
is the lattice size in the Euclidean time direction. A typic
form of f (v) is

f ~v!5Z0d~v2E0!1 f̃ ~v;v>2m0!, ~2!

whereE0 is the energy of the ground stateuE0& coupled to
the operatorO andZ05 z^0uOuE0& z2, and f̃ (v) represents the
continuous spectrum which starts atv52m0 for the two-
particle state.

In principle one can extract all the information for th
states that can couple to the operatorO from the spectral
function f (v). In the usual analysis of lattice QCD simula
tions, however, only the mass~or energy! of the ground state
E0 and its amplitudeZ0 can be reliably extracted from th
asymptotic behavior of the point source correlation funct
at large Euclidean times,
0556-2821/2001/65~1!/014501~16!/$20.00 65 0145
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D~t!→Z0e2E0t, t→`.

Numerically, the extraction of masses of excited states wi
multiexponential fit to a single correlation function is u
stable, so that a simultaneous fit to several correlation fu
tions that have the same set of intermediate states with
ferent amplitudes becomes necessary to stabilize the re
Different operators that have larger overlaps with the exci
state may also be employed to extract the mass of the exc
state. Similar but more difficult problems appear in the c
culation of the decay amplitude@1,2#.

If one could reconstructf (v) directly from the correlation
function D(t) using data at allt, information of various
states could be extracted from one correlation function. I
simple and efficient, since one can avoid more complica
procedures needed in the usual extraction, such as the tu
of operators, the calculation of several correlation functio
etc. Since the number of data forD(t) with a discrete set of
time t is much smaller than the number of degrees of fr
dom necessary for the reconstruction off (v) in general,
however, the standardx2 fit is ill posed for this problem.
With some assumptions about the form of the spectral fu
tion thex2 fit may work, but this is essentially equivalent t
the multiexponential or more complicated fit to the corre
tion function.

In condensed matter physics, the reconstruction of
spectral function in quantum Monte Carlo simulations h
been attempted with the maximum entropy method~MEM!
@3#. It has also been successfully applied for image rec
struction in astrophysics. The most important assumption
the MEM is that a probability for spectral functions can
assigned for given data ofD(t). Then the MEM can numeri-
cally reconstruct the most probable spectral function, us
Bayes’s theorem in probability theory, without any stro
constraints on its form. Recently, this method has been te
in lattice QCD @4,5# and the first interesting results for th
©2001 The American Physical Society01-1
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spectral function have been obtained@6–8#.
In this paper, we employ the MEM to reconstruct t

spectral functions of pseudoscalar and vector mesons f
the correlation functions previously calculated on lattic
with the spatial size about 3 fm at four different lattice spa
ings in quenched QCD@9,10#. From the spectral function
we extract masses and decay constants for excited stat
well as for the ground state. While they agree with resu
obtained from the exponential fits to the correlation fun
tions, the errors for the excited state masses from the spe
function are smaller than those from the multiexponential
so that we can estimate masses for excited states in the
tinuum limit with reasonable errors. We also find eviden
that some excited states are composed of fermion doubl

This paper is organized as follows. In Sec. II, we summ
rize our implementation of the MEM and present resu
from tests using mock-up data generated from a reali
spectral function. Some details of the lattice QCD data a
parameters used in our MEM analysis are given in Sec.
In Sec. IV, we present our results for the spectral functi
which show excited state peaks as well as the ground s
peak. From the positions and the areas of these peaks
extract masses and decay constants, and compare them
those obtained directly from correlation functions. The co
tinuum extrapolation is made for these quantities. In Sec
we argue that some peaks in the spectral functions co
spond to a state containing two doublers of the Wils
quarks. Our conclusions are given in Sec VI. In the App
dixes technical details of the MEM are collected.

II. MAXIMUM ENTROPY METHOD

A. Implementation

The existence of a probability distribution for a spect
function is a key assumption in the maximum entro
method. Using this assumption one can obtain the most p
able spectral function for given lattice dataD and all prior
knowledgeH, such asf (v)>0, by maximizing the condi-
tional probability P@FuDH#, where P@FuDH# is the prob-
ability of F with the condition thatD andH are given. Here
F stands for the spectral functionf (v). Using Bayes’s theo-
rem in probability theory@11#,

P@XuYZ#5
P@YuXZ# P@XuZ#

P@YuZ#
, ~3!

where P@X# is the probability of an eventX, one rewrites the
conditional probability P@FuDH# as

P@FuDH#} P@DuFH# P@FuH#. ~4!

Here P@DuFH# is the probability of data for a given spectr
function, called the likelihood function, and P@FuH# is the
probability of the spectral function for given prior know
edge, called the prior probability.

The likelihood function is equivalent tox2 in the least
squares method@12#. For a large number of Monte Carl
01450
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measurements of a correlation function, the data are expe
to obey a Gaussian distribution according to the central li
theorem, which gives

P@DuFH#5
1

ZL
e2L, ~5!

L5
1

2 (
i , j

ND

@D~t i !2Df~t i !#Ci j
21@D~t j !2Df~t j !#,

~6!

with the normalization constantZL5(2p)NDAdetC, and the
number of temporal pointsND . The lattice propagator dat
averaged over gauge configurations,D(t), and the covari-
ance matrixC are defined by

D~t i !5
1

Ncon f
(
n51

Ncon f

Dn~t i !, ~7!

Ci j 5
1

Ncon f~Ncon f21! (
n51

Ncon f

@D~t i !2Dn~t i !#

3@D~t j !2Dn~t j !#, ~8!

whereNcon f is the total number of gauge configurations a
Dn(t) are the data for thenth gauge configuration. Finally
Df(t) is the propagator constructed from the spectral fu
tion f (v) and the kernelK(v,t) as

Df~t!5E dv f ~v!K~v,t!. ~9!

The prior probability is written in terms of the entrop
S( f ) @13–16# for a given modelm(v) represented by a rea
and positive function, and a real and positive parametera.
The entropyS( f ) becomes zero at its maximum point whe
f (v) is equal tom(v). Explicitly, we have

P@FuHma#5
1

ZS~a!
eaS, ~10!

S~ f !5E dvF f ~v!2m~v!2 f ~v!logS f ~v!

m~v! D G
~11!

→(
l 51

Nv F f l2ml2 f l logS f l

ml
D G , ~12!

with the normalization constantZS(a)5(2p/a)Nv/2 calcu-
lated in Appendix C. In Eq.~12! the continuous spectra
function f (v) is approximately represented by a discrete
of points f (v l)5 f l with l 51, . . . ,Nv . Hereafter we replace
the prior knowledgeH in Eq. ~4! by Hma, writing m anda
explicitly. It is worth mentioning that this form of the en
tropy leads to a positive spectral function in the MEM.

Combining Eqs.~5! and ~10!, one obtains
1-2
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SPECTRAL FUNCTION AND EXCITED STATES IN . . . PHYSICAL REVIEW D65 014501
P@FuDHma#}
eQa( f )

ZLZS~a!
, Qa~ f !5aS~ f !2L. ~13!

Therefore the condition satisfied by the most probable sp
tral function f a for a givena @and modelm(v)# is given by

dQa~ f !

d f U
f 5 f a

50. ~14!

The parametera dictates the relative weight of the en
tropy S( f ) andL. One can deal witha dependence off a as
follows. One first defines P@auDHm# @3,13,14#, the prob-
ability of a for given data and all prior knowledge, whic
can be transformed as

P@auDHm#}P@auHm#E DF
eQa( f )

ZLZS~a!
. ~15!

See Appendix E for details. In the final resultf̂ (v), a is
averaged with this weight factor P@auDHm#,

f̂ ~v!5E daP@auDHm# f a~v!Y E da P@auDHm#.

~16!

This procedure is called Bryan’s method@17# and is used
in this article. We restrict the range ofa in the actual average
asamin<a<amax, whereamin andamax are chosen to sat
isfy P@âuDHm#>10 P@amin,maxuDHm# with â being the
maximum value of P@auDHm#. The standard choice o
P@auHm# in Eq. ~15! is either a constant or 1/a @3,14,17#. In
the next section we will show that the final result is insen
tive to the choice as long as P@auDHm# is sharply peaked
aroundâ, and therefore we adopt P@auHm#5const in our
main analysis.

In the MEM it is not possible to assign error bars to ea
point in the spectral function since the errors between dif
ent points are strongly correlated. Instead we estimate
uncertainty of the spectral function averaged overv in a
certain region by the method explained in Appendix F. T
magnitude of this uncertainty gives an estimate for the go
ness of the given modelm(v) @3,6#.

B. Test

Several tests of the MEM have already been carried ou
Ref. @6#, where the dependence of the results on the num
of time slicesND , the size of errors of the data, and th
model m(v) have been examined using mock-up data c
ated from test spectral functions. The following conclusio
were drawn from the tests.

~1!Decreasing the error of dataD(t) is more important
than increasingND for obtaining better estimates off (v)
that reproduce the original spectral function more closely

~2! It is better to include information aboutf (v), such as
the asymptotic value, if it is known, into the modelm(v).

~3! If the obtainedf (v) depends strongly on the model,
better model in the sense of leading to anf (v) that is closer
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to the original spectral function gives smaller errors for t
averagedf (v).

~4! The error of the averagedf (v) in a certain region can
be used to measure the significance off (v) in the region.
For example, if the error of the averagedf (v) around a peak
is much smaller than the averaged value, the peak is likel
be true, and vice versa.

Before applying the MEM to actual data, we perform fu
ther tests on~a! the dependence onND and the temporal
separation of dataDt, and~b! the dependence on the choic
of P@auHm#. For these tests we use a realistic spectral fu
tion in the vector channel of thee1e2 annihilation @6,18#,
which is given byf in(v)5r in(v)v2, where the factorv2 is
expected from the dimension of meson spectral functi
with

r in~v!5
2

p FFr
2 Gr~v!mr

~v22mr
2!21Gr

2~v!mr
2

1
1

8p S 11
as

p D 1

11e(v02v)/dG . ~17!

HereFr is the residue ofr meson resonance defined by

^0ud̄gmuur&5A2Frmrem5A2 f rmr
2em , ~18!

with the polarization vectorem , and Gr(v) includes theu
function which represents the threshold ofr→pp decay as

Gr~v!5
1

48p

mr
3

Fr
2 S 12

4mp
2

v2 D 3/2

u~v22mp!. ~19!

We make dimensionful quantities dimensionless using
lattice spacing a, v→va, t→t/a where a is set to
1 GeV21. The values of parameters are

mr50.77, mp50.14, Fr50.142,

v051.3, d50.2, as50.3, ~20!

whereas is independent ofv for simplicity. The shape of
r in(v) for this choice of parameters is shown in Fig. 1. T

FIG. 1. The input spectral functionr in(v). The value in the
figure is the area under the curve for 0<v<6.
1-3
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FIG. 2. The output spectral functionrout(v) obtained by the MEM for differentDt andND is shown by solid lines. The inputr in(v)
is shown by long dashed lines. The values in each figure are the area ofrout(v) and r 5( l 51

Nv @r in(v l)2rout(v l)#2.
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value in the figure represents the area ofr in(v) for 0<v
<6.

We make mock-up dataD(t) from f in(v) as follows.~i!
The central value ofD(t) is given by integrating the spectra
function f in(v) and a kernelK(v,t)5e2vt over v in the
same way as forDf(t) in Eq. ~6!. ~ii ! Errors of D(t) are
generated by Gaussian random numbers with the varia
s(t i)5beat iD(t i), a50.1, b510210, in order to incorpo-
rate the fact that the error of lattice correlation functio
increases ast increases.

In this test, no correlation between differentt is taken
into account; thus the covariance matrixC is set to be diag-
onal. The model function is given bym(v)5m0v2 with
m050.0277, which is motivated by the value ofr in(v
→`). We set the maximum value ofv, vmax56, the v
space is discretized with an equal separationDv50.01, and
Nv5600. We also calculate the area of the MEM res
rout(v) for 0<v<vmax and define r 5( l 51

Nv @r in(v l)
2rout(v l)#2, to measure the difference betweenr in and
rout .

We summarize the results forrout(v) in various cases a
follows.

~a! To investigate the dependence ofrout(v) on Dt and
ND , we extractrout(v) by the MEM, from data withDt
50.5,0.33 andND516,31,46, as shown in Fig. 2. Data
larget are necessary to reconstructrout(v) at smallv cor-
rectly, as seen from the fact that a false peak someti
appears aroundv50 from data withDt50.5 andND516
@tmax5Dt(ND21)57.5# or with Dt50.33 andND531
(tmax510). Oncetmax becomes large enough~larger than
15 in this case!, a smallerDt is better for the result, as see
from the comparison between results from data withDt
01450
ce

t

es

50.5 andDt50.33 atND546.
~b! We also check the dependence ofrout(v) on two

forms of P@auHm#, P@auHm#5constant or 1/a. As shown
in Fig. 3, the two choices give almost identical shapes
rout(v), although the weight factor P@auDHm# is rather dif-
ferent between the two cases.

Our investigations add further information on the para
eter dependence of the result in the MEM, which we su
marize as the following three points.

~5! tmax5Dt(ND21) must be sufficiently large for a re
liable result off (v).

~6! Once tmax is taken large enough, a smallerDt is
better.

~7! The result rout(v) is insensitive to the choice o
P@auHm#.

III. LATTICE QCD DATA AND PARAMETERS IN MEM
ANALYSIS

We now apply the MEM to the lattice correlation func
tions previously obtained in quenched QCD@9,10# with the
plaquette action for gluons and the Wilson action for quar
The simulation was performed at four values ofb, corre-
sponding toa2152 –4 GeV for the continuum extrapola
tion, on 323356 to 6433112 lattices with spatial size abou
3 fm. The simulation parameters are compiled in Table I.
eachb, five values of the hopping parameterk, which cor-
respond tomp /mr' 0.75, 0.7, 0.6, 0.5, and 0.4, were em
ployed for the chiral extrapolation. The values of the hopp
parameters are numbered from heavy to light in Table I.
example, we call thek corresponding to the lightest an
heaviest quark massesK51. Except for an additive renorma
1-4
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FIG. 3. Influence of the choice of P@auHm#.
The left figure is for P@auHm#5const and the
right for P@auHm#51/a. The figure below shows
the corresponding P@auDHm# normalized to
unity for which data with Dt50.33 and ND

546 are used. The inputr in(v) is shown by the
long dashed lines, and r 5( l 51

Nv @r in(v l)
2rout(v l)#2 represents the difference from
r in(v).
ra

rk

to

di-
ization factor, the average quark mass is equal to the ave
inverse hopping parameterK21 given by

K215
1

2
~k1

211k2
21!, ~21!

wherek1 and k2 are the hopping parameters of the qua
and antiquark in the meson.

In our MEM analysis, we employ pseudoscalar and vec
meson correlation functions, defined by

(
x

^d̄ Gu~t,x!~ d̄ Gu!†~0,0!&5E dv f ~v!K~v,t!,

~22!
01450
ge

r

where G is g5 (gm) for the pseudoscalar~vector! meson,
f (v) is a spectral function, andK(v,t) is a kernel. We use
only point source data to satisfy the condition thatf (v)>0.
Since the spectral function of the meson propagator has
mension 2, we define a dimensionless functionr(v) as

f ~v!5r~v!v2. ~23!

The model is chosen to bem(v)5m0v2 and the value of
m0 is taken equal to the asymptotic value ofr(v) in pertur-
bation theory@6# given by

m05
C1

4p2 S 11C2

as

p D S 1

Z2)i 51

2
1

2k i
D , ~24!
e
s to the
TABLE I. Simulation parameters of hadron propagator data@9,10# used in the present MEM analysis. Th
numbering of hopping parameters is introduced for convenience. The smallest number correspond
heaviest quark mass, and vice versa.

b Lattice size(L3T) Conf. # Sweep/Conf.

5.90 323 56 800 200
6.10 403 70 600 400
6.25 483 84 420 1000
6.47 643 112 150 2000

Hopping parameterk

b 1 2 3 4 5

5.90 0.1566 0.1574 0.1583 0.1589 0.1592
6.10 0.1528 0.1534 0.1540 0.1544 0.1546
6.25 0.15075 0.15115 0.15165 0.15200 0.15220
6.47 0.14855 0.14885 0.14925 0.14945 0.14960

mp /mr 0.75 0.7 0.6 0.5 0.4
1-5
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FIG. 4. Model (m0) dependence for pseudoscalar~PS! and vector~V! channels atb56.47 andK11.
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whereas is the strong coupling constant, the coefficientsCi
are perturbatively calculated in continuum QCD@19#, andZ
is the renormalization constant for the pseudoscalar~PS! or
vector ~V! operator. The spectral function from our data
insensitive to the value ofm0, as shown in Fig. 4, where
f (v) obtained with three different models is plotted f
pseudoscalar and vector mesons atb56.47 andK11. In the
figure the horizontal bars indicate the region over which
result is averaged, while the vertical bars indicate the un
tainty in the averaged value of the result. Both the avera
spectral functions and their uncertainties are almost iden
for the different models. Because of this property, we sim
take as50.21 and employ the nonperturbativeZV and the
perturbativeZPS calculated atb55.90 in Eq.~24! for all b.
The normalization factor 1/2k is used also for the pseudo
scalar meson with tadpole-improvedZPS. The values ofZ as
well asCi are given in Table II.

Other parameters in the MEM analysis such asND and
(va)max are determined as follows. We takeND as large as
possible unless the error of the data becomes too large

TABLE II. Parameters used in the MEM analysis. The low
part shows„ND ,(va)max….

C1 C2 Z

PS 3/2 11/3 0.728
V 1 1 0.536

b 5.90 6.10 6.25 6.47

PS ~20,4.0! ~32,4.5! ~32,4.5! ~45,4.5!
V ~21,4.2! ~30,4.8! ~30,4.8! ~30,4.8!
01450
e
r-
d
al
y

r a

reliable result, and we choose (va)max@p and increase it
until the result becomes stable. Both parameters are
given in Table II. ForDv, which should be smaller than 1/T,
we takeDv51024 around the peak of the ground state
determine the ground state mass accurately, andDv52.5
31023 away from the peak.

IV. RESULTS

In this section, we present our results for the spec
functions of pseudoscalar and vector meson propaga
from which we extract physical quantities such as mas
and decay constants.

A. Spectral functions

Our results forr(v) obtained from meson propagators b
the MEM for three differentK21 at all b are compiled in
Fig. 5. The lowest peak corresponds to the ground state,
next peak corresponds to the first excited state, and so on
fixed b, the positions for these peaks move toward smallev
as the quark mass decreases. This shows that the m
masses decrease with decreasing quark mass, as exp
The number of peaks increases fromb55.90 tob56.47 for
both pseudoscalar and vector channels, since more s
with higher energy appear in spectral functions for larg
lattice cutoff ~smaller lattice spacing!. All peak positions
move to smaller values asb increases, except the peaks
va'1.7 for the pseudoscalar channel and atva'2 for the
vector channel. Thus the masses in the physical limits s
finite, except those of the latter peaks which become infin
We discuss these unphysical states in more detail in the
section.
1-6



es

SPECTRAL FUNCTION AND EXCITED STATES IN . . . PHYSICAL REVIEW D65 014501
FIG. 5. Spectral functions at allb obtained by the MEM for different values ofK21. On the left hand side thep meson spectral function
and on the right hand side ther meson spectral function are shown. The state atva'2 is considered as unphysical since its position do
not move withb.
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T. YAMAZAKI et al. PHYSICAL REVIEW D 65 014501
B. Meson masses

From the peak positions of the spectral function, we
termine the masses of excited states as well as the gro
state. The errors of these masses are estimated by the s
elimination jackknife method.

In order to check whether the peaks in the spectral fu
tion really correspond to particle states in correlation fu
tions, we also extract the masses of the ground and
excited states by fitting the correlation functions with
double exponential form. In order to obtain the mass of
first excited state reliably, correlation functions from bo
point and ground state smeared sources for ther meson are
simultaneously fitted. Results atb55.90 are given in Table
III and Fig. 6, where errors are again evaluated with
single elimination jackknife method, together with those o
tained by the MEM. We find that the ground state mas
from the two methods agree very well, and the first exci
state masses are consistent with each other within the s
tical error. It is noted that the error of the first excited sta
obtained by the MEM is smaller than that from the doub

TABLE III. Comparison of the MEM analysis with the doubl
exponential fit, using the vector meson correlation function ab
55.90. The symbolKn1n2 expresses the quark mass used in
correlation function,n1 andn2 being defined in Table I. DOF indi-
cates degrees of freedom.

Exponential fit MEM

Ground Excited x2/DOF Ground Excited

K11 0.5093~11! 1.08~11! 0.220 0.5094~16! 1.034~30!

K22 0.4784~12! 1.08~14! 0.359 0.4789~20! 1.018~37!

K31 0.4772~15! 1.08~14! 0.466 0.4779~20! 1.020~36!

K32 0.4613~15! 1.07~15! 0.587 0.4623~23! 1.009~40!

K33 0.4435~22! 1.03~19! 0.687 0.4451~27! 0.997~44!

K41 0.4668~23! 1.09~17! 0.638 0.4678~23! 1.020~37!

K42 0.4505~22! 1.06~22! 0.750 0.4519~27! 1.006~44!

K44 0.4214~43! 1.08~21! 0.890 0.4218~43! 0.969~58!

K51 0.4622~20! 1.15~21! 0.771 0.4630~25! 1.020~40!

K52 0.4460~32! 1.11~19! 0.872 0.4469~30! 1.004~46!

K55 0.4107~37! 1.19~20! 1.191 0.4080~65! 0.929~70!

FIG. 6. Comparison of ther meson mass for the ground an
first excited states from the spectral function and that from
double exponential fit. Circles are slightly shifted to largerK21.
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exponential fit to our data. This does not mean that the e
for the first excited state mass obtained by the MEM is
ways smaller than the one from a multiexponential fit. If o
employed more sophisticated methods, such as diagona
tion of the matrix of several correlation functions or use
an excited state smeared source, the standard method c
give a smaller error for the excited state. The merit of t
MEM, however, is that such information can be extract
from a point source correlation function, so that further n
merical simulations are unnecessary.

We determine the chiral limit and the critical hoppin
parameterkc where the ground state of thep meson mass
vanishes by extrapolating (mpa)2 linearly in K21. For other
states, including the excited states ofp mesons, the masse
ma themselves obtained from the spectral function are
trapolated linearly inK21 to the chiral limit. The chiral ex-
trapolation at eachb is shown in Fig. 7. Some excited sta
peaks do not appear in the spectral functions obtained f
some jackknife samples. These masses are excluded from
chiral extrapolation and are not plotted in the figures. T
lattice spacinga is fixed by setting the ground state mass f
the r meson in the chiral limit to the experimental valu
mr5770 MeV. All dimensionful quantities are normalize
by ther meson mass in the chiral limit.

The masses in the chiral limit are compiled in Table I
together with the result of the standard analysis@9,10# for the
lattice spacing, which agrees with the values from the pres
MEM analysis. Atb56.47, our lattice spacing has a larg
error. This is caused by large errors of point source dat
this b. As shown in Fig. 8, the ground state masses for e
K21 agree with the previous results from the exponential
of ground state smeared source data@10#.

The masses of the excited states in the chiral limit
extrapolated to the continuum limit, except for the unphy
cal states mentioned before, as shown in Fig. 9. We see
the mass of the first excited state is consistent with the
reported in Ref.@6# for both p andr mesons. Note that the
error for the first excited state of ther meson from the
double exponential fit atb55.90 ~square! is too large for a
reasonable continuum extrapolation. The mass ratios in
continuum limit are given in Table V. The mass of the fir
excited state normalized by the ground state mass ofr me-
son for thep meson in the continuum limit is 0.86~77!,
which should be compared with the experimental va
1.68~12!, while the mass for ther meson is 2.00~74! in com-
parison to the experimental value of 1.90~3! or 2.20~2! ~there
are two candidates for the first excited state of ther meson
in experiment!. The first excited state masses for both m
sons are consistent with experimental values albeit the er
are quite large. For ther meson we are not able to decid
whether the first excited state isr(1450) orr(1700) due to
the large error of our result.

C. Decay constants

From the spectral function we can also extract the de
constants for the ground states ofp and r mesons,f p and
f r , defined by

e

e

1-8
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FIG. 7. Masses and their chiral extrapolations at allb. On the left hand side thep meson mass and on the right hand side ther meson
mass are shown. Circles, squares, diamonds, and left triangles represent the ground, the first excited, the second excited, and the
state masses, respectively. The state shown by up triangles is considered unphysical as discussed in the text. Open symbols s
values in the chiral limit.
for
^0u~ d̄g5u! latup0 ,p50&

5
A2 f pmp

2

~mu1md! lat
AWI

1

ZA
)
i 51

2 A 1

123k i /4kc
,

~25!
01450
^0u~ d̄gmu! latur0 ,p50&5A2 f rmr
2em

1

ZV
)
i 51

2 A 1

2k i
.

~26!

We employ the one-loop result with tadpole improvement
the renormalization factorZA @20# given by ZA51
1-9
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TABLE IV. Results obtained from the MEM analysis at eachb. Lattice spacings from the standar
analysis@9,10# are also listed.

b 5.90 6.10 6.25 6.47

a(GeV21) 0.503~6! 0.387~6! 0.321~5! 0.220~25!

a21 (GeV) 1.986~25! 2.583~40! 3.105~53! 4.52~51!

a21 (GeV) @9,10# 1.934~16! 2.540~22! 3.071~34! 3.961~79!

kc 0.159881~13! 0.154985~12! 0.152556~9! 0.149809~7!

p meson

mp1
/mr0

2.02~31! 1.30~44! 1.82~62! 1.40~45!

mp2
/mr0

2.61~51! 2.79~23! 3.95~64!

mpunphys
/mr0

4.00~25! 5.86~38! 6.84~29! 10.6~1.2!
f p0

/mr0
0.1157~21! 0.1148~26! 0.1099~28! 0.119~14!

Gp0
/mr0

0.036~16! 0.028~14! 0.029~21! 0.007~4!

r meson

mr1
/mr0

2.46~19! 2.63~47! 2.48~32! 1.59~67!

mr2
/mr0

3.81~65! 4.02~41! 3.53~71!

mr3
/mr0

6.3~1.0!
mrunphys

/mr0
4.69~14! 6.79~21! 7.76~30! 11.7~1.3!

f r0
0.2037~20! 0.2088~25! 0.2015~32! 0.178~34!

f r1
0.1133~46! 0.076~34! 0.102~15! 0.120~40!

Gr0
/mr0

0.032~19! 0.014~7! 0.008~5! 0.022~15!
r

tio
e
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tral
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.
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V.

e
nd

he
or
20.316aV(1/a), and the bare quark masses (mu1md) lat
AWI

derived from the axial ward identity@10#. For the vector
meson decay constant, we use a nonperturbative value foZV
@10#.

Decay constants can be extracted from the correla
function as follows. For the pseudoscalar meson we hav

(
x

^0ud̄g5u~t,x!~ d̄g5u!†~0,0!u0&

5(
n

^0ud̄g5uupn&^pnu~ d̄g5u!†u0&
e2Ent

2En
~27!

→ z^p0ud̄g5uu0& z2
e2mp0

t

2mp0

, t→`, ~28!

FIG. 8. Ground state masses of ther meson obtained by differ-
ent analyses atb56.47. Squares are slightly shifted to largerK21.
01450
n

whereEn is the nth excited state energy, and a similar e
pression for the vector meson. Under the assumption tha
ground state peak of the spectral function is sharp, th
correlation functions are related to the area of the spec
function around the ground state peak according to

f p
2 5@~mu1md! lat

AWI#2

E
peak

dv rPS~v!v2

mp
3

ZA
2)

i 51

2 S 12
3k i

4kc
D ,

~29!

f r
25

E
peak

dv rV~v!v2

mr
3

ZV
2)

i 51

2

2k i . ~30!

For the first excited state, we also extract decay const
from the area of the spectral function around the first exci
state under the same assumption as for the ground state

The decay constants obtained from the above relations
extrapolated linearly inK21 to the chiral limit, as shown for
b55.90 in Fig. 10, and results are also given in Table I
The decay constant for the first excited state of thep meson
should vanish in the chiral limit according to Eq.~29!; since
the quark massesmu1md vanish while the excited stat
massmp1

remains nonzero. This is in contrast to the grou

state, for which the massmp0
vanishes in such a way thatf p0

remains nonzero. This property is seen in the figure.
The continuum extrapolation is shown in Fig. 11, and t

results in the continuum limit are compiled in Table VI. F
the ground state, the decay constants forp andr mesons are
1-10
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FIG. 9. Continuum extrapola-
tion of masses of physical excite
states. For the first excited stat
open diamonds and triangles rep
resent the experimental value, an
that obtained by Asakawaet al.
@5#. For the r meson the open
square shows the result of th
double exponential fit atb55.90.
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consistent with previous results~squares! @10#. In the con-
tinuum limit we find f p0

580.3(5.9) MeV, which is smaller

than the experimental value 93 MeV, andf r0
50.2062(84),

which is slightly larger than the experimental value 0.198~4!,
and the first excited state decay constant for ther meson
f r1

50.085(36).

D. Remark on spectral widths

The width for the ground state peak should be zero for
p meson, and should be very small for ther meson in the
quenched approximation. Therefore the width for the grou
state in spectral functions, if nonzero, is likely to be an a
fact of the MEM. The widthsG of the ground state peak fo
p andr mesons are extrapolated to the chiral limit, and
compiled in Table IV. As shown in Fig. 12, these widths a
very small and almost consistent with zero within errors,
expected.

On the other hand, other states have larger widths. At
moment it is difficult to conclude whether these widths a
physical or artifacts of the MEM. In order to decide th

TABLE V. Masses of excited states normalized by the grou
stater meson mass for thep andr mesons in the continuum limit
Available experimental values are also given. DOF indicates
grees of freedom.

mp1
/mr0

mp2
/mr0

mr1
/mr0

mr2
/mr0

Continuum limit 0.86~77! 5.4~1.6! 2.00~74! 3.2~1.8!
x2/DOF 0.514 0.538 0.726 0.240
Experimental value 1.68~12! 1.90~3! or 2.20~2!
01450
e

d
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is

nature of these widths, further research is needed.

V. UNPHYSICAL STATES AND FERMION DOUBLERS

As mentioned in the previous section, the state in
pseudoscalar channel atva'1.7 and the one in the vecto
channel atva'2 appear with a large width in the spectr
functions at allb. A similar state has also been observed
the Wilson quark action atb56.0 (a2152.2 GeV) of the
plaquette gauge action@6# and atb54.1 (a2151.1 GeV) of
a tree-level Symanzik improved gauge action@7#. We con-
sider this state to be unphysical since its mass diverges
ward the continuum limit. In fact the mass of this state c
be fitted byC1 /a1C2 in Fig. 13 ~see Table VII for numeri-
cal details!, together with a linear continuum extrapolatio
for the physical excited state. We also see from this fig
that no physical excited states appear in the spectral func
if its mass is larger than that of the unphysical state. At fi
sight, the state atva'1 seems to be a candidate for anoth
unphysical state. We think, however, that this state is ph
cal, since the position of the peak moves asb varies, and
moreover such a state was not observed at a different la
spacing@7#.

We argue that the unphysical state is a bound state of
fermion doublers of the Wilson quark action as follows. T
pole mass of a free quark with Wilson parameterr 51 is
given by

M ~n!5
1

a
log~11ma12n!, n50,1,2,3, ~31!

where n50 corresponds to the physical quark, andnÞ0

d

-
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FIG. 10. Chiral extrapolations
of pseudoscalar and vector meso
decay constants atb55.90.
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represent doublers withn of the three spatial momenta com
ponents equal top/a. At r 51 the time doubler does no
propagate due to its infinite mass. In the chiral limit the m
for the n51 doubler is given byM (1)a'1.1; therefore, in
this free case, the mass of twon51 doublers is 2
3M (1) a'2.2. Note that, for meson correlation function
with zero spatial momentum, states consisting of, e.g
physical quark and a doubler cannot contribute.

In the interacting case, the mass for the bound state m
of two doublers is expected to decrease from 2.2 in the
theory due to the binding energy, which would depend on
quantum number of the state. This may explain the diff
ence between the peak positions atva'1.7 for the pseudo-
scalar channel and atva'2 for the vector channel.

From the considerations above we conclude that the
physical state is a bound state of twon51 doublers. We note
that bound states ofn>2 doublers do not appear in the spe
tral function @in fact there are no peaks atva53.2'2
3M (2) a and 3.9'23M (3) a#. The reason for this is no
understood at present. A possible explanation is that the s
01450
s

a

de
e
e
-

n-

te

whose mass is close to the cutoff,p/a, is difficult to detect
by the MEM, as seen in Fig. 5. Further work is neede
however, to clarify this point.

VI. CONCLUSION

In this study, we have applied the maximum entro
method to high-precision quenched lattice QCD data to
tract the spectral functions for pseudoscalar and vector
sons. Masses for excited states as well as the ground stat
obtained from the positions of peaks in the spectral functi
and decay constants are determined from the area u
them.

The masses of the ground and first excited states a
with those obtained by the usual double exponential fit w
point and ground state smeared source data, showing
reliability of the MEM, while the first excited state mas
from the spectral function has smaller errors, demonstra
the superiority of the MEM in this case.

We have been able to make a continuum extrapolation
-
r
a-
s
s

m

FIG. 11. Continuum extrapola
tions of pseudoscalar and vecto
meson decay constants. Open di
monds show experimental value
for the ground state. Open square
represent the previous results fro
standard analysis@10#.
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the first excited state forp and r mesons, obtaining the
massesmp1

5660(590) MeV andmr1
51540(570) MeV.

While the errors are admittedly large, this is the first tim
that such an extrapolation has been attempted. For
ground state decay constant forp and r mesons we found
that the result of the MEM analysis is consistent with sta
dard analysis.

We have found a state in the meson spectral function
va'2 for all b, and have argued that it is an unphysic
bound state of two fermion doublers. If this interpretation
correct, this will be the first time that the doubler state h
been identified numerically in lattice QCD simulations. Fu
ther confirmation of this interpretation can be made
changing the Wilson parameterr from unity, by analyzing
the Kogut-Susskind fermion data with the MEM, or by co
sidering meson correlation functions with a momentum
p/a.

We have demonstrated that the masses and the decay
stants for various states as well as the ground state spe
widths for both mesons can be extracted from a single c
relation function with a point source by the MEM. Whil
errors could be reduced by the standard analysis with m
sophisticated methods, we think that the MEM can be
simple alternative.

A future extension of MEM analysis is an application
unquenched data to see dynamical quark effects in the s
tral function; decays and scatterings of intermediate st
may be detected from possible widths in the spectral fu
tion. It will also be interesting to see the change of the sp
tral function before and after the phase transition at fin
temperatures.
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TABLE VI. Decay constants forp and r mesons in the con-
tinuum limit and experimental values. DOF indicates degrees
freedom.

f p0
f r0

f r1

Continuum limit 80.3~5.9! MeV 0.2062~84! 0.085~36!

x2/DOF 0.618 2.18 0.555
Experimental value 93 MeV 0.198~4!
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11640250, 11640294, 12014202, 12304011, 126402
12740133, and 13640260!. The numerical calculations fo
the present work were carried out at the Center for Com
tational Physics, University of Tsukuba.

APPENDIX A: BAYES’S THEOREM

In this section we list some results of probability theo
and Bayes’s theorem used in the MEM. Bayes’s theorem
probability theory@11# is given by

P@XuY#5
P@YuX# P@X#

P@Y#
, ~A1!

where P@X# is the probability of an eventX, and P@XuY# is
the conditional probability ofX given Y. These probabilities
satisfy

P@X#5E dYP@XuY# P@Y#, ~A2!

and the condition for normalization,

E dX P@X#51, ~A3!

E dXP@XuY#51. ~A4!

f

FIG. 12. Widths for the ground state peaks ofp andr mesons
and their continuum extrapolation.
-

FIG. 13. Combination of the

excited state mass fit and the un
physical state fit ofp and r me-
sons.
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In this article, we use P@XuYZ# which is the conditional
probability of X given Y and Z. For P@XuYZ#, Eqs. ~A1!,
~A2!, and~A4! are rewritten, respectively, as

P@XuYZ#5
P@YuXZ#P@XuZ#

P@YuZ#
, ~A5!

P@XuZ#5E dYP@XuYZ#P@YuZ#, ~A6!

E dXP@XuYZ#51. ~A7!

The most probable spectral function is obtained by ma
mizing the conditional probability P@FuDH# ~in this section
prior knowledgeHma is rewritten asH again for simplic-
ity!, and satisfies the condition,

dP@FuDH#

dF
50. ~A8!

We rewrite P@FuDH# by Bayes’s theorem as

P@FuDH#5
P@DuFH#P@FuH#

P@DuH#
. ~A9!

The probabilities P@DuFH# and P@FuH# are the likelihood
function and the prior probability, respectively.

Integrating Eq.~A9! overF and using Eq.~A7!, one finds
that

P@DuH#5E DFP@DuFH#P@FuH#, ~A10!

whereDF is the measure of the spectral functions. From t
point of view, P@DuH# is a normalization factor related to th
likelihood function and the prior probability, and we do n
need to take account of it.

APPENDIX B: TRANSFORMATION OF COVARIANCE
MATRIX

In this section we introduce a method that easily de
with a nondiagonal covariance matrix. IfC is not a diagonal
matrix, one can transformC into a diagonal form through
C5Rs2R21, whereR is the transformation matrix ands2 is
the eigenvalue matrix ofC. The kernelKli 5K(v l ,t i) and
the dataDi5D(t i) are transformed byR as

TABLE VII. Fit parameters andx2/DOF ~degrees of freedom!
of the unphysical state fit forp andr mesons.

p meson r meson

C1 2.57~30! 2.924~25!

C2 21.05(78) 21.051(58)
x2/DOF 0.3158 1.476
01450
i-

s

ls

K̃ li 5 (
i 851

ND

Kli 8Ri 8 i , ~B1!

D̃ i5 (
i 851

ND

Di 8Ri 8 i . ~B2!

After this transformation, the likelihood functionL defined in
Eq. ~6! is written as

L5
1

2 (
i 51

ND S D̃ i2(
l 51

Nv

f l K̃ l i D 2

/s i
2 . ~B3!

This transformation does not require any changes in o
parts of the MEM.

APPENDIX C: THE NORMALIZATION CONSTANT
OF THE PRIOR PROBABILITY

The factorZS(a) defined in Eq.~10! is the normalization
constant of the prior probability. In order to calculateZS(a),
we introduce a variableXl that makes the curvature ofS( f )
flat, and expandS( f ) by transformingf l into Xl and applying
the Gaussian approximation toX( f ) aroundX(m),

S~ f !'S~m!1(
l 51

Nv

dXl

]S

]Xl
U

X(m)

1
1

2 (
l ,l 851

Nv

dXldXl 8

]2S

]Xl]Xl 8
U

X(m)

~C1!

5S~m!1(
l l 8

Nv

dXl

] f l 8
]Xl

]S

] f l 8
U

m

1
1

2 (
kk8 l l 8

Nv

dXldXl 8

] f k

]Xl

] f k8

]Xl 8

]2S

] f k] f k8
U

m

, ~C2!

where dXl5Xl( f )2Xl(m). From the properties ofXl we
choose

d fl

dXl 8

5Af ld l l 8 . ~C3!

Since

S~m!50,
]S

] f l
U

m

50,
]2S

] f l] f l 8
U

m

52
1

f l
d l l 8 , ~C4!

we take the Gaussian form forS( f ),

S~ f !'2
1

2 (
l 51

Nv

~dXl !
2. ~C5!

The measureDF is derived from the so-called monkey a
gument @6,13,16# and related to the metric ofS( f ). It is
written as
1-14
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DF5)
l 51

Nv d fl

Af l

. ~C6!

DF is transformed by Eq.~C3! such thatDF→) l 51
Nv dXl .

We can easily integrate overf l and obtain the normalization
constant,

ZS~a!5E DFeaS( f ) ~C7!

'E )
l 51

Nv

dXlexpF2
1

2
a(

l

Nv

~dXl !
2G ~C8!

5SA2p

a D Nv

. ~C9!

APPENDIX D: UNIQUENESS OF THE MEM SOLUTION

In this section we explain that the condition satisfied
the most probable spectral function, Eq.~A8!, has only one
solution, and has no local minimum. The likelihood functi
L satisfies

(
l ,l 851

Nv

zl

]2~2L !

] f l] f l 8

zl 852(
i 51

ND z̃i
2

s i
2
<0 with z̃i5(

l 51

Nv

zlKli ,

~D1!

where thezl ’s are nonzero real vectors and thez̃i ’s are real
vectors. The entropy and a real and positive parametea
satisfy

(
l ,l 851

Nv

zl

]2aS~ f !

] f l] f l 8

zl 852a(
l 51

Nv zl
2

f l
,0, ~D2!

where we have used 0< f l,` and 0,a,`. The matrix
]2Qa( f )/] f l] f l 8 is negative definite,

(
l ,l 851

Nv

zl

]2Qa~ f !

] f l] f l 8

zl 8,0. ~D3!

Using Rolle’s theorem, one can verify that Eq.~A8! has only
one solution corresponding to the global maximum
Qa( f ), if it exists @6#. Roughly speaking, since the curvatu
of Qa( f ) is always negative,Qa( f ) has only one maximum

APPENDIX E: THE CALCULATION OF P †azDHM ‡

In order to search for the most probable value ofa, we
need to evaluate the conditional probability P@auDHm#.
This conditional probability is used in Bryan’s method@17#
as the weight factor for averaging overa. In order to calcu-
late P@auDHm#, we transform P@auDHm# by Bayes’s theo-
rem and Eq.~A6! as
01450
f

P@auDHm#5P@DuHma#P@auHm#/P@DuHm# ~E1!

5P@auHm#E DFP@DuFHma#

3P@FuHma#/P@DuHm# ~E2!

}P@auHm#E DF
eQa( f )

ZLZS~a!
. ~E3!

Under the assumption that P@FuDHma# is sharply peaked
around the most probable spectral functionf a , Qa( f ) is ex-
panded in the variableXl( f ) used in Appendix C and the
Gaussian approximation aroundXl( f )5Xl( f a),

Qa~ f !'Qa~ f a!1(
l 51

Nv

dXl

]Qa

]Xl
U

X( f a)

1
1

2 (
l ,l 851

Nv

dXldXl 8

]2Qa

]Xl]Xl 8
U

X( f a)

~E4!

5Qa~ f a!1(
l l 8

Nv

dXl

] f l 8
]Xl

]Qa

] f l 8
U

f a

1
1

2 (
kk8 l l 8

Nv

dXldXl 8

] f k

]Xl

] f k8

]Xl 8

]2Qa

] f k] f k8
U

f a

, ~E5!

wheredXl5Xl( f )2Xl( f a). Because

]Qa

] f l
U

f a

50,
]2Qa

] f l] f l 8
U

f a

52S a

f l
d l l 81

]2L

] f l] f l 8
D

f a

, ~E6!

we can write

Qa~ f !'Qa~ f a!2
1

2 (
l ,l 851

Nv

dXl~ad l l 81L l l 8!dXl 8 ,

~E7!

whereL l l 8 is a real symmetricNv3Nv matrix defined as

L l l 85Af l

]2L

] f l] f l 8

Af l 8u f a
. ~E8!

We then obtain

P@auDHm#'
P@auHm#

ZLZS~a!
E )

l 51

Nv

dXlexpFQa~ f a!

2
1

2 (
l ,l 8

dXl~ad l l 81L l l 8!dXl 8G ~E9!

}P@auHm# eQa( f a))
l 51

Nv A a

a1l l
.

~E10!

Here thel l ’s are the eigenvalues ofL.
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APPENDIX F: ESTIMATION OF UNCERTAINTY
IN THE MEM

In the MEM, it is possible to estimate the uncertainty o
spectral function averaged over a certain region I ofv,

^ f a& I5

E
I
dv^ f ~v!&

E
I
dv

'

E
I
dv f a~v!

E
I
dv

, ~F1!

where ^Q&5*DFQP@FuDHma#. Using the Gaussian ap
proximation and the variableXl( f ) in Appendix E, the cova-
riance of the spectral function can be calculated as

^d f ~v!d f ~v8!&5Af a~v!^dX~v!dX~v8!&Af a~v8!
~F2!

'Af a~v!Gvv8
21 Af a~v8! ~F3!

52S d2Qa

d f ~v!d f ~v8!
D

f a

21

, ~F4!
uc

rk

01450
whereG5ad1L. The form of Eq.~F4! is readily available
because it is the Hessian of the Newton search algori
@3,6,17# used to findf a . The uncertainty is estimated as

^~d f a!2& I'

E
I3I

dvdv8Af a~v!Gvv8
21 Af a~v8!

E
I3I

dvdv8

. ~F5!

Similar to the spectral function, the error of the averag
spectral function in a certain region I is averaged overa with
the weight factor P@auDHm#,

^d f̂ & I5

E daP@auDHm#A^~d f a!2& I

E daP@auDHm#

. ~F6!
a

in
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