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We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a
tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass by matching the
Hamiltonian on the lattice and in the continuum. The heavy quark mass dependence of the improvement
coefficients, i.e., the ratio of the hopping parametersK, /K, and the clover coefficients;,, is examined at
the tree level, and effects of the choice of the spatial Wilson paramggee discussed. We then compute the
charmonium spectrum in the quenched approximation empldying/a,= 3 anisotropic lattices. Simulations
are made with the standard anisotropic gauge action and the anisotropic clover quark actiea-Witht four
lattice spacings in the rangg=0.07-0.2 fm. The clover coefficientg, are estimated from tree-level tadpole
improvement. On the other hand, for the ratio of the hopping paraméterse adopt both the tree-level
tadpole-improved value and a non-perturbative one. The latter employs the condition that the speed of light
calculated from the meson energy-momentum relation be unity. We calculate the spectBlamd® states
and their excitations using both the pole and kinetic masses. We find that the combination of the pole mass and
the tadpole-improved value d@fto yield the smoothest approach to the continuum limit, which we then adopt
for the continuum extrapolation of the spectrum. The results largely depend on the scale input even in the
continuum limit, showing a quenching effect. When the lattice spacing is determined fror?th& &plitting,
the deviation from the experimental value is estimated to{89% for theS-state hyperfine splitting and
~20% for theP-state fine structure. Our results are consistent with previous resultszabbtained by Chen
when the lattice spacing is determined from the Sommer sgal&Ve also address the problem with the
hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum
limit. Making a leading order analysis based on potential models we show that a large hyperfine splitting
~95 MeV obtained by Klassen with a different choice of the clover coefficients is likely an overestimate.
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I. INTRODUCTION >1/mq [1,2]. Since the expansion parameter of NRQCD is
. S the quark velocity squaresf, lattice NRQCD works well for
Lattice study of heavy quark physics is indispensable forsufficiently heavy quarks such as the the bottari~0.1),

determining the standard model parameters such as the quaéhd the bottomonium spectruf—6] and thebEg hybrid

masses and Cabibbo-Kobayashi-Maskd@KM) matrix el- . . .
ements, and for finding sigynals of ne\f/ phyéics beyond it.spectrun{7—10:| have been studied successfully using lattice

Obtaining accurate results for heavy quark observabies, howNRQCD. A serious constraint with the approach, however,
ever, is a non-trivial task. Since lattice spacings of oraer IS that the continuum limit cannot be taken due to the con-
~(2 GeV) ! currently accessible are comparable or everfition a>1/m,. Thus the scaling violation from the gauge
larger than the Compton wavelength of heavy quarks giverand light quark sectors should be sufficiently small. In prac-
by 1/m, for charm and bottom, a naive lattice calculation tice it is often difficult to quantify the magnitude of system-
with conventional fermion actions suffers from large uncon-atic errors arising from this origin. Another difficulty is that
trolled systematic errors. For this reason, effective theoryhere are a number of parameters in the NRQCD action
approaches for heavy quarks have been pursued. which have to be determined. Since in the present calcula-
One of the approaches is the lattice version of the nontions the tuning of parameters is made at the tree léwel
relativistic QCD (NRQCD), which is applicable fora  tadpole improved tree levebf perturbation theory, the accu-
racy achieved is rather limited.
Another approach for heavy quarks uses a space-time
*Present address: Department of Physics, University of Walesasymmetric quark action, aiming at implementi@ga) im-

Swansea SA2 8PP, UK. provement for arbitrary quark ma$&l]. With appropriate
TPresent address: CERN, Theory Division, CH-1211 Geneva 23parameter tunings, this action is unitarily equivalent to the
Switzerland. NRQCD action up to higher order corrections far
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>1/my, and goes over into the light quark Sheikholeslami-sensitive to the clover coefficients, it is plausible that the
Wohlert (SW) action [12] for am,<1. This approach has disagreement is due to a large discretization error arising
been originally proposed by the Fermilab group and the acfrom the choice of the clover coefficients. In an unpublished
tion is hence called the “Fermilab action,” whose first appli- paper [19], he pointed out the possibility that the
cation is found in13]. Since the necessary tuning of mass-O((éa;my)")=0((asmg)") errors still remain with his
dependent parameters is in general difficult, in practice onehoice of the parameters, which we review in the next sec-
uses the usual SW quark action evendor 1/m,, where the  tion. A similar statement can be found in some recent studies
SW action is unitarily equivalent to NRQCD. This simplified [22,23. In fact, he adopted rather coarse lattice spacags
approach, called the “non-relativistic interpretation” for the =0.17-0.30 fm whereagm,~1. It is then questionable
SW quark, has been widely used in current lattice simulawhether the reliable continuum extrapolation is performed at
tions of heavy quark, such as the calculation of Bhmeson  such coarse lattice spacings.

decay constanitl4—17. Toward the continuum limia—0 Using the same anisotropic approach as Klassen, Chen
the lattice action approaches the usD4h)-improved action has recently calculated the quenched charmonium spectrum
and the systematic error becomes smalleramqoz. How-  [24]. She employed=2 and finer 6,=0.10-0.25 fm) lat-
ever, theam, dependence @m,=1 is quite non-linear, and tices, and adopted the tree level tadpole improved clover

it is not trivial how the systematic error could be controlled. coefficientcs correct for any mass, which is expected to be
Recenﬂy, use of the anisotropic lattice for heavy quarkbetter than the other choice that is correct Only in the mass-
simulations has been proposgi8,19 as a possible alterna- €ss limit. She computed not only the ground state masses
tive to solve the difficulties of the effective approach. On anbut also the first excited state masses, and extrapolated them
anisotropic |attice, where the tempora] lattice Spamgs tOI the continuum limit. Her results £=2 are CO”Si?tent
smaller than the spatial ore, one can achieve,m,<1 with Klassen’s results =2 and 3 with the same choice of
while keepingasmy~1. Therefore, using anisotropic lat- the clover coefficients.
tices, one can reduc®((a;m,)") (n=1,2,...) discretiza- Since Chen's calculation was performed only &2,
tion errors while the Computer cost is much less than thaﬁim”ar calculations at different values éfusmg fine lattices
needed for the isotropic lattice at the same Naively itis ~ are needed to check the reliability of the continuum limit
expected that the reduction @f((a;m,)") errors entails the from the anisotropic approach. In addition, the complete
reduction of most of discretization errors due to a large quarle-state fine structure has not yet obtained in this approach so
mass, since the on-shell condition ensures that the large ef@r, since the mass ofP,(x.,) state has not been measured
ergy scale flows only into the temporal direction as far as onén previous studies.
considers the static particleith zero or small spatial mo- In this work, we present a detailed study of the charmo-
mentum If such a naive expectation is correct, the discreti-nium spectrum from the anisotropic lattice QCD. We per-
zation error is controlled by a small parametgm, as it is ~ form simulations in the quenched approximationéat3,
for light quarks, and one can achieve even better accuracy mploying fine lattice spacings in the ranges
taking a continuum limit. However, it is not obvious that one =0.07-0.2 fm. We attempt to determine the ground state
can eliminate allO((asm)") errors at the quantum level, masses of all th& andP states(including °P,) as well as
even if it is possible at the tree level. their first excited state masses. To estimate the systematic
Another advantage of the anisotropic lattice, which iserrors accurately, we adopt both the tree level tadpole im-
more practical, is that a finer temporal resolution allows us troved value and non-perturbative one forand both the
determine large masses more accurately. This has been @ole mass and kinetic mass fivt,(1S) which is tuned to
ready demonstrated in simulations of the gluel§ad,21]  the experimental value. We focus on the lattice spacing de-
and the hybrid mesof8]. pendence and continuum limit of the mass splittings. We
Klassen calculated the charmonium spectrum in thecompare our results with the previous anisotropic results by
quenched approximation, employing lattices with the ratio ofklassen and Chen to check the consistency, and with experi-
the temporal and spatial lattice spacingsas/a;=2 and 3, mental value$25] to estimate the quenching effect.
as a feasibility study of the anisotropic approts,19. He In addition, to understand the discrepancy of the hyperfine
tuned the ratio of the temporal and spatial hopping paramsplitting mentioned above, we make a leading order analysis
eters{=K,/Kg non-perturbatively by demanding the relativ- using the potential model. To examine the effect of clover
istic dispersion relation for mesons. For the spatial clovercoefficients, we estimate the hyperfine splitting at leading
coefficientcg, he adopted two choices: the tree level tadpoleorder. Comparing the leading order estimates with numerical
improved value correct for any masaf,=0) and that results for the hyperfine splitting, we attempt to find a prob-
correct only in the masslessm,=0) limit, in order to  able solution for this problem. Our preliminary results are
make a comparison. He mainly studied the spin splitting ofalready reported in Ref$26,27).
the spectrum, and obtained an unexpected result that two This paper is organized as follows. In Sec. Il, we summa-
different choices of the clover coefficients lead to two differ-rize and discuss the theoretical aspect of the anisotropic lat-
ent values of thes-state hyperfine splitting even in the con- tice QCD. In Sec. lll, we give details of our simulation. Our
tinuum limit [18,19. The continuum limit is of course results for the charmonium spectra are shown in Sec. IV,
unique, and clearly, at least one of the two continuum exwhere we attempt to take the continuum limit and estimate
trapolations is misleading. Since the hyperfine splitting isthe quenching effect. We address the problem of the discrep-
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ancy of the hyperfine splitting and study the effect of cloverwith the Wilson coefficientsr(,r;)=(r;,rs) and
coefficients in Sec. V. Section VI is devoted to our conclu-

sions. t

1
D,u_'vzleT%[Uu,xwx-%—,&_uﬂvxfﬁ'ﬂx—,&]- (5)
1. ANISOTROPIC LATTICE QCD ACTION

In t.his gection we firs_t define_ the anisotropic Iqttice action Diszz iz[umxwxﬂfr U;,x—,;'z”xfﬁ_ 2¢,]. (6)
used in this work and fix notations. We then derive the tree a,

level values of bare parameters in our massive quark actio
and discuss effects of the anisotropy. Although it was alread
discussed in earlier papef2,23, we briefly describe the
outline of derivations in order to be self-contained. We also
consider the tadpole improvement of bare parameters and s
how tree level values are modified.

%or the field tensoF pvr WE adopt the standard cloverleaf
definition. Note that, in Eq(3), the factors in front of spatial
Wilson and clover operators includg rather tharé. This is
rely a convention and there is no deep theoretical reason.
is action is essentially the same as the one employed by
Klassen[19] and Chen[24]. In Chen’s work, howevery,
was a tuning parameter with= 1 fixed. The two parametri-
zations are related to each other by a field rescaling

In this work, we use the standard Wilson gauge actiony,= i, /\v. Therefore {mg,vy,w,wo}* corresponds to

A. Anisotropic gauge action

defined on an anisotropic lattice: {my/v,1lv,w/v,wy/v} in our convention. Among these six
parametergmg,v,rg,r,®, g}, at least one is redundant, so
that we take; as a redundant parameter and use it to remove
Sy= 1-Psg(X) ]+ 1—Pg(x t
“Alg xgs [17Pss(x)] 502 [1= Pl the fermion doublers. Although, may not be taken arbitrary

) in the O(a) improved anisotropic quark actidi23] for the
matrix elements, it can be taken arbitrary for the hadron mass
where B=6/g® is the gauge coupling, an®sy(x) and calculation. Therefore we always sgt=1 and leave  free
St(x) are the spatial and temporal plaquettes wWatf,(x) in this work. The remaining parametefsg,v,w,wg} are
=1iRe TrU,,(x). The anisotropy is introduced by the pa- used to tune the quark mass and reduce the lattice discreti-
rameteré, and we call this the “bare anisotropy.” We denote zation error.
spatial and temporal lattice spacingsegsanda; and define For convenience in numerical simulations, we also
the “renormalized anisotropyé=ag/a,. We haveé=¢, at  present the quark action in a different form. Rescaling the
the tree level, and thé=&(&p,B) at finite 8 can be deter- fields ¢, the quark action can be transformed into a form
mined non-perturbatively by Wilson loop matchif28—-30.  given by
In numerical simulations, there are two methods for anisot-
ropy tuning: either varyings, to keep ¢ constant or vice s -1 T
versa. Since the former is more convenient for keeping the ! =2, | U KL= 700 Uo e o
physical size constant and easier for performing the con-

. . e _ : ) _ )
tinuum extrapolation, we adopt it in this work X (1+ YO)UO,X,@lﬂx—o]— Kszi [T s— Y Ui b

B. Anisotropic quark action

_ + ) ) — .
For the quark action, we employ the space-time asymmet- T ¥x(Fst¥)U; i i]1 + IKSCSxiEq Py Fij (X) Py
ric clover quark action on an anisotropic lattice proposed in '

Refs.[18,19: ) — .
FiKC 2 i Fai(0 vy, 7
Si=> Qi 2
' 2 hQux @ where K¢ and cg, are the spatial and temporal hopping
parameters and the clover coefficients, respectively. The hop-
- v - ping parameter&, are related to the bare quark mang
Q=mg+ VoWo?’oJrg— > Wiy, =a,m,o through
0 i q0
i R aimge=1(2K\) - 3rg/{—1, (=K{/K;. 8
) on UolFo|(X)+ > aFi0], 3 _ . o
§o X< ] The form, Eq.(7), on the anisotropic lattice is the same as

_ that on the isotropic lattice in Ref11]. Note however that
where vo=1 andme=a;mq is the bare quark mass, and Ref.[11] uses the inverse of our definition fér We refer to
Wﬂyﬂ a,W,y, and F,=a,a,F,, with (ap.a) their definition as{,=K/K;=1/{. Using Eq.(8) one can
=(a(,as). The Wilson operatow,, is defined by

_a_r D2 (u=0,1,2,3 (4) IMore precisely, Chen used the Iangue{gh),vt,cgw,c‘sw} in-

=D
pYum e stead of{mg, vg,w,wg}.
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convert{mgo,} to {Kg,K}. In our convention, the relation \/ EofsMp(2+ M)\ 2 my(2+my)
between{v,w,wq} and{{,cs,c;} is given by SolF=v= ( 4(1+my) 2 Tog(1+ mg)
g: 50/7/, CS: (1)/1/, Ct: gOC’)O/V (9) _ gorsmo(Z"f‘ mo) (17)
. 4(1+mg)
or, equivalently,
v=¢§0l{, w=Cgv, wo=Cl&. (10 Cs=rs (0=Tv), (18)
2_ 2 2
Following Ref.[11], we call the quark action Ed3) as = (fofp =1  &ofslr  (£or's)"Mo(2+mo)
the “mass form” and Eq.(7) as the “hopping parameter Mp(2+my)  1+mg 4(1+mg)?
form.” (19

We note thatcg is independent of the quark mass, while
andc, have complicated mass dependences. The fm
To derive the tree level value of bare parameters, we fol-:asmqo seems to exist in Eq(17) and (19). To see this
low the Fermilab method and calculate the lattice Hamil-explicitly, we expandv andc; in mq,. This gives
tonian [11]. After some algebrdsee the Appendix for de-
tails), we obtain the lattice Hamiltonian, EGA9). Using the
Foldy-Wouthuysen-Tan{FWT) transformation, Eq(A17),
we then transform it to the non-relativistic form, in which the

C. Tree level tuning of bare parameters for arbitrary mass

1 1
p=1+5(1=&or )Mo+ 51 = 1+ 66or o+ 3(£or o) 2

upper components of the Dirac spinor completely decouple +0(mp), (20
from the lower oneqi.e., eliminatey-D and a-E). The
transformed Hamiltonian is given b 1+&rs 1
Jen Dy 6= 5 + 5[ 2= 3&0r o+ 3(£gr o) Mo+ O(md).
1 D? i> B (21
gtHUZ‘I’ my+ ¥oAg— 2m,  2mg Theagmyp term, which isO(1) for heavy quarks at currently
accessible lattice spacingsa);f1~2 GeV, appears i and
c; even at the tree level. Singgmg=asmyq is always mul-
[v-D,y-E] - tiplied by the spatial Wilson coefficient; in Egs. (20) and
Yo/t |V (13) (21), one can eliminate thagmy, term at the tree level by
8mg choosing
with re=1/&,. (22)
a;m;=log(1+mg), (120 However, this choice has the disadvantage that the mass
splitting between unphysical doubler states and the physical
1 247 relr state decreases §g increases. Moreover, the hopping terms

(13 in the quark action are no longer proportional to the 4,
projection operators. It is also doubtful that, beyond the tree
level, theagmo term can be still eliminated by this choice.

atm22m0(2+ mg) 1+mp’

1 20 cilr

— + , (14) If one adopts the conventional choice
aymg my(2+my) 1+mg
re=1, (23
2
! =47} ﬂ (c— ); , the agmgyo term remains, but the unphysical doubler states
(aymg)? m3(2+mg)? Mo(2+Mmp) decouple. This choice also has the practical merit that the

(15 quark action has the full projection property, so that the cod-
ing is easier and the computational cost is lower.
where{f, rg andcg are defined in Eq(A8). TheX - B term The tree-level full mass dependenceswofind c, for rq
gives the leading order contribution to the hyperfine splitting,=1/¢, andr,=1 are shown in Figs. 1 and 2. In order to
while the[ y-D, y- E] term yields the fine structure splitting. compare at the samg,, we choosem,ag as the horizontal
The matching conditioV =g+ 0(a2) is equivalent axis instead ofnya, wherem, is the pole mass. Sinca; *
to =1 GeV and mi<=Myyoni-4.5 GeV in current typical
simulations, we plot results fan,a,<4.
My =My,=Mg=Mg=Mm. (16) Forrs=1/£3 shown in Fig. 1, bothy andc; are monotonic
functions in mass, and they converge to their massless values
This yields the tree level value of bare parameters for thes &, increases at any fixed values of;as. Hence, the
massive quark: asmyo dependence can be controlled by increasipgAt &
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4.0
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1.0

2.0
m1as

4.0

FIG. 1. Tree level full mass dependencesvoéindc, for rg=1/¢=

= ¢ log(1+my). Vertical axis is normalized to be 1 in the massless

=100 the mass dependencesiofind ¢, completely disap-
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4.0 T T T
— 1
|
30 ____. £=3 r=1/¢ 1
——— E=4
—-—- £=100
20 | :

¢(m,,€)/c(0,6)

0.0

0.0 2.0

m1as

4.0

1/¢,. Horizontal axis is the pole mass in spatial lattice unitsa
limit.

Finally we show the tree level value of the parameters in

pear with the cost that the physical and unphysical states atbe massless limit. By takingimy,— 0 in Egs.(17)—(19),

almost degenerate. In actual simulations wighk 1/£,, tak-
ing 2=<¢p<<o to decouple unphysical doublers, one is al-
lowed to use the massless values foand c;, since their

mass dependences are monotonic and very weak. In this case

mass dependent parameter tuning can be avoided even
asmy~1.

Forrg=1, on the other hand, the mass dependences of
andc; are complicated and non-negligible even for lagge

one obtains

Indeedv andc, do not converge to their massless values as

&o increases at fixeth,ag, as shown in Fig. 2. The deviation
from the massless values &= 2 is smaller than the one at
&0,=1, but it becomes larger again &gincreases. Therefore,
taking £,=2-3 in simulations witlr;=1, one needs to per-
form a mass dependent parameter tuning.

For both choices of, it is better to use a moderate value

1+ &r
at v=1 w=rg, wo= 2¢, = (24
in the mass form, or
1+ &pr
{=&y, Cs=rs, C= 2 Sv (25

in the hopping parameter form. Note that there is an ambi-

of &, rather than excessively large values. In our numericaguity in the tree level value dds/a;, sinceéy=¢ at the tree

study of the charmonium spectra, we adopt the choice
=1, and make a mass dependent parameter tuning, due
the practical reasons mentioned above.

4.0

3.0
o
£ 2.0
>

1.0

0.0 1 1 1

0.0 1.0 2.0 3.0 4.0
m,a

level butéy# £ in the simulation. Fortunately, this ambiguity
abmost disappears after the tadpole improvement, as shown
in the next subsection.

4.0 . | | |
-
-,
— &t .
e §22 ’/,/
B I = s ]
& ——— =4 ’/,
S —-—- &=100 e
e _
up >
E ‘/¢/ I
< P
° /';’:_’_.’_ ___________
10 fesE= -
0.0 . . |
0.0 1.0 2.0 3.0 4.0
m,a

1*s

FIG. 2. The same as Fig. 1, but foy=1.
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D. Tadpole improvement

In this section we apply the tadpole improvemgsit] to &Mgo= i—(1+3r5/§)
the parameters of the anisotropic lattice action at the tree !
level in order to partially include higher order corrections.

i i i i i i - aim 1 1-u
Qne T|rst re\{vr|tes~the lattice action using a more cc?ntlnuum _ QMg 14 (Bro) s (33
like link variable U; y=U; o/us;, whereug,=(U; ¢ is the Uy Ut Ut
expectation value of the spatial or temporal link variable;
i.e., one replaces Using parameters with the tilde, one can repeat the deriva-
~ tion in the previous subsection. For a massless quark, one
Ui o—Us Ui, (26)  obtains
and then repeats the tree-level calculations. We will show ~
below how the tree-level values of bare parameters are modi- ~_% ~ _ ~ 1+ §0rs~1+ &rs
. §—§o—§, Cs=Trs, C= - . (34)
fied. 2 2
1. Gauge action Therefore, tadpole-improved|) tree-level estimates are
By the replacement of Eq.26), the anisotropic gauge
action Eg.(1) becomes M= (us/u) &= &, (35)
6|1 ~ = — L~ .
Sg—>—2 =5 |7 Pss +€oPst which indicates that non-perturbatiyeat my,~ 0 is closer to
9”1 %o & than to¢, and
+constant independentcﬁJMl, (27 o s o 1 1+(ui/ug)éers 1 1+érg
TR L 2 Tud 2
S sHYt sYt
whereP,,=3ReTrU,,, andg? and¥, are given by (36)
-, 92 g2 3 U, ; /<p5t> ; As canI be seen irr: Eq§35 and (3?), rt]he tadfpole im%rove—
gr=——= ) o=—&=\/—%o- ment eliminates the uncertainty of choice of anisotrGpsy.,
Usle  V(Psg)(Psy Us (Pssr) whether to chose&, or &) at tree level. Converting to the

(28) {v,w,w¢} convention, one obtains

Requiring space-time symmetry for the action, E2j7), in

the classical limit, one obtains the tree-level tadpole- rs 1 1+(ufug)éors
. . . Ti—q TI__S TI_

improved value of the anisotropydenoted by an index v @ 30 @o 2 2(u,Jug) &
uTln ), uS usut t s/S0

(37

TI_& _
7= b= (U/Us)&o. @9 Note thatr™ is normalized to 1 since equalsé,/{ and not
In practice¢™ in Eq. (29) agrees with the renormalized an- &/{; hence, the former definition is practically more conve-
isotropy & within a few % accuracy aj>~ 1. Therefore one nient than the latter one. Note also that tadpole factors;”in
can replace the factou(/ug) &y by € in the following equa- and wg' are different because@, equalsc,v/&, and not
tions. This simplifies the tree level expression. Moreover, thes,v/&.
arbitrariness for the choice of anisotropy disappears. Similarly, for massive quarks, tadpole-improved tree-level

estimates become
2. Fermion action

When the fermion action is rewritten in terms df and o Uy \/ rsMo(2+ M) Mo(2+ M)
U, instead ofU; and Uy, the action keeps the same form 1 TR 4(1+mo) +2(ut/us)zgélog(l+r~no)
with

- . rsMo(2+Mg)
Ke=uKg, Ki=uKy, 30 - 38
S si™s t thht ( ) 4(1+m0) ( )
ce=ulcs, Cc=ugq’c,. (32)
with vT'=¢,/¢™, and
Then {=K;/Ks and the bare quark massmg=1/2K;
—(1+3rg/¢) are modified to
o cll=— (39)
(=K /Kg=(ui/ug) ¢, (32 Us
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. 1 (VTI)2_1 u, forsVTl TAB_LE l. Simulation pqrametersl.aS is calculated usin@;",

C; = 51 = —+| — = the lattice spacing determined froirg.

Usut m0(2+ mo) uS 1+ mo

- - B & & o ¢ al[fm] L3XT  Lag[fm]

Uy | %(&or' s)*Mo(2+my) >
ST 4(1+mg)? (40 570 3 2346 1.966 2.505 0.204 °848 163
s 0 590 3 2411 1.840 2451 0.137 @72 1.65
wherefn—=a.m 6.10 3 2461 1762 2416 0.099 3696  1.59
0~ T 635 3 2510 1.690 2382 0070 24144  1.67

I1l. SIMULATIONS

We proceed to calculate the charmonium spectrum in thehoice of the parametegsandcs, in Sec. lll E. The tadpole
quenched approximation as our first numerical study usindgactorsus, in Egs.(36) and(39) are estimated by the mean
the anisotropic lattice. In this section we describe the complaquette prescription:
putational details of our quenched charmonium calculation.

us=(Psg)™  u=1. (43)
A. Choice of simulation parameters

For the gauge sector, we use the anisotropic Wilson gaugé we adopted the alternative  definition u,
action given in Eq(1). Throughout this paper, we employ =(P.)¥?/(P,)¥* instead,u; would be greater than 1. We
£=3, where¢ is the renormalized anisotropy. In order to use¢ instead of (1, /ug) &y in Eq. (36).

achieveé= 3, we tune the bare anisotrogy, using the pa- Gauge configurations are generated by a 5-hit pseudo heat
rametrization ofp=¢£/ £, given by Klasserf29]: bath update supplemented by four over-relaxation steps.
R These configurations are then fixed to the Coulomb gauge at
1\ 72(&) 1+a;0° 5 every 100-400 sweeps. On each gauge fixed configuration,
7(B,§)=1+|1- &6 1+a gzg ' 4D we invert the quark matrix by theiccgab algorithm to ob-
0 tain the quark propagator. We always perform the iteration of
wherea,= —0.77810,a; = — 0.55055 and the BicGgab inverter byT times, whereT is the temporal
lattice size. By changing the stopping condition for the quark
A 1.00250%3+0.3910G2+ 1.4713G — 0.19231 propagator, we have checked that this criterion is sufficient
n1(é)= 3 5 . to achieve the desired numerical accuracy. We accumulate
§°+0.2628'€°+1.5900& — 0.18224 400-1000 configurations for hadronic measurements.
(42 Our simulation parameters are compiled in Tables | and

; : : . _.._Il. In Table Ill, we compare some of the parameters used in
W f I h h . ! . ) :
at foirp\?;ﬁg: z;mguaﬁgzniéﬂpﬁin%q:usegg %dgzppgolx(;maa:;uc?n,our simulation(labeled by “set A") with those in the previ-

6.35. These couplings correspondag=0.07-0.2 fm and ous studies by Klassefiset B” and “set D") [18,19 and by

a M o= 0.16—0.48 formy,=1.4 GeV. The spatial lat- Cen(‘set C”) [24] for later references.
tice sizeL is chosen so that the physical box size is about 1.6
fm, while the temporal lattice siz& is always set to b& B. Meson operators

=2&L=6L. In this work, we calculate all o5 and P-state meson

For the charm quark, we use the anisotropic clover quarlfn ; 3 1

. ) ' . . ; asses of charmonia, namél , °S1(31), “Py(hy),
action, Eq.(7), with the conventional choice of the spatial 3Py(xeo), 3Pilxer) and 3P2($;(0(27)7C)For i&iswgompa(taﬁén

. .. _ . . c0/» [ c2)- ’
Wilson coefficientys=1, as mentioned in Sec; Il C. We take \ye measure the correlation function of the operators which
two values for the bare quark mast=(mp,mo) at eachB  paye the same quantum number as one of above particles. In
in order to interpolateor extrapolatg results inmg to the  Taple IV we give the operators for ti& andP-state mesons.

charm ; —
There are two types of operators: those of the e and

charm quark massii™™. The charm quark massS"®™is

fixed from the experimental value of the spin averag&l 1 - .

meson mass. In this procedure, we use both the pole magé yray, Whefer re.presen.ts a combination of matrices
andA the spatial lattice derivative. We call them theop-
Srator and thd"A operator, respectively. The latter appears

Mo @and kinetic massv, for the 1S meson. For{, the

ratio of the hopping parameters, we adopt both the tree-lev .
PPIng p P only for the P-state mesons. Note that there are two lattice

presentations for théP, state(E and T representations

tadpole-improved valug™ and a non-perturbative valué'”
determined from the meson dispersion relation. We describ g .
ue to breaking of rotational symmetry.
We measure the correlation functions of theoperators

our method of tuning in detail in Sec. Il C. For the spatial

clover coefficientcg, we employ the tree-level tadpole-

improved value for massive quarks, H89). Note thatc, . .

has no mass dependence at the tree level. On the other hand, Cadt) = 2 1799 B V/9%

we adopt the tree-level tadpole-improved value in the mass- X

less limit, Eq.(36), for the temporal clover coefficients . . )

We discuss possible systematic errors arising from our X E l//zo,or "”Vo'ofioﬂofio*yo , (44
Yo:20
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TABLE II. Simulation parameters continued. In fourth column, “NP” and “T1” denote the nonperturba-
tive and tree level tadpole improved values forespectivelycps \ are the speed of light obtained from the
fit for the pseudoscalar§,) and vector S;) mesons.

B L3XT aMgo 14 Sweep/conf  No. conf Cps Cy
5.70 Fx48 0.320 2.88 (NP) 100 1000 1.0080  1.00811)
5.70 Fx48 0.253 2.85 (NP) 100 1000 1.0080  1.00811)
5.70 Fx48 0.320 3.08 (TI) 100 1000 0.96®) 0.96510)
5.70 Fx48 0.253 3.03 (TI) 100 1000 0.96@®) 0.96910)
5.90 13x72 0.144 2.9NP/TI) 100 1000 0.99() 0.9939)
5.90 13x72 0.090 2.98\P/TI) 100 1000 0.99B) 0.9949)
6.10 16x 96 0.056 3.01 (NP) 200 600 0.99®) 0.9979)
6.10 16x 96 0.024 2.96 (NP) 200 600 0.99®) 0.9979)
6.10 16x 96 0.056 292 (TI) 200 600 1.01P) 1.0189)
6.10 16x96 0.024 2.88 (TI) 200 600 1.01P) 1.01610)
6.35 248x144 —0.005 2.8TNP/TI) 400 400 1.00611)  1.01%11)
6.35 28x144 —0.035 2.81INP/TI) 400 400 1.002)  1.00911)

wheref? is a source smearing function, and we always adopwith A andB, the same as those fer=1. For the®P, state,

a point sink. We employ the point source=<0) with f§=° for example, we calculat€§§0=25j:lC$S' with T';= ;.

. . iijj
it and_BaDq exponentially smeared soqrcsz(L) with For theI'A operators, we have two source combinations,
fy "=Ase” "™, whereAg andBg are smearing parameters.

Y ss'=02 and 12. In totalS-state mesons haves' =00, 01
Therefore we have three source combinatis®=00, 01 5, 11 source combinations, aRestate mesons have 00, 01,
and 11, for thd™ operators. The smearing paramet&gsand

h hat the effect]  the 11, 02 and 12 source combinations except &r,. Since
Bs at eachs are chosen so that the effective mass of t8e 1 016 js ol operator for3P,, it has only 02 and 12 source
meson forss’'=01 has a wide plateau.

X ) . combinations.
To obtain the correlation functions of teéA operators, To calculate the dispersion relation $&tate mesons, we

we measure measure correlation functions for four lowest non-zero mo-
menta,
Cia(h=2 <¢x,tFiAj¢x,t agp=(27/L)x{(1,0,0, (1,1,0, (1,11, (2,00},
(47)
X 2 Jzo,ork‘ﬂyo,ofF,/x:—zzof)s(ofyo , (49 in addition to those at rest. Correlation functions with the
Yo-Zo same value ofp| but different orientations are averaged to

increase the statistics.
whereA; i, = by i — thx—i 1 is the discretized derivative at
the sink, and we employ a smeared derivative sousce (. Tuning bare quark massm, and fermion anisotropy ¢

=2) given by : : : .
Let us describe our method of tunidgandm, in detail.

- CBsl Byt _ We determine the input parameters, (=mé,m§) and ¢
P r=Ae Bl —Ae Bl (=123  (46) (=T /Ny as follows. First we fixx=é=3 and choosen}

TABLE lIl. Comparison of simulation parameters in various anisotropic lattice studies afctispectrum. In the third to fifth columns,
TI (m=0), TI (m=0) and NP respectively denote the tree level tadpole improved value for massive quarks, which are correct only in the
massless limit and the non-perturbative value. The sixth column shows which method is used for the estimation of the tadpaelg, factors
(the plaquette prescription® or the Landau mean link prescriptiart). The seventh column shows whictsImass is tuned to the
experimental value. The eighth column denotes quantities used for the scale setting. The final column is the continuum estimate of the
hyperfine splitting from theZ2-linear fit with the scale set by,

Set £ 4 Cs C Us M 2(1S) Scale input HFS&,=0/)
(A) this work 3 TIm=0), NP TIm=0) TI(m=0) uP M potes M kin ro 1P-1S, 25-1S ~75 MeV
(B) Klassen[19] 2,3 NP TIm=0) TI(m=0) u" M poi =Min) ro ~75 MeV
(C) Chen[24] 2 NP TIm=0) TI(M=0) u" Mpud=Mgp) o ~75 MeV
(D) Klassen[18,19 2,3 NP TIm=0) TI(m=0) u" M o = Myin) o ~95 MeV
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TABLE IV. S and P-state operators. In the first and second
columns, the state is labeled By"'L, and J”C respectively. The
third column shows the particle name for the charmonium family.
In the fourth and fifth columns, we give the correspondih@p-
erator and"A operator.

where the spin-averagedIneson masM 4( 1§) in units of

a physical quantityQ,,; is equal to the corresponding experi-
mental value:

Mia1S) Moy 1S)

23t ;0 JP¢ Name T operator I'A operator Qa  Qexpt (50
1 - — _

350 0__ e bysy with M¢,,(1S)=3067.6 MeV for charmonium. In this
151 1 I i work, we adopt the Sommer scalg and the spin-averaged
i = _ et > ol i
P, 1 he poy PysAiy mass  splittings AM(1P-1S)=M(1P)—-M(1S) and

Py 0FF D VS iy, S1S =M (2% ) .
0 Xco R4 _ YERivAiy AM(2S-18)=M(2S)-M(1S) as the scale quantit®. The
Py 1YY Xa Yyiysy Wy —yAity spin-averaged masses are defined by
3 ++ —
P, 2 Xc2 Hlyidi—viAb o (E rep _
{ i M(nS)=[3M(n3S,)+M(n'S) /4, (51)

J{%AJ‘ +y;Aity (T rep

M(nP)=[3M(n'P;)+5M(n3P,)+3M(n3P,)

and mg where the B meson mass roughly agrees with the +M(n®Py)]/12 (52)
experimental value. Then we determine both the tree-level
tadpole-improved valug™ and the nonperturbative value with n(=1,2,...) theradial quantum number. The experi-
NP at M= m(l)ﬂand mé. mental values of the mass splittingsM(1P-1S) and
To obtaing™ at fixedmo, we use Eqs(33) and(38). We A\ (25.1S) are 457.9 MeV and 595.4 MeV, respectively.
replace the factout/uﬁ;r} Eq.(38) with &/&o, using EQ.(29).  The experimental values of, is not known, and we use a
On the other hand/™ is obtained by demanding that the henomenological estimatg=0.50 fm. For the definition
relativistic dispersion relation is restored at small momentay the |attice meson masHl,, in Eq. (50), we have two
fqr theb 1S meson. The dispersion relation on a lattice iShgices in the case @=¢"": one is the pole masd s0le @Nd
given by the other is the kinetic madd;,. On the other hand, in the
2_ 2, 202 2.4 case of{={"", Mpue=Myi, should hold by definition. In
E(p)"=E(0)"+c"p™+0(asp?) (“48) practice, there can be small deviations due to the statistical
error. Therefore we have 452x2) choices for W14,¢) in
total.

=|V|2 +Mpole

pole Mk' p2+O(a§p4), (49)
in

D. Mass fitting

From meson correlation functions we extract the meson
wherec is called the “speed of light,” and!l ,oc andMy;, are  mass(energy by standardy? fitting with a multi-hyperbolic-
the pole and kinetic masses of th& meson. Throughout cosine ansatttermedng-cosh fit belovy
this paper, a capital lettd! denotes the meson mass, while a
small onem the quark mass. Generaltyis not equal to one , Mt T
due to lattice artifacts. We extract the speed of lighby Cotd V)= Z A® COS'{(E_t
fitting E(p)? linearly in p? for three or four lowest momenta, =0
since the linearity oE(p)? in p? is well satisfied. We iden-
tify ¢"" with a point wherec=1 or_ethévalentlyMpme is the time separation from the source, angdis the number
=My, for the 1S meson. To determing™, we perform ¢ ciaies included in the fit.
preparatory flmulatlzons_and calculatdor {=2.8, 3.0 and We determine the mass of the ground state and the first
3.2 atmy=my andmg using 100—-200 gauge configurations. radial excited state for each particle, and the mass splittings
Then we find;=¢"*, wherec=1, from an interpolation of sych asAM(1P-1S) and AM(2S-1S), from a 2-cosh fit
{. As shown in Table II, the speed of lightat {\" is indeed  ysing several correlation functions with different source
equal to 1 within 1%, which is roughly the size of the sta-combinations simultaneously. Here we use the correlation
tistical error. functions ofss'=00, 01 and 11 sources f@ states, while
Production runs for the charmonium spectrum describeg, 11, 02 and 12 sources are used Rostates except for
in Sec. lIIA are performed atm,=(mg,mj) and {  3p,. For 3P,, we use the correlation functions of 02 and 12
= (L™, ¢"P) for eachp. Accidentally, for=5.90 and 6.35, sources. The 2-cosh fit for eachistate always gives the
{M=¢"P holds within our numerical accuracy, so we use theground state mass consistent with that from the 1-cosh fit. On
same data for the analysis at thgge the other hand, for the state, the 2-cosh fit is preferred over
Finally we linearly interpolate or extrapolate results atthe 1-cosh fit because thé?Imass from the 1-cosh fit using
my= (mg,m3) to those amy=mg™™, with fixed (=¢" or  the correlation function of 11 and 12 sources occasionally

{NP). As already mentioned, we identifp"™®™with a point  disagrees by a few, due to excited state contaminations. To

Mi}! (53)

wheress’ represents the source combinati@o, 01, eto, t
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0.88 T T T = T T e
081
0.86
; 0.80
0.84 079
0.78 |
= 082 5
3 s’ 077
=
o 0.80 < 0.76 ~
0.74 |
0.76 073 |
0.74 L L . 0.72 y .
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FIG. 3. Sstate effective masses gt=5.90, a;myo=0.144 and{=2.99. The left figure shows the'$, masses ap+ 0, while the right
shows the 1S, and 1S, masses for the souraes' =00, 01 and 11.

determine the mass of the first excited state accurately, it iand in Fig. 5, respectively. Our final fitting ranges are sum-
better to adopt results from the 3-cosh fit. However, we damarized in Table V. Statistical errors of masses and mass
not perform the 3-cosh fit systematically because of the insplittings are estimated by the jackknife method. The typical
stability of it, and adopt results from the 2-cosh fit for the bin size dependences of jackknife errors for the ground state
first excited state mass. This may cause an overestimation afasses are shown in Figs. 6 and 7. We always adopt a bin
the first excited state mass due to a contamination fronsize of 10 configurations, i.e., 1000—4000 sweeps.

higher excited states.

To determine the spin-averageds Imass and the &
energy atp#0, and the spin mass splittings such as
AM(13S,-11Sy) andAM (13P;-13Py), we perform a 1-cosh We discuss scaling violation for our action and how the
fit (ng=1) using the source combination which gives theresults at finiteas are extrapolated to the continuum limit
widest plateau in the effective mass. We use the 01 source fer,— 0. Since we use the anisotropic Wilson gauge action
the Sstate and the 12 source for tRestate. We always check with nonperturbatively tuned,, the scaling violation from
that the spin mass splitting from a simultaneous 2-cosh fithe gauge sector starts @((asA ocp)?)-
mentioned above agrees with that from the 1-cosh fit within  For the quark sector, we use the anisotropic clover quark
lo—20. We also check that the splittingM(13P;-1°Py)  action with tadpole-improved clover coefficients,, and
from a 1-cosh fit using the 11 source agrees with that usingither the tadpole-improved valug™ or nonperturbative
the 12 source. value (NP for £. Since we adopt the tree-level tadpole-

In these analyses, we perform both the uncorrelated fiimproved value ofcg for massive a;m,=0) quarks, the
and the correlated fit which takes account of the correlatiocaling violation arising from the choice ot is
between different time slices and different sources. The un-
correlated fit is always stable and givg8/Npr<0.5 (Q 0.93 = —_ . :
~1). The correlated fit with 1-cosh ansatz is also stable and § 1'P, T ope.
produces results consistent with those from the uncorrelated 092 8 § T
fit. However, the correlated 2-cosh fit is often unstable, either 091
failing to invert the covariance matrix or giving large 0.90 F %
x?INpe>1 even if it converges. Therefore we adopt the un- oso | E T
correlated fit for our final analysis. '

The fitting rang{ tmin .tmax fOr the final analysis is deter- = 088 [
mined as follows. From an inspection of the effective mass © 0.87

E. Scaling violation and the continuum limit

% 11P1 T'A ope.

eff

R
P
&

plot, we determine,,,, Which roughly has the same physical 0.86 |

length independent g8. We repeat the 1- and 2-cosh fits for 000 |

eachg, varyingt,,, with fixed t,,x, and find a range df;, 0.85 I o 01 il

where the ground state mass and the first excited state mas 0.84 ° 11 H

(for 2-cosh fi} are stable against,,. We also check that it 0.83 . .

has reasonable value §f/Npg . The finalt,,, is then cho- 0 0 20 30

sen from the region accepted above so that its physical t

length is roughly equal independent gf FIG. 4. P-state (1P,) effective masses aB=5.90, aimy

Typical examples of the effective mass plot and=0.144 and;=2.99. The left figure shows the masses from khe
tmin-dependence of the fitted mass are shown in Figs. 3, dperator, while the right shows those from tHa operator.

094508-10



CHARMONIUM SPECTRUM FROM QUENCHED. .. PHYSICAL REVIEW [B5 094508
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FIG. 5. Fit range {y,) dependence of masses @t 5.90, a;my=0.144 and{=2.99. The legend denotes the stéfieansatz, quark
source.

O((aSAQCD)Z) andO(aasA ocp)- (_)n the other hand, far,, and O(agAQCqu) at leading order, an®(aasAqcp) at

we adopt the tree-level tadpole-improved value correct onlyext-to-leading order. The size of these errors are estimated
i_n the masslessam,=0) Iim;t, which generates an addi- g beO((aSAQCD)z):7%—1%,O(agAQCqu)ZSY%—4%
tional O(asA qep: 8sMg) = O(asAgepMg) error. Recall that  and O(aagA gcp) =4%—1% for@=5.70-6.35 correspond-
the.asmq.(not only a.tmq) dependenpe of. the paramgter re-ingl to a;1~1.0—2.8 GeV. Here we took Agep
mains with our choice of the spatial Wilson coefficiant N;=0

—1 at the tree level, as discussed in Sec. II. In the case of 290 MeV (=Apg ) andmy=1.4 GeV (=Mcpam), and
,=¢"P therefore, the scaling violations a@((aSAQCD)Z) the renormalized coupling constadtis estimated from Eq.

TABLE V. Fit ranges we adopted. In the first columhS and AP denote theS and P-state spin mass
splitting respectively.

State Fit form Source Fit range(in /tmax
B=5.70 B=5.90 B=6.10 B=6.35
1S,2S 2-cosh 06-01+11 11/24 17/36 22/48 32/72
1P,2P 2-cosh 06-11+02+12 7/18 11/25 15/35 21/50
1S,AS 1-cosh 01 13/24 19/36 26/48 38/72
1S(p+#0) 1-cosh 01 13/22 20/32 26/45 40/66
AP 1-cosh 12 11/18 17/25 23/35 33/50
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0.0020 r r . 0.0020
W J
1 6—0p=(0,0,0) |
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5 O—0p=(1,1,0) S
2 A—Ap=(1,1,1) ©
o <+—<p=(2,0,0) 2 00010
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% S o—oT ope.
@ = E—~aTA ope.
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0.0005[6'—‘5”/-5—5\;] 11P1
¢————o——O— o — D
0.0000 - . . . p
0.0000 ) s ' 6 8 0
2 4 6 8 10 bin size (conf)

bin size (conf
( ) FIG. 7. Bin size dependence of jackknife erroraghl (1P,) at

FIG. 6. Bin size dependence of jackknife errorgM(1'S;) ~ B=6.10, amge=0.024 and{=2.88.

with p=0andp#0 at 8=6.10, a;m,,=0.024 and/=2.88. ) )
P P P o =", NPy, we adopt the choice which shows the smoothest

. scaling behavior for the final value, and use others to esti-
(28). It is expected that th®(aasAqcp) errors are largely  mate the systematic errors.

eliminated by the tadpole improvement.

When the tree level tadpole improved vali€ is used
instead of,"*, we have additionaD(«) andO(aasm,) er-
rors, since the kinetic term is a dimension four operator. The Now we present our results of the quenched charmonium
size of the additional errors is estimated to ¥ a) spectrum obtained with the anisotropic quark action. In this
=15%—12% andD(aaymy)=22%—6%. Again we expect Section, we first compare results O with ¢™. Second, we

that the dominant part of this error is eliminated by the tad-determine the lattice scale, and study the effectMfy(, )
pole improvement. tuning. We then show the results of charmonium masses and

mass splittings, and estimate their continuum limit.

IV. RESULTS

In this work we adopt araﬁ-linear extrapolation for the
continuum limit, because the leading order scaling violation
is always O((aSAQCD)z,agAQCqu) irrespective of the ) } ) _
choice of . We also perform amg-linear extrapolation to In Fig. 8, we plot a typical example of the dispersion
estimate systematic errors. In practice we use results at thr&glation and the speed of light. As shown in the left figure,
finest lattice spacings i.e4=5.90-6.35 &my<1) for the the Imeargy ?fI.Eh'r,', g f'.s SgtE)Sf'Ed well. Indeed the “efiec-
continuum extrapolation, excluding results #=5.70 tive speed of light,” defined by
(asmy>1), which appear to have larger discretization errors 5 2
as expected from the naive order estimate. Performing such __[E(p)*—E(0)

. : Ce(P=\——F5 (54)
extrapolations for all sets oM = (Myge,Myin) and ¢ 2

A. Dispersion relation and ZNP

o—o1'S, 01'S, c.(p)
o—art’s, - 0 1S, Cylp)
0.70 - 1 110 t ! 1
- - 1380 c
//:m/ // - 1°8, ¢
s ,/’// /;®~//
L. 065 r A 1 © 1.00 b = -: —
g = el 5
//E g
0.60 /,%’/ 1 0.90 t |
////
0.55 L L 0.80 L ) L
0.0 05 1.0 0.40 0.60 0.80 1.00
(ap) ap

FIG. 8. Dispersion relatiofleft) and speed of lightright) of the S state at3=>5.90, a;myo=0.144 and;=2.99. On the right, we show
the effective speed of light.#(p) and the speed of light from the fit.
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' ' ' ' ' T 7 =b5.7). The latter is one of the reasons why we exclude this
1.00 . L . . .
O NP (m,’) point in the continuum extrapolation. One also notices that
ONP (mzz the slope ofv approaching the value=1 in the continuum
mTl (m,") limit is steep, and in addition, the differene&— v ™ for our
aTl (m?) data does not have a smooth dependencaritj,. As dis-
0.90 Tl - cussed in Sec. V, these features/tf bring complications in
Ny <O NP (mhem, Klassen) the scaling behavior of the hyperfine splitting.
T
B. Lattice scale
0.80 | In this work, we determine the lattice spacing via the
Sommer scale, [32], the 1P-1S meson mass splitting, and
the 25-1S splitting. We compare the results obtained with
these different scales, in order to estimate the quenching er-
0.70 & . . . L L L rors.
0.0 0.2 0.4 0.6 0.8 1.0 1.2
atmqul 1. Scale from the Sommer scalg r

FIG. 9. The tadpole improved bare maagsatmgg versusy In order_to calculate_ t_he static quark pot_entlal_need_ed for
=&,/ at £=3. “TI" and “NP” denote the tree level tadpole im- the extraction of , additional pure gauge simulations listed

proved value and nonperturbative value respectively. Circles and! Table VI are performed. Usingas;=1.4 fm lattices, we
squares are our data mp=mg,m2 (~mg™™ for 3=5.7-6.35. Measure the smeared Wilson loops at every 100—200 sweeps

The error bars for the circles denote the statistical uncertainty oft Six values ofg in the ranges=5.70-6.35. Details of the
WNP=¢/¢NP We also plot Klassen's data am,=md™™ for g Smearing methoi33,34 are the same as those in RES5].
=5.5-5.8 as open diamonds. We determine the potenti®l(r) at eachB from a correlated
fit with the ansatz

has a wide plateau as shown in the right figure. Therefore we
employ the linear fit ip? to extract the speed of liglatfrom W(r,T)= C(f)eatV(F)‘E (55)
E2. This figure also illustrates that the speed of lighfor ' '
s, agrees well with that fo’S; within errors. This is in- . . _
deed the case for all data points as observed in Table II. Th@herer=r/as andt=t/a; are the spatial and temporal ex-
speed of light seems universal for all mesons as pointed outent of the Wilson loop in lattice units. The fitting rangetof
in Ref.[24]. is chosen by inspecting the plateau of the effective potential

The nonperturbative value af, {\*, is obtained by de- a,V_«(r,t) = log[W(F,D)/W(F,i+1)]. A correlated fit toV(r) is
manding that the speed of lighis equal to 1 within 1%. On  then performed with the ansatz
the other hand, the tree-level tadpole-improved valffé,
givesc deviating from 1 by 2%—-4% i.e., @40 at most,
which is much smaller than the size of ti& «,aasm,) )= r— 1

' q aV(r)=aVo+(a;aso)r (e/g)F +a;oV,

error (12%—15%6,6%—22% )estimated in the previous sec-
tion. This suggests th&(«,aasm,) errors associated with (56)
expected. asVvV=I

In Fig. 9, ¥NP=¢,/¢NP and v"'=¢,/¢™ at my=mj and ‘
(circles and »™ (squares and solid lineagree within errors  whereo is the string tension arfd/f ] is the lattice Coulomb
at my=0.3 but deviate from each other at,=0.5 (8 term from one-gluon exchange:

[™ are almost eliminated by the tadpole improvement, as 1 [1
r H )
mj are plotted as a function @fi,=a,mg . We find thaty""

TABLE VI. Simulation parameters and results for the Sommer scglelhe fifth column shows the
number of smearing steps we adopted.

B rol/ag L3xT Lag [fm] Smear No. Conf Sweep/conf
5.70 2.44935) 128x72 2.45 4 150 100
5.90 3.64436) 1% 36 1.65 5 220 100
6.00 4.35951) 128x 48 1.38 6 150 100
6.10 5.02835) 16°x 48 1.59 6 150 100
6.20 5.82233) 16°x 64 1.37 10 220 100
6.35 7.19852) 283X 72 1.67 12 150 200
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FIG. 10. Results ofy/as. The left figure shows typical fit range {;,) dependence of,/as and its averaged value. The right is the
result ofag/ry as a function of8 and its fit curve, Eq(59).

1 = d3k COS{k~F) boe 11 by — 102
= :47rf 33 . (57 0= (2m)2’ = amr
r 771'(277) )
4> sirf(kad2)
i=1 and c,(n=2,4) parametrize deviations from the two-loop

scaling. From this fit, we obtain that
We extractr,/ag from the condition that
Cc,=0.0123029), ¢,=0.16354), c,=0.05322)

d(V—-146V) (61
r2—dr =c,
r=ro with x?/Npr=0.51. As shown in Fig. 10, the fit curves re-
produce the data very well. We use E&21) in our later
ie., analysis. Finally, we obtainag from the input of rg
=0.50 fm. The values o0& at eachB are given in Table I.
c—e
ro/as=-\/ oA (58) 2. Scale from charmonium mass splittings

The quarkonium P-1S and 25-1S splittings are often
with ¢=1.65. The error of 3/a, is estimated by adding the used to set the scale in heavy quark simulations since the
jackknife error with bin size 5 and the variation over the experimental values are well determined and they are

fitting range off . Keeping to the ansatz, E(56), we attempt ~ roughly independent of quark mass for charm and bottom.
three different fits:(i) 2-parameter fit withe= /12 andl ~ Here we take the spin average fd§,11P and 2S masses, so

=0 fixed, (i) 3-parameter fit withe= /12 fixed, and(iii) that the most of the uncertainties from the spin splitting can-
4-parameter fit. We check thap/a from these three fits Cel out. The lattice spacing ato=mg"™is given by

agree well within errorgsee Fig. 10 We adoptr/ag from R _ -
the 2-parameter fit as our final value. Resultsrgfa, at ad=¢Quat/Qext  (Q=AM(1P—1S), AM(2S-19)),

eachB are summarized in Table VI. (62
Next we fitry/ag as a function of3 with the ansatz pro- R

posed by Allton[36], whereQ,,; denotes the value in the temporal lattice unit. We
use the data ofMl pe,{™') and check that other choices do
(as/ro)(B)=f(B)(1+ca(B)2+cia(B)*)cy, not changey sizably. In Table VIl we summarize the values

(59  of mg™™and ag for all Q including ro, and plot thep

A(8)= f(B) dependence o& in Fig. 11. We observe thai"><a®

f(B1)’ <aZ%'S holds for3=5.70-6.35. To show this explicitly, on

the right we also plot the ratial”*%a andaz*'%a as

a function ofa;". Deviations from unity are about 5%

for al”*%al, +(10-15)% for a>*%a® and hence
+(10-25)% fora2S*%/al"'S at our simulation points. The
major source of discrepancy among the lattice spacings from

whereB,;=6.00 andf(B) is the two-loop scaling function of
SU(3) gauge theory,

, 1
f(B= 6/g2)E(bogz)b1/2boeX[{ - Togz)’ (60)
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TABLE VII. Bare charm quark massi{™™and lattice spacing® for Q=r,, 1P-1S and %5-1S.

B o 1P-18 2518
m(c)harm a;O [fm] m(c)harm ai_E_lg [fm] rngharm agg_lg [fm]
5.70 0.28483) 0.20370) 0.2994115 0.207730) 0.3782190 0.227245)
5.90 0.11062) 0.13740) 0.097258) 0.133318) 0.1664150 0.154444)
6.10 0.03191) 0.09910) 0.0155%60) 0.093421) 0.0632110 0.109937)
6.35 —0.0179(1) 0.069(D) —0.0301(43) 0.065@8) 0.011584) 0.080830)

different observables is the quenching effect. Another sourcthe S-state hyperfine splittingAM (13S;-11S;) and the
is the uncertainty of input value af,=0.50 fm, which is  P-state fine structurA M (13P;-13P,). Numerical values for
only a phenomenological estimate. Other systematic erroréach choice ag=6.1 are given in Table VIII. Here we set
are expected foa2S'S for the following reasons. Our fitting the scale withr, because it has the smallest statistical error.
for 2S masses may be contaminated by higher excited states. For all of mass splittings in Fig. 12, the results for
In addition, the lattice size-1.6 fm may be too small to (M pge,{")=(Myin,¢"F) well agree with those for
avoid finite size effects for@ masses. On the other hand, the (M;,,£"'), suggesting that the mass splittings are indepen-
fitting for 1P masses are more reliable, and we have checkedent of the choice of whenever thévl i, tuning is adopted.
that the finite size effects are negligible faM (1P-1S) in  This can be understood as follofl]. Setting the measured
preparatory simulationésee also Ref[24]). For these rea- kinetic mass to the experimental valt,= M gy for the
sons, we consider the sca¢™ S to be the best choice for Meson roughly corresponds to setting=Mgam for the
physical results on the spectrum. We present the results fétuark, where the kinetic mass for the quawk is given by
three scales in the following, however, to show the depenEd. (13) at the tree level. Since the spin-averaged splitting is
dence of the spectrum on the choice of the input for thedominated bym,, settingm,= M, for each{ results in
lattice spacing. In order to make a comparison with the rethe same value for this splitting. With our choice of the spa-
sults by Klassen and Chen, who empiqgyto set the scale, tial clover coefficientcs=rg, mg=m, also holds indepen-
we use the results Withgo_ dent of { at the tree level. Hence the spin splitting takes
approximately the same value because it is dominated by the
magnetic massng given by Eq.(14).

As a result, we practically have only two choices for
_ In Fig. 12,.We plot the re_sults of spln-averqged mass split{M ,,¢), i.e., M po|e,§T') and (Mpolevng):(Mkin ,INP)
tings and spin mass splittings for each choice Bfi(,{).  =(M,,,{"). As observed in Fig. 12, however, the results
The upper two figures show the spin-averaged splittinggor (M ,,,¢™) agree with those for the other choices at three
AM(1P-1S) and AM(2S-1S), while the lower two show finestag, within a few o for the hyperfine splitting and &

C. Effect of (M 4,) tuning

0.25 s N ' ! ! T T T T
‘I ®r, input 1.20 |
N m 1P-1S input
0.20 | ® 42S-1S input ] E E
110 | ]
E‘ ) ‘_Q g
=, 0.15 | & E=
o 6= 1.00 []
o E E &
o010 | _ _
050 mQ=1P-1S
<4Q=25-1S
0.05 ' : ' 8% 00 0.05 0.10 0.15 0.20
5.6 5.8 6.0 6.2 6.4 . - A . .
B a0 [fm]

FIG. 11. The left-hand side shows tiledependence of the lattice spacing. The solid line is the fit curve (5. while dotted and
dashed lines are spline interpolations to square and triangle symbols respectively. On the right-hadt'Sige® anda?>"'%a° as a

function of a_® are plotted.
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FIG. 12. Comparison of results for variouM(y,{) tunings. The scale is set k. The data points are slightly shifted along the
horizontal axis for distinguishability.

for other mass splittings. This shows that the choice D. Charmonium spectrum

(Mo, {™) is as acceptable as any other, with our numerical

accuracy, for the lattices we adopted. Since the hyperfine The results for charmonium spectrum, obtained for
splitting for the choice [(le0|e,§T') has a smoother lattice (Mp0|e,§T'), for the three choices of scale are plotted in Fig.
spacing dependendet 3=5.9) and a smaller error than that 13 together with the experimental values, and numerical val-
for other choices in Fig. 12, we decide to use the data withues are listed in Tables IX-XI. As observed in Fig. 13, the
(Mp0|e,§T') for the continuum extrapolations. The results for gross features of the mass spectrum are consistent with the
other choices are used to estimate the systematic errors. éperiment. For example, the splittings among thestates
slight bump in the lattice spacing dependence of the hyperare resolved well and with the correct ordering.d< xc1

fine splitting for (M y0e,£"") is in part ascribed to the statis- < y.,). Statistical errors for theS, 1P and 2S state masses
tical error of NP itself, as discussed in Sec. V. are of 1 MeV, 10 MeV and 30 MeV, respectively. When we

TABLE VIII. Comparison of mass splittings for different choices o (;,{) at 3=6.10. The results are
presented in units of MeV, and the scale is set py

(Ma,0) AM(1P-1S) AM(25-1S) AM(13s;-11sy) AM(13P;-13Py)
(Mpoie {™) 426.7104) 676(30) 71.607) 57.337)
(M pote- ¢NP) 423.1096) 671(29) 68.906) 55.334)
(Myin, <™ 424.1097) 671(31) 69.214) 55.238)
(Myin, ENP) 423.6097) 67230) 69.213) 55.737)
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set the scale from th_eﬁ-ig i2§-1§) splitting, the spin 4500 * Experiment
structure and the 1S (1P-1S) splittings are predictions 4300 | op=57 5 }
from our simulations. 4100 b EE:Z:? ﬁ % % 1
3900 | A B=6.35 ]
' . — 3700 } O _*_E 4
E. S-state hyperfine splitting % ——
2 3500 | 5 op, ez “EE 1
We now discuss our results for tigestate hyperfine split- = 3509 | -
ting AM(13S;-11S;), which is the most interesting quantity .
in this work. The hyperfine splittingHFS), arising from the 8100 e oz fo Input 1
spin-spin interaction between quarks, is very sensitive to the 2900 | .
choice of the clover term, as noticed from Eqsl) a_nd(lé_l). _ 5700 | 150 331 1p1 3P0 3P1 3P2 (state) -
Since the clover term also controls the lattice discretization Ne  J¥ h, %o Xa Xz (name)
error of the fermion sector, the calculation of the HFS is a 2500
good testing ground for the lattice quark action. 4500
In Fig. 14 we plot our results for th&state HFS with * Experiment L] T%
(Mpo,e, ™ for each scale input by filled symbols. From the 4300 | op=5.7 3 ﬁ % Jf;% 7
a2-linear continuum extrapolation using 3 points At 4100 | 32:2:? §
—5.90—6.35, weobtain Ap=6.35
3900 | ’ 1
< 3700 | ot il .
AM(1°S;-1'Sy) 2 3500 | o gg,, oW oo ]
72.60.9(+1.2(—3.8) MeV (rqginput), = 3300 | .
85.34.4)(+5.7(—2.5 MeV (1P-1Sinput), 3100 | oo 1P-1S input .
53.95.8(—1.5(—2.00 MeV (2§-1§|nput), 2900 \ 1 .
1 3 3 3
i 2700} S, S P, °P P P, (state)
117.11.8) MeV (experiment, veo ne J/~}1‘ h: Xcg Xc11 Xci (name)
(63)
4500 ,
% Experiment
where the first error is the statistical error. The second error 4300 | ©p=5.7 -
represents the ambiguity in the continuum extrapolation, es- o f=5.9 %
. ) . 4100 | o p=6.1 6 3 ﬂ I
timated as the difference between thé-linear and the AB=6'35
ag-linear fits. The third error is the systematic error associ- 3900 [ '
ated with the choice ofNly,{). We estimate it from the < 3700 | oo 1
maximum difference at the continuum limit between the @ S —— —h—
choice of Mpge,¢"') and the other three choices. Our esti- = oy Der Ooey
mate of theS-state HFS is smaller than the experimental 3300 ]
value by 27% if the P-1S splitting is used to set the scale. 3100 | oelox 25-1S input .
A probable source for this large deviation is quenching ef- 2900 | = = ]
fects.
1 3 1 3 3,
In this figure, we also plot previous anisotropic results by ~ 2700 | 11S° ﬁ{g 51 P, P, P gﬁfﬁg) 7
Klassen(set B in Table I1) [19] and Chen(set Q [24] at ¢ 2500 ‘ e Ko Kot e

=2 and 3 with thesamechoice of the clover coefficients;

and usingr, to set the scale. The difference between our
simulation and theirs is the choice 6fnd the tadpole factor from ro, AM(1P-1S) andAM(25-1S).

for cs;, as noted in Table Ill. We usg™ and the tadpole

factor estimated from the plaquett&, while they usedN” F. P-state fine structure

and tadpole estimate from the mean link in the Landau gauge

ut. As shown in this figure, our result in the continuum limit ~ Results for theP-state fine structure are shown in Figs. 15
with ry input agrees with the results by Klassgi®] and and 16. The value of the-state fine structure in the con-
Chen[24]. The results with aifferentchoice of the clover tinuum limit and the systematic errors are estimated in a
coefficientscy; by Klassen(set D will be shown in Sec. V, similar manner to the case of th&state HFS. For
where we will study the effect ofc, to the HFS. 1%P;-1%P, splitting, we obtain

FIG. 13. Charmonium spectrum at finie The scale is fixed
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TABLE IX. Results of charmonium mass&sand mass splittingd M in units of MeV atZ=¢"" using the pole mass tuning. The scale

PHYSICAL REVIEW D 65 094508

is set byr,.

State B=5.70 B=5.90 8=6.10 B=6.35 ag—0 Expt.
1's, 3020.97) 3013.89) 3014.410) 3012.79) 3012.711) 2979.8
133, 3082.G7) 3083.18) 3085.18) 3083.18) 3084.610) 3096.9
1P, 3526.679) 3506.757) 3489.766) 3483.883 3474.294) 3526.1
13P, 3496.0494) 3462.465) 3438.759) 3420.286) 3408.595) 3415.0
13p, 3526.7184) 3506.661) 3490.562) 3480.880) 3472.391) 3510.5
13P,¢ 3555.2106) 3515.6116) 3509.8199 3506.7219 3503.6250 3556.2
13P,¢ 3555.4100) 3512.4115 3508.9179 3502.5213) 3501.2239) 3556.2
1S 3067.60) 3067.60) 3067.60) 3067.60) 3067.60) 3067.6
1P 3536.085) 3506.773) 3494.4104) 3487.3120) 3480.4137) 3525.5
1'P,-1S 459.979) 440.959) 422.467) 417.884) 407.295) 458.5
13P,-1S 429.293 396.766) 371.361) 354.287) 341.297) 347.4
13p,-1S 459.984) 440.962) 423.264) 414.981) 405.293 442.9
13p,-1S 488.5106) 449.9117) 4425198 440.1218 436.6249 488.6
1P-1S 469.385) 441.074) 426.7104 421.3121) 413.4139 457.9
135,-11s, 61.94) 70.46) 71.67) 72.08) 72.609) 117.1
13P,-1%P, 32.334) 46.734) 57.337) 62.742) 68.4(50) 95.5
13P,-1%pP, 18.1(43) 18.241) 20.468) 30.472) 31.1(84) 45.7
13P,1-13P ¢ —0.8(23) —2.3(28) —2.6(33) —2.0(41) —2.2(47) 0.0
1'P,-1%P —6.0(18) —3.5(21) —0.7(29) —3.5(36) —1.4(40) 0.9
1%p,-13pP, 0.5613) 0.399) 0.3612 0.4911) 0.4714) 0.48
13P,-1%P,
21s, 371922 370028 369932 374440) 373946) 3594
233, 376720 377327 375831) 378634 377740 3686
2P, 424868) 4411(70) 421470) 4161(79) 405395) -
2%p, 417593 422689 414894) 4049100 4008122 -
2%p, 422475) 438477 425690) 414084 4067105 -
2%P, 4238109 425499) 4190144 4023149 3992175 -
2%P,r 42301111 4281(100) 4223157 4082146 4047177) -
oS 375520) 375527 374430 377634 376840 3663
=) 423374) 432468 420986) 408986) 4027105 -
2p.2S 47973 56970) 46690) 31389 256(107) -
285,-215, 48(9) 74(16) 60(17) 40(22) 34(25) 92
215-11s, 69822 686(28) 68532 73340 726(46) 614
2%5,-1%5, 68520) 690(27) 67331) 70234) 69240) 589
21p,-1tP, 721(68) 904(69) 724(69) 67879 57994 -
2%P,-1%P, 67995) 76390) 70995) 629103 601(124 -
2%p,-13%P, 701(76) 881(77) 766(90) 65984) 595105 -
2%p,-1%p, 683109 738093 681(129 516(136) 490160 -
2515 68820) 68927) 676(30) 710(34) 701(40) 595
2P-1Pp 697(75) 817(66) 71581) 602(83) 547(100) -

AM(1%P;-13Py)
68.45.0(+11.8(—3.00 MeV (rqinput), o
R — scaling violation seen in Fig. 15. The result with thE-1S
79.26.6)(+16.5(—2.4 MeV (1P-1Sinpu), . 9 J -
= - input yields a 17% (2.&) smaller value than the experi-
50.56.2)(+7.9(-2.2) MeV  (2S-1Sinput), ment. Our result with the, input is consistent with the
95.50.8) MeV (experiment. previous results by Klassg9] and Cher{24].
(64) For 13P,-13P; splitting, we obtain

Note that the systematic errors from the choice of the fit
ansatz(second errgrare rather large here, due to the large
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TABLE X. The same as Table IX, but the scale is set @-]lgsplitting.

PHYSICAL REVIEW [B5 094508

State B=5.70 B=5.90 B=6.10 B=6.35 a;—0 Expt.
1's, 3023.416) 3010.316) 3007.127) 3004.333 3003.035) 2979.8
133, 3081.48) 3084.4q10) 3087.112 3086.012) 3087.514) 3096.9
1P, 3515.629) 3523.346) 3520.789) 3519.9998) 3518.6106) 3526.1
13P, 3486.649) 3476.251) 3464.491) 3446.492) 3441.6104 3415.0
13p, 3515.835) 3523.544) 3522.396) 3516.8102 3516.8112 3510.5
13P,¢ 3543.240) 3532.960) 3541.3129 3544.9139 3548.9151) 3556.2
13P,r 3543.438) 3529.369) 3539.8122 3540.4155 3546.04160 3556.2
1S 3067.60) 3067.60) 3067.60) 3067.60) 3067.60) 3067.6
1P 3524.17) 3523.47) 3525.49) 3523.48) 3524.19) 3525.5
1'pP,-1S 448.829 457.846) 453.689) 454.3100) 452.0108 458.5
13P,-1S 419.847) 410.651) 396.993 380.995) 375.2106) 347.4
13p,-1S 448.934) 457.944) 455.399) 451.3104 450.3114 442.9
13p,-1S 476.440) 467.458) 474.2126) 479.4136) 482.4148) 488.6
1P-1S 457.90) 457.90) 457.90) 457.90) 457.90) 457.9
133,-11s, 59.218) 74.921) 80.434) 82.7142) 85.344) 117.1
13pP;-13%P, 30.637) 49.939) 64.6045) 72.665) 79.266) 95.5
1%P,-1%P; 17.441) 19.243) 22.375) 34.781) 35.090) 45.7
13P,1-13P,¢ —0.8(22) —2.5(30) —3.2(39) —2.1(51) —2.7(53) 0.0
1'p,-13%P —5.9(17) -3.7(22) —0.8(35) —3.7(44) —1.5(46) 0.9
1%p,-13pP, 0.5712 0.399) 0.3513) 0.4912) 0.4514) 0.48
13P,-1%P,

2's, 370422 372230 374639 3801(45) 380650) 3594
2%s, 374921) 380029 3811(41) 384743 384949 3686
2P, 421770 445875) 429479 423487 4159100 -
2%p, 414695) 426095) 4222105 4121124 4114139 -
2%p, 419678) 443483 4339100 422296) 4179114 -
2%P, 4203107 430396) 4263145 4094155 4091173 -
2%P,r 4194111 432998 4287163 4147153 4131177 -

25 373821 3781(29) 379439) 383642 383947) 3663
=) 420Q76) 4371(69) 4284681) 416588) 4132100 -
2p-2S 462(72) 590(72) 492(95) 32997) 290(112 -
235,-2's, 45(9) 78(18) 65(20) 47(27) 43(29) 92
215,-11s, 681(23) 71230) 73840) 797(46) 80351) 614
2%5,-13s; 66821) 716(29) 72340) 762(43) 762(48) 589
2P,-1tP, 701(69) 93573 77376) 718184 641(97) -
2%P,-1%P, 65996) 78396) 758106 674122 671(137) -
2%p,-1%P, 681(77) 91082 817(99) 705(94) 662111 -
2%p,-1°P, 660(107) 770093 722135 551(147) 543164 -
2515 671(21) 71529 727(39) 770042 77247) 595
2P-1P 67576) 847(69) 761(81) 641(87) 608100 -

where we use the result from the E representation operator

_ for 3P,. As observed in Tables IX—XI, the mass difference
31.Y8.4(+8.1)(—-1.0 MeV (rginpuy, AM(13P,1-13P,g) is always consistent with zero, suggest-
35.009.0)(+9.6)(—0.7 MeV (1P-1Sinput), ing that the rotational invariance for this quantity is restored

= . well in our approach. The value ohM(1°P,-1°P,) is
23.76.1)(+5.6/(—0.8 MeV (2S-1Sinput), smaller than the experimental one by 23%cj1with the
45.710.2 MeV 1P-1S input. There is no lattice result from the anisotropic

(65) relativistic approach to be compared with.

AM(13P,-13P,)

(experiment,
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TABLE Xl. The same as Table IX, but the scale is set tgt]gsplitting.

PHYSICAL REVIEW D 65 094508

State B=5.70 B=5.90 B=6.10 B=6.35 a;—0 Expt.
11s, 3032.321) 3026.430) 3024.933) 3028.638) 3027.445) 2979.8
133, 3079.18) 3079.810) 3082.413) 3079.512) 3080.515) 3096.9
1P, 3467.1113 3446.7139 3440.5158 3415.3170 3412.6208) 3526.1
13P, 3445.3112) 3412.8124) 3398.6130 3370.2128 3361.5165 3415.0
1%pP, 3467.8117) 3446.1142) 3440.1158 3412.4169 3409.7207) 3510.5
13P,¢ 3490.4124) 3453.4153 3460.0199 3433.8200 3437.7244) 3556.2
1%P,; 3490.1120 3451.6155) 3460.0185) 3431.2180 3435.3226) 3556.2
1S 3067.60) 3067.60) 3067.60) 3067.60) 3067.60) 3067.6
i) 3475.2114) 3446.5140 3445.4164) 3418.5170 3418.2209) 3525.5
11p,-1S 399.71114 380.2141) 372.8159 348.5172 345.1210 458.5
13P,-1S 377.9113 346.4126) 330.813)) 303.413)) 294.2168 347.4
13p,-1S 400.4118 379.1144) 372.3159 345.617)) 342.2210 442.9
13pP,-1S 423.01126) 386.9155 392.2199 367.0202 370.4246) 488.6
1P-1S 407.8116) 380.1142 377.3164) 351.71173 350.8212 457.9
133,-11s, 47.425) 54.438) 57.743) 51.548) 53.958) 117.1
1%P;-13P, 23.229 35.235) 45.946) 43.954) 50.562) 95.5
1%P,-1%P; 14.1(32) 14.430) 17.351) 22.252) 23.761) 45.7
13P,1-1%P,¢ —1.0(15) -1.7(17) —1.6(23) —1.9(24) —1.8(29) 0.0
1'p;-13%P —5.4(12) —2.7(14) —0.6(21) —3.0(23) —1.5(26) 0.9
13p,-13P, 0.6012) 0.41(8) 0.3911) 0.5010) 0.4913) 0.48
13P,-1%P,
21s, 36376) 36188) 362410) 3641(11) 364413 3594
2%s, 36712) 36763) 36763) 36694) 36694) 3686
2P, 407859) 4241(69) 408770) 401576) 393095 -
2%P, 402077 410376) 403180 391488) 3877108 -
2%P, 405766) 422273 412582 398581) 3929103 -
2%P,e 404985) 407885) 4076120 3884106 38721349 -
2%P,r 403787 410984 4120128 3958104 3944133 -
25 36631) 36621) 36631) 36621) 36631) 3663
2P 405661) 415765 4087179 394573) 390093 -
2p-2S 39361) 49565) 424(79) 28373 23793 -
285,-215, 34(7) 59(11) 52(13) 29(14) 26(17) 92
215,-11s, 605(5) 592(8) 600(10) 61210 616(13) 614
285,-135; 5922) 597(3) 594(3) 590(3) 588(4) 589
2'P;-1'P, 611(57) 794(63) 647(64) 60073 517(88) -
23P,-13P, 57577) 690(74) 63379 54386) 514105 -
2%p,-1%p, 58964) 776(67) 68578) 57376) 520(96) -
2%p,-1°P, 55985) 62477) 616(109 450(104) 443128 -
25-1S 5950) 5950) 59500) 595(0) 5950) 595
2P-1P 581(60) 71058 64272) 526(70) 487(87) -
Next we consider the ratio of the two fine structures,AM(lsp 1%p))
AM(13P,-13P;)/AM(13P;-13Py). In Fig. 17, we plot the ——— 2~ "1
lattice spacing dependence of this ratio. As shown in thisAM(13P;-1%Pg)
figure, the scaling violation of the ratio is smaller than that :
fogr the individualgsplittings(Figs. 15 and 16 Moreover, re- 0.4114)(+06)  (roinpuy),
sults are always consistent with the experimental value 0.4514)(+05) (13—1§input),
within errors. Presumably this is in part due to a cancellation = _ (66)
of systematic errors such as the discretization effect and the 0.4913)(+06) (2S-1Sinput),
quenching effect in the ratio. Our continuum estimate of this 0.4800) (experimen.

ratio is
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2 0&=3,( , u,r, (Klassen) > 40 -
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50 I }—i—| i 10 i
40 . - .
0.00 0.02 0.04 0.06 0 1 1 2
a’ [fm’] 0.00 0.02 , 004 0.06
S a? [m’]

FIG. 14. Sstate hyperfine splittingM (13S;-1'S,). Results

obtained withcs=u3c,=1 are collected here. Our results are
shown by solid symbols for each input, while results by Klassen

FIG. 16. P-state fine structure splitting M (13P,-1%P,).

(set B and Chen(set Q with the ry input are shown by open AM(11P1-13P)
symbols. In the legend, we give the choice of the anisotr&py )
tuning, tadpole factor and scale input. These captions also apply to —1.44.0(+0.6) MeV (rqinput),

the figures that follow. —1.54.6)(+0.7) MeV (15—1§input),
—1.52.6(+0.3) MeV (2S-1Sinput),
Our results agrees well with the experimental value. We omit +0.90.3) MeV (experimeny.
the systematic error arising from the choice ofl <), 67
which is found to be much smaller than others.

Another interesting quantity is the-state hyperfine split-
ting, AM(1'P;-1°P), where M(13P)=[5M(13P,)  The sign is always negative at finiégg and in the continuum
+3M(13P,)+M(1%P,)]/9. This should be much smaller limit, but within errors the continuum value is consistent
than theS-state hyperfine splitting because thestate wave with the experimental value. We do not observe sizable dif-
function vanishes at the origin. The lattice spacing depenferences between results using different scale inputs for this
dence is shown in Fig. 18 and the continuum estimate is quantity.

1 -0 L) L) L)
110 T T T
X % Experiment -
100* .€=§, C‘n’ up, r, - 08 | J
%0 m&=3, ¢, v, 1P-1S ) &
S €3, U7, 25-1S ; 1
CD 0&=3, ,u,r, (Klassen) s 0.6 ]
= AE=2, (", u",r, (Chen) 5
=) L <
o 1 =
“_ % ] o 04 . 1
I_ [ i o % Experiment
I [ ] o ° roFinptét
z [ ] - | & 1P-1S input i
% 30 @ o § s 02 425-18 input
20 J |
10 B T 00 2 1 1
0 : A ) 0.00 0.02 » 02.04 0.06
0.00 002 Q04 0.06 a, [fm]
a.’ [fm’]
FIG. 17. Fine structure ratio AM(13P,-1%P,)/
FIG. 15. P-state fine structure splitting M (13P;-13Py). AM(13P;-1%Py).
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20 L} v L} 500 L) L) L)
% Experiment 4
@ r, input i
| 1P-1S input J
= 10 | «€2S-1S input 7 1
©
= ]
& H}
WTF B
= E e ¥ Experiment ]
= @ r, input T
< «425-1S input
.00 0.02 0.04 0.06 300 ' ' ,
) ) 21 2. ) 0.00 0.02 , (%.04 0.06
a, [fm’] a [fm?]

s 1p _13 [ —
FIG. 18. SplitingAM(17P,-1°P). FIG. 19. Spin averagedP-1S splitting. In the figures, we al-

ways omit the bar for the spin average.
G. 1P-1S splitting

AM(2S-1S)
The mass splittings between the orbi(ahdial) exited .
state and the ground state such as tRelB (25-1S) split- 701(40)(+13) MeV  (roinput),
ting are dominated by the kinetic term in the non-relativistic —={ 77247)(+35 MeV (1P-1Sinput),
Hamiltonian, Eq(11). Since the dependence on the choice of )
59501) MeV (experiment.

(M 4,¢) is small compared to the statistical error, as shown
in Fig. 12, we ignore the systematic error from the choice of (69)

(Ma,¢) in this and next subsections. Results of the spin—B id hi ff ibl f the deviati
averaged and spin-depender®-1S splittings are shown in  SeSIdes quenching efiects, possible sources of the deviations

. : P . re finite size effects and the mixing of th& vith higher
E:gslslgpﬁtr:?ngz?s In the continuum fimit, the spin averageOZxcited states. Figure 23 shows the result f&-2P split-

tings. Note that there is no experimental value for this split-
o ting at present. Our results ofS21S and 2P-1P splittings
AM(1P-195) are consistent with previous results by Chen. We also calcu-
AALD (15 MoV _ late mass splittings such asAM(23S;-2!S,) and
14 (=15 Me (ro_mpijt)’ AM(2P-2S), but these suffer from large statistical and sys-
=4 351(21)(—20) MeV (2S-1Sinput), tematic errors. We leave accurate determinations of the ex-
45801) MeV (experimer. cited state masses for future studies.

(68 I. Charmonium spectrum in the continuum limit

We summarize the continuum results for the charmonium
spectra obtained with the data oMgye, (™) and the
aﬁ-linear fit ansatz in Fig. 24, where the scale is set by

1P-1S splitting. Numerical values for three scales are listed
in Tables IX-XI, where the errors are only statistical. Among
three different scales, results with th&-LS input are the
closest to the experimental value for the ground state masses.
The spin splittings such as the hyperfine splitting
AM(13S,-11Sy) and the fine structurAM (13P;-13P,) are
always smaller than the experimental values irrespective of
the choice of the scale input, which is considered to be
quenching effects.

The spin-dependentP-1S splitting deviates from the ex-
perimental value by 0%-10% ¢150) with the r input
and 15%—25% (8-50) with the 25-1S input, as shown in
Fig. 20. The result of theP;-1S splitting with ther , input
agrees with the result by Chen within a fewin the con-
tinuum limit.

H. 2S-1S and 2P-1P splittings

In Figs. 21 and 22, we show the results of the spin-
averaged and spin-depender8-2S splittings. In the con-

tinuum limit, these splittings deviate from the experimental V. EFFECT OF THE CLOVER COEFFICIENT

values by~20% (2.5) with ther input and~30% (40) FOR HYPERFINE SPLITTING
with the 1P-1S input. For the spin-averaged2LS splitting, We now come back to the issue of the hyperfine splitting.
we obtain In Sec. IV E, we have shown that our result of the HBE&t
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% 320 % Experiment
300 ®r, input . i
1 m 1P-1S input
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500 } E rep. for °P, 1
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? 420 +
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3 380 % Experiment 7
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340 «425-1Sinput 1
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0.00 0.02 0.04 0.08
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FIG. 20. Spin dependentP1S splittings.

a’ [fm’]

FIG. 21. Spin averaged21S splitting.

A in Table 1ll) agrees with previous results by Klasseset

B) and Chen(set Q in the continuum limit, with the same
choice of the clover coefficients Eq&39) and (36). How-
ever, as mentioned in the Introduction, when Klassen made a
different choice of the clover coefficientset D, he obtained
apparently different values of the HFS in the continuum
limit. This choice is given b§cs=1/r where the tilde de-
notes the tadpole improvement,=u3c,. Since v—1 as
asmy—0, it agrees with the correct choice=1 in the limit
as— 0 with fixedmg, but is incorrect at finitexs. The quark
action then generates an additior@(aﬁAQCqu) error.
Even with such a choicéf agm, is small enough, the result
should converge to a universal value after the continuum
extrapolation. However, in Ref$18,19, Klassen obtained

2This choice corresponds =1 in the mass form notation, Eq.
(3), while the correct choices=1 corresponds te= v.
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FIG. 22. Spin dependent21S splittings.
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FIG. 23. Spin dependentP21P splittings.
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FIG. 24. Charmonium spectrum in the continuum limit. The
scale is set by B-1S splitting.

HFS (as=0/,input)~95 MeV with c,=1/v, which is
much larger than the result HF&(=0,r o input)~75 MeV
with cs=1 both by Klassen and in the present work.

A possible source of this discrepancy is a large mass-

dependent error 0D(asAqep: (@smg)™) (n=1,2,...) for
the results withcs=1/v. In fact, Klassen adopted rather
coarse lattices witlam,~1-2, for which such errors may

PHYSICAL REVIEW [B5 094508

21w (0)|%
W (0)|Z0n¢

Mg

HFSa _)
Mg

HF Seont

(72

|

generally deviates from 1 at finite;, and should approach 1
asag—0. At the leading order i, |¥(0)|Z,,&m,, while
| W (0)|2,m, with m, the kinetic mass, Eq13). Sincem,
does not depend on the spatial clover coefficirat the tree
level, we neglect the lattice artifact fd(0)|2, and set
| W (0)|2/|¥(0)|%,,=1 in the following, which is sufficient

for the present purpose. Now we define

) 2
as a measure of lattice artifacts for the HFS, where the tilde
denotes the tadpole improvement. In the continuum limit,
Rurs=1. Sincem, is constant independent af, we iden-
tify mg with m;, for the pole mass tuning.e., when setting
the measured pole mass to the experimental valyg.
Myt for the meson and with m, for the kinetic mass
tuning (Myjn=M gyp) -

At the tree level with the tadpole improvement, the pole
massmy, the kinetic massn, and the magnetic massg for

My

2
a;my
mg n

Rurs= ( (73

aimg

not be negligible. Because the HFS is sensitive to the spatidll® duark are given by

clover term, the choice af;=1/r may then result in a non-

linearag dependence for the HFS. In the following, in order atﬁ11=log(1+ﬁo), (74
to study the effect of the choice of the spatial clover coeffi-
cientcg to the HFS, we make a leading order analysis moti- 5
vated by the potential mod¢B7] and compare it with nu- 1 __ 2 &rsv (75)
merical results, which will give us a better understanding of am, mo(2+my) 1+mg
the above problem of the HFS.
The potential model predicts that, at the leading order in 5 -
both @ and 1m,, 1 2v. | e 76

amg My(2+my) 1+mg

:]") (:f) W (0)]Zone

q _

q

HF Sonr~ ( (70

where v=&y/{, Cs=ucs, andmy=a,my, is given by Eq.
(33). To obtain Egs.(75) and (76), we use the formulg
wherem,=mj, for the quarkoniums, ; are quark and anti- = &,=(U;/us)&o. In the following we present thasm, de-
quark s_pins, andIf(Q) is the. wave functioh at the origin. pendence oRys in the case of:szl (sets A,B,G and’c":S
HFS.ont IS the hype_rfmt_a splitting in the_ continuum quenchet_:i:1/y (set D, and compare them with the corresponding
(n¢=0) theory, which is not necessarily equal to the experi-numerical data for th&state HFS. For the definition ¢f (or
mental value. In non-relativistic QCD, tt- Sy interaction ), there are two choices adopted so far: the tree level tad-
arises from theZ- B term for quark and anti-quark. Giving a pole improved valug™ and nonperturbative ong'F. At ¢
non-relativistic interpretation to our anisotropic lattice ac-— /T r~n1=ﬁﬂz for the quark, buM oe# M, for the mea-

tion, we expect that the lattice HFS is effectively given by sured meson. On the other handatZN°, m, #m, though

M pole=Myin. Thus in the case of =¢"", i.e., M o= Myin
tuning, the identification ofn, (=m; or my) in Ryes, EQ.
(73), mentioned above is ambiguous. Although such an am-
biguity should vanish in the continuum limit, we present
where mg is the magnetic mass, Eql4), in the effective R,5 with both mq:Fn1 and mq:Fn2 to check consistency.
Hamiltonian. Therefore, in our approach, HFS is dominated-or actual numerical data of the HFS, we focus on the results

by the magnitude of m3, which depends on the spatial with the ro input because Klassen has adoptgdfor the
clover coefficientcs. The ratio scale setting.

>
HFSa~ (

— (7

> 2
: (m_B) [P (0)]| 50
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~ FIG. 26. Klassen's results ofSstate hyperfine splitting
FIG. 25. Ryps with ¢s=1/v and{= ("Pat¢=3 and 2. The thick  AM(13S,-11S,) with Ce=1/» and = ¢NP (set D\. The scale is set
symbols are the results witimy,=m,, while the thin symbols are by r,. Lines denoteag-linear extrapolations.
those withmy,=m,. The results withcs=1/v but {=¢"" (where
mq: ﬁ']l:ﬁ']z) are also shown by the dotted ||né:€ 3) and dashed rect continuum limit OfRHFS is l, this SuggeStS a 20%—-30%
line (£=2). overestimate from the neglect of non-linear dependence of
Rurs On a2. Hence the result witfts=1/v, HFS (a,=0)
~95 MeV, reported in Refg18,19 is likely an overesti-
First we consider the case of=1/v (set D), which is ~ mate by 20%-30%. . . .
correct only foragm,=0 at the tree level. In Fig. 25 we plot ~ These analyses indicate that the origins of this overesti-
the (am,)? dependence oRyrs at £=3 and 2 force=1/v mate are, first, the choice for the spatial clover coefficient
HFS = - ~ ;
with ,,S: ?,NP: £0/¢NP. Numerical values o#NP weres taken Cs=1/v (=1NP), and second, the use of coarse lattices
from Ref.[19]. Because of the ambiguity fan, mentioned ~ with aim,>1. As shown in Fig. 9 (=1/cs in this casg
above. we show the results Withq:ﬁ:]]_ and mq:ﬁ"lz' the Should eventually start to move up to 1 linearly around
. L L TI . . .
difference between them decreasesags:0, as expected. @&Mg=0.3, which CO{[‘LESDOHdS.miWq)ZSO-G in Fig. 25,
We have checked that plottinByrs as a function ofaZ, but Klassen’s data of™" (open diamondsdo not reach such

instead of &;m,)?, does not change the figure qualitatively. & region. We conclude that the continuum extrapolation for
We also plot the results WitES= v but v=2"= ¢,/ the HFS should not be performed using the data on such

~ 2 . coarse lattices, and results at finer lattice spacing are re-
wherem;=m, holds, as a dotted line¢&3) and a dashed quired.

line (¢€=2) for a guide to the eye. As shown in this figure,
Rues has a non-lineaa§ dependence toward the continuum
limit (=1), indicating that the mass dependent error is large
for the regionagm,=1-2. HereRysis larger than 1 even at Next we consider the case (~1§= 1 (sets A, B and
(asmq)2~1, which suggests that the actual HFS should rapwhich is correct for anyasm, at the tree level. In this case,
idly decrease toward’—0, and data atgsmg)><1 are there are two choices faf, (™ and {N". As mentioned in
needed for a reliable continuum extrapolation for the HFS. Sec. |V C,mgz=m, holds for both choices of, with c;=1.

Now let us compar®rs with numerical results of HFS. | the case of =¢™', which has been adopted only in our
In Fig. 26, we plot corresponding results of HFS by Klasser\Nork (set A) so far, Ryrs=1 is always satisfied, since,

for cs=1/v [19]. The results at=3 for cs=1/v are clearly  _5, _ & by definition. This suggests that the scaling vio-

larger than the results far,= 1 (see the solid circles in Fig. |tion of HFS forcs= 1 should be much smaller than that for

14), and the result =3 and 2 earto converge to ~ . .
) results af appearjo converg ¢s= 1/v. The numerical result for the HFS with the pole mass

~95 MeV in the continuum limit with am2-linear scaling. . g ;
X . . ) tuning has already been shown in Fig. 14 and re-plotted in
However, comparing Fig. 25 and Fig. 26, we find that the_. o . . .
ig. 28 by solid circles, which gives our best estimate,

lattice spacing dependence of the numerical data of HF FS(a.=0)=73 MeV.

qualitatively agrees with that oRyes: for both HFS and . NP M
Ryes, data até=3 are larger than data a@t=2, and the We next consider the case of £, whereM poie=Myin

difference betweegi=3 and 2 decreases ag—0. Froman  1OF the measured meson. W_hen we identify=m,, Ryrs
aZ-linear extrapolation oRyes using the finest three data =1 is always satisfied again becausp=mg even at{
points, we obtairRyes~1.2-1.3 atas=0. Because the cor- ={"*. When we identifymy=m,, Ryes#1 in general, due

A. Case ofcs=1/v

B. Case ofc,=1
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2.0 - y - =<1, while that for= ¢ (solid circles is always unity. This
®%=3,C s behavior is caused by the fact that the differedit€— "', is
:gfg ENP (Klassen) Cous =1 not monotonic inagm, (see Fig. 9. Correspondingly the
A§=2: £" (Chen) numerical value of the HFS, displayed in Fig. 28, also shows

a slightly non-smooth lattice spacing dependence raéar
15 A 1  ~0, which qualitatively agrees with the{m,)? dependence
of Ryes in this region. A possible source of this behavior is
the statistical error of P itself, because HFSRr9) is also
sensitive to the value aof as well ascg. Due to this reason,
A o we have not used the results witk: ZN” for our main analy-

1.0 FQ—& L sis in Sec. IV.

Ries
>
©

VI. CONCLUSION

. . In this article, we have investigated the properties of an-
0.0 20 4.0 isotropic lattice QCD for heavy quarks by studying the char-
(asmq)"’ monium spectrum in detail. We performed simulations
adopting lattices finer than those in the previous studies by
FIG. 27. Ryes With G=1. Heremy=m, . The stars are slightly Klassen and Chen, and made a more careful analysis for
shifted along the horizontal axis for distinguishability. O((asmg)") errors. In addition, using derivative operators,
we obtained the complete-state fine structure, which has
. NP - , not been addressed in the previous studies.
to the deviation off™ from 7. The results ofRyes with From the tree-level analysis for the effective Hamiltonian,
mg=m; at {=¢"" are shown in Fig. 27, and corresponding we found that the mass dependent tuning of parameters is
numerical results for the HFS are shown in Fig. 28. Comparessentially important. In particular, with the choice rf
ing Fig. 27 with Fig. 28 we again note that the lattice spacing=1 for the spatial Wilson coefficient, an explicitmg, de-
dependence of the HFS qualitatively agrees with that opendence remains for the parametgendc, even at the tree
Ris; i.e., for both HFS an®R, s, data at{=3 by Klassen  |evel. Moreover, we have shown in the leading order analysis
(open diamonds, set)Band those at=2 by Chen(open  hat unless the spatial clover coefficientis correctly tuned,
triangles, set Care %Io_se to each othe_r and _Iarger th:_:m OUlthe hyperfine splitting has a larga((agm,)") errors, which
data at{=¢"". An ag-linear extrapolation using the finest can explain a large value of the hyperfine splitting in the
three data points gives HRF&/0-75 MeV and Ryes  continuum limit from rather coarse lattices in the previous

~O'.9—1.0 ataszo..'[he Iat'ter conﬁrm§ that a contmuym calculation by Klassen. On the other handcif is mass-
estimate of HFS witles=1 is more reliable than that with  gependently tuned, the continuum extrapolation is expected
cs=1/v. to be smooth for the hyperfine splitting.
Concerning our results @= 3, as shown in Fig. 2Ryes Based on these observations, we employed the anisotropic
for {=¢NP (star$ does not scale smoothly arounds(nq)2 clover action withr=1 and tuned the parameters mass-
dependently at the tree level combined with the tadpole im-
T T T T provement. We then computed the charmonium spectrum in
120 - - the quenched approximation of=3 lattices with spatial
lattice spacings odsm,<1. Afine resolution in the temporal
. direction enabled a precise determination of the massé&s of
and P states which is accurate enough to be compared with
. the experimental values. Our results are consistent with pre-
vious results at=2 obtained by Chef24], and the scaling
§ T behavior of the hyperfine splitting is well explained by the
theoretical analysis. We then conclude that the anisotropic
7 clover action with the mass-dependent parameters at the
tadpole-improved tree level is sufficiently accurate for the
charm quark to avoid large discretization errors due to heavy
. quark. We note, however, thatm,<1 is still necessary for
60 a reliable continuum extrapolation.
We found in our results that the gross features of the
50 % 0.02 0.04 0.06 0.08 spectrum are consistent with the experiment. Quantitatively,
a’ [fmz] however, theS-state hyperfine splitting deviates from the ex-
S perimental value by about 30% §J, and theP-state fine
FIG. 28. The results of Sstate hyperfine spliting Structure differs by about 20% (2r}, if the scale is set from
AM(13S;-11S,) with c=1. The scale is set by, the 1P-1S splitting. We consider that a major source for

NP
N

110 + . csu:=1 , Ty input
(Klassen)

"* (Chen)

§
§
§
§

0£=3,(
*§&=3,(
©&=3,(
AE=2,{

AM(1°S,-1'S)[MeV]
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these deviations is the quenched approximation. 2(1+x)log(1+x)

Certainly further investigations are necessary to conclude fi(x)= X(2+%) :
that the anisotropic QCD can be used for quarks heavier than (A5)
the charm. In particular it is important to determine the £2(x) 1

clover coefficients as well as other parameters non- fo(X)= — )
perturbatively, since the spin splittings are very sensitive to 2log(1+x) x(2+X)
the clover coefficients. It is also interesting to calculate the ) S ] o
spectrum withr ;= 1/¢ and compare the result with the cur- Therefore the lattice Hamiltonian in physical units is given
rent one in this paper, since the notoriausn,, dependence by
vanishes from the parameters with this choice at the tree1 (o2
level. Finally full QCD calculations including dynamical |:|_‘“ Fo0%t 2. ;

; : . —H=¥\m;— ———=(rsD+ic2-B)—if1(m (¢
quarks are needed to establish the theoretical predictiora, 21+ mo)( s s> B) =i £ef1(Mo) &o
without systematic errors for an ultimate comparison with

the experimental spectrum. —ééfz(mo)%at@z \if+O(p3a§) (A6)
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V¥ +0(pa?), (A7)

where

Lr=E60lF, Ti=&ofs, Ce=E&qCs. (A8)

Note that Eq.A7) for the anisotropic lattice is the same as
APPENDIX: DERIVATION OF THE HAMILTONIAN that for the isotropic lattice except for use {af;,{f,rs,cl}
ON THE ANISOTROPIC LATTICE instead of{a,{r,rs,Cs}. Thus one can repeat the derivation
of the tree level value of bare parametefs &ndcs,) in Ref.
A [11] even for the anisotropic lattice, after replacing
of the transfer matrix: {a,lr.rs,Cof by {ag, £t vl cl}.
N N When the lattice Hamiltonian is expressed in more
H=—logT. (A1) continuum-like form

The lattice HamiltoniaH is identified with the logarithm

T andH for the asymmetric clover quark action on the iso- 1. = ,
tropic lattice have been derived in Rgf1]. An extension to ;tH =W[bomg+b;y-D+ab,D°+iabg>-B+abega-E
the anisotropic lattice is straightforward. Using the fieflls

- ~ 2 . . ...
and¥ =¥y, which satisfy canonical anti-commutation re- +arbsoYol - D, y-El+ - 1Y, (A9)

lations, the Hamiltonian in temporal lattice units for the

: . o the coefficientd are given by
anisotropic quark action is given by

2 boz m]_/mq y (AlO)
Nl a2 By
H=v|am; 2(1+m0)(r5D +icg2-B)—i{f1(mg)as® by=£Lf (M), (A1D)
_ Zf 2@2 \IA,_l_O 3 3, A2 r’{’ ,

gF Z(mO)aS (p as) ( ) b2:_ 2(11 :no) +§F2f2(m0)v (A12)

where @i1ai):(_%€ijk0'jka_i0'0i)1 (Bi,E) cle!
:(%Giijjk-FOi) and bB=—2(1+;w+§,’:2f2(mo), (A13)

a;m;=log(1+mg), (A3) L
1 bEZE(l_Ct)gl,:fl(mO)l (A14)
O=i y~D+§(1—ct)ata-E , (A4)
1

and bso= — E(1—ct)z;2f2(m0). (A15)
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In order to determine tree level parameters, the lattice Hamil- bg =by, (A18)
tonian should be matched to the continuum one to the de-
sired order inag. The continuum Hamiltonian to which the

U_
lattice one is matched is either the Dirac Hamiltonian by =b;—2myabe6;, (A19)
Hpirac=a W (mg+y- D)\i’ or the non-relativistic Hamil-
prac =t AT L , . by =b,— 2, 6, + 2mgaho6?, (A20)
tonian  Hyg=a; WV (my+ yoAg—D2my+---)W.  Both
choices give the same tree level parameters. v )
In the Hamiltonian formalism, the unitary transformation bg =bg—2b1 6, +2myaby 67, (A21)
U is possible because the eigenvaluestbfare invariant
under it. For example, consider a unitary transformation bE=bE— 61— 2mqabo e, (A22)
Y-Uu¥, wiowty? (A16) .
with bgo=bso— §0§+bE01+b10E
U=exp—a;6,y-D—a’fca-E), (A17) —2mgayfy bk . (A23)

where 6, and 6 are parameters. This is called the FWT TR )
transformation, whose element is a spin off-diagonal matrix.The transformed HamiltoniaH™ with b™ is matched to ei-
After this transformation the coefficienktsbecome ther Hp;ac OF Hyg SO as to obtain tree level parameters.
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