
PHYSICAL REVIEW D, VOLUME 65, 094508
Charmonium spectrum from quenched anisotropic lattice QCD
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We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a
tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass by matching the
Hamiltonian on the lattice and in the continuum. The heavy quark mass dependence of the improvement
coefficients, i.e., the ratio of the hopping parametersz5Kt /Ks and the clover coefficientscs,t , is examined at
the tree level, and effects of the choice of the spatial Wilson parameterr s are discussed. We then compute the
charmonium spectrum in the quenched approximation employingj5as /at53 anisotropic lattices. Simulations
are made with the standard anisotropic gauge action and the anisotropic clover quark action withr s51 at four
lattice spacings in the rangeas50.07–0.2 fm. The clover coefficientscs,t are estimated from tree-level tadpole
improvement. On the other hand, for the ratio of the hopping parametersz, we adopt both the tree-level
tadpole-improved value and a non-perturbative one. The latter employs the condition that the speed of light
calculated from the meson energy-momentum relation be unity. We calculate the spectrum ofS andP states
and their excitations using both the pole and kinetic masses. We find that the combination of the pole mass and
the tadpole-improved value ofz to yield the smoothest approach to the continuum limit, which we then adopt
for the continuum extrapolation of the spectrum. The results largely depend on the scale input even in the
continuum limit, showing a quenching effect. When the lattice spacing is determined from the 1P-1S splitting,
the deviation from the experimental value is estimated to be;30% for theS-state hyperfine splitting and
;20% for theP-state fine structure. Our results are consistent with previous results atj52 obtained by Chen
when the lattice spacing is determined from the Sommer scaler 0. We also address the problem with the
hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum
limit. Making a leading order analysis based on potential models we show that a large hyperfine splitting
;95 MeV obtained by Klassen with a different choice of the clover coefficients is likely an overestimate.
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I. INTRODUCTION

Lattice study of heavy quark physics is indispensable
determining the standard model parameters such as the q
masses and Cabibbo-Kobayashi-Maskawa~CKM! matrix el-
ements, and for finding signals of new physics beyond
Obtaining accurate results for heavy quark observables, h
ever, is a non-trivial task. Since lattice spacings of ordea
'(2 GeV)21 currently accessible are comparable or ev
larger than the Compton wavelength of heavy quarks gi
by 1/mq for charm and bottom, a naive lattice calculatio
with conventional fermion actions suffers from large unco
trolled systematic errors. For this reason, effective the
approaches for heavy quarks have been pursued.

One of the approaches is the lattice version of the n
relativistic QCD ~NRQCD!, which is applicable fora
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.1/mq @1,2#. Since the expansion parameter of NRQCD
the quark velocity squaredv2, lattice NRQCD works well for
sufficiently heavy quarks such as the the bottom (v2;0.1),

and the bottomonium spectrum@3–6# and thebb̄g hybrid
spectrum@7–10# have been studied successfully using latt
NRQCD. A serious constraint with the approach, howeve
is that the continuum limit cannot be taken due to the c
dition a.1/mq . Thus the scaling violation from the gaug
and light quark sectors should be sufficiently small. In pra
tice it is often difficult to quantify the magnitude of system
atic errors arising from this origin. Another difficulty is tha
there are a number of parameters in the NRQCD ac
which have to be determined. Since in the present calc
tions the tuning of parameters is made at the tree level~or
tadpole improved tree level! of perturbation theory, the accu
racy achieved is rather limited.

Another approach for heavy quarks uses a space-t
asymmetric quark action, aiming at implementingO(a) im-
provement for arbitrary quark mass@11#. With appropriate
parameter tunings, this action is unitarily equivalent to t
NRQCD action up to higher order corrections fora

s,

3,
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.1/mq , and goes over into the light quark Sheikholeslam
Wohlert ~SW! action @12# for amq!1. This approach has
been originally proposed by the Fermilab group and the
tion is hence called the ‘‘Fermilab action,’’ whose first app
cation is found in@13#. Since the necessary tuning of mas
dependent parameters is in general difficult, in practice
uses the usual SW quark action even fora.1/mq , where the
SW action is unitarily equivalent to NRQCD. This simplifie
approach, called the ‘‘non-relativistic interpretation’’ for th
SW quark, has been widely used in current lattice simu
tions of heavy quark, such as the calculation of theB meson
decay constant@14–17#. Toward the continuum limita→0
the lattice action approaches the usualO(a)-improved action
and the systematic error becomes smaller as (amq)2. How-
ever, theamq dependence atamq*1 is quite non-linear, and

it is not trivial how the systematic error could be controlle
Recently, use of the anisotropic lattice for heavy qua

simulations has been proposed@18,19# as a possible alterna
tive to solve the difficulties of the effective approach. On
anisotropic lattice, where the temporal lattice spacingat is
smaller than the spatial oneas , one can achieveatmq!1
while keeping asmq;1. Therefore, using anisotropic la
tices, one can reduceO„(atmq)n

… (n51,2, . . . ) discretiza-
tion errors while the computer cost is much less than t
needed for the isotropic lattice at the sameat . Naively it is
expected that the reduction ofO„(atmq)n

… errors entails the
reduction of most of discretization errors due to a large qu
mass, since the on-shell condition ensures that the large
ergy scale flows only into the temporal direction as far as
considers the static particle,with zero or small spatial mo-
mentum. If such a naive expectation is correct, the discre
zation error is controlled by a small parameteratmq as it is
for light quarks, and one can achieve even better accurac
taking a continuum limit. However, it is not obvious that o
can eliminate allO„(asmq)n

… errors at the quantum leve
even if it is possible at the tree level.

Another advantage of the anisotropic lattice, which
more practical, is that a finer temporal resolution allows us
determine large masses more accurately. This has bee
ready demonstrated in simulations of the glueball@20,21#
and the hybrid meson@8#.

Klassen calculated the charmonium spectrum in
quenched approximation, employing lattices with the ratio
the temporal and spatial lattice spacingsj[as /at52 and 3,
as a feasibility study of the anisotropic approach@18,19#. He
tuned the ratio of the temporal and spatial hopping para
etersz[Kt /Ks non-perturbatively by demanding the relati
istic dispersion relation for mesons. For the spatial clo
coefficientcs , he adopted two choices: the tree level tadp
improved value correct for any mass (atmq>0) and that
correct only in the massless (atmq50) limit, in order to
make a comparison. He mainly studied the spin splitting
the spectrum, and obtained an unexpected result that
different choices of the clover coefficients lead to two diffe
ent values of theS-state hyperfine splitting even in the co
tinuum limit @18,19#. The continuum limit is of course
unique, and clearly, at least one of the two continuum
trapolations is misleading. Since the hyperfine splitting
09450
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sensitive to the clover coefficients, it is plausible that t
disagreement is due to a large discretization error aris
from the choice of the clover coefficients. In an unpublish
paper @19#, he pointed out the possibility that th
O„(jatmq)n

…5O„(asmq)n
… errors still remain with his

choice of the parameters, which we review in the next s
tion. A similar statement can be found in some recent stud
@22,23#. In fact, he adopted rather coarse lattice spacingsas

.0.17–0.30 fm whereasmq;1. It is then questionable
whether the reliable continuum extrapolation is performed
such coarse lattice spacings.

Using the same anisotropic approach as Klassen, C
has recently calculated the quenched charmonium spec
@24#. She employedj52 and finer (as.0.10–0.25 fm) lat-
tices, and adopted the tree level tadpole improved clo
coefficientcs correct for any mass, which is expected to
better than the other choice that is correct only in the ma
less limit. She computed not only the ground state mas
but also the first excited state masses, and extrapolated
to the continuum limit. Her results atj52 are consistent
with Klassen’s results atj52 and 3 with the same choice o
the clover coefficients.

Since Chen’s calculation was performed only atj52,
similar calculations at different values ofj using fine lattices
are needed to check the reliability of the continuum lim
from the anisotropic approach. In addition, the compl
P-state fine structure has not yet obtained in this approac
far, since the mass of3P2(xc2) state has not been measur
in previous studies.

In this work, we present a detailed study of the charm
nium spectrum from the anisotropic lattice QCD. We p
form simulations in the quenched approximation atj53,
employing fine lattice spacings in the rangeas
50.07–0.2 fm. We attempt to determine the ground st
masses of all theS and P states~including 3P2) as well as
their first excited state masses. To estimate the system
errors accurately, we adopt both the tree level tadpole
proved value and non-perturbative one forz, and both the
pole mass and kinetic mass forM lat(1S̄) which is tuned to
the experimental value. We focus on the lattice spacing
pendence and continuum limit of the mass splittings.
compare our results with the previous anisotropic results
Klassen and Chen to check the consistency, and with exp
mental values@25# to estimate the quenching effect.

In addition, to understand the discrepancy of the hyperfi
splitting mentioned above, we make a leading order anal
using the potential model. To examine the effect of clov
coefficients, we estimate the hyperfine splitting at lead
order. Comparing the leading order estimates with numer
results for the hyperfine splitting, we attempt to find a pro
able solution for this problem. Our preliminary results a
already reported in Refs.@26,27#.

This paper is organized as follows. In Sec. II, we summ
rize and discuss the theoretical aspect of the anisotropic
tice QCD. In Sec. III, we give details of our simulation. O
results for the charmonium spectra are shown in Sec.
where we attempt to take the continuum limit and estim
the quenching effect. We address the problem of the disc
8-2
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CHARMONIUM SPECTRUM FROM QUENCHED . . . PHYSICAL REVIEW D65 094508
ancy of the hyperfine splitting and study the effect of clov
coefficients in Sec. V. Section VI is devoted to our conc
sions.

II. ANISOTROPIC LATTICE QCD ACTION

In this section we first define the anisotropic lattice act
used in this work and fix notations. We then derive the t
level values of bare parameters in our massive quark ac
and discuss effects of the anisotropy. Although it was alre
discussed in earlier papers@22,23#, we briefly describe the
outline of derivations in order to be self-contained. We a
consider the tadpole improvement of bare parameters and
how tree level values are modified.

A. Anisotropic gauge action

In this work, we use the standard Wilson gauge act
defined on an anisotropic lattice:

Sg5bF 1

j0
(

x,s.s8
@12Pss8~x!#1j0(

x,s
@12Pst~x!#G ,

~1!

where b56/g2 is the gauge coupling, andPss8(x) and
Pst(x) are the spatial and temporal plaquettes withPmn(x)
5 1

3 Re TrUmn(x). The anisotropy is introduced by the p
rameterj0 and we call this the ‘‘bare anisotropy.’’ We deno
spatial and temporal lattice spacings asas andat and define
the ‘‘renormalized anisotropy’’j[as /at . We havej5j0 at
the tree level, and thej5j(j0 ,b) at finite b can be deter-
mined non-perturbatively by Wilson loop matching@28–30#.
In numerical simulations, there are two methods for anis
ropy tuning: either varyingj0 to keepj constant or vice
versa. Since the former is more convenient for keeping
physical size constant and easier for performing the c
tinuum extrapolation, we adopt it in this work.

B. Anisotropic quark action

For the quark action, we employ the space-time asymm
ric clover quark action on an anisotropic lattice proposed
Refs.@18,19#:

Sf5(
x

c̄xQcx , ~2!

Q5m01n0Ŵ0g01
n

j0
(

i
Ŵig i

1
i

2 Fv0(
x,i

s0i F̂0i~x!1
v

j0
(

x,i , j
s i j F̂ i j ~x!G , ~3!

where n051 and m0[atmq0 is the bare quark mass, an
Ŵmgm[amWmgm and F̂mn[amanFmn with (a0 ,ai)
5(at ,as). The Wilson operatorWm is defined by

Wmgm[Dmgm2
am

2
r mDm

2 ~m50,1,2,3! ~4!
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with the Wilson coefficients (r 0 ,r i)5(r t ,r s) and

Dmcx[
1

2am
@Um,xcx1m̂2Um,x2m̂

†
cx2m̂#, ~5!

Dm
2 cx[

1

am
2 @Um,xcx1m̂1Um,x2m̂

†
cx2m̂22cx#. ~6!

For the field tensorFmn , we adopt the standard cloverlea
definition. Note that, in Eq.~3!, the factors in front of spatia
Wilson and clover operators includej0 rather thanj. This is
merely a convention and there is no deep theoretical rea
This action is essentially the same as the one employed
Klassen@19# and Chen@24#. In Chen’s work, however,n0
was a tuning parameter withn51 fixed. The two parametri-
zations are related to each other by a field resca
cx
cx /An. Therefore $m0 ,n0 ,v,v0%

1 corresponds to
$m0 /n,1/n,v/n,v0 /n% in our convention. Among these si
parameters$m0 ,n,r s ,r t ,v,v0%, at least one is redundant, s
that we taker t as a redundant parameter and use it to rem
the fermion doublers. Althoughr s may not be taken arbitrary
in the O(a) improved anisotropic quark action@23# for the
matrix elements, it can be taken arbitrary for the hadron m
calculation. Therefore we always setr t51 and leaver s free
in this work. The remaining parameters$m0 ,n,v,v0% are
used to tune the quark mass and reduce the lattice disc
zation error.

For convenience in numerical simulations, we al
present the quark action in a different form. Rescaling
fields cx , the quark action can be transformed into a fo
given by

Sf85(
x

H c̄xcx2Kt@c̄x~12g0!U0, xcx10̂1c̄x

3~11g0!U0,x20̂
†

cx20̂#2Ks(
i

@c̄x~r s2g i !Ui ,xcx1 î

1c̄x~r s1g i !Ui ,x2 î
†

cx2 î #J 1 iK scs (
x,i , j

c̄xs i j F̂ i j ~x!cx

1 iK sct(
x,i

c̄xs0i F̂0i~x!cx , ~7!

where Ks,t and cs,t are the spatial and temporal hoppin
parameters and the clover coefficients, respectively. The h
ping parametersKs,t are related to the bare quark massm0
5atmq0 through

atmq0[1/~2Kt!23r s /z21, z[Kt /Ks . ~8!

The form, Eq.~7!, on the anisotropic lattice is the same
that on the isotropic lattice in Ref.@11#. Note however that
Ref. @11# uses the inverse of our definition forz. We refer to
their definition aszF[Ks /Kt51/z. Using Eq.~8! one can

1More precisely, Chen used the language$m̂0 ,n t ,CSW
s ,CSW

t % in-
stead of$m0 ,n0 ,v,v0%.
8-3
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M. OKAMOTO et al. PHYSICAL REVIEW D 65 094508
convert$mq0 ,z% to $Ks ,Kt%. In our convention, the relation
between$n,v,v0% and$z,cs ,ct% is given by

z5j0 /n, cs5v/n, ct5j0v0 /n ~9!

or, equivalently,

n5j0 /z, v5csn, v05ctn/j0 . ~10!

Following Ref. @11#, we call the quark action Eq.~3! as
the ‘‘mass form’’ and Eq.~7! as the ‘‘hopping paramete
form.’’

C. Tree level tuning of bare parameters for arbitrary mass

To derive the tree level value of bare parameters, we
low the Fermilab method and calculate the lattice Ham
tonian @11#. After some algebra~see the Appendix for de
tails!, we obtain the lattice Hamiltonian, Eq.~A9!. Using the
Foldy-Wouthuysen-Tani~FWT! transformation, Eq.~A17!,
we then transform it to the non-relativistic form, in which th
upper components of the Dirac spinor completely decou
from the lower ones~i.e., eliminateg•D and a•E). The
transformed Hamiltonian is given by

1

at
ĤU5Ĉ̄S m11g0A02

D2

2m2
2

i( •B

2mB

2g0

@g•D,g•E#

8mE
2

1•••D Ĉ ~11!

with

atm15 log~11m0!, ~12!

1

atm2
5

2zF8
2

m0~21m0!
1

r s8zF8

11m0
, ~13!

1

atmB
5

2zF8
2

m0~21m0!
1

cs8zF8

11m0
, ~14!

1

~atmE!2
54zF8

2F ~11m0!2

m0
2~21m0!2

1~ct21!
1

m0~21m0!G ,

~15!

wherezF8 , r s8 andcs8 are defined in Eq.~A8!. TheS•B term
gives the leading order contribution to the hyperfine splittin
while the@g•D,g•E# term yields the fine structure splitting

The matching conditionĤU5ĤNR1O(as
2) is equivalent

to

m15m25mB5mE5mq . ~16!

This yields the tree level value of bare parameters for
massive quark:
09450
l-
-
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,

e

j0zF5n5AS j0r sm0~21m0!

4~11m0! D 2

1
m0~21m0!

2 log~11m0!

2
j0r sm0~21m0!

4~11m0!
, ~17!

cs5r s ~v5r sn!, ~18!

ct5
~j0zF!221

m0~21m0!
1

j0
2r szF

11m0
1

~j0r s!
2m0~21m0!

4~11m0!2
.

~19!

We note thatcs is independent of the quark mass, whilen
andct have complicated mass dependences. The termj0m0
.asmq0 seems to exist in Eq.~17! and ~19!. To see this
explicitly, we expandn andct in m0. This gives

n511
1

2
~12j0r s!m01

1

24
@2116j0r s13~j0r s!

2#m0
2

1O~m0
3!, ~20!

ct5
11j0r s

2
1

1

12
@2223j0r s13~j0r s!

2#m01O~m0
2!.

~21!

Theasmq0 term, which isO(1) for heavy quarks at currently
accessible lattice spacings ofas

21'2 GeV, appears inn and
ct even at the tree level. Sincej0m05asmq0 is always mul-
tiplied by the spatial Wilson coefficientr s in Eqs. ~20! and
~21!, one can eliminate theasmq0 term at the tree level by
choosing

r s51/j0 . ~22!

However, this choice has the disadvantage that the m
splitting between unphysical doubler states and the phys
state decreases asj0 increases. Moreover, the hopping term
in the quark action are no longer proportional to the 16gm
projection operators. It is also doubtful that, beyond the t
level, theasmq0 term can be still eliminated by this choice

If one adopts the conventional choice

r s51, ~23!

the asmq0 term remains, but the unphysical doubler sta
decouple. This choice also has the practical merit that
quark action has the full projection property, so that the c
ing is easier and the computational cost is lower.

The tree-level full mass dependences ofn and ct for r s
51/j0 and r s51 are shown in Figs. 1 and 2. In order
compare at the sameas , we choosem1as as the horizontal
axis instead ofm1at wherem1 is the pole mass. Sinceas

21

*1 GeV and m1<mbottom;4.5 GeV in current typical
simulations, we plot results form1as<4.

For r s51/j0 shown in Fig. 1, bothn andct are monotonic
functions in mass, and they converge to their massless va
as j0 increases at any fixed values ofm1as . Hence, the
asmq0 dependence can be controlled by increasingj0. At j
8-4
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FIG. 1. Tree level full mass dependences ofn andct for r s51/j51/j0. Horizontal axis is the pole mass in spatial lattice unitsm1as

5j log(11m0). Vertical axis is normalized to be 1 in the massless limit.
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5100 the mass dependences ofn and ct completely disap-
pear with the cost that the physical and unphysical states
almost degenerate. In actual simulations withr s51/j0, tak-
ing 2<j0!` to decouple unphysical doublers, one is
lowed to use the massless values forn and ct , since their
mass dependences are monotonic and very weak. In this
mass dependent parameter tuning can be avoided eve
asm0;1.

For r s51, on the other hand, the mass dependencesn
andct are complicated and non-negligible even for largej0.
Indeedn andct do not converge to their massless values
j0 increases at fixedm1as , as shown in Fig. 2. The deviatio
from the massless values atj052 is smaller than the one a
j051, but it becomes larger again asj0 increases. Therefore
takingj052 –3 in simulations withr s51, one needs to per
form a mass dependent parameter tuning.

For both choices ofr s , it is better to use a moderate valu
of j0, rather than excessively large values. In our numer
study of the charmonium spectra, we adopt the choicer s
51, and make a mass dependent parameter tuning, du
the practical reasons mentioned above.
09450
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Finally we show the tree level value of the parameters
the massless limit. By takingatmq0→0 in Eqs.~17!–~19!,
one obtains

n51, v5r s , v05
11j0r s

2j0
, ~24!

in the mass form, or

z5j0 , cs5r s , ct5
11j0r s

2
, ~25!

in the hopping parameter form. Note that there is an am
guity in the tree level value ofas /at , sincej05j at the tree
level butj0Þj in the simulation. Fortunately, this ambiguit
almost disappears after the tadpole improvement, as sh
in the next subsection.
FIG. 2. The same as Fig. 1, but forr s51.
8-5
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D. Tadpole improvement

In this section we apply the tadpole improvement@31# to
the parameters of the anisotropic lattice action at the
level in order to partially include higher order correction
One first rewrites the lattice action using a more continuu
like link variable Ũ i ,05Ui ,0 /us,t , whereus,t5^Ui ,0& is the
expectation value of the spatial or temporal link variab
i.e., one replaces

Ui ,0→us,tŨ i ,0 , ~26!

and then repeats the tree-level calculations. We will sh
below how the tree-level values of bare parameters are m
fied.

1. Gauge action

By the replacement of Eq.~26!, the anisotropic gauge
action Eq.~1! becomes

Sg→2(
6

g̃2 F 1

j̃0

P̃ss81 j̃0P̃st

1constant independent ofŨmG , ~27!

whereP̃mn5 1
3 Re TrŨmn , andg̃2 and j̃0 are given by

g̃25
g2

us
3ut

.
g2

A^Pss8&^Pst&
, j̃05

ut

us
j0.A ^Pst&

^Pss8&
j0 .

~28!

Requiring space-time symmetry for the action, Eq.~27!, in
the classical limit, one obtains the tree-level tadpo
improved value of the anisotropy~denoted by an index
‘‘TI’’ !,

jTI5 j̃05~ut /us!j0 . ~29!

In practicejTI in Eq. ~29! agrees with the renormalized an
isotropyj within a few % accuracy atg2;1. Therefore one
can replace the factor (ut /us)j0 by j in the following equa-
tions. This simplifies the tree level expression. Moreover,
arbitrariness for the choice of anisotropy disappears.

2. Fermion action

When the fermion action is rewritten in terms ofŨ i and
Ũ0 instead ofUi and U0, the action keeps the same for
with

K̃s5usKs , K̃ t5utKt , ~30!

c̃s5us
3cs , c̃t5usut

2ct . ~31!

Then z5Kt /Ks and the bare quark massatmq051/2Kt
2(113r s /z) are modified to

z̃5K̃ t /K̃s5~ut /us!z, ~32!
09450
e
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atm̃q05
1

2K̃ t

2~113r s / z̃ !

5
atmq0

ut
1

1

ut
211~3r s /z!

12us

ut
. ~33!

Using parameters with the tilde, one can repeat the der
tion in the previous subsection. For a massless quark,
obtains

z̃5 j̃0.j, c̃s5r s , c̃t5
11 j̃0r s

2
.

11jr s

2
. ~34!

Therefore, tadpole-improved~TI! tree-level estimates are

zTI5~us /ut!j̃05j0 , ~35!

which indicates that non-perturbativez at m̃q0;0 is closer to
j0 than toj, and

cs
TI5

r s

us
3

, ct
TI5

1

usut
2

11~ut /us!j0r s

2
.

1

usut
2

11jr s

2
.

~36!

As can be seen in Eqs.~35! and ~36!, the tadpole improve-
ment eliminates the uncertainty of choice of anisotropy~i.e.,
whether to chosej0 or j) at tree level. Converting to the
$n,v,v0% convention, one obtains

nTI51, vTI5
r s

us
3

, v0
TI5

1

us
2ut

11~ut /us!j0r s

2~ut /us!j0
.

~37!

Note thatnTI is normalized to 1 sincen equalsj0 /z and not
j/z; hence, the former definition is practically more conv
nient than the latter one. Note also that tadpole factors inct

TI

and v0
TI are different becausev0 equals ctn/j0 and not

ctn/j.
Similarly, for massive quarks, tadpole-improved tree-le

estimates become

1/zTI5
ut

us
HAS r sm̃0~21m̃0!

4~11m̃0!
D 2

1
m̃0~21m̃0!

2~ut /us!
2j0

2log~11m̃0!

2
r sm̃0~21m̃0!

4~11m̃0!
J ~38!

with nTI5j0 /zTI, and

cs
TI5

r s

us
3

, ~39!
8-6
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ct
TI5

1

usut
2 H ~nTI!221

m̃0~21m̃0!
1S ut

us
D j0r sn

TI

11m̃0

1S ut

us
D 2~j0r s!

2m̃0~21m̃0!

4~11m̃0!2 J , ~40!

wherem̃05atm̃q0.

III. SIMULATIONS

We proceed to calculate the charmonium spectrum in
quenched approximation as our first numerical study us
the anisotropic lattice. In this section we describe the co
putational details of our quenched charmonium calculatio

A. Choice of simulation parameters

For the gauge sector, we use the anisotropic Wilson ga
action given in Eq.~1!. Throughout this paper, we emplo
j53, wherej is the renormalized anisotropy. In order
achievej53, we tune the bare anisotropyj0, using the pa-
rametrization ofh[j/j0 given by Klassen@29#:

h~b,j!511S 12
1

j D ĥ1~j!

6

11a1g2

11a0g2
g2, ~41!

wherea0520.77810,a1520.55055 and

ĥ1~j!5
1.002503j310.39100j211.47130j20.19231

j310.26287j211.59008j20.18224
.

~42!

We perform simulations in the quenched approximati
at four values of gauge couplingb55.70, 5,90, 6.10 and
6.35. These couplings correspond toas50.07–0.2 fm and
atmcharm50.16–0.48 formcharm51.4 GeV. The spatial lat-
tice sizeL is chosen so that the physical box size is about
fm, while the temporal lattice sizeT is always set to beT
52jL56L.

For the charm quark, we use the anisotropic clover qu
action, Eq.~7!, with the conventional choice of the spati
Wilson coefficient,r s51, as mentioned in Sec. II C. We tak
two values for the bare quark massm05(m0

1 ,m0
2) at eachb

in order to interpolate~or extrapolate! results inm0 to the
charm quark massm0

charm. The charm quark massm0
charm is

fixed from the experimental value of the spin averagedS
meson mass. In this procedure, we use both the pole m
Mpole and kinetic massM kin for the 1S meson. Forz, the
ratio of the hopping parameters, we adopt both the tree-le
tadpole-improved valuezTI and a non-perturbative valuezNP

determined from the meson dispersion relation. We desc
our method of tuningz in detail in Sec. III C. For the spatia
clover coefficientcs , we employ the tree-level tadpole
improved value for massive quarks, Eq.~39!. Note thatcs
has no mass dependence at the tree level. On the other
we adopt the tree-level tadpole-improved value in the ma
less limit, Eq.~36!, for the temporal clover coefficientsct .
We discuss possible systematic errors arising from
09450
e
g
-
.

ge

,

6

rk

ss

el

e

nd,
s-

r

choice of the parametersz andcs,t in Sec. III E. The tadpole
factorsus,t in Eqs.~36! and ~39! are estimated by the mea
plaquette prescription:

us5^Pss8&
1/4, ut51. ~43!

If we adopted the alternative definition ut
5^Pst&

1/2/^Pss8&
1/4 instead,ut would be greater than 1. We

usej instead of (ut /us)j0 in Eq. ~36!.
Gauge configurations are generated by a 5-hit pseudo

bath update supplemented by four over-relaxation ste
These configurations are then fixed to the Coulomb gaug
every 100–400 sweeps. On each gauge fixed configura
we invert the quark matrix by theBiCGStab algorithm to ob-
tain the quark propagator. We always perform the iteration
the BiCGStab inverter byT times, whereT is the temporal
lattice size. By changing the stopping condition for the qua
propagator, we have checked that this criterion is suffici
to achieve the desired numerical accuracy. We accumu
400–1000 configurations for hadronic measurements.

Our simulation parameters are compiled in Tables I a
II. In Table III, we compare some of the parameters used
our simulation~labeled by ‘‘set A’’! with those in the previ-
ous studies by Klassen~‘‘set B’’ and ‘‘set D’’ ! @18,19# and by
Chen~‘‘set C’’ ! @24# for later references.

B. Meson operators

In this work, we calculate all ofS- and P-state meson
masses of charmonia, namely1S0(hc),

3S1(J/c), 1P1(hc),
3P0(xc0), 3P1(xc1) and 3P2(xc2). For this computation,
we measure the correlation function of the operators wh
have the same quantum number as one of above particle
Table IV we give the operators for theS- andP-state mesons
There are two types of operators: those of the formc̄Gc and
of c̄GDc, whereG represents a combination ofg matrices
andD the spatial lattice derivative. We call them theG op-
erator and theGD operator, respectively. The latter appea
only for the P-state mesons. Note that there are two latt
representations for the3P2 state~E and T representations!
due to breaking of rotational symmetry.

We measure the correlation functions of theG operators

Cstate
ss8 ~ t !5(

x
K c̄x,tGcx,t

3 ( c̄z0,0Gcy0,0f x02z0

s8 f x02y0

s L , ~44!

TABLE I. Simulation parameters.Las is calculated usingas
r 0 ,

the lattice spacing determined fromr 0.

b j j0 cs ct as
r 0 @fm# L33T Las @fm#

5.70 3 2.346 1.966 2.505 0.204 83348 1.63
5.90 3 2.411 1.840 2.451 0.137 123372 1.65
6.10 3 2.461 1.762 2.416 0.099 163396 1.59
6.35 3 2.510 1.690 2.382 0.070 2433144 1.67
y0 ,z0

8-7
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TABLE II. Simulation parameters continued. In fourth column, ‘‘NP’’ and ‘‘TI’’ denote the nonpertur
tive and tree level tadpole improved values forz respectively.cPS,V are the speed of light obtained from th
fit for the pseudoscalar (1S0) and vector (3S1) mesons.

b L33T atmq0 z Sweep/conf No. conf cPS cV

5.70 83348 0.320 2.88 ~NP! 100 1000 1.005~10! 1.008~11!

5.70 83348 0.253 2.85 ~NP! 100 1000 1.005~10! 1.008~11!

5.70 83348 0.320 3.08 ~TI! 100 1000 0.962~9! 0.965~10!

5.70 83348 0.253 3.03 ~TI! 100 1000 0.966~9! 0.969~10!

5.90 123372 0.144 2.99~NP/TI! 100 1000 0.991~8! 0.993~9!

5.90 123372 0.090 2.93~NP/TI! 100 1000 0.991~8! 0.994~9!

6.10 163396 0.056 3.01 ~NP! 200 600 0.997~9! 0.997~9!

6.10 163396 0.024 2.96 ~NP! 200 600 0.997~9! 0.997~9!

6.10 163396 0.056 2.92 ~TI! 200 600 1.017~9! 1.018~9!

6.10 163396 0.024 2.88 ~TI! 200 600 1.017~9! 1.016~10!

6.35 2433144 20.005 2.87~NP/TI! 400 400 1.006~11! 1.011~11!

6.35 2433144 20.035 2.81~NP/TI! 400 400 1.007~12! 1.009~11!
op

s.

1

t

ns,

1,

e

o-

he
to
wheref x
s is a source smearing function, and we always ad

a point sink. We employ the point source (s50) with f x
s50

5dx,0 and an exponentially smeared source (s51) with
f x

s515Ase
2Bsuxu, whereAs andBs are smearing parameter

Therefore we have three source combinations,ss8500, 01
and 11, for theG operators. The smearing parametersAs and
Bs at eachb are chosen so that the effective mass of theS
meson forss8501 has a wide plateau.

To obtain the correlation functions of theGD operators,
we measure

Ci jkl
ss8 ~ t !5(

x
K c̄x,tG iD jcx,t

3 (
y0 ,z0

c̄z0,0Gkcy0,0f l ,x02z0

s852 f x02y0

s L , ~45!

whereD icx,t5cx1 î ,t2cx2 î ,t is the discretized derivative a
the sink, and we employ a smeared derivative sources
52) given by

f i ,x
s525Ase

2Bsux1 î u2Ase
2Bsux2 î u ~ i 51,2,3! ~46!
09450
t

(

with As andBs the same as those fors51. For the3P0 state,

for example, we calculateC3P0

ss8 5( i , j 51
3 Cii j j

ss8 with G i5g i .

For the GD operators, we have two source combinatio
ss8502 and 12. In total,S-state mesons havess8500, 01
and 11 source combinations, andP-state mesons have 00, 0
11, 02 and 12 source combinations except for3P2. Since
there is noG operator for3P2, it has only 02 and 12 sourc
combinations.

To calculate the dispersion relation ofS-state mesons, we
measure correlation functions for four lowest non-zero m
menta,

asp5~2p/L !3$~1,0,0!, ~1,1,0!, ~1,1,1!, ~2,0,0!%,
~47!

in addition to those at rest. Correlation functions with t
same value ofupu but different orientations are averaged
increase the statistics.

C. Tuning bare quark massm0 and fermion anisotropy z

Let us describe our method of tuningz andm0 in detail.
We determine the input parametersm0 (5m0

1 ,m0
2) and z

(5zTI,zNP) as follows. First we fixz5j53 and choosem0
1

,
ly in the
ctors

ate of the
TABLE III. Comparison of simulation parameters in various anisotropic lattice studies of thecc̄ spectrum. In the third to fifth columns
TI (m>0), TI (m50) and NP respectively denote the tree level tadpole improved value for massive quarks, which are correct on
massless limit and the non-perturbative value. The sixth column shows which method is used for the estimation of the tadpole faus,t

~the plaquette prescriptionuP or the Landau mean link prescriptionuL). The seventh column shows which 1S̄ mass is tuned to the
experimental value. The eighth column denotes quantities used for the scale setting. The final column is the continuum estim
hyperfine splitting from theas

2-linear fit with the scale set byr 0.

Set j z cs ct us,t M lat(1S̄) Scale input HFS (as50,r 0)

~A! this work 3 TI(m>0), NP TI(m>0) TI(m50) uP Mpole,M kin r 0 , 1P̄-1S̄, 2S̄-1S̄ '75 MeV

~B! Klassen@19# 2,3 NP TI(m>0) TI(m50) uL Mpole(.M kin) r 0 '75 MeV
~C! Chen@24# 2 NP TI(m>0) TI(m50) uL Mpole(.M kin) r 0 '75 MeV
~D! Klassen@18,19# 2,3 NP TI(m50) TI(m50) uL Mpole(.M kin) r 0 '95 MeV
8-8
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and m0
2 where the 1S meson mass roughly agrees with t

experimental value. Then we determine both the tree-le
tadpole-improved valuezTI and the nonperturbative valu
zNP at m05m0

1 andm0
2.

To obtainzTI at fixedm0, we use Eqs.~33! and ~38!. We
replace the factorut /us in Eq. ~38! with j/j0, using Eq.~29!.
On the other hand,zNP is obtained by demanding that th
relativistic dispersion relation is restored at small mome
for the 1S meson. The dispersion relation on a lattice
given by

E~p!25E~0!21c2p21O~as
2p4! ~48!

5Mpole
2 1

Mpole

M kin
p21O~as

2p4!, ~49!

wherec is called the ‘‘speed of light,’’ andMpole andM kin are
the pole and kinetic masses of the 1S meson. Throughou
this paper, a capital letterM denotes the meson mass, while
small onem the quark mass. Generallyc is not equal to one
due to lattice artifacts. We extract the speed of lightc by
fitting E(p)2 linearly in p2 for three or four lowest momenta
since the linearity ofE(p)2 in p2 is well satisfied. We iden-
tify zNP with a point wherec51 or equivalentlyMpole
5M kin for the 1S meson. To determinezNP, we perform
preparatory simulations and calculatec for z52.8, 3.0 and
3.2 atm05m0

1 andm0
2 using 100–200 gauge configuration

Then we findz5zNP, wherec51, from an interpolation of
z. As shown in Table II, the speed of lightc at zNP is indeed
equal to 1 within 1%, which is roughly the size of the st
tistical error.

Production runs for the charmonium spectrum descri
in Sec. III A are performed atm05(m0

1 ,m0
2) and z

5(zTI,zNP) for eachb. Accidentally, forb55.90 and 6.35,
zTI5zNP holds within our numerical accuracy, so we use t
same data for the analysis at theseb.

Finally we linearly interpolate or extrapolate results
m05(m0

1 ,m0
2) to those atm05m0

charm, with fixedz (5zTI or
zNP). As already mentioned, we identifym0

charm with a point

TABLE IV. S- and P-state operators. In the first and seco
columns, the state is labeled by2S11LJ andJPC respectively. The
third column shows the particle name for the charmonium fam
In the fourth and fifth columns, we give the correspondingG op-
erator andGD operator.

2S11LJ JPC Name G operator GD operator

1S0 021 hc c̄g5c
3S1 122 J/c c̄g ic
1P1 112 hc c̄s i j c c̄g5D ic
3P0 011 xc0 c̄c c̄( ig iD ic
3P1 111 xc1 c̄g ig5c c̄$g iD j2g jD i%c
3P2 211 xc2 c̄$g iD i2g jD j%c ~E rep!

c̄$g iD j1g jD i%c ~T rep!
09450
el
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where the spin-averaged 1S meson massM lat(1S̄) in units of
a physical quantityQlat is equal to the corresponding exper
mental value:

M lat~1S̄!

Qlat
5

Mexpt~1S̄!

Qexpt
, ~50!

with Mexpt(1S̄)53067.6 MeV for charmonium. In this
work, we adopt the Sommer scaler 0 and the spin-average
mass splittings DM (1P̄-1S̄)[M (1P̄)2M (1S̄) and
DM (2S̄-1S̄)[M (2S̄)2M (1S̄) as the scale quantityQ. The
spin-averaged masses are defined by

M ~nS̄!5@3M ~n3S1!1M ~n1S0!#/4, ~51!

M ~nP̄!5@3M ~n1P1!15M ~n3P2!13M ~n3P1!

1M ~n3P0!#/12 ~52!

with n(51,2, . . . ) theradial quantum number. The exper
mental values of the mass splittingsDM (1P̄-1S̄) and
DM (2S̄-1S̄) are 457.9 MeV and 595.4 MeV, respectivel
The experimental values ofr 0 is not known, and we use a
phenomenological estimater 050.50 fm. For the definition
of the lattice meson massM lat in Eq. ~50!, we have two
choices in the case ofz5zTI: one is the pole massMpole and
the other is the kinetic massM kin . On the other hand, in the
case ofz5zNP, Mpole5M kin should hold by definition. In
practice, there can be small deviations due to the statis
error. Therefore we have 4 (5232) choices for (M lat ,z) in
total.

D. Mass fitting

From meson correlation functions we extract the mes
mass~energy! by standardx2 fitting with a multi-hyperbolic-
cosine ansatz~termednfit-cosh fit below!

Cstate
ss8 ~ t !5 (

i 50

nfit21

Ai
ss8coshF S T

2
2t D Mi G , ~53!

wheress8 represents the source combination~00, 01, etc.!, t
is the time separation from the source, andnfit is the number
of states included in the fit.

We determine the mass of the ground state and the
radial excited state for each particle, and the mass splitti
such asDM (1P-1S) and DM (2S-1S), from a 2-cosh fit
using several correlation functions with different sour
combinations simultaneously. Here we use the correla
functions ofss8500, 01 and 11 sources forS states, while
00, 11, 02 and 12 sources are used forP states except for
3P2. For 3P2, we use the correlation functions of 02 and 1
sources. The 2-cosh fit for eachS state always gives the
ground state mass consistent with that from the 1-cosh fit.
the other hand, for theP state, the 2-cosh fit is preferred ove
the 1-cosh fit because the 1P mass from the 1-cosh fit usin
the correlation function of 11 and 12 sources occasion
disagrees by a fews, due to excited state contaminations. T

.

8-9
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FIG. 3. S-state effective masses atb55.90, atmq050.144 andz52.99. The left figure shows the 11S0 masses atpÞ0, while the right
shows the 11S0 and 13S1 masses for the sourcess8500, 01 and 11.
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determine the mass of the first excited state accurately,
better to adopt results from the 3-cosh fit. However, we
not perform the 3-cosh fit systematically because of the
stability of it, and adopt results from the 2-cosh fit for th
first excited state mass. This may cause an overestimatio
the first excited state mass due to a contamination fr
higher excited states.

To determine the spin-averaged 1S mass and the 1S
energy at pÞ0, and the spin mass splittings such
DM (13S1-11S0) andDM (13P1-13P0), we perform a 1-cosh
fit (nfit51) using the source combination which gives t
widest plateau in the effective mass. We use the 01 sourc
theSstate and the 12 source for theP state. We always chec
that the spin mass splitting from a simultaneous 2-cosh
mentioned above agrees with that from the 1-cosh fit wit
1s –2s. We also check that the splittingDM (13P1-13P0)
from a 1-cosh fit using the 11 source agrees with that us
the 12 source.

In these analyses, we perform both the uncorrelated
and the correlated fit which takes account of the correla
between different time slices and different sources. The
correlated fit is always stable and givesx2/NDF&0.5 (Q
;1). The correlated fit with 1-cosh ansatz is also stable
produces results consistent with those from the uncorrel
fit. However, the correlated 2-cosh fit is often unstable, eit
failing to invert the covariance matrix or giving larg
x2/NDF@1 even if it converges. Therefore we adopt the u
correlated fit for our final analysis.

The fitting range@ tmin ,tmax# for the final analysis is deter
mined as follows. From an inspection of the effective ma
plot, we determinetmax which roughly has the same physic
length independent ofb. We repeat the 1- and 2-cosh fits fo
eachb, varying tmin with fixed tmax, and find a range oftmin
where the ground state mass and the first excited state
~for 2-cosh fit! are stable againsttmin . We also check that it
has reasonable value ofx2/NDF . The final tmin is then cho-
sen from the region accepted above so that its phys
length is roughly equal independent ofb.

Typical examples of the effective mass plot a
tmin-dependence of the fitted mass are shown in Figs. 3
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and in Fig. 5, respectively. Our final fitting ranges are su
marized in Table V. Statistical errors of masses and m
splittings are estimated by the jackknife method. The typi
bin size dependences of jackknife errors for the ground s
masses are shown in Figs. 6 and 7. We always adopt a
size of 10 configurations, i.e., 1000–4000 sweeps.

E. Scaling violation and the continuum limit

We discuss scaling violation for our action and how t
results at finiteas are extrapolated to the continuum lim
as→0. Since we use the anisotropic Wilson gauge act
with nonperturbatively tunedj0, the scaling violation from
the gauge sector starts atO„(asLQCD)2

….
For the quark sector, we use the anisotropic clover qu

action with tadpole-improved clover coefficientscs,t , and
either the tadpole-improved valuezTI or nonperturbative
value zNP for z. Since we adopt the tree-level tadpol
improved value ofcs for massive (asmq>0) quarks, the
scaling violation arising from the choice ofcs is

FIG. 4. P-state (11P1) effective masses atb55.90, atmq0

50.144 andz52.99. The left figure shows the masses from theG
operator, while the right shows those from theGD operator.
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FIG. 5. Fit range (tmin) dependence of masses atb55.90, atmq050.144 andz52.99. The legend denotes the state~fit ansatz, quark
source!.
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O„(asLQCD)2
… andO(aasLQCD). On the other hand, forct ,

we adopt the tree-level tadpole-improved value correct o
in the massless (asmq50) limit, which generates an add
tional O(asLQCD•asmq)5O(as

2LQCDmq) error. Recall that
the asmq ~not only atmq) dependence of the parameter r
mains with our choice of the spatial Wilson coefficientr s
51 at the tree level, as discussed in Sec. II. In the cas
z5zNP, therefore, the scaling violations areO„(asLQCD)2

…

09450
ly

of

and O(as
2LQCDmq) at leading order, andO(aasLQCD) at

next-to-leading order. The size of these errors are estim
to beO„(asLQCD)2

…57% –1%,O(as
2LQCDmq)537% –4%

andO(aasLQCD)54% –1% forb55.70–6.35 correspond

ing to as
21'1.0–2.8 GeV. Here we took LQCD

5250 MeV (.L
MS

Nf50
) and mq51.4 GeV (.mcharm), and

the renormalized coupling constanta is estimated from Eq.
TABLE V. Fit ranges we adopted. In the first column,DS andDP denote theS- andP-state spin mass
splitting respectively.

State Fit form Source Fit range (tmin /tmax)

b55.70 b55.90 b56.10 b56.35

1S,2S 2-cosh 00101111 11/24 17/36 22/48 32/72
1P,2P 2-cosh 00111102112 7/18 11/25 15/35 21/50

1S̄,DS 1-cosh 01 13/24 19/36 26/48 38/72

1S(pÞ0) 1-cosh 01 13/22 20/32 26/45 40/66
DP 1-cosh 12 11/18 17/25 23/35 33/50
8-11
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~28!. It is expected that theO(aasLQCD) errors are largely
eliminated by the tadpole improvement.

When the tree level tadpole improved valuezTI is used
instead ofzNP, we have additionalO(a) andO(aasmq) er-
rors, since the kinetic term is a dimension four operator. T
size of the additional errors is estimated to beO(a)
515% –12% andO(aasmq)522% –6%. Again we expec
that the dominant part of this error is eliminated by the ta
pole improvement.

In this work we adopt anas
2-linear extrapolation for the

continuum limit, because the leading order scaling violat
is always O„(asLQCD)2,as

2LQCDmq… irrespective of the
choice of z. We also perform anas-linear extrapolation to
estimate systematic errors. In practice we use results at t
finest lattice spacings i.e.,b55.90–6.35 (asmq<1) for the
continuum extrapolation, excluding results atb55.70
(asmq.1), which appear to have larger discretization err
as expected from the naive order estimate. Performing s
extrapolations for all sets ofM lat5(Mpole,M kin) and z

FIG. 6. Bin size dependence of jackknife error ofatM (11S0)
with p50 andpÞ0 at b56.10, atmq050.024 andz52.88.
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5(zTI,zNP), we adopt the choice which shows the smooth
scaling behavior for the final value, and use others to e
mate the systematic errors.

IV. RESULTS

Now we present our results of the quenched charmon
spectrum obtained with the anisotropic quark action. In t
section, we first compare results ofzNP with zTI. Second, we
determine the lattice scale, and study the effect of (M lat ,z)
tuning. We then show the results of charmonium masses
mass splittings, and estimate their continuum limit.

A. Dispersion relation and zNP

In Fig. 8, we plot a typical example of the dispersio
relation and the speed of light. As shown in the left figu
the linearity ofE2 in p2 is satisfied well. Indeed the ‘‘effec
tive speed of light,’’ defined by

ceff~p!5AE~p!22E~0!2

p2
, ~54!

FIG. 7. Bin size dependence of jackknife error ofatM (11P1) at
b56.10, atmq050.024 andz52.88.
FIG. 8. Dispersion relation~left! and speed of light~right! of the S state atb55.90, atmq050.144 andz52.99. On the right, we show
the effective speed of lightceff(p) and the speed of lightc from the fit.
8-12
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has a wide plateau as shown in the right figure. Therefore
employ the linear fit inp2 to extract the speed of lightc from
E2. This figure also illustrates that the speed of lightc for
1S0 agrees well with that for3S1 within errors. This is in-
deed the case for all data points as observed in Table II.
speed of lightc seems universal for all mesons as pointed
in Ref. @24#.

The nonperturbative value ofz, zNP, is obtained by de-
manding that the speed of lightc is equal to 1 within 1%. On
the other hand, the tree-level tadpole-improved value,zTI,
gives c deviating from 1 by 2% –4% i.e., 2s –4s at most,
which is much smaller than the size of theO(a,aasmq)
error (12% –15%,6% –22%)estimated in the previous sec
tion. This suggests thatO(a,aasmq) errors associated with
zTI are almost eliminated by the tadpole improvement,
expected.

In Fig. 9, nNP5j0 /zNP and nTI5j0 /zTI at m05m0
1 and

m0
2 are plotted as a function ofm̃05atmq0

TI . We find thatnNP

~circles! andnTI ~squares and solid line! agree within errors
at m̃0<0.3 but deviate from each other atm̃0.0.5 (b

FIG. 9. The tadpole improved bare massm̃0[atmq0
TI versusn

5j0 /z at j53. ‘‘TI’’ and ‘‘NP’’ denote the tree level tadpole im-
proved value and nonperturbative value respectively. Circles
squares are our data atm05m0

1 ,m0
2 ('m0

charm) for b55.7– 6.35.
The error bars for the circles denote the statistical uncertainty
nNP5j0 /zNP. We also plot Klassen’s data atm05m0

charm for b
55.5–5.8 as open diamonds.
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55.7). The latter is one of the reasons why we exclude
point in the continuum extrapolation. One also notices t
the slope ofn approaching the valuen51 in the continuum
limit is steep, and in addition, the differencenNP2nTI for our
data does not have a smooth dependence inatmq0

TI . As dis-
cussed in Sec. V, these features ofnNP bring complications in
the scaling behavior of the hyperfine splitting.

B. Lattice scale

In this work, we determine the lattice spacing via t
Sommer scaler 0 @32#, the 1P̄-1S̄ meson mass splitting, an
the 2S̄-1S̄ splitting. We compare the results obtained wi
these different scales, in order to estimate the quenching
rors.

1. Scale from the Sommer scale r0

In order to calculate the static quark potential needed
the extraction ofr 0, additional pure gauge simulations liste
in Table VI are performed. UsingLas>1.4 fm lattices, we
measure the smeared Wilson loops at every 100–200 sw
at six values ofb in the rangeb55.70–6.35. Details of the
smearing method@33,34# are the same as those in Ref.@35#.
We determine the potentialV( r̂ ) at eachb from a correlated
fit with the ansatz

W~ r̂ , t̂ !5C~ r̂ !eatV( r̂ )• t̂, ~55!

where r̂ 5r /as and t̂5t/at are the spatial and temporal ex
tent of the Wilson loop in lattice units. The fitting range oft̂
is chosen by inspecting the plateau of the effective poten
atVeff( r̂ , t̂ )5 log@W(r̂,t̂)/W(r̂,t̂11)#. A correlated fit toV( r̂ ) is
then performed with the ansatz

atV~ r̂ !5atV01~atass! r̂ 2~e/j!
1

r̂
1atdV,

~56!

atdV5 l S 1

r̂
2F1

r̂
G D ,

wheres is the string tension and@1/r̂ # is the lattice Coulomb
term from one-gluon exchange:

d

of
TABLE VI. Simulation parameters and results for the Sommer scaler 0. The fifth column shows the
number of smearing steps we adopted.

b r 0 /as L33T Las @fm# Smear No. Conf Sweep/conf

5.70 2.449~35! 123372 2.45 4 150 100
5.90 3.644~36! 123336 1.65 5 220 100
6.00 4.359~51! 123348 1.38 6 150 100
6.10 5.028~35! 163348 1.59 6 150 100
6.20 5.822~33! 163364 1.37 10 220 100
6.35 7.198~52! 243372 1.67 12 150 200
8-13
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FIG. 10. Results ofr 0 /as . The left figure shows typical fit range (r min) dependence ofr 0 /as and its averaged value. The right is th
result ofas /r 0 as a function ofb and its fit curve, Eq.~59!.
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r̂
G54pE

2p

p d3k

~2p!3

cos~k• r̂ !

4(
i 51

3

sin2~kias/2!

. ~57!

We extractr 0 /as from the condition that

r 2
d~V2dV!

dr U
r 5r 0

5c,

i.e.,

r 0 /as5A c2e

jatass
~58!

with c51.65. The error ofr 0 /as is estimated by adding th
jackknife error with bin size 5 and the variation over t
fitting range ofr̂ . Keeping to the ansatz, Eq.~56!, we attempt
three different fits:~i! 2-parameter fit withe5p/12 and l
50 fixed, ~ii ! 3-parameter fit withe5p/12 fixed, and~iii !
4-parameter fit. We check thatr 0 /as from these three fits
agree well within errors~see Fig. 10!. We adoptr 0 /as from
the 2-parameter fit as our final value. Results ofr 0 /as at
eachb are summarized in Table VI.

Next we fit r 0 /as as a function ofb with the ansatz pro-
posed by Allton@36#,

~as /r 0!~b!5 f ~b!~11c2â~b!21c4â~b!4!/c0 ,
~59!

â~b![
f ~b!

f ~b1!
,

whereb156.00 andf (b) is the two-loop scaling function o
SU~3! gauge theory,

f ~b56/g2![~b0g2!2b1/2b0
2
expS 2

1

2b0g2D , ~60!
09450
b05
11

~4p!2 , b15
102

~4p!4 ,

and cn(n52,4) parametrize deviations from the two-loo
scaling. From this fit, we obtain that

c050.01230~29!, c250.163~54!, c450.053~22!
~61!

with x2/NDF50.51. As shown in Fig. 10, the fit curves re
produce the data very well. We use Eq.~61! in our later
analysis. Finally, we obtainas from the input of r 0
50.50 fm. The values ofas at eachb are given in Table I.

2. Scale from charmonium mass splittings

The quarkonium 1P-1S and 2S-1S splittings are often
used to set the scale in heavy quark simulations since
experimental values are well determined and they
roughly independent of quark mass for charm and botto
Here we take the spin average for 1S, 1P and 2S masses, so
that the most of the uncertainties from the spin splitting c
cel out. The lattice spacing atm05m0

charm is given by

as
Q5jQ̂lat /Qexpt „Q5DM ~1P̄21S̄!, DM ~2S̄21S̄!…,

~62!

whereQ̂lat denotes the value in the temporal lattice unit. W
use the data of (Mpole,zTI) and check that other choices d
not changeas

Q sizably. In Table VII we summarize the value
of m0

charm and as
Q for all Q including r 0, and plot theb

dependence ofas
Q in Fig. 11. We observe thatas

1P̄-1S̄,as
r 0

,as
2S̄-1S̄ holds forb55.70–6.35. To show this explicitly, on

the right we also plot the ratioas
1P̄-1S̄/as

r 0 andas
2S̄-1S̄/as

r 0 as

a function of as
r 0 . Deviations from unity are about25%

for as
1P̄-1S̄/as

r 0 , 1(10–15)% for as
2S̄-1S̄/as

r 0 and hence

1(10–25)% foras
2S̄-1S̄/as

1P̄-1S̄ at our simulation points. The
major source of discrepancy among the lattice spacings f
8-14
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TABLE VII. Bare charm quark massm0
charm and lattice spacingas

Q for Q5r 0 , 1P̄-1S̄ and 2S̄-1S̄.

b r 0 1P̄-1S̄ 2S̄-1S̄

m0
charm as

r 0 @fm# m0
charm

as
1P̄-1S̄ @fm# m0

charm
as

2S̄-1S̄ @fm#

5.70 0.2843~3! 0.2037~0! 0.2994~115! 0.2077~30! 0.3782~190! 0.2272~45!

5.90 0.1106~2! 0.1374~0! 0.0972~58! 0.1333~18! 0.1664~150! 0.1544~44!

6.10 0.0319~1! 0.0991~0! 0.0155~60! 0.0934~21! 0.0632~110! 0.1099~37!

6.35 20.0179(1) 0.0697~0! 20.0301(43) 0.0650~18! 0.0115~84! 0.0808~30!
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different observables is the quenching effect. Another sou
is the uncertainty of input value ofr 050.50 fm, which is
only a phenomenological estimate. Other systematic er

are expected foras
2S̄-1S̄ for the following reasons. Our fitting

for 2S masses may be contaminated by higher excited sta
In addition, the lattice size;1.6 fm may be too small to
avoid finite size effects for 2S masses. On the other hand, t
fitting for 1P masses are more reliable, and we have chec
that the finite size effects are negligible forDM (1P̄-1S̄) in
preparatory simulations~see also Ref.@24#!. For these rea-

sons, we consider the scaleas
1P̄-1S̄ to be the best choice fo

physical results on the spectrum. We present the results
three scales in the following, however, to show the dep
dence of the spectrum on the choice of the input for
lattice spacing. In order to make a comparison with the
sults by Klassen and Chen, who employr 0 to set the scale
we use the results withas

r 0 .

C. Effect of „M lat ,z… tuning

In Fig. 12, we plot the results of spin-averaged mass sp
tings and spin mass splittings for each choice of (M lat ,z).
The upper two figures show the spin-averaged splitti
DM (1P̄-1S̄) and DM (2S̄-1S̄), while the lower two show
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the S-state hyperfine splittingDM (13S1-11S0) and the
P-state fine structureDM (13P1-13P0). Numerical values for
each choice atb56.1 are given in Table VIII. Here we se
the scale withr 0 because it has the smallest statistical err

For all of mass splittings in Fig. 12, the results f
(Mpole,zNP).(M kin ,zNP) well agree with those for
(M kin ,zTI), suggesting that the mass splittings are indep
dent of the choice ofz whenever theM kin tuning is adopted.
This can be understood as follows@11#. Setting the measured
kinetic mass to the experimental valueM kin5Mexpt for the
meson roughly corresponds to settingm25mcharm for the
quark, where the kinetic mass for the quarkm2 is given by
Eq. ~13! at the tree level. Since the spin-averaged splitting
dominated bym2, settingm25mcharm for eachz results in
the same value for this splitting. With our choice of the sp
tial clover coefficientcs5r s , mB5m2 also holds indepen-
dent of z at the tree level. Hence the spin splitting tak
approximately the same value because it is dominated by
magnetic massmB given by Eq.~14!.

As a result, we practically have only two choices f
(M lat ,z), i.e., (Mpole,zTI) and (Mpole,zNP).(M kin ,zNP)
.(M kin ,zTI). As observed in Fig. 12, however, the resu
for (Mpole,zTI) agree with those for the other choices at thr
finestas , within a fews for the hyperfine splitting and 1s
FIG. 11. The left-hand side shows theb dependence of the lattice spacing. The solid line is the fit curve, Eq.~59!, while dotted and

dashed lines are spline interpolations to square and triangle symbols respectively. On the right-hand sideas
1P̄-1S̄/as

r 0 and as
2S̄-1S̄/as

r 0 as a
function of as

r 0 are plotted.
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FIG. 12. Comparison of results for various (M lat ,z) tunings. The scale is set byr 0. The data points are slightly shifted along th
horizontal axis for distinguishability.
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for other mass splittings. This shows that the cho
(Mpole,zTI) is as acceptable as any other, with our numeri
accuracy, for the lattices we adopted. Since the hyper
splitting for the choice (Mpole,zTI) has a smoother lattice
spacing dependence~at b>5.9) and a smaller error than tha
for other choices in Fig. 12, we decide to use the data w
(Mpole,zTI) for the continuum extrapolations. The results f
other choices are used to estimate the systematic erro
slight bump in the lattice spacing dependence of the hyp
fine splitting for (Mpole,zNP) is in part ascribed to the statis
tical error ofzNP itself, as discussed in Sec. V.
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D. Charmonium spectrum

The results for charmonium spectrum, obtained
(Mpole,zTI), for the three choices of scale are plotted in F
13 together with the experimental values, and numerical v
ues are listed in Tables IX–XI. As observed in Fig. 13, t
gross features of the mass spectrum are consistent with
experiment. For example, the splittings among thexc states
are resolved well and with the correct ordering (xc0,xc1
,xc2). Statistical errors for the 1S, 1P and 2S state masses
are of 1 MeV, 10 MeV and 30 MeV, respectively. When w
TABLE VIII. Comparison of mass splittings for different choices of (M lat ,z) at b56.10. The results are
presented in units of MeV, and the scale is set byr 0.

(M lat ,z) DM (1P̄-1S̄) DM (2S̄-1S̄) DM (13S1-11S0) DM (13P1-13P0)

(Mpole,zTI) 426.7~104! 676~30! 71.6~07! 57.3~37!

(Mpole,zNP) 423.1~096! 671~29! 68.8~06! 55.3~34!

(M kin ,zTI) 424.1~097! 671~31! 69.2~14! 55.2~38!

(M kin ,zNP) 423.6~097! 672~30! 69.2~13! 55.7~37!
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set the scale from the 1P̄-1S̄ (2S̄-1S̄) splitting, the spin

structure and the 2S̄-1S̄ (1P̄-1S̄) splittings are predictions
from our simulations.

E. S-state hyperfine splitting

We now discuss our results for theS-state hyperfine split-
ting DM (13S1-11S0), which is the most interesting quantit
in this work. The hyperfine splitting~HFS!, arising from the
spin-spin interaction between quarks, is very sensitive to
choice of the clover term, as noticed from Eqs.~11! and~14!.
Since the clover term also controls the lattice discretizat
error of the fermion sector, the calculation of the HFS is
good testing ground for the lattice quark action.

In Fig. 14 we plot our results for theS-state HFS with
(Mpole,zTI) for each scale input by filled symbols. From th
as

2-linear continuum extrapolation using 3 points atb
55.90–6.35, weobtain

DM ~13S1-11S0!

55
72.6~0.9!~11.2!~23.8! MeV ~r 0 input!,

85.3~4.4!~15.7!~22.5! MeV ~1P̄-1S̄ input!,

53.9~5.8!~21.5!~22.0! MeV ~2S̄-1S̄ input!,

117.1~1.8! MeV ~experiment!,

~63!

where the first error is the statistical error. The second e
represents the ambiguity in the continuum extrapolation,
timated as the difference between theas

2-linear and the
as-linear fits. The third error is the systematic error asso
ated with the choice of (M lat ,z). We estimate it from the
maximum difference at the continuum limit between t
choice of (Mpole,zTI) and the other three choices. Our es
mate of theS-state HFS is smaller than the experimen

value by 27% if the 1P̄-1S̄ splitting is used to set the scale
A probable source for this large deviation is quenching
fects.

In this figure, we also plot previous anisotropic results
Klassen~set B in Table III! @19# and Chen~set C! @24# at j
52 and 3 with thesamechoice of the clover coefficientscs,t

and usingr 0 to set the scale. The difference between o
simulation and theirs is the choice ofz and the tadpole facto
for cs,t , as noted in Table III. We usezTI and the tadpole
factor estimated from the plaquetteuP, while they usedzNP

and tadpole estimate from the mean link in the Landau ga
uL. As shown in this figure, our result in the continuum lim
with r 0 input agrees with the results by Klassen@19# and
Chen@24#. The results with adifferent choice of the clover
coefficientscs,t by Klassen~set D! will be shown in Sec. V,
where we will study the effect ofcs to the HFS.
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F. P-state fine structure

Results for theP-state fine structure are shown in Figs. 1
and 16. The value of theP-state fine structure in the con
tinuum limit and the systematic errors are estimated in
similar manner to the case of theS-state HFS. For
13P1-13P0 splitting, we obtain

FIG. 13. Charmonium spectrum at finiteb. The scale is fixed

from r 0 , DM (1P̄-1S̄) andDM (2S̄-1S̄).
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TABLE IX. Results of charmonium massesM and mass splittingsDM in units of MeV atz5zTI using the pole mass tuning. The sca
is set byr 0.

State b55.70 b55.90 b56.10 b56.35 as→0 Expt.

11S0 3020.9~7! 3013.8~8! 3014.0~10! 3012.7~9! 3012.7~11! 2979.8
13S1 3082.0~7! 3083.1~8! 3085.1~8! 3083.7~8! 3084.6~10! 3096.9
11P1 3526.6~79! 3506.7~57! 3489.7~66! 3483.8~83! 3474.2~94! 3526.1
13P0 3496.0~94! 3462.4~65! 3438.7~58! 3420.2~86! 3408.5~95! 3415.0
13P1 3526.7~84! 3506.6~61! 3490.5~62! 3480.8~80! 3472.3~91! 3510.5
13P2E 3555.2~106! 3515.6~116! 3509.8~199! 3506.7~219! 3503.6~250! 3556.2
13P2T 3555.0~100! 3512.4~115! 3508.9~179! 3502.5~213! 3501.2~238! 3556.2

1S̄ 3067.6~0! 3067.6~0! 3067.6~0! 3067.6~0! 3067.6~0! 3067.6

1P̄ 3536.0~85! 3506.7~73! 3494.0~104! 3487.3~120! 3480.4~137! 3525.5

11P1-1S̄ 459.9~79! 440.9~59! 422.4~67! 417.8~84! 407.2~95! 458.5

13P0-1S̄ 429.2~93! 396.7~66! 371.3~61! 354.2~87! 341.2~97! 347.4

13P1-1S̄ 459.9~84! 440.9~62! 423.2~64! 414.9~81! 405.2~93! 442.9

13P2-1S̄ 488.5~106! 449.9~117! 442.5~198! 440.7~218! 436.6~249! 488.6

1P̄-1S̄ 469.3~85! 441.0~74! 426.7~104! 421.3~121! 413.4~138! 457.9

13S1-11S0 61.9~4! 70.4~6! 71.6~7! 72.0~8! 72.6~9! 117.1
13P1-13P0 32.3~34! 46.7~34! 57.3~37! 62.7~42! 68.4~50! 95.5
13P2-13P1 18.1~43! 18.2~41! 20.4~68! 30.4~72! 31.1~84! 45.7
13P2T-13P2E 20.8(23) 22.3(28) 22.6(33) 22.0(41) 22.2(47) 0.0
11P1-13P 26.0(18) 23.5(21) 20.7(29) 23.5(36) 21.4(40) 0.9

13P2-1
3P1

13P1-13P0

0.56~13! 0.39~9! 0.36~12! 0.49~11! 0.47~14! 0.48

21S0 3719~22! 3700~28! 3699~32! 3746~40! 3739~46! 3594
23S1 3767~20! 3773~27! 3758~31! 3786~34! 3777~40! 3686
21P1 4248~68! 4411~70! 4214~70! 4161~79! 4053~95! -
23P0 4175~93! 4226~89! 4148~94! 4049~100! 4008~122! -
23P1 4228~75! 4388~77! 4256~90! 4140~84! 4067~105! -
23P2E 4238~109! 4254~99! 4190~144! 4023~148! 3992~175! -
23P2T 4230~111! 4281~100! 4223~157! 4082~146! 4047~177! -

2S̄ 3755~20! 3755~27! 3744~30! 3776~34! 3768~40! 3663

2P̄ 4233~74! 4324~68! 4209~86! 4089~86! 4027~105! -

2P̄-2S̄ 478~73! 569~70! 466~90! 313~88! 256~107! -

23S1-21S0 48~9! 74~16! 60~17! 40~22! 34~25! 92
21S0-11S0 698~22! 686~28! 685~32! 733~40! 726~46! 614
23S1-13S1 685~20! 690~27! 673~31! 702~34! 692~40! 589
21P1-11P1 721~68! 904~69! 724~69! 678~79! 579~94! -
23P0-13P0 679~95! 763~90! 709~95! 629~103! 601~124! -
23P1-13P1 701~76! 881~77! 766~90! 659~84! 595~105! -
23P2-13P2 683~109! 738~93! 681~129! 516~136! 490~160! -

2S̄-1S̄ 688~20! 689~27! 676~30! 710~34! 701~40! 595

2P̄-1P̄ 697~75! 817~66! 715~81! 602~83! 547~100! -
fit

ge

i-
DM ~13P1-13P0!

55
68.4~5.0!~111.8!~23.0! MeV ~r 0 input!,

79.2~6.6!~116.5!~22.4! MeV ~1P̄-1S̄ input!,

50.5~6.2!~17.9!~22.2! MeV ~2S̄-1S̄ input!,

95.5~0.8! MeV ~experiment!.

~64!
09450
Note that the systematic errors from the choice of the

ansatz~second error! are rather large here, due to the lar

scaling violation seen in Fig. 15. The result with the 1P̄-1S̄

input yields a 17% (2.5s) smaller value than the exper

ment. Our result with ther 0 input is consistent with the

previous results by Klassen@19# and Chen@24#.

For 13P2-13P1 splitting, we obtain
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TABLE X. The same as Table IX, but the scale is set by 1P̄-1S̄ splitting.

State b55.70 b55.90 b56.10 b56.35 as→0 Expt.

11S0 3023.0~16! 3010.3~16! 3007.1~27! 3004.3~33! 3003.0~35! 2979.8
13S1 3081.4~8! 3084.0~10! 3087.1~12! 3086.0~12! 3087.5~14! 3096.9
11P1 3515.6~29! 3523.3~46! 3520.7~88! 3519.9~98! 3518.6~106! 3526.1
13P0 3486.6~49! 3476.2~51! 3464.0~91! 3446.4~92! 3441.6~104! 3415.0
13P1 3515.8~35! 3523.5~44! 3522.3~96! 3516.8~102! 3516.8~112! 3510.5
13P2E 3543.2~40! 3532.9~60! 3541.3~128! 3544.9~139! 3548.9~151! 3556.2
13P2T 3543.0~38! 3529.3~69! 3539.8~122! 3540.0~155! 3546.0~160! 3556.2

1S̄ 3067.6~0! 3067.6~0! 3067.6~0! 3067.6~0! 3067.6~0! 3067.6

1P̄ 3524.7~7! 3523.4~7! 3525.0~9! 3523.4~8! 3524.1~9! 3525.5

11P1-1S̄ 448.8~29! 457.8~46! 453.6~89! 454.3~100! 452.0~108! 458.5

13P0-1S̄ 419.8~47! 410.6~51! 396.9~93! 380.9~95! 375.2~106! 347.4

13P1-1S̄ 448.9~34! 457.9~44! 455.3~98! 451.3~104! 450.3~114! 442.9

13P2-1S̄ 476.4~40! 467.4~58! 474.2~126! 479.4~136! 482.4~148! 488.6

1P̄-1S̄ 457.9~0! 457.9~0! 457.9~0! 457.9~0! 457.9~0! 457.9

13S1-11S0 59.2~18! 74.9~21! 80.4~34! 82.7~42! 85.3~44! 117.1
13P1-13P0 30.6~37! 49.9~39! 64.6~45! 72.6~65! 79.2~66! 95.5
13P2-13P1 17.4~41! 19.2~43! 22.3~75! 34.7~81! 35.0~90! 45.7
13P2T-13P2E 20.8(22) 22.5(30) 23.2(39) 22.1(51) 22.7(53) 0.0
11P1-13P 25.9(17) 23.7(22) 20.8(35) 23.7(44) 21.5(46) 0.9

13P2-1
3P1

13P1-13P0

0.57~12! 0.39~9! 0.35~13! 0.48~12! 0.45~14! 0.48

21S0 3704~22! 3722~30! 3746~39! 3801~45! 3806~50! 3594
23S1 3749~21! 3800~29! 3811~41! 3847~43! 3849~49! 3686
21P1 4217~70! 4458~75! 4294~79! 4238~87! 4159~100! -
23P0 4146~95! 4260~95! 4222~105! 4121~124! 4114~138! -
23P1 4196~78! 4434~83! 4339~100! 4222~96! 4179~114! -
23P2E 4203~107! 4303~96! 4263~145! 4096~155! 4091~173! -
23P2T 4194~111! 4329~98! 4287~163! 4147~153! 4131~177! -

2S̄ 3738~21! 3781~29! 3794~39! 3836~42! 3839~47! 3663

2P̄ 4200~76! 4371~68! 4286~81! 4165~88! 4132~100! -

2P̄-2S̄ 462~72! 590~72! 492~95! 329~97! 290~112! -

23S1-21S0 45~9! 78~18! 65~20! 47~27! 43~29! 92
21S0-11S0 681~23! 712~30! 738~40! 797~46! 803~51! 614
23S1-13S1 668~21! 716~29! 723~40! 762~43! 762~48! 589
21P1-11P1 701~69! 935~73! 773~76! 718~84! 641~97! -
23P0-13P0 659~96! 783~96! 758~106! 674~122! 671~137! -
23P1-13P1 681~77! 910~82! 817~99! 705~94! 662~111! -
23P2-13P2 660~107! 770~93! 722~135! 551~147! 543~164! -

2S̄-1S̄ 671~21! 715~28! 727~39! 770~42! 772~47! 595

2P̄-1P̄ 675~76! 847~68! 761~81! 641~87! 608~100! -
ator
ce
t-
ed

ic
DM ~13P2-13P1!

55
31.1~8.4!~18.1!~21.0! MeV ~r 0 input!,

35.0~9.0!~19.6!~20.7! MeV ~1P̄-1S̄ input!,

23.7~6.1!~15.6!~20.8! MeV ~2S̄-1S̄ input!,

45.7~0.2! MeV ~experiment!,

~65!
09450
where we use the result from the E representation oper
for 3P2. As observed in Tables IX–XI, the mass differen
DM (13P2T-13P2E) is always consistent with zero, sugges
ing that the rotational invariance for this quantity is restor
well in our approach. The value ofDM (13P2-13P1) is
smaller than the experimental one by 23% (1s) with the

1P̄-1S̄ input. There is no lattice result from the anisotrop

relativistic approach to be compared with.
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TABLE XI. The same as Table IX, but the scale is set by 2S̄-1S̄ splitting.

State b55.70 b55.90 b56.10 b56.35 as→0 Expt.

11S0 3032.3~21! 3026.4~30! 3024.9~33! 3028.6~38! 3027.4~45! 2979.8
13S1 3079.1~8! 3079.8~10! 3082.0~13! 3079.5~12! 3080.5~15! 3096.9
11P1 3467.1~113! 3446.7~139! 3440.5~158! 3415.3~170! 3412.6~208! 3526.1
13P0 3445.3~112! 3412.8~124! 3398.6~130! 3370.2~128! 3361.5~165! 3415.0
13P1 3467.8~117! 3446.1~142! 3440.1~158! 3412.4~168! 3409.7~207! 3510.5
13P2E 3490.4~124! 3453.4~153! 3460.0~198! 3433.8~200! 3437.7~244! 3556.2
13P2T 3490.1~120! 3451.6~155! 3460.0~185! 3431.2~180! 3435.3~226! 3556.2

1S̄ 3067.6~0! 3067.6~0! 3067.6~0! 3067.6~0! 3067.6~0! 3067.6

1P̄ 3475.2~114! 3446.5~140! 3445.0~164! 3418.5~170! 3418.2~209! 3525.5

11P1-1S̄ 399.7~114! 380.2~141! 372.8~159! 348.5~172! 345.1~210! 458.5

13P0-1S̄ 377.9~113! 346.4~126! 330.8~131! 303.4~131! 294.2~168! 347.4

13P1-1S̄ 400.4~118! 379.7~144! 372.3~159! 345.6~171! 342.2~210! 442.9

13P2-1S̄ 423.0~126! 386.9~155! 392.2~199! 367.0~202! 370.4~246! 488.6

1P̄-1S̄ 407.8~116! 380.1~142! 377.3~164! 351.7~173! 350.8~212! 457.9

13S1-11S0 47.4~25! 54.4~38! 57.7~43! 51.5~48! 53.9~58! 117.1
13P1-13P0 23.2~29! 35.2~35! 45.8~46! 43.9~54! 50.5~62! 95.5
13P2-13P1 14.1~32! 14.4~30! 17.3~51! 22.2~52! 23.7~61! 45.7
13P2T-13P2E 21.0(15) 21.7(17) 21.6(23) 21.9(24) 21.8(29) 0.0
11P1-13P 25.4(12) 22.7(14) 20.6(21) 23.0(23) 21.5(26) 0.9

13P2-13P1

13P1-13P0

0.60~12! 0.41~8! 0.38~11! 0.50~10! 0.49~13! 0.48

21S0 3637~6! 3618~8! 3624~10! 3641~11! 3644~13! 3594
23S1 3671~2! 3676~3! 3676~3! 3669~4! 3669~4! 3686
21P1 4078~59! 4241~69! 4087~70! 4015~76! 3930~95! -
23P0 4020~77! 4103~76! 4031~80! 3914~88! 3877~108! -
23P1 4057~66! 4222~73! 4125~82! 3985~81! 3929~103! -
23P2E 4049~85! 4078~85! 4076~120! 3884~106! 3872~134! -
23P2T 4037~87! 4109~84! 4120~128! 3958~104! 3948~133! -

2S̄ 3663~1! 3662~1! 3663~1! 3662~1! 3663~1! 3663

2P̄ 4056~61! 4157~65! 4087~79! 3945~73! 3900~93! -

2P̄-2S̄ 393~61! 495~65! 424~79! 283~73! 237~93! -

23S1-21S0 34~7! 59~11! 52~13! 29~14! 26~17! 92
21S0-11S0 605~5! 592~8! 600~10! 612~10! 616~13! 614
23S1-13S1 592~2! 597~3! 594~3! 590~3! 588~4! 589
21P1-11P1 611~57! 794~63! 647~64! 600~73! 517~88! -
23P0-13P0 575~77! 690~74! 633~79! 543~86! 514~105! -
23P1-13P1 589~64! 776~67! 685~78! 573~76! 520~96! -
23P2-13P2 559~85! 624~77! 616~109! 450~104! 443~128! -

2S̄-1S̄ 595~0! 595~0! 595~0! 595~0! 595~0! 595

2P̄-1P̄ 581~60! 710~58! 642~72! 526~70! 487~87! -
s
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Next we consider the ratio of the two fine structure
DM (13P2-13P1)/DM (13P1-13P0). In Fig. 17, we plot the
lattice spacing dependence of this ratio. As shown in t
figure, the scaling violation of the ratio is smaller than th
for the individual splittings~Figs. 15 and 16!. Moreover, re-
sults are always consistent with the experimental va
within errors. Presumably this is in part due to a cancellat
of systematic errors such as the discretization effect and
quenching effect in the ratio. Our continuum estimate of t
ratio is
09450
,

is
t

e
n
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DM ~13P2-13P1!

DM ~13P1-13P0!

55
0.47~14!~106! ~r 0 input!,

0.45~14!~105! ~1P̄-1S̄ input!,

0.49~13!~106! ~2S̄-1S̄ input!,

0.48~00! ~experiment!.

~66!
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Our results agrees well with the experimental value. We o
the systematic error arising from the choice of (M lat ,z),
which is found to be much smaller than others.

Another interesting quantity is theP-state hyperfine split-
ting, DM (11P1-13P), where M (13P)[@5M (13P2)
13M (13P1)1M (13P0)#/9. This should be much smalle
than theS-state hyperfine splitting because theP-state wave
function vanishes at the origin. The lattice spacing dep
dence is shown in Fig. 18 and the continuum estimate is

FIG. 14. S-state hyperfine splittingDM (13S1-11S0). Results

obtained with c̃s5us
3cs51 are collected here. Our results a

shown by solid symbols for each input, while results by Klass
~set B! and Chen~set C! with the r 0 input are shown by open
symbols. In the legend, we give the choice of the anisotropyj, z
tuning, tadpole factor and scale input. These captions also app
the figures that follow.

FIG. 15. P-state fine structure splittingDM (13P1-13P0).
09450
it

-

DM ~11P1-13P!

55
21.4~4.0!~10.6! MeV ~r 0 input!,

21.5~4.6!~10.7! MeV ~1P̄-1S̄ input!,

21.5~2.6!~10.3! MeV ~2S̄-1S̄ input!,

10.9~0.3! MeV ~experiment!.

~67!

The sign is always negative at finiteas and in the continuum
limit, but within errors the continuum value is consiste
with the experimental value. We do not observe sizable
ferences between results using different scale inputs for
quantity.

n

to

FIG. 16. P-state fine structure splittingDM (13P2-13P1).

FIG. 17. Fine structure ratio DM (13P2-13P1)/
DM (13P1-13P0).
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M. OKAMOTO et al. PHYSICAL REVIEW D 65 094508
G. 1P-1S splitting

The mass splittings between the orbital~radial! exited
state and the ground state such as the 1P-1S (2S-1S) split-
ting are dominated by the kinetic term in the non-relativis
Hamiltonian, Eq.~11!. Since the dependence on the choice
(M lat ,z) is small compared to the statistical error, as sho
in Fig. 12, we ignore the systematic error from the choice
(M lat ,z) in this and next subsections. Results of the sp
averaged and spin-dependent 1P-1S splittings are shown in
Figs. 19 and 20. In the continuum limit, the spin-averag
1P-1S splitting is

DM ~1P̄-1S̄!

5H 413~14!~215! MeV ~r 0 input!,

351~21!~220! MeV ~2S̄-1S̄ input!,

458~01! MeV ~experiment!.

~68!

The spin-dependent 1P-1S splitting deviates from the ex
perimental value by 0% –10% (1s-5s) with the r 0 input
and 15% –25% (3s-5s) with the 2S-1S input, as shown in
Fig. 20. The result of the 11P1-1S̄ splitting with ther 0 input
agrees with the result by Chen within a fews in the con-
tinuum limit.

H. 2S-1S and 2P-1P splittings

In Figs. 21 and 22, we show the results of the sp
averaged and spin-dependent 2S-1S splittings. In the con-
tinuum limit, these splittings deviate from the experimen
values by;20% (2.5s) with the r 0 input and;30% (4s)
with the 1P̄-1S̄ input. For the spin-averaged 2S-1S splitting,
we obtain

FIG. 18. SplittingDM (11P1-13P).
09450
f
n
f
-

d

-

l

DM ~2S̄-1S̄!

5H 701~40!~113! MeV ~r 0 input!,

772~47!~135! MeV ~1P̄-1S̄ input!,

595~01! MeV ~experiment!.

~69!

Besides quenching effects, possible sources of the deviat
are finite size effects and the mixing of the 2S with higher
excited states. Figure 23 shows the result for 2P-1P split-
tings. Note that there is no experimental value for this sp
ting at present. Our results of 2S-1S and 2P-1P splittings
are consistent with previous results by Chen. We also ca
late mass splittings such asDM (23S1-21S0) and
DM (2P̄-2S̄), but these suffer from large statistical and sy
tematic errors. We leave accurate determinations of the
cited state masses for future studies.

I. Charmonium spectrum in the continuum limit

We summarize the continuum results for the charmoni
spectra obtained with the data of (Mpole,zTI) and the
as

2-linear fit ansatz in Fig. 24, where the scale is set

1P̄-1S̄ splitting. Numerical values for three scales are list
in Tables IX–XI, where the errors are only statistical. Amo
three different scales, results with the 1P-1S input are the
closest to the experimental value for the ground state mas
The spin splittings such as the hyperfine splitti
DM (13S1-11S0) and the fine structureDM (13P1-13P0) are
always smaller than the experimental values irrespective
the choice of the scale input, which is considered to
quenching effects.

V. EFFECT OF THE CLOVER COEFFICIENT
FOR HYPERFINE SPLITTING

We now come back to the issue of the hyperfine splittin
In Sec. IV E, we have shown that our result of the HFS~set

FIG. 19. Spin averaged 1P̄-1S̄ splitting. In the figures, we al-
ways omit the bar for the spin average.
8-22
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FIG. 20. Spin dependent 1P-1S̄ splittings.
e a

m
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.

FIG. 21. Spin averaged 2S̄-1S̄ splitting.
09450
A in Table III! agrees with previous results by Klassen~set
B! and Chen~set C! in the continuum limit, with the same
choice of the clover coefficients Eqs.~39! and ~36!. How-
ever, as mentioned in the Introduction, when Klassen mad
different choice of the clover coefficients~set D!, he obtained
apparently different values of the HFS in the continuu
limit. This choice is given by2 c̃s51/n where the tilde de-
notes the tadpole improvement,c̃s5us

3cs . Since n→1 as

asmq→0, it agrees with the correct choicec̃s51 in the limit
as→0 with fixedmq , but is incorrect at finiteas . The quark
action then generates an additionalO(as

2LQCDmq) error.
Even with such a choice,if asmq is small enough, the resul
should converge to a universal value after the continu
extrapolation. However, in Refs.@18,19#, Klassen obtained

2This choice corresponds toṽ51 in the mass form notation, Eq

~3!, while the correct choicec̃s51 corresponds toṽ5n.
8-23
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FIG. 22. Spin dependent 2S-1S splittings.

FIG. 23. Spin dependent 2P-1P splittings.
094508-24
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CHARMONIUM SPECTRUM FROM QUENCHED . . . PHYSICAL REVIEW D65 094508
HFS (as50,r 0 input)'95 MeV with c̃s51/n, which is
much larger than the result HFS (as50,r 0 input)'75 MeV
with c̃s51 both by Klassen and in the present work.

A possible source of this discrepancy is a large ma
dependent error ofO„asLQCD•(asmq)n

… (n51,2, . . . ) for
the results withc̃s51/n. In fact, Klassen adopted rathe
coarse lattices withasmq'1 –2, for which such errors ma
not be negligible. Because the HFS is sensitive to the sp
clover term, the choice ofc̃s51/n may then result in a non
linear as dependence for the HFS. In the following, in ord
to study the effect of the choice of the spatial clover coe
cient cs to the HFS, we make a leading order analysis mo
vated by the potential model@37# and compare it with nu-
merical results, which will give us a better understanding
the above problem of the HFS.

The potential model predicts that, at the leading orde
both a and 1/mq ,

HFScont;S Sq

mq
D •S Sq̄

mq̄
D uC~0!ucont

2 , ~70!

wheremq5mq̄ for the quarkonium,Sq,q̄ are quark and anti-
quark spins, andC(0) is the wave function at the origin
HFScont is the hyperfine splitting in the continuum quench
(nf50) theory, which is not necessarily equal to the expe
mental value. In non-relativistic QCD, theSq•Sq̄ interaction
arises from the(•B term for quark and anti-quark. Giving
non-relativistic interpretation to our anisotropic lattice a
tion, we expect that the lattice HFS is effectively given b

HFSlat;S (

mB
D •S (

mB
D uC~0!u lat

2 , ~71!

where mB is the magnetic mass, Eq.~14!, in the effective
Hamiltonian. Therefore, in our approach, HFS is domina
by the magnitude of 1/mB

2 , which depends on the spatia
clover coefficientcs . The ratio

FIG. 24. Charmonium spectrum in the continuum limit. T

scale is set by 1P̄-1S̄ splitting.
09450
s-
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HFSlat

HFScont
;S mq

mB
D 2 uC~0!u lat

2

uC~0!ucont
2

~72!

generally deviates from 1 at finiteas , and should approach 1
asas→0. At the leading order ina, uC(0)ucont

2 }mq , while
uC(0)u lat

2 }m2 with m2 the kinetic mass, Eq.~13!. Sincem2

does not depend on the spatial clover coefficientcs at the tree
level, we neglect the lattice artifact foruC(0)u lat

2 and set
uC(0)u lat

2 /uC(0)ucont
2 51 in the following, which is sufficient

for the present purpose. Now we define

RHFS[S mq

m̃B
D 2

5S atmq

atm̃B
D 2

, ~73!

as a measure of lattice artifacts for the HFS, where the t
denotes the tadpole improvement. In the continuum lim
RHFS51. Sincemq is constant independent ofas , we iden-
tify mq with m̃1 for the pole mass tuning~i.e., when setting
the measured pole mass to the experimental valueMpole

5Mexpt for the meson! and with m̃2 for the kinetic mass
tuning (M kin5Mexpt).

At the tree level with the tadpole improvement, the po
massm̃1, the kinetic massm̃2 and the magnetic massm̃B for
the quark are given by

atm̃15 log~11m̃0!, ~74!

1

atm̃2

5
2n2

m̃0~21m̃0!
1

jr sn

11m̃0

, ~75!

1

atm̃B

5
2n2

m̃0~21m̃0!
1

j c̃sn

11m̃0

, ~76!

wheren5j0 /z, c̃s5us
3cs , and m̃05atm̃q0 is given by Eq.

~33!. To obtain Eqs.~75! and ~76!, we use the formulaj
5 j̃05(ut /us)j0. In the following we present theasmq de-
pendence ofRHFS in the case ofc̃s51 ~sets A,B,C! and c̃s
51/n ~set D!, and compare them with the correspondi
numerical data for theS-state HFS. For the definition ofz ~or
n), there are two choices adopted so far: the tree level
pole improved valuezTI and nonperturbative onezNP. At z

5zTI, m̃15m̃2 for the quark, butMpoleÞM kin for the mea-
sured meson. On the other hand, atz5zNP, m̃1Þm̃2 though
Mpole5M kin . Thus in the case ofz5zNP, i.e., Mpole5M kin

tuning, the identification ofmq (5m̃1 or m̃2) in RHFS, Eq.
~73!, mentioned above is ambiguous. Although such an a
biguity should vanish in the continuum limit, we prese
RHFS with both mq5m̃1 and mq5m̃2 to check consistency
For actual numerical data of the HFS, we focus on the res
with the r 0 input because Klassen has adoptedr 0 for the
scale setting.
8-25
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A. Case of c̃sÄ1Õn

First we consider the case ofc̃s51/n ~set D!, which is
correct only forasmq50 at the tree level. In Fig. 25 we plo
the (asmq)2 dependence ofRHFS at j53 and 2 forc̃s51/n
with n5nNP5j0 /zNP. Numerical values ofnNP were taken
from Ref. @19#. Because of the ambiguity formq mentioned
above, we show the results withmq5m̃1 and mq5m̃2; the
difference between them decreases asas→0, as expected
We have checked that plottingRHFS as a function ofas

2 ,
instead of (asmq)2, does not change the figure qualitative
We also plot the results withc̃s51/n but n5nTI5j0 /zTI,
wherem̃15m̃2 holds, as a dotted line (j53) and a dashed
line (j52) for a guide to the eye. As shown in this figur
RHFS has a non-linearas

2 dependence toward the continuu
limit ( 51), indicating that the mass dependent error is la
for the regionasmq51 –2. HereRHFS is larger than 1 even a
(asmq)2;1, which suggests that the actual HFS should r
idly decrease towardas

2→0, and data at (asmq)2,1 are
needed for a reliable continuum extrapolation for the HF

Now let us compareRHFS with numerical results of HFS
In Fig. 26, we plot corresponding results of HFS by Klass
for c̃s51/n @19#. The results atj53 for c̃s51/n are clearly
larger than the results forc̃s51 ~see the solid circles in Fig
14!, and the results atj53 and 2appear to converge to
'95 MeV in the continuum limit with anas

2-linear scaling.
However, comparing Fig. 25 and Fig. 26, we find that t
lattice spacing dependence of the numerical data of H
qualitatively agrees with that ofRHFS: for both HFS and
RHFS, data atj53 are larger than data atj52, and the
difference betweenj53 and 2 decreases asas→0. From an
as

2-linear extrapolation ofRHFS using the finest three dat
points, we obtainRHFS'1.2–1.3 atas50. Because the cor

FIG. 25. RHFS with c̃s51/n andz5zNP at j53 and 2. The thick

symbols are the results withmq5m̃1, while the thin symbols are

those withmq5m̃2. The results withc̃s51/n but z5zTI ~where

mq5m̃15m̃2) are also shown by the dotted line (j53) and dashed
line (j52).
09450
e

-

n

S

rect continuum limit ofRHFS is 1, this suggests a 20% –30%
overestimate from the neglect of non-linear dependence
RHFS on as

2 . Hence the result withc̃s51/n, HFS (as50)
'95 MeV, reported in Refs.@18,19# is likely an overesti-
mate by 20% –30%.

These analyses indicate that the origins of this overe
mate are, first, the choice for the spatial clover coeffici
c̃s51/n (51/nNP), and second, the use of coarse lattic
with asmq.1. As shown in Fig. 9,n (51/c̃s in this case!
should eventually start to move up to 1 linearly arou
atmq0

TI &0.3, which corresponds to (asmq)2&0.6 in Fig. 25,
but Klassen’s data ofnNP ~open diamonds! do not reach such
a region. We conclude that the continuum extrapolation
the HFS should not be performed using the data on s
coarse lattices, and results at finer lattice spacing are
quired.

B. Case ofc̃sÄ1

Next we consider the case ofc̃s51 ~sets A, B and C!,
which is correct for anyasmq at the tree level. In this case
there are two choices forz, zTI and zNP. As mentioned in
Sec. IV C,m̃B5m̃2 holds for both choices ofz, with c̃s51.

In the case ofz5zTI, which has been adopted only in ou
work ~set A! so far, RHFS51 is always satisfied, sincem̃1

5m̃25m̃B by definition. This suggests that the scaling vi
lation of HFS forc̃s51 should be much smaller than that fo
c̃s51/n. The numerical result for the HFS with the pole ma
tuning has already been shown in Fig. 14 and re-plotted
Fig. 28 by solid circles, which gives our best estima
HFS(as50)573 MeV.

We next consider the case ofz5zNP, whereMpole5M kin

for the measured meson. When we identifymq5m̃2 , RHFS

51 is always satisfied again becausem̃25m̃B even atz
5zNP. When we identifymq5m̃1 , RHFSÞ1 in general, due

FIG. 26. Klassen’s results ofS-state hyperfine splitting

DM (13S1-11S0) with c̃s51/n andz5zNP ~set D!. The scale is set
by r 0. Lines denoteas

2-linear extrapolations.
8-26
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to the deviation ofzNP from zTI. The results ofRHFS with
mq5m̃1 at z5zNP are shown in Fig. 27, and correspondin
numerical results for the HFS are shown in Fig. 28. Comp
ing Fig. 27 with Fig. 28 we again note that the lattice spac
dependence of the HFS qualitatively agrees with that
RHFS; i.e., for both HFS andRHFS, data atj53 by Klassen
~open diamonds, set B! and those atj52 by Chen~open
triangles, set C! are close to each other and larger than o
data atz5zTI. An as

2-linear extrapolation using the fines
three data points gives HFS'70–75 MeV and RHFS
'0.9–1.0 atas50. The latter confirms that a continuum
estimate of HFS withc̃s51 is more reliable than that with
c̃s51/n.

Concerning our results atj53, as shown in Fig. 27,RHFS
for z5zNP ~stars! does not scale smoothly around (asmq)2

FIG. 27. RHFS with c̃s51. Heremq5m̃1. The stars are slightly
shifted along the horizontal axis for distinguishability.

FIG. 28. The results of S-state hyperfine splitting

DM (13S1-11S0) with c̃s51. The scale is set byr 0.
09450
r-
g
f

r

&1, while that forz5zTI ~solid circles! is always unity. This
behavior is caused by the fact that the difference,zNP2zTI, is
not monotonic inasmq ~see Fig. 9!. Correspondingly the
numerical value of the HFS, displayed in Fig. 28, also sho
a slightly non-smooth lattice spacing dependence nearas

2

;0, which qualitatively agrees with the (asmq)2 dependence
of RHFS in this region. A possible source of this behavior
the statistical error ofzNP itself, because HFS (RHFS) is also
sensitive to the value ofz as well ascs . Due to this reason
we have not used the results withz5zNP for our main analy-
sis in Sec. IV.

VI. CONCLUSION

In this article, we have investigated the properties of a
isotropic lattice QCD for heavy quarks by studying the ch
monium spectrum in detail. We performed simulatio
adopting lattices finer than those in the previous studies
Klassen and Chen, and made a more careful analysis
O„(asmq)n

… errors. In addition, using derivative operator
we obtained the completeP-state fine structure, which ha
not been addressed in the previous studies.

From the tree-level analysis for the effective Hamiltonia
we found that the mass dependent tuning of parameter
essentially important. In particular, with the choice ofr s
51 for the spatial Wilson coefficient, an explicitasmq0 de-
pendence remains for the parametersz andct even at the tree
level. Moreover, we have shown in the leading order analy
that, unless the spatial clover coefficientc̃s is correctly tuned,
the hyperfine splitting has a largeO„(asmq)n

… errors, which
can explain a large value of the hyperfine splitting in t
continuum limit from rather coarse lattices in the previo
calculation by Klassen. On the other hand, ifc̃s is mass-
dependently tuned, the continuum extrapolation is expec
to be smooth for the hyperfine splitting.

Based on these observations, we employed the anisotr
clover action with r s51 and tuned the parameters mas
dependently at the tree level combined with the tadpole
provement. We then computed the charmonium spectrum
the quenched approximation onj53 lattices with spatial
lattice spacings ofasmq,1. A fine resolution in the tempora
direction enabled a precise determination of the massesS
andP states which is accurate enough to be compared w
the experimental values. Our results are consistent with
vious results atj52 obtained by Chen@24#, and the scaling
behavior of the hyperfine splitting is well explained by th
theoretical analysis. We then conclude that the anisotro
clover action with the mass-dependent parameters at
tadpole-improved tree level is sufficiently accurate for t
charm quark to avoid large discretization errors due to he
quark. We note, however, thatasmq,1 is still necessary for
a reliable continuum extrapolation.

We found in our results that the gross features of
spectrum are consistent with the experiment. Quantitativ
however, theS-state hyperfine splitting deviates from the e
perimental value by about 30% (7s), and theP-state fine
structure differs by about 20% (2.5s), if the scale is set from
the 1P̄-1S̄ splitting. We consider that a major source f
8-27
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these deviations is the quenched approximation.
Certainly further investigations are necessary to concl

that the anisotropic QCD can be used for quarks heavier
the charm. In particular it is important to determine t
clover coefficients as well as other parameters n
perturbatively, since the spin splittings are very sensitive
the clover coefficients. It is also interesting to calculate
spectrum withr s51/j and compare the result with the cu
rent one in this paper, since the notoriousasmq0 dependence
vanishes from the parameters with this choice at the
level. Finally full QCD calculations including dynamica
quarks are needed to establish the theoretical predic
without systematic errors for an ultimate comparison w
the experimental spectrum.
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APPENDIX: DERIVATION OF THE HAMILTONIAN
ON THE ANISOTROPIC LATTICE

The lattice HamiltonianĤ is identified with the logarithm
of the transfer matrixT̂:

Ĥ52 log T̂. ~A1!

T̂ and Ĥ for the asymmetric clover quark action on the is
tropic lattice have been derived in Ref.@11#. An extension to
the anisotropic lattice is straightforward. Using the fieldsĈ

and Ĉ̄5Ĉ†g0 which satisfy canonical anti-commutation r
lations, the Hamiltonian in temporal lattice unitsĤ for the
anisotropic quark action is given by

Ĥ5Ĉ̄Fatm12
zFas

2

2~11m0!
~r sD

21 ics(•B!2 i zFf 1~m0!asQ

2zF
2f 2~m0!as

2Q2GĈ1O~p3as
3!, ~A2!

where (( i ,a i)5(2 1
2 e i jks jk ,2 is0i), (Bi ,Ei)

5( 1
2 e i jkF jk ,F0i) and

atm15 log~11m0!, ~A3!

Q5 i S g•D1
1

2
~12ct!ata•ED , ~A4!

and
09450
e
an

-
o
e

e

n

3,

f 1~x!5
2~11x!log~11x!

x~21x!
,

~A5!

f 2~x!5
f 1

2~x!

2 log~11x!
2

1

x~21x!
.

Therefore the lattice Hamiltonian in physical units is giv
by

1

at
Ĥ5Ĉ̄Fm12

zFj0
2at

2~11m0!
~r sD

21 ics(•B!2 i zFf 1~m0!j0Q

2zF
2f 2~m0!j0

2atQ
2GĈ1O~p3as

2! ~A6!

5Ĉ̄Fm12
zF8at

2~11m0!
~r s8D

21 ics8(•B!2 i zF8 f 1~m0!Q

2zF8
2f 2~m0!atQ

2GĈ1O~p3as
2!, ~A7!

where

zF85j0zF , r s85j0r s , cs85j0cs . ~A8!

Note that Eq.~A7! for the anisotropic lattice is the same a
that for the isotropic lattice except for use of$at ,zF8 ,r s8 ,cs8%
instead of$a,zF ,r s ,cs%. Thus one can repeat the derivatio
of the tree level value of bare parameters (zF andcs,t) in Ref.
@11# even for the anisotropic lattice, after replacin
$a,zF ,r s ,cs% by $at ,zF8 ,r s8 ,cs8%.

When the lattice Hamiltonian is expressed in mo
continuum-like form

1

at
Ĥ5Ĉ̄@b0mq1b1g•D1atb2D21 iatbB(•B1atbEa•E

1at
2bsog0@g•D,g•E#1•••#Ĉ, ~A9!

the coefficientsb are given by

b05m1 /mq , ~A10!

b15zF8 f 1~m0!, ~A11!

b252
r s8zF8

2~11m0!
1zF8

2f 2~m0!, ~A12!

bB52
cs8zF8

2~11m0!
1zF8

2f 2~m0!, ~A13!

bE5
1

2
~12ct!zF8 f 1~m0!, ~A14!

bso52
1

2
~12ct!zF8

2f 2~m0!. ~A15!
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In order to determine tree level parameters, the lattice Ha
tonian should be matched to the continuum one to the
sired order inas . The continuum Hamiltonian to which th
lattice one is matched is either the Dirac Hamiltoni

ĤDirac5atĈ̄(mq1g•D)Ĉ or the non-relativistic Hamil-

tonian ĤNR5atĈ̄(mq1g0A02D2/2mq1•••)Ĉ. Both
choices give the same tree level parameters.

In the Hamiltonian formalism, the unitary transformatio
U is possible because the eigenvalues ofĤ are invariant
under it. For example, consider a unitary transformation

Ĉ→UĈ, Ĉ†→Ĉ†U21 ~A16!

with

U5exp~2atu1g•D2at
2uEa•E!, ~A17!

where u1 and uE are parameters. This is called the FW
transformation, whose element is a spin off-diagonal mat
After this transformation the coefficientsb become
K

id-

p-
an

r-

s.

n,

09450
il-
e-

.

b0
U5b0 , ~A18!

b1
U5b122mqatb0u1 , ~A19!

b2
U5b222b1u112mqatb0u1

2 , ~A20!

bB
U5bB22b1u112mqatb0u1

2 , ~A21!

bE
U5bE2u122mqatb0uE , ~A22!

bso
U 5bso2

1

2
u1

21bEu11b1uE

22mqatb0u1uE . ~A23!

The transformed HamiltonianĤU with bU is matched to ei-
ther ĤDirac or ĤNR so as to obtain tree level parameters.
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