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Calculation of nonleptonic kaon decay amplitudes fromK— 7z matrix elements
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We explore the application of the domain wall fermion formalism of lattice QCD to calculat& ther
decay amplitudes in terms of the" — 7+ andK°—0 hadronic matrix elements through relations derived in
chiral perturbation theory. Numerical simulations are carried out in quenched QCD using the domain-wall
fermion action for quarks and a renormalization group-improved gauge action for gluons dix 82b616
and 24x 32x 16 lattice at3=2.6 corresponding to the lattice spacing4/2 GeV. Quark loop contractions
which appear in Penguin diagrams are calculated by the random noise method, aht=th& matrix
elements which require subtractions with the quark loop contractions are obtained with a statistical accuracy of
about 10%. We investigate the chiral properties required oKthe: 7+ matrix elements. Matching the lattice
matrix elements to those in the continuumuat 1/a using the perturbative renormalization factor to one loop
order, and running to the scale=m.=1.3 GeV with the renormalization group fbl;=3 flavors, we calcu-
late all the matrix elements needed for the decay amplitudes. With these matrix elemedts=tB&2 decay
amplitude ReA, shows a good agreement with experiment after an extrapolation to the chiral limiA[The
=1/2 amplitude Ré&,, on the other hand, is about 50—-60 % of the experimental one even after chiral
extrapolation. In view of the insufficient enhancement of Ade= 1/2 contribution, we employ the experimen-
tal values for the real parts of the decay amplitudes in our calculatier/ef The central values of our result
indicate that the\l = 3/2 contribution is larger than th&l = 1/2 contribution so that'/e is negative and has
a magnitude of order 1¢. We discuss in detail possible systematic uncertainties, which seem too large for a
definite conclusion on the value ef/«¢.
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I. INTRODUCTION elements of local operators which appear in the effective
weak Hamiltonian for the decay amplitudes. At the energy
Understanding nonleptonic weak processes of the kaon, iscales relevant for these operators, analytic treatments such

particular, theK — 77 decay, represents one of the keys toas the 1. expansion are not sufficiently powerful to reli-

establishing the standard model and probing the physics b@bly evaluate the effect of the strong interactions in the ma-
yond it. This decay exhibits two significant phenomena:trix elements. In fact, tha | =1/2 rule, which is supposed to

namely, theAl =1/2 rule, which is a large enhancement of &ise from QCD effects, has not been quantitatively ex-

the decay mode withAl=1/2 relative to that withAl plained by analytic methods so far. With these backgrounds,
=3/2, and direcCP violation [1,2], which is naturally built Monte Carlo simulations of lattice QCD provide a hopeful

in the model for three or more families of quaild. While method for the calculation of the depay amplitudes.
both of these phenomena are well established by experiment, A naturall'tfrgmelwork f%r ;hior?:]'cal ﬁcaltc_ulatlonsktlnj th(.:'l
theoretical calculations with sufficient reliability that allow ecay Smp' L;] ehs f|s”prowf ed by the € tec ve ;vea: amil-
examinations of the standard model predictions against th@n'a%PW’ V¥ IC ko ows troj'_ an operator product expan-
experimental results are yet to be made. The main reason fg}on( B of weak current§4]:
this status is the difficulty in calculating the hadronic matrix
Hu= eV VieS Wh(12) Qi) @1
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the matrix elements of the local operat@s, and the cal- amplitude for which the operator mixing is absent, on the
culation of these matrix elements, often called hadronic maether hand, a recent study has obtained a result in agreement
trix elements(HME), is the task of lattice QCIP5—8|. Our  with experimen{16].

aim in this paper is to report on our attempt to obtain these Several proposals have been presented over the years for
matrix elements through numerical simulations of latticeextracting the physical amplitude from the four-point func-

QCD using the domain wall formalisi®—11] for quarks. tions [17—19. Feasibility studies for implementing them in
The amplitudes foK— mr decay withAl =1/2 and 3/2  practical simulations are yet to come, however.
are written as the matrix elements ldfy, In this paper we explore a method proposed by Bernard
, et al. [15] which is alternative to calculating the three-point
((mm) | HWKO)=Ae'?, (1.2 function. In this method, which we shall call as reduction

method, chiral perturbation theoryPT) is used to relate the
where the subscrigt=0 or 2 denotes the isospin of the final matrix elements foK — 777+ to those forK — 7 and K—0
state corresponding t&l=1/2 or 3/2, ands; is the phase (vacuum, and the latter amplitudes are calculated in lattice
shift from final state interactions7— mm caused by QCD  QCD. Since this calculation involves only three- and two-
effects. TheAl =1/2 rule, which is one of the focuses of our point correlation functions, the Maiani-Testa problem men-
calculation, is described by the ratio of isospin amplitudesijoned above is avoided. Statistical fluctuations are also ex-

Al pected to be diminished compared with the case of four-point
correlation functions.
_,_ ReAq Early attempts with this methofll4] encountered large
w = ~22.2. (1.3 S . : . )
ReA, statistical fluctuations in the correlation functions so that

meaningful results were difficult to obtain. For the Wilson
Another focus is the parametet/e of directCP violation in ~ fermion action or itsO(a) improved version, there is an
the standard model. The recent experimental results are added difficulty that the mixing of operators of wrong chiral-

ity caused by explicit chiral symmetry breaking of the action

& o [ImA, ImA, has to be removed. The mixing problem has been resolved
—= - only for the Al =3/2 operators so fgr0-22.
& 2|s|[ReA; ReAq The first results on thé | =1/2 rule ands’/e calculated
(20.7£2.8x10°*  (KTeV)[1] with this method were recently reportg2i3] using the stag-
:{ ' ' , ’ (1.4 gered fermion action which keeps th€1) subgroup of chi-
(15.3+2.6) 107" (NA48)[2]. ral symmetry. In this work, however, a large dependence of

) . . ) . the Al =3/2 amplitude on the meson mass was seen, which

In the numerical simulation of lattice QCD, matrix ele- made the chiral extrapolation difficult. Moreover, large un-
ments are generally extracted from Euclidean correlatiofertainties due to perturbative renormalization factors de-
functions of the relevant operators and those which create theanding on the value of the matching point were reported.

initial and final states in their lowest energy levels. For suf-Hence clear statements on the viability of the method were
ficiently large Euclidean time distances, excited states damgjfficult to make from this work.

out and the matrix elements of the lowest energy states are | this paper we report on our attempt to apply the

left. In fact, the kaorB parameteiBy has been successfully gomain-wall fermion formalism of lattice QC[®—11] to the
o_btained from the three-point correlation functionkf and  ¢gjculation of — 7o decay amplitudes in the context of the
K® and an insertion of th&aS=2 weak Hamiltonia{12].  reduction method. A major advantage of this approach over
However, in the calculation of the four-point function, the conventional fermion formalisms is that full chiral sym-
(m(ty) m(t)Hw(ty)K(tk)), necessary for th&— a7 de- metry can be expected to be realized for sufficiently large
cay, there is a severe limitation as pointed out by Maiani andattice sizes in the fifth dimension. Good chiral property of
Testa[13]. They have shown that it is difficult to obtain the one of theK— 7 matrix elements, equivalent to the kaBn
matrix elements unless the momentum of each of the tw@arameter, was observed in the pioneering application of the
pions in the final state is set to zero. formalism[24]. Detailed investigations into the realization of
One of the ways to overcome the difficulty pursued in thethe chiral limit have been made in the quenched approxima-
past is to calculate the matrix elements with the two pions ation for the plaquette and a renormalization groiRpG)-
rest, allowing a nonzero energy transfeE=2m_—my at  improved gluon actiofi25-27. It was found that the use of
the weak operator. This generally causes mixings of unphysRG-improved action leads to much better chiral properties
cal lower dimension operators through renormalizationcompared to the case of the plaquette action for similar lat-
which has to be removedSee Ref.[8] and references tice spacings[26]. This prompts us to adopt the RG-
therein) Furthermore, the unphysical amplitudes obtainedmproved action in our simulation.
with AE# 0 need to be extrapolated to physical ones by use Another possible advantage of the domain wall formalism
of some effective theories such as chiral perturbation theorys O(a?) scaling violation from the fermion sector as op-
Due to these problems and numerical difficulties of extractposed toO(a) for the Wilson case. Indeed our domain wall
ing reasonable signals from four-point functions, this ap-fermion calculation oBy [28] exhibits only a small scaling
proach has not been successful for the=1/2 amplitude violation. The magnitude of violation is much smaller com-
despite many efforts over the yedrs4]. For theAl=3/2  pared to the staggered fermion c486] which is also ex-
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pected to be?(a?). An improved scaling behavior may be 3 —
enhanced with the use of the RG-improved gluon action. Q8= 5[Savu(1— 75)do] 2 e[ Upyu(1+75)0al, (2.8

This paper is organized as follows. In Sec. Il, we summa- K
rize the main points of thgPT reduction method. For the 3 _ .
construction of the formulas which relate the matrix ele- ngi[sayﬂ(l—ys)da]E €l Ao Yu(1—¥5)0], (2.9
ments forK — 7 and theK— 77 decay amplitudes, the re- 4
lations between the four quark operat@sand yPT opera- 3
tors are considered at tree level on the basis of chiral QlO:_[Say,u,(l_')’S)db]E e[ doyu(1— 5)0al, (2.10
transformation properties. The necessity of chiral symmetry 2 q
on the lattice is emphasized. In Sec. lll we summarize the o .
details of our numerical simulation procedure. We discusdvhere the indices,b denote color, and the summation over
the form of lattice actions and the choice of an optimal set ofl @PPearing inQs to Q4o runs over the three light flavors,
simulation parameters from the point of view of chiral prop-9=U.d,s, with the chargee,=2/3 ande;=es;=—1/3.
erties. Some of the technical issues are also explained includ- With the use of Fierz rearrangements, one can derive the
ing renormalization of the four-quark operators and RG-felations,
running of the matrix elements to the relevant energy scale.
The numerical results are reported in Secs. IV and V. The
former contains results of hadronic matrix elements. In par- 3 1
ticular, we show that the subset &f— 7 matrix elements Qo==0Q;— =Q3, (2.12
which are expected to vanish in the chiral limit satisfy this 2 2
requirement. We then present the physical matrix elements
and combine them with the Wilson coefficients, which are Q1= §Q2_ EQ4=Q2— EQSJ,_ lQl- (2.13
already calculated perturbatively. This leads us to results for 2 2 2 2

theAl=1/2 rule ande’/e. Our conclusions are given in Sec. .
VI, HenceQ,, Qg, andQ4q are not independent operators. We

A preliminary report of the present work was presented in€MPhasize that these relations do not hold in general

Ref.[30]. We refer to Refs[31,32 for a similar attempt, and d-dimensions where Fierz rearrangements cannot be used.
Refs.[33,8] for reviews. In terms of the irreducible representations of the chiral

SU(3) ®SU(3)r group,Q;’s are classified as

4= Q2+ Q35— Qq, (2.1

Il. CHIRAL PERTURBATION THEORY Q:,9,,Q4,Q10 (27.,15)@(8,,1r), (2.14
REDUCTION METHOD
We carry out our analyses choosing the energy saale Q7.Qg. (8..8). (2.16
the OPE for the weak Hamiltoniail.1) equal to the charm _ _ _
quark massm;=1.3 GeV. In this case only,d, ands The operatorsQ;(i=1,...,10) are invariant undeCPS
quarks appear in the local four-quark operators. Conventiorsymmetry, i.e., the product &P transformation andi«<s
ally these operators are written as interchange. A basis of operators which are irreducible under
o o chiral symmetry and invariant und@PSis given by
Q1=[Sa¥u(1=¥s)Upl[Upy, (1= ys)dal, (2.) - -
B B (81,1g): X =(sd)(uu) —(su) (ud), (217
Q2=[Sa V(1= ¥5)Ual[Upy, (1= ¥5)dp], (2.2 — — —
(8L,1g): Xz =(sd).[(uu)_ +2(dd)_ +2(ss)]
Qu=[8a7,(1=75)da] 2 [Go7,(1-75)0h], 23 +(su) (ud),, (218
_ s @ (27.,1r):Xg=(sd) [2(uu) — (dd), = (ss), ]
=[s 1-1ys5)d 1- , 2.4 -
Qs=[Sa¥,(1~ ys5)dp] - [db Y, (1~ v5)dal (2.9 205w, (ud), | (2.19
— — 8,,1r):Y1=(sd) [ (uu)r+(dd)g+(sS)R], Y:S,
Qs=[527,(1-790]2 [, (1+790). (29 ol Ya= sl uwes et (el V1o
— — (8L,8%):Y,=(sd) [ 2(uu)r— (dd)r—(sS)r], Y2°,
Q6=[8a7,(1= 75)0b] 2 [Go7,(1+ 75)0lal, 2.6 (2.21

where 6d), =svy,(1— ys)d and (d)g=sy,(1+ ys)d. The

3 _ _ ; - L
= rs 1— ve)d e 1+ . color and spinor indices are summed within each current
Q7= 3lSa¥ul1=7s) a]% aldbY, (15 s)8p). (27 except forY;® for which the color summation is taken across
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the two currents. Whilex;’s have the Lorentz structure of where\? are Gell-Mann matrices, anidis the decay con-
L®L, Y;'s have that oL ® R. All the independent local op- stant. Under SU(3),® SU(3)g chiral transformation,
erators are written as linear combinations of these operators: SU(3) transforms as

1 1 1 . t t g STt
Q1= 5 X1t 75%Xet 5 X, (2.22 F70r¥0L 2030k (2:32
The chiral Lagrangian to the lowest order, with the additional
1 1 1 mass term, is given by
QZZ_—X1+ _X2+ —X3, (223)
2 10 5 (2 (2
11 £X=Ztr((9MET&ME)— Ztr[M(ETJrE)], (2.33
Q3: §X1+ EXz, (22‘9

whereM = (2B,) - diad m,,my,mg] denotes the quark mass
Qs=VY,, (2.25 matrix andBy is a parameter. In terms &, the left- and
right-handed currents are given by

Qs=Y1", (2.26 _ _
. | . . | .
1 (Lj=5f3,3"-3)], (Rj=5f43,5-3N], (234
Qr=5Y2, (2.27
respectively.
The idea of theyPT reduction method by Bernaet al.
Qs==Y5 (2.28 ; ; i
87 o l2r : [15] is to relate the hadronic matrix elements #r 7

decays to those fok — 7 and K—0 (vacuum using xPT,
The expressions for the dependent opera@ysgoare easily  and calculate the latter through numerical simulations of lat-
derived using Eqs(2.11)—(2.13. tice QCD. As the first step of thgPT reduction method, we
The final states in th& — 77 decay can have either isos- construct operators igPT which correspond t&;’s andY,’s
pin1=0 or 2, i.e.,,Al=1/2 or 3/2. Henc&Q;'s are decom- jn QCD, i.e., those which transform under the same irreduc-
posed as ible representations &U(3), ® SU(3)g and invariant under
0.=Q®+Q® (2.29 CPS symmetry. In the following, we discuss the case of
b b ' {(27.,1R),(8.,15)} and (8 ,8g) representations separately.
This decomposition is accomplished by constructing another
basis of irreducible representations with the intrinsic isospin  C. Reduction method for (27,,1g) and (8, ,1g) operators

|. The details are described in Appendix A. For the irreducible representations (2I%) and (8 ,1g),

which coverQq, ... ,Qs,Qg and Q,o, the product of left-

) ] ] handed currentsL(#)}(L#)l‘ is one of the candidates for the
In the low energy region of strong interactions, the octetgperator to the lowest order jpPT. An explicit form of the

of pseudoscalar mesong, 7*,K% K% K*, 7 play a princi-  operators, which are alsoPSinvariant, is given by

pal role as the Nambu-Goldstone bosons of spontaneously ,

broken chiral symmetrySU(3), ® SU(3)r—SU(3)y. In (8L,r):A=(L,)5(L,)2, (2.35

chiral perturbation theoryxPT) as a low energy effective

theory of QCD, these Nambu-Goldstone boson fields are (27.,1R):C=3(L 5L, )1 +2(L,)3(L, )i,  (2.36

used to parametrize the broken axial symmetry, and we col-

B. Chiral perturbation theory

lect them in a X 3 matrix, whereA correspc_mds tX, or X5, while Cis the co_unterpart
S - of_XS. The latter is decomposed into .two'parts with0O and
(e'™), (2.30 2 in the same way aX; (see Appendix A
1 5

= ; NP C=3C0+2c?, (2.37)

1 O+ L 7° ot K+ where

V2o 6
) . CO=(L)L)3+(L)IL)3+2(L)5L)5
- 0

= m - Ew‘”r %no KP —3(L,)3(L,3, (2.39
K- <o 2, CO=(L)HL)3H(LIHL)I—(L3L,)3. (239

2

V6" i -
L . In addition to the operators above, there is another
(2.3) (8,,1g) operator which is allowed fronCPSinvariance:
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(8.,1r) : B=(SM+M3")3 2p-
o ; (r1QPIK =~ PP @ oY), (247
=By(Ms+mg)(S+37)3 f
—Bo(Mms—mg)(2-3")3 2
<w+w*|Q§°)IK°>=£3<mi—mi)(ai—cf"’)w(p“),
4 Imgtmy , Mg—my 5 f
:_If_za,u, ms_ md (V,u,)3_ ms+ md(A,u,).?, 1 (248)
2.4 2
24 <w+w‘|Q$2’|K°>=—f—?(mi—mi)c@w(p“),

whereV,=(R,+L,)/2andA,=(R,—L,)/2 are vector and
axial vector currents witi. , andR,, defined in Eq.(2.34).
The equation of motion fok is used to derive the third line wherea;=b, /r in Egs.(2.45 and(2.46), px andp, are the

from the second line in Eq2.40. ~ momenta of kaon and pion, respectively, andenotes either
The counterpart of this operator for QCD can be obtainegy them. In Eqs(2.48 and(2.49, m andm_ are the physi-
easily bySU(3).® SU(3)r and CPSsymmetry, cal meson masses. After eliminatirg—c(® from Egs.

(2.46 and (2.48, we arrive at the relation between

(2.49

Qsut= (Mg+Mg)sd— (Mg—myg)sysd (777 |QK®) and(7"|QP|K*) in thel =0 case:
ms+ Mg— Mg— Mg— 2 2
=9 sy,d— Sy,ysd|,  (2.4) _ (mg—m?7)
K Ms— My Yu Mg+ My Tu7s <7T+7T |Qi(0)|KO>:—<7T+|Qi(0)_aiqudK+>
V2f(pk-pr)
where the equation of motion ferandd quark fields is used. +0O(p?) (2.50
For physicalK— 77 processesQ.,,, and henceB, do
not contribute since these operators are a total derivative of <O|Q-(°)|K°>
local operators and the energy-momentum injected at the ai:'—, i=1,...,6,9,10.
weak operator vanishes. However, for the unphysical pro- (0|qulJK°>
cesses such @ — m andK—0 (vacuum which we are to (2.5)

calculate on the lattice, the matrix elementsf,, or B do

not vanish due to a finite energy-momentum transfemigr ~ The K—0 (vacuum matrix elements are used only to deter-
#my. Therefore a mixing betwee@;’s and Q,, in K— mine the ¢;’s which govern the subtraction of unphysical
matrix elements exists which should be removed. We shoul§ontributions originating fronQg,. The relation for thel
also note that this mixing inevitably arises in the case of=2 case is derived in the same way from E(&A47) and
my=mg, as is often chosen in numerical simulations on the(2.49:

lattice, sinceQg,, is not a total divergence for this case.

We assume that there are linear relations in the sense of 1O KOy = (mﬁ_mi) HOIK*
matrix elements between the local operatof€);(i (m | QTK) 2t (p-p )<7T [QIIKT)
=1,...,6,9,10)Qs,s and {A,B,C! which belong to the "
same representations, i.¢(27,,1g),(8.,1r) }: +0(p?), i=1,...,6,9,10.
Q@ =a,A+bB+cc®), (2.42 (2.52
Let us note that the essential point of the reduction
Q.u='B, (243  method is a calculation of the parameters-c(®) and c(?
from K— & three-point correlation functions in numerical
Qi(2):Ci(2)C(2)’ (2.44) simulations of lattice QCD. Since these parameters appear in

Egs. (2.46 and (2.47) as the coefficients opk-p,, their
values are sensitive to the chiral properties of e«

, k ' matrix elements on the left-hand side of these equations.
eters. Taking the matrix elements of the two sides of EQspances U(3), ® SU(3)g chiral symmetry on the lattice is an

0 + + 0
(2'4%’ (_2'43) and (,2'44) for K°—=0, K'—=", and K indispensable requirement for a successful calculation using
— ", one obtains this method.

where the coefficients; ,b; ,ci(') , andr are unknown param-

0)_ . 0y —
<O|Qi @iQsufK )=0, (2.49 D. Reduction method for (8, ,8;) operators

In order to construct (88g) operators inyPT, we ob-
<’7T+|Qi(0)_a’iqudK+>:2pK. p”(ai—ci(o))+(’)(p4), serve that EI)}(ET)}‘ transforms as (88,) [34-34 where
f2 (j,k) and (,i) correspond to 8 and &, respectively. One

(2.4 finds aCPSinvariant operator
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D=3332")2 (2.53

as the counterpart of,. The decomposition into the=0
and 2 part is given by

D=D®+D(?), (2.54
DO=233Ni-25EN1+35EN3, (2.59
D@=33shHi+33:hi-35:hi. (2.56

Assuming linear relations betwed®{’,Q{’} andD"'s,

Qi(O):di(O)D(O)’ Qi(z):di(z)D(z) (i=7,9, (257

with the unknown parametert")’s, we take the matrix ele-
ments of the two sides fd— 77 andK— 7 to obtain

(7" QOIK*)=4d®/f2+ O(p?),

(7" 77 |QOIK%) = —22dQ/ 3+ O(p?), (2.59
(7" QPIK*)=2dP/ 2+ O(p?),
(7" 77 |QP|KO) = — 2d@/ 3+ O(p?). (2.59

These relations lead to the reduction formulas for,88)
operators, namely,

(m*  1QUIKO) =~ o QUK O, 178
(2.60

which is common for thé =0 and 2 components.

IIl. DETAILS OF SIMULATIONS
A. Lattice actions

The RG-improved gauge action we use is defined by

>

1X2 rectangle

1
Sgluon:E Co 2 TrUpI+C1

plaquette

TrUpgt,
(3.2

where the coefficients of the plaquette and 2 Wilson loop
terms take the valuex,=3.648 andc;=—0.331[37]. This

PHYSICAL REVIEW D 68, 014501 (2003

r—-y R
5o U080+ i—y)

DY(x,y)=>,
o

I’—I—y#
2a

+ UL(x—mé(x—ﬁ—y)}ast

M —4r
a

+

S(X—Y) b5t (3.9

1-vys 1+ys

D2(x,y)= 2—355s+1,t+ 2—a555_“ S(x—y)

1
—a—55(><—y)5st, (3.5

whereD"Y is the ordinary Wilson-Dirac operator in four di-
mensionsM is the domain-wall height which has to be ad-
justed to ensure the existence of chiral modes, e.g.MO
<2 at tree level, and is the Wilson parameter which we
choose to be unity. The operatbr is the extended part in
the fifth direction in which the coordinate is bounded by 1
=s,t=<Ns.

Using the chirality projection operators

=T Pt 36

quark fields are defined by
a(x) =P h1(X) + Prin (X)), (3.7
q(X) = P () PL+ P1(X)Pr, (3.8

and their mass; is introduced as a parameter in the bound-
ary condition in the fifth direction:

g+ 1(X)=Meag(X), dho(X)=magn(x). (3.9
The operator®; and Q_5ub in our numerical simulation are
constructed frong andq only, by identifyingu, d, ands with

Qus G, andgs. . L. . .
Axial vector transformations in five dimensions are de-
fined as

Sis(x) =1Q(S)N€S(X) (),

action is expected to lead to a faster approach of physical

observables to the continuum limit than with the unimproved

plaquette gauge action.

Ss(X)=—is(x)Q(S)\2€3(x), (3.10

In order to satisfy the requirement of chiral symmetry onwhereQ(s)=sign(2Ns—s+ 1) ande2(x) is an infinitesimal

the lattice, we use the domain-wall formaligr@] for the
quark action. Adopting the Shamir’s formulatipt0,11], the
action is written as

Sg= —Xstt ZS(X)DSDtW(x,y)lpt(y), (3.2
DP=DT D% (3.3

parameter. This definition leads to the variation

80(x) =i ysh€(x)q(x), (3.11

89(x) =iq(X) ysh2€¥(X), (3.12

in terms of quark fields, and the axial-vector current takes the
form
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RG-improved

® B=2.2 (16°x24xN,)

OB=2.2 (12°x24xN,)

& B=2.6 (16°x32xN,)
— fitwith c+ae™
-~ fitwith ae™

PHYSICAL REVIEW D68, 014501 (2003

plaquette

® (=5.65 (16°x24xN,)
OB=5.65 (12°x24xN,)
® $=6.0 (16°x32xN,) .
ORef. [26]

— fit with c+oe”

-~ fit with ce™"s

ENg

FIG. 1. (Left) Anomalous quark massis, as a function olNs in the mia—0 limit for the RG-improved action. Fille¢empty circles
represent data ai3(M)=(2.2,1.7) on a 1§12°) x 24 lattice. Filled squares are those @& 1)=(2.6,1.8) on a 15x 32 lattice. For the
latter, data at four largeNs are used for fits with the functionse™ #Ns (dotted ling and c+ we™Ns (solid line). (Right) Same for the

plaquette action at4,M)=(5.65,1.7) and6.0, 1.8.

& 1 .
ALOO= 2, Q(8) S0 (1= 7,) UL 00N (X + 1)

+s(x+ ) (1+ 7, )ULON ()] (3.13
Taking the divergence 0A% , one obtains

V,A%(X)=25,(x) +2meaP? (3.19

with

2400 = Ung2(X) PO 24 1(X)

~ g2 100PR o) (315

and
Pa=q(x)A%ys0(X). (3.19

The axial vector curremi does not conserve automatically
even in the chiral limitm;— 0 due to the first ternds, on the

the axial Ward-Takahashi identit.14) yields

VM< 2 Ai(x)Pb(0)> =2a(mf+m5q)< 2 Pa(x)Pb(0)>.
(3.18

In Fig. 1, we quote results ahsy as a function ofNs from
Refs. [25,26. In the right panel data from the standard
plaquette gluon action foa '~1 GeV (circles, 3=5.65)
and a~1~2 GeV (squares,3=6.0) are summarized with
two types of exponential fits. The counterparts from the RG-
improved gluon action are found in the left panel, whgre
=2.2 and 2.6 correspond 8 '~1 and 2 GeV, respectively.
The anomalous quark mass for the RG-improved action is an
order of magnitude smaller than that for the plaquette action
for botha 1~1 and 2 GeV. This clearly demonstrates the
advantage of the use of RG-improved gluon action, which
we therefore adopt in our work.

B. Simulation parameters

right-hand side. Effects of this breaking term, however, are Our numerical simulations are carried out in the quenched
expected to vanish a¥s—o. In practice it is necessary to @pproximation at the inverse gauge coupling @+ 2.6.
determine the value dfis for a given set of lattice param- From the string tension/o=440 MeV [38—40, this value
eters and a type of gluon action, so that the chiral breakin§f B corresponds to

effect due to this term is acceptably small.

In Refs.[26,27], the chiral property of the domain-wall

1/a=1.947) GeV, (3.19

fermion was investigated in detail in the quenched numerical

simulation. Defining an anomalous quark masg{®§]|

(012 95, )P?(0)[0)
m5an y

<0|§ P3(x,t)P°(0)|0)

(3.17

which we adopt in our analyses. If we use other quantities
such as the rho meson mass or the pion decay constant to
determine the scale, the lattice spacing is different from the
above value, due to the quenched ambiguity as well as the
scaling violation. We do not include such an ambiguityaof

in the systematic uncertainty of our results.
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TABLE I. Number of gauge configurations, independently gen- TABLE Il. Lattice pseudoscalar meson mass squared
erated for each value ofi;a, in our numerical simulation. mZ, [GeV?] at eachma. The x and y intercepts are obtained
through a linear chiral extrapolation. Physical scale of lattice spac-
ma 16°x 32 24%32 ing equals 1d=1.94 GeV determined by/o=440 MeV.
0.03 406 200
0.04 406 200 mra my[ GeV?] mea my[GeV?]
0.05 432 200 —0.0004932) 0.00 —0.0005616) 0.00
0.06 435 200 0.00 0.00587) 0.00 0.006619)
0.02 0.243426) 0.02 0.244511)
0.03 0.35689) 0.03 0.353417)
Denoting the five-dimensional lattice size &XN; ¢ oa 0.474128) 0.04 0.471419)
X N5, we choose the fifth-dimensional length to Ng=16 ¢ o5 0.593229) 0.05 0.595719)
and the domain wall height of the quark action to e ¢ g 0.713430) 0.06 0.71580)

=1.8. For these parameter choices the anomalous quark
mass a3=2.6 is given byms,=0.283(42) MeV[26]. We
expect this magnitude to be sufficiently small for viability of

the yPT reduction formulas. Chiral properties of matrix ele- C. Caleulation of matrix elements

ments will be discussed in detail in Sec. IV A. In Fig. 2 we display the quark line diagrams of three- and
To investigate the effect of finite spatial volurive= N2, two-point correlation functions needed for our simulation.

two sizes of lattices given bis=16 and 24 are examined, Filled squares represent the weak oper&@¥ or Qg lo-

in both cases using the temporal sig=32. cated at the sitex(t). Crosses are meson operators. We fix

We work with degenerate quark masses fipd, ands  gauge configurations to the Coulomb gauge. A wall source
quarks, and denote the common bare quark massias for pion is placed at=0 and that for kaon at=T=N;
=m,=my=ms. Matrix elements are evaluated for the bare —1. Quark propagators are solved by the conjugate gradient
quark massesn;a=0.02,0.03,0.04,0.05, and 0.06. Massesalgorithm, imposing the Dirichlet boundary condition in time
and decay constants of the pseudoscalar meson calculated @nd the periodic boundary condition in space. The stopping
the lattice, which are common for pion and kaon, are denotegondition is given by
asmy andfy,.

Gauge configurations are generated by combining one [|(D+m)-x—b||?<10"9||b]|?, (3.20
sweep of the five-hit pseudo heat bath algorithm and four
overrelaxation sweeps, which we call an iteration. We skip
200 iterations between configurations for measurements. |
Table I, the numbers of configurations used in our analyse
are given.

We emphasize thate generate gauge configurations in- " . . .
dependently for each value of,en This is practically fea- The three-point correlation functions f&r— 7 matrix el-

sible since most of the computer time in our runs is spent iffments have the contractions of Figsa)2 2(b), and 2d).

. > ; _ B +1O0) e +
calculating quark propagators. A clear advantage is a retOr calculating thé =0 amplitudes = *[Q{™|K™), both the

moval of correlations between data at different valuemipf ~ 19ure-eight contraction of (&) and the eye contraction of
and hence a more reliable control of the chiral extrapolatior?(bz are needed, while for thel=2 amplitudes
as a function ofn; or meson mass squaretf, on the basis (7 |Q{|K™) only the figure-eight contributes. Writing
of x2 fitting of data. For error analyses at eawh a single ~ O() = 1/V2,0(x,1), we extract the matrix elements from
elimination jackknife estimation is employed throughout theC@/culation of the ratio of form

present work. N m it
Table Il showsm? for both sizes of 18x32 and 24 (Ol77(MQ (1) (K™)'(0)[0)

hereb is the source vectok is the solution vector, anD is

e lattice fermion operator. With this stopping condition a
precision of better than 0.1% is achieved for arbitrary ele-
ments of three-point correlation functions.

X 32. The intercepts im; andm?, are obtained by taking a (0] (T)A4(1)|0){O|A4(t)(K*)T(0)|0)

linear extrapolation. Values @fi in the limit of m—0 are AD e+

0.9562) MeV and 1.0931) MeV on 16x32 and 24x 32 el (7 QVIKT) (3.21
lattices, respectively. These values are larger than the value N (77| A4|0)(0| A4l KT) '
ms,=0.283(42) MeV am;=0. As pointed out in Ref.26],

the discrepancy between the direct measurementsgfand 1

the estimate from the pion mass is largely explained by finite = X<7T+|Qi(l)|K+>- (3.22

spatial size effects on the pion mass. We mffp as a vari- 2m§4f§4

able in our chiral extrapolation throughout this paper. We .

have checked that our results remain identical within esti\WWe note that a local currem, (x)=q(x) v, vsd(x) is em-
mated statistical errors ih; is used in chiral fits. ployed in the denominator rather than the conserved current
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0 t T
| S ]
I * 1
3 d L
(a) figure-eight
* n ' IQPK %
u u
3 d <t IQ(?) K*
(b) eye o .
= —
3
(¢) annihilation . a T
@ype) K
d 0}, 0
5 - <0Id K °>
s
s
(type2) K°

d

5 d
(d) subtraction
K* n* <*IQqw K>
u
3
d

(e) two-point
K <01Quw IK*>

FIG. 2. Types of contractions needed for our calculation. Solid lines represent quark propagators on a background gauge field. Crosses
represent points where meson sources are placed, while filled squares denote four quark operators or the subtractiqa)dfigtatsr.
eight,” (b) “eye” which contributes only for matrix elements @i(o), (c) “annihilation” with a quark mass derivative in the external line
(type 1) or in the quark loogtype 2, (d) “subtraction,” and(e) “two-point.”

given in EQ.(3.13 in order to match with the local form of (0] QK| -

the four-quark operator in the numerator. a=— lim ' LM (3.24
The contractions in Fig. () show theK®—0 (vacuum ' me—mg(Ms—My)(0|sysd|K®)

annihilation matrix elements from which the parameters

in the YPT reduction formula$2.50 are obtained. Ifl ands d

quarks are nondegenerate, these parameters are easily ob- OI—<O|Q§°)|K°>|ms:rnd

tained from the ratio of propagators: __ M _ ] (3.25
(0]sysd|K®)

0 O\ T NS 0 0
(011 (K?) 00y (0IQI”IK >:ai- (3.23  The derivative acts both on the operaf®’ and on the
(0]Qaud 1)(K9T(0)[0)  (0]Qeud K°) kaon, and hence there are two contributions as shown in Fig.
2(c). The necessary derivative of the quark propagator is
ug)btained through

In the limit of degenerate quark masses, which applies to o
numerical simulation, some care is needed. From the defini-

tion of Qg (2.41) and the fact thaCPS symmetry gives dG(xy) _ =S G(x,2)G(zy) (3.26
(0]Qi|K®)[m =m,=0, we derive dm Z ’ o '

014501-9



NOAKI et al. PHYSICAL REVIEW D 68, 014501 (2003
4 T T T 4 T T !
. © 43 o} Ko}
+ Q162 Q%24x32 ¢
2t 1 2t -
0 -g- ------------------------------------- el L€ i 0 i it you
' D
Ll || T _
0 10 20 30 0 10 20 30
t
250 1 T T 250 T 1 T
Q16’32 Q,"” 24’32
200 41 200 1
150 1 180 1
. I O
100 o 100 1
50 1 1 1 50 1 1 1
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FIG. 3. Time dependence of the propagator ratio defined byEg2 for Q(ZO)

t

t

(uppe) and QL) (lowen) for m;a=0.03. Left and right

columns are for the lattice size 3632 and 24x 32, respectively.

To calculate the quark loops that appear in the eye and In our calculation, we generate two noiseséach spinor

annihilation contractions, we employ the randbti{il) noise
method. We generaté!)(x)=¢€'®(j=1,... N) from a
uniform random numbe#(x) in the interval 6= 6<27r. In
the limit N—o, we have

N— o

N
g (O*(0)E0(y) — s(x=y). (327

z \

Therefore, calculating quark propagators with(x) as the
source,

7D0)=2 (D+m) Y xx)(x"),  (3.28

we find

N

N
%Z 70X {D*(x) — (D+m)"Y(x,x) (3.29

as the quark loop amplitude for each gauge configuration.

and color degree of freedagmi.e., 2X(No. color)
X (No. spinor)=24 noises for each configuration. In Figs. 3
and 4 we show propagator ratios for t8” and Q) op-
erators, and those far, and ag. The horizontal lines indi-
cate the values extracted from a constant fit aved0—21
and the one standard deviation error band. Here correlations
between different time slices are not taken into account for
the fit. Instead errors are estimated by the jackknife method.
We observe reasonable signals, which show that 24 noises
for each configuration we employ is sufficient to evaluate the
quark loop amplitude. From Ed3.22), the yPT reduction
formulas derived in Secs. Il C and Il D are converted to the
following forms at the lowest order ofPT:

Fori=1,...,6,9,10:

(7 |QIIK) = J2f (mZ—m2)
<7T+|Q(0)_aqulJK >
<W*IA4IO><OIA4IK*>

(3.30
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0.06 T T T 0.06 T T T
o, 16°x32 3

0.05 - 2 1 o005t 0y, 24'x32

0.04 - 4 004t .

b 0.02 -
0.01 L L L 0.01 L L L
0 10 20 30 0 10 20 30
t t
-1.6 T T T -1.6 T T T
3
0, 16°x32 0, 24°X32
-1.7 + g 1.7 + .
Q- =+ ¢ $
[}
-18 T -18} .

o [ oo % %Efﬁi 1o | P i TR D

2. 1 1 1 _20 1 1 1
20 0 10 20 30 0 10 20 30

t t

FIG. 4. Time dependence of the propagator ratio defined byZERJ to calculate the parametaf X «, (upped anda?x ag (lower) at
mqa=0.03. Left and right columns are for the lattice siz€ 482 and 24 32, respectively.

(7" 7 |QP|KO) = \2f (m2—m?) xPT. If higher order corrections are small, the right-hand
(@ + sides of Eqs(3.30—(3.32 should depend only weakly on
([ Qi7[K™) (3.31 the lattice meson masgs, .
(7| A4 0N (0| AL KFY The two-pion states in the isospin basis are decomposed
as
fori=7,8 (1=0,2): 2 1
[(mm)o)= \/ glmi T \[BI m'%),  (3.33
: (7 1QIK™)
(mta |QUIKO) = — 2 ;i x — : —. 1 2
(77 |A4[0)(0]A4[K 3>3 |(m)2)= §|7T+7T )~ §|7TO7TO>-
(3.32 (3.34

where we setpx=(imy,,0) and p,=(—im,,,0) for K*  Therefore, matrix elements in this basis are given by

— 7" matrix elements on the right-hand side. We identify (7 7 |Q{"|K®) times constants:

fu with f, and assign to it the physical value fof, sincef, 3

agrees withf . in the chiral limit. On the other hand, the e O\ — \/7 + . —1(0)[ ) O\ -

meson massemﬁ andmf, in Eqs.(3.30 and(3.3)) represent ((mm)ol Qif KT 2<7T 7 |QTIKD: (339
the experimental values since they arise from the physical

K— a7 matrix elements. All of the experimental values (7)), Qi|KO) = V3(7 " 7~ |QP|KO). (3.36
used in our calculation are summarized in Appendix B. We

emphasize that these formulas are valid to the lowest order iWe use a shorthand notation
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0.10 T T T T T T 0.10 T T T T T T
Q,”, 16’32 © 24’32
0.08 - 3 = " 2 1 sl = N Q%2432 |
0.06 | < = 1 006t = .
0.04 | =) . 0.04 | 1
T I o I 2
0.02 + * . 0.02 - - aa J
Ofirst term Ofirst term
0.00 < subtraction term 0.00 < subtraction term
002 | 0 K->rr matrix element ] 002 | 0 K->rr matrix element |
-0.04 | el zox Ir Ir =] -0.04 | o x S
¥
-0.06 - . -0.06 | J
_0‘08 L L L L L 1 _0'08 1 1 L 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
m,’ [GeV?] m,: [GeV?]
6 T T T T T T 6 T T T T T T
2 " " Q% 1632 = & - Q,”, 24°x32
af 3 = 1 4t % S
2+ E 2+ E
0 b pTN AL iTh A 0 A n i A AL
o W R s R R e +F o o
O first term Ofirst term
2| < subtraction term i 2| < subtraction term 1
O K->nr matrix element 0O K->nr matrix element
4 3 S 2
:{%
0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
m,’ [GeV’] m,’ [GeV’]

FIG. 5. Effect of subtractions illustrated fa@$” (uppe) and Q) (lowen as a function ofm . The original matrix element
(m*]QIK*) (circles and the subtraction term a;( 7" |QgK*) (diamonds are added to obtain the physical matrix elem@ouares
Values are multiplied with a factoy2f ,(mz—m?2)/(7"|A4|0)(0|A,/K™) so that the vertical axis has dimensip@e\?]. Left and right
columns are for the lattice sizes>632 and 24X 32, respectively.

examples. These matrix elements play a dominant role in the
Al=1/2 rule ande'/e as we see in later sections. The nu-
merical details of subtractions for all of the relevant opera-
tors Q) for i=1,2,3,5,6 are collected in Table Il

We observe that the subtraction term represents a crucial

According to Eq(3.30 the contribution of the unphysical contribution in the physical matrix element. In the case of
operatorQg,, has to be subtracted for calculating thé Q(ZO) the subtraction term is twice larger than the original
=1/2 matrix elements. Figure 5 shows the original matrixmatrix element and opposite in sign. Thus the physical ma-
element (7"|Q®|K*) (circles, the subtraction term trix elementis similar in magnitude but flipped in sign com-
—ai{7m"|QqudK™) (diamonds, and their sum(squarey pared to the original matrix element.
multiplied with a factor \2f_.(m2—m?2)/(7"|A,0) For the case oRY) the subtraction term almost cancels
(0|A,|K™) for conversion to theK— 77w matrix elements the original matrix element so that the physical matrix ele-
[see Eq(3.30]. The left and right columns correspond to the ment is an order of magnitude reduced in size. Nonetheless,
spatial sizes T6and 24, respectively, and the upper and as one can see from inspection of Table llI, the physical
lower rows exhibit the data foQY”) and Q) as typical matrix elements are well determined with errors of 10—20 %.

(Qi)i=((mm),|QiIK, 1=0,2 (3.37

for the matrix elements in the isospin basis hereafter.

D. Subtractions in Al =1/2 matrix elements
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TABLE Ill. Subtraction inK — 7 matrix element 7 *|Q(®)|K *) for i=1,2,3,5,6 multiplied with a factor
V2 (m2—m2)/(m*|A,|0)(0|As|[KT). The values of th&* — 7" matrix element(first), the subtraction
term — a;(7*|Qsu]K ™) (subtraction, and their sunttotal) are given in units of Ge¥

16°x 32 2£8x 32

m;a first subtraction total first subtraction total

Q® 0.02 —0.013544) —0.013425 —0.026956) —0.002823) —0.016412) —0.019228)
0.03 —0.008429) —0.013320) —0.021739) —0.005Z24) —0.011514) —0.016730)
0.04 —0.009121) —0.010716) —0.019830) —0.008214) —0.009210) —0.017421)
0.05 —0.009616) —0.008513) —0.018124) —0.005612 —0.007610) —0.013118)
0.06 —0.007114) —0.007312) —0.014420) —0.008511) —0.0075282) —0.016G16)

Q® 0.2 —0.041G40) 0.082525)  0.041%46) —0.050419)  0.087513) 0.037523)
0.03 —0.041924) 0.075521) 0.033629) —0.045q19  0.082316) 0.037322
0.04 —0.039218) 0.075218) 0.036122) —0.043418)  0.074314) 0.030916)
0.05 —0.037%15  0.065914)  0.028416) —0.039413)  0.068012) 0.028613)
0.06 —0.034613) 0.062713) 0.028114) —0.035411)  0.063G11) 0.0282194)

Q® 002 -0.13017  0.125390) —0.00521) —0.115181) 0.125646)  0.01010)
0.03 —0.11810)  0.110781) —0.00714) —0.114G84)  0.131153  0.01711)
0.04 —0.113776)  0.117961)  0.00411) —0.119861) 0.120642)  0.000880)
0.05 —0.113265  0.105850) —0.007786) —0.105246) 0.114643)  0.009466)
0.06 —0.100G50) 0.103147)  0.003275) —0.104944)  0.105135  0.000255)

Q® 002 1.71845 —1.74336) —0.02424) 1.83224) —1.853185 —0.02711)
0.03 1.60837) —1.65132 —0.04§15) 1.73431) —1.768261) —0.03§11)
0.04 159133 —1.63330) —0.04311) 1.59327) —1.635249 —0.042Q80)
0.05 1.43826) —1.48325 —0.044482)  1.52125 —1.553224 —0.032167)
0.06  1.43026) —1.465823) —0.035971) 1.41223) —1.448205 —0.036153)

ng) 0.02 4.9813) —5.01(10) —0.02551) 5.26467) —5.35054) —0.08622)
0.03 4.6610) —4.79291) —0.12926) 496088 —5.11Q076) —0.15020)
0.04 4.63297) —4.72186) —0.08919) 4595800 —4.73371) —0.13714)
0.05 4,15%578) —4.28171) —0.13212) 4.38572) —4.49665) —-0.11111)
0.06 4,12173) —4.23467) —0.112995) 4.08165 —4.18360) —0.095789)
These results show that the subtraction plays a crucial role Wi(p)=2z(p)+ 7 yi(p) (3.39

in calculations with the reduction method. Numerically this

procedure is well controlled in our case. o )
wherey; are nonvanishing only for=3,...,10 andr=

—(VitVi)/ (Vi) is a complex constant. With our choice

) o of scalexu=m,=1.3 GeV, the functiong;(m.) are negligi-
Throughout this paper, the renormalization of the operayy small fori=3, . .. ,10[41].

tors and the RG-running of the matrix elements are carried "The coefficient functionsy;(x) and z(x) at m.
out within the perturbation theory in modified minimal sub- — 1 3 Gev have been calculated for several values of the
traction MS scheme with naive dimensional reduction QCD parameteﬂ\% [41]. We employA%z 325 MeV for

E. Renormalization and RG-running

(NDR). ; i)
The physicalK — 77 amplitudes in the isospin basf our main results, and_ also conmd@% 215. and 435 Mev .
. to examine the magnitude of the systematic error. The choice
are given by . . ;
of the central value is motivated by recent phenomenological
Ge 10 o compilations of the strong coupling constant, e.g., Ré2]
A ZEVusVﬁd;l Wi (1)(Qi)"(w), (3389  quotes AR=296"4% MeV corresponding to a¥S(M o)
=0.1184(31). We list the values of coefficient functions we

use in Table IV. The experimental parameters are summa-

where we se, =0 since our calculation at the tree level of fized in Appendix B. . _ e
xPT does not incorporate the effect of the final state interac- T0 calculate the renormalized matrix elements in M

tion; this effect begins from the next to leading orden®T.  scheme(Q;)">(u), we first translate the lattice values into
The Wilson coefficient functions have a form the renormalized ones at a matching sagie
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TABLE IV. Wilson coefficient functiong41].

A% r4) Z; Y3 Ya Ys Yo yrla  ygla  yola  Yyiola

215 MeV —-0.346 1.172 0.023 —0.048 0.007 —0.068 -—-0.031 0.103 —1.423 0.451
325 MeV —-0.415 1.216 0.029 —0.057 0.005 —0.089 -0.030 0.136 —1.479 0.547
435 MeV —0.490 1.265 0.036 —0.068 0.001 -0.118 -0.029 0.179 —1.548 0.664

IV. RESULT F HADRONIC MATRIX ELEMENTS
(QUI(a")=Zj(a*a)(Q)M(La). (340 SULTS © ONIC
A. Chiral properties of K— 7 matrix elements

This step is carried out using the renormalization factor cal- As we mentioned in Sec. Il B, the RG-improved gauge
culated to one-loop order of perturbation thedd8—44. action provides the advantage that the measure of residual
The detailed form of the one-loop terms and explicit numeri-chiral symmetry breakingns, due to finiteNs is small at

cal values folg* = 1/a in quenched QCD, appropriate for our a~*=2 GeV. It is nonetheless desirable to check the size of

case, are given in Appendix C. the chiral symmetry breaking effect directly for the— 7
The next step is to evolve the renormalized matrix ele-matrix elements.
ments from the scalg* =1/a to u=m, using the renormal- Explicit chiral symmetry breaking, if present, causes mix-

ization group, and combine them with the Wilson coefficienting of the I=0 four-quark operatorQ(® with the lower

f“nCt'O”SW(/’“) The RG-evolution of the matrix elements gimensional operatcsd without quark mass suppression, so
<Q) (,u) is inverse to that of the coefficient functions thatK — 7 matrix elements ainy=ms=m; behave as
Wi(n), ie.,

2
U T () — i i
+100) \ - (0) B Y
W, (,U,l) (/-L]_,,LLz) W, (IU’Z) (34]) < | ' qudK > G )+ 3 + - mf)
Qi ]~ X{7"|sd|K* +O(m4) 4.2
(Qi) S(/-Ll) [ l(,ul,/.Lz)T]”(Q> S(uz) (3.42 ( | | ) M 4

for (8, ,1g) operators, and

Perturbative calculations &f (m.,q*) at the next-to-leading .

order are availablg41]. In Appendix C we adapt the known (77+|Q(°)|K+>— O|(0)Jr 4 (m*[sd|KH)+O(mZ) (4.2
results to calculate the numerical values of the evolution ma- ad

trix for our case in whichu;=m.=1.3 GeV andu,=1/a

=1.94 GeV. The evolution may be made either forfor (8, ,8g) operators. Herg;,vy;, andd; are dimensionless
guenched QCD or foN;=3 flavors corresponding ta, d, quantities which represent magnitudes of residual chiral
and s quarks, depending on the view if the matchingzat Symmetry breaking, and hence are proportionaletd™s
=1/a is made to the quenched theory or to tie=3 theory  with some constart. The matrix element=*|sd|K*) stays

in the continuum space-time. This is an uncertainty inherenhonzero in the chiral limit. Motivated by Eq$2.41) and

in quenched lattice QCD, and we choose Me=3 evolu- (3.14), one may consider modifications of the subtraction
tion in our calculation. We have also tested the evolutionoperator such as

with quenched QCD, and found that the results for hadronic

matrix eIements_ do not chan_ge beyond a 10-20% level. Qou— (Mg+my+ 2m5q)§j—(ms— my)sysd. (4.3
For the coupling constant in ol =3 evolution, we em-
ploy the two-loop form Such modifications, however, will not ensure the complete

removal of residual chiral symmetry breaking from the ma-

5 trix elements.

Inin-— Thel =2 operator®Q{?} do not mix with thesd operator.
- B Ags Their matrix elements can have constant terms in the chiral
ag (u)=——-| 1=————|, (343  Jimit, however, due to mixings with dimension 6 operators
Bo'n'u—z Bo |n’“_2 such asQ(fg in the presence of chiral symmetry breaking.
Vs A Hence we also consider the chiral behavior of these matrix
elements.

. 3)_ . (4) Of the ten operator®;, we recall thatQ, ¢ ;0are depen-
with  Aps=372 MeV, which corresponds 10 Aps  gent operators as shown in EG8.11)—(2.13. Furthermore,
=325 MeV. In order to check systematic errors associateghere is an |dent|tyQ(2)—Q(2) which follows from Egs.
with this choice, we also make calculations fd(% (2.22), (2.23, and thel =2 component is absent in ti@; 5
=259 MeV (A%z 215 MeV) and A%:MS MeV (A% operators. Thus we only need to examine the matrix elements
=435 MeV). of Qf%555andQf?.
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FIG. 6. Ratio of matrix elementsr ™ |X("V|K /(7 *|A4|0)(0|A,|K ) x mZa? as a function ofmZ[GeV?] for i=1,2,3,5,6 (=0) and
i=1 (1=2) from top to bottom. Left and right columns are for the lattice siz€s<B® and 24 32, respectively. Solid lines represent the
chiral extrapolation tcmf,lHO with a quadratic function ofZ, , while dashed lines are with a cubic function as described in the text.
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FIG. 6. (Continued.
Figure 6 shows these matrix elements as functions of (m* |Xi(|)| K*) , a

mz, (GeV?) for the two spatial volume®/=16° (left col- 2
umn) andV= 243 (right column, adopting the normalization

defined by

(7| A40)(O[A4[K™)
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TABLE V. Fit parameters for the chiral extrapolation of the— 7 matrix elements defined by E@.4) which should vanish in the
chiral limit. The parametersag,a, ,a,) are determined by the fit functicay, + a;mz, + a,(mg,)2.

163x 32 28%x32
ag a;[GeV 2]  a,[GeV 4] x>/ dof ag a,[GeV 2]  a,[GeV 4] X/ dof
Q® —0.007138  —0.0917) 0.0417) 0.63 0.01724  —0.1011) 0.01(12) 1.88
—a;Qqup 0.00425 —0.1712) 0.1513) 0.19 —0.04115) 0.037174) —0.06481) 0.06
Q- a;Qqp —0.00751) —0.2424) 0.1724) 0.12 —-0.02431) —0.0615  —0.0616) 1.16
QM 0.02134) —0.51(15) 0.2515) 0.07 -0.00223  —0.5011) 0.26112) 0.35
— a,Qqup 0.00026) 0.8213)  —0.3713 2.43 0.01719) 0.80292) —0.3710) 0.71
Q¥ —a,Qqp  0.01940) 0.31(18  —0.1319 2.09 0.02425) 0.2611)  —0.0612 1.40
QY 0.0215) —1.3664) 0.5965) 0.42 0.06890)  —1.4344) 0.5847) 0.92
— a3Qaqup 0.001495  1.1246)  —0.31(49) 0.89 —0.08959) 1.70300  —0.9233 0.34
QY- a3Qqp  0.0219 —-0.1986) 0.2389) 0.58 —-0.0211) 0.27156)  —0.3260) 0.87
QY 0.3748) 14.72.3 -3.7(2.5 2.56 0.2734) 16.91.7) —6.4(1.9 0.48
— asQqup -0.1542 —16.12.0 4.72.2) 2.56 -0.1129) —17.81.5 7.01.7 0.40
QY- asQqp  0.020200 —1.2790) 0.9592) 0.17 0.1312) —-0.8557) 0.51(61) 0.48
QY 0.81.4 44.16.6) —12.47.)) 2.96 0.8697) 47.65.0 —17.25.6 0.31
— agQaup -0.1(1.2 —47.85.9 14.96.3 2.61 -0.1985  —52.1(4.5 21.05.0 0.42
QY- agQqp 0.05338) —3.01.6 1.7(1.6) 2.27 0.5922) —4.01.0 3.31.1) 0.62
QP —0.002313)  0.072764)  0.017868) 0.19 —0.0026465  0.075133)  0.014G37) 0.28
bo b,[GeV 2] b, [GeV 4] x2/dof bo b, [GeV 2] b, [GeV *] x2/dof
sd —170(12) 116(46) — 64(45) 2.21 —186.24.0) 151(19) —82(19) 3.72

For thel =0 channel, three data sets are plotted, correspond- 52
ing to the original matrix elemenx("=Q{" (circles, the — (XK Y =ag+a,mg +ax(my) 2+ ag(miy)?
subtraction term—«;Qg,, (diamond$, and the subtracted M
matrix eIementQi(')— aiQqp (squares For thel =2 chan-
nel, subtractions are absent and hekfé=Q"

The denominator of Eq4.4) behaves as

X Inme +as(mg)3+ - - - 4.7

Chiral extrapolations using the first three terms are indicated
(77 |A4|0)(OALIKT)y=2f3mp; , (4.9  py the solid line in each panel of Fig. 6. The fit parameters
are summarized in Table V. The results for the interegph
irrespective of whether chiral symmetry holds exactly or notthe chiral limit are consistent with zero within the fitting
The advantage of our normalization is that the coefficient ofrrors except for thé=2 operatorQ{? for the volumesV

the mfA term of the ratio is directly related to thi° =16°(1.80) and 24(40), the =0 subtracted operator
— o~ matrix elements. An alternative normalization is ng)—aerubforV=163(1.4a) and 24(2.70), and the sub-
provided by the ratio traction term for thei=1 operator —a;Qg, for V
=24%(2.80). Since no systematic tendency that the inter-
<7T+|Xi(|)|K+> cepts become larger for_smaller volume is obs_erved, it is
, (4.6)  unlikely that the nonzero intercepts of these matrix elements
(m7|P|0)O[P[K™) are caused by the finite spatial size effect. Indeed even an

opposite tendency that the intercept becomes larger for larger
where P=(ysq is the pseudoscalar density. This methogSPatial volumes is observed. _
avoids the use of measured values of pion mass, but it loses he absence of a systematic trend in our data suggests the
the straightforward relation to the physical matrix elementsPOSsibility that nonzero intercepts observed for some of the
We use the normalizatiofd.4) in our analyses. We have mgtrlx elements are artifacts of the long extrapolation in
checked, however, that the conclusion remains unchangd@v - TO test this point, we attempt a fit with a cubic polyno-

even if Eq.(4.6) is employed instead. mial of form a;mZ +a,(mz,) 2+ a,(mé)® andza form ;Nith
For chiral extrapolation we consider an expansion of thechiral logarithm given by  a;my+ay(mi)?
form +ag(m%)?Inm,, both having a built-in chiral behavior of
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TABLE VI. Same as Table V for the fit functioa; mZ, + ay(m2,)?+ a,(m)°.
16°x 32 24x32
a;[GeV ?] a,[GeV 4] a,[GeV ] x2/dof a;[GeV ?] a,[GeV 4] a,[GeV ] x?2/dof

Q® —0.1011) 0.01(44) 0.0641) 0.64 0.00467) —0.1828) 0.1027) 2.07
—a1Qqup —-0.15972) 0.14(30) —0.01(29) 0.20 —0.27140) 0.6418) —0.4918) 0.12

©— Qo —-0.2815) 0.21(60) 0.0057) 0.13 —0.25787) 0.4237) —0.3636) 0.98
QM —0.3710) —0.0639) 0.21(37) 0.10 —0.49963) 0.2327) 0.0229) 0.35
— a,Qqub 0.82675) —-0.3931) 0.0230) 2.43 0.94247) —-0.7221) 0.2622) 0.43
Q™ — a,Qqup 0.4612) —0.46(45) 0.2342) 2.07 0.46167) —0.5629) 0.37127) 0.98
QP —1.0943) -0.21.7) 0.6(1.6) 0.35 —1.0025) -0.31.0) 0.6(1.0 1.02
— a3Qsup 1.2027) —0.4(1.2) 0.1(1.1) 0.90 1.0716) 0.51(71) —0.9772) 0.57
QY — a3Qqup 0.05(55) -0.4(2.2) 0.52.1) 0.55 0.1032) 0.11.3 -0.31.3 0.87
Q© 17.71.4) —11.15.7) 5.6(5.6) 2.36 18.8788) —11.04.0) 3.34.1) 0.50
— asQqup -17.51.2 8.55.0) —3.05.0 2.44 —18.6876) 9.2(3.5 -1.63.7 0.38

O — 2Qqup 0.0859) -1.92.3 1.92.2) 0.23 0.0334) —1.31.4 1.2(1.4) 0.68
QY 50.93.9) —29(16) 13(16) 2.80 54.02.5) —32(12) 10(12) 0.34
— agQsup —49.63.4) 21(14) —6(14) 2.54 —53.62.2 25(10) -2.81.1) 0.41
QY — agQuup 0.6(1.2) -5.94.1) 5.033.9 2.36 0.0463) —5.32.6) 5.72.5 1.54
QP 0.055539) 0.05716) —0.02715) 0.18 0.055717) 0.057377) —0.029979) 1.50

vanishing atmf,,:O. We show the former fit curves by Let us try to analyze the chiral behavior bf 0 matrix
dashed lines in Fig. 6 and the fitted parameters in Table Vlelements in terms of mixing with thedl operator as given in
Numerical results of the chiral logarithm fit are given in Eq. (4.1). The existence of the constaff can be detected
Table VII. The fit curves are similar to those of the cubic fit. from the chiral limit of the matrix elements. On the other
Both functions provide good fit of data with reasonablehand, separating the contributiongfands; from the physi-
x?2/dof. cal ones would require results at differéxy. We leave such

TABLE VII. Same as Table V for the fit functior; mg, + a,(m,)?+ as(m,)?In m, including a chiral logarithm term.

16°% 32 28% 32

a,;[GeV ?] a,[GeV 4] aj[Gev 4]  x%dof  a[GeV ?] a,[GeV 4] as[Gev 4] X2/ dof
Q¥ —0.11(20) 0.0714) 0.0239) 0.65 0.0412) —0.11084) 0.1325) 2.01
—a1Qqup -0.1513 0.12890) 0.01(27) 0.20 —-0.36974) 0.26849) —0.46(16) 0.06
Q- a1 Qqup -0.2927) 0.21(19) —0.0354) 0.13 —-0.3216) 0.1511) —0.31(34) 1.05
QY —-0.3218) 0.0913 0.20(35) 0.09 -0.5012) 0.25977) 0.01(25) 0.35
— a,Qqup 0.8313) —-0.37693 0.01(28) 2.43 0.98788) —0.51556) 0.2320) 0.52
Q™ — a,Quup 0.5021) —-0.2915) 0.21(41) 2.08 0.5312) —0.27685) 0.3325) 111
QY —1.0%76) 0.3256) 0.5(1.5 0.38 —0.8545) 0.10(32) 0.5997) 0.98
— a3Qqup 1.2249) —0.4034) 0.1(1.0 0.89 0.8629) -0.21(19) —0.9366) 0.49
QY — a3Quup 0.1298) —-0.01(71) 0.42.0 0.56 0.0%58) —0.14339) -0.21.2) 0.87
QY 18.72.4) -6.8(1.7) 4.85.2) 2.44 19.51.7) —8.6(1.0 3.13.8 0.48
— asQqup -17.92.2) 6.1(1.4) —2.4(4.6) 249  —-19.01.9 7.9988) —1.43.4 0.38
QY — asQuup 0.51.1) —0.5477) 1.92.1) 0.21 0.3261) —0.4642) 1.21.3 0.61
QY 52.97.1) —19.54.9 11(15) 2.87 56.14.9 —24.23.0) 10(112) 0.32
— agQsup —50.1(6.1) 16.54.1) —4(13 258  —54.14.2 22.62.5 —-2.59.7) 0.42
QY — agQuup 1.81.9 -2.21.5 5.03.7) 2.35 1.41.2) —1.1680) 5.7(2.3) 1.21
QP 0.049868) 0.036447) —0.02615) 0.15 0.049432) 0.035120) —0.028573) 0.99
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TABLE VIII. 1/2 f2a (=" [sd|K*) as a function ofn;a.

ma 0.02 0.03 0.04 0.05 0.06
16°X 32 —145.03.1) —135.12.5) ~-132.62.3 -120.91.9 —120.21.8)
248 32 —154.71.6) —-142.12.1) -131.91.9 —127.41.7) -119.31.6)

an investigation for future studies, and assume that the Iattete/(lsﬂfoT): —2.180 GeV'2. We observe in Table VIl

contributions are negligible. We also ignore mixings with thethat the fitted value agrees in sign but is 3 to 4 times smaller
dimension five operatorss,,F ., d since their contributions in  magnitude than the prediction, e.g.az/a;=
are subleading in &/ —0.58(10) GeV 2 on a 24x 32 lattice.

We estimateg; from the values ofa, obtained in the Quenched chiral perturbation theory makes the same pre-
chiral fit of the matrix elements for the subtracted operatodiction for the coefficient of the logarithm term of the chiral

QY — a;Qq given in Table V. For this purpose, we repeat expansion ofBy as it is governed by the same operator in

the calculation of Eq(4.4) for X{"=sd, and extract xPT. For this case, similar discrepancies of lattice results
from the prediction are found for the case of the staggered

(m*|sd|K*)a 1 _ fermion action[29] as well as for the domain wall fermion
2 a%= (7 |sd|K™), action[28]. A possible explanation for these large discrepan-

4 2
(77| A4 0)(0[A,[K™)a 2fua cies is that higher order corrections (quencheyl yPT are

(4.8 non-negligible at quark masses employed in the current

where powers of are supplied to absorb dimensions of ma-Simulation. Indeed we have confirmed that data ) can-
trix elements. We then fit the results to a quadratic polynonot be fitted by the forna;mg, +ap(mg;)?+ag(m)In mg,
mial bo+b,m%+b,(mZ)2. The numerical values of Eq. +au(My)® with ag/a;=—2.180 GeV ? fixed. The complete
(4.8) are given in Table VIII, and the results for are given ~ form in xPT to this order,

in Table V. Normalizing withms,=0.283 MeV to take into ) 25 2 o 2 2.3
account thee~°Ns dependence expected f6f, one has aimy +ap(my)“+ag(my)Inmy, +a,(my)

B a, 1 +as(miy)*In my + ag(my) 3(Inmg)?,
4.9

Msqd by Msqa unfortunately, cannot be employed for our data calculated

In the case ol=24°, the results are8, /(mg,a)=0.9(1.1) only at five values of quark masses. Understanding the small
for i=1 —0.91(8,7) for =2 0'_8(4_55) for i=3.  value ofag/a, for Q) requires further studies.

—4.7(4.4) fori=5, and—21.6(8.1) fori=6. Except for the
i =6 operator for which the coefficient is exceptionally large, B. Physical values of hadronic matrix elements

we find values consistent with zero within the errors. We tabulate the values of all the— 7 matrix elements

The analyses described here do not show strong evidenqﬁ Tables IX (for 16°x 32) and X(for 243X 32). The upper

for the effect of residual chiral symmetry breaking in tke half of each table lists the bare lattice Valué@yi>:att' and

—ar matrix elements. Although more data at smaller quark . s .
masses will be needed for the definite conclusion, we con-he lower half the physical valuetQ;),™, obtained through

clude here that our results for the matrix elements are cofnaiching at the scalg” =1/a followed by an RG-evolution
sistent with the expected chiral behavior within the statisticafo #=m.. Note that(Q;_e)5'> become nonzero due to the
precision of our data. Therefore, for the chiral extrapolationRG-evolution which breaks the isospin symmetry in the
in the rest of this paper, we employ the cubic polynomialPresence of the QED interaction. The two sets of numbers do
without a constant term for the central value and use théot differ beyond a 10-20 % level except {@s 790, for
form with a chiral logarithm to estimate the systematic un-which the difference amounts to 30—40 %. The latter situa-
certainty. Since nonzero intercepts beyond statistical erroréon arises from a larger magnitude of mixing of order
cannot be excluded for some of the matrix elements, wé—10 % among th@{", , ; operators compared to the other
examine possible effects of the residual chiral symmetryoperators which are typically less than 5%. In the following,
breaking to the physical matrix elements in Sec. V. the superscripMS will be omitted unless confusion may
Let us also make a comment on the comparison of latticarise.
data with predictions of quenched chiral perturbation theory. In Table XI we illustrate the magnitude of uncertainty due
For thel =0 channel, data for more valuesrof are required  to the choice ofg* by comparing the values of physical
for such a comparison because of the presence of a numbkadronic matrix element§Q;) (m,) for the choicesqg*
of unknown parameters as well as a new term of form=1/a and q* ==/a at m;=0.02 on a 22 spatial volume.
b;mZInng, in the predicted matrix elemenfd7]. On the  One finds that the difference is at most 20—30 %.
other hand, quenched chiral logarithm terms are absent for In Fig. 7 we plot the physical matrix elements for the
the | =2 matrix elements governed by the (2Ig) operator, Al=1/2 amplitudes(Q;)o (i=1,...,6,9,10) as a function
and the ratioaz/a; for Q{?) is predicted to beaz/a;= of mZ, . These eight matrix elements involve the subtraction
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TABLE IX. Hadronic matrix element$Q;)o and(Q;), (i=1, .. .,10) in units of GeV at eachm;a on a 16X 32 lattice. The upper half
of the table lists the bare values. The lower half are those renormalized MStseheme atv=1/a and run tou=1.3 GeV forN;= 3 using
A%= 372 MeV, which corresponds m%z 325 MeV.

mea 0.02 0.03 0.04 0.05 0.06
bare (Q1)o  —0.032969) —0.026648) —0.024237) —0.022229) —0.017625)
[GeVA] (Q2)o 0.050857) 0.041235) 0.044227) 0.034720) 0.034517)
(Qs)y  —0.00626) —0.00818) 0.00513) —0.00910) 0.003991)
(Qu)o 0.07824) 0.05916) 0.07412) 0.047593) 0.05682)
(Qs)o  —0.03029) —0.05918) —0.05%13) —0.05410) —0.043988)
(Qe)o  —0.03162) —0.15731) —0.10923) —0.16115) -0.13812)
(Q7)o 1.63530) 2.04333 2.57442) 2.83543 3.32849
(Qsg)o 5.01291) 6.2510) 7.9013 8.6613) 10.1815)
(Qo)o  —0.046458) —0.035735) —0.038928) —0.028520) —0.028418)
(Quodo 0.037269) 0.032149) 0.029439) 0.028430) 0.023725)
(Q1)s 0.0131415) 0.0140212) 0.0148711) 0.01539999) 0.01595790)
(Q2)» 0.0131415) 0.0140212) 0.0148711) 0.01539999) 0.01595790)
(Q7)» 0.411G42) 0.429234) 0.465629) 0.486327) 0.526424)
(Qg)» 1.23813) 1.261(11) 1.335787) 1.363977) 1.445170)
(Qo)» 0.0197123) 0.0210318) 0.0223116) 0.0231015) 0.0239313)
(Qu0)2 0.0197123) 0.0210319) 0.0223116) 0.0231015) 0.0239313)
mea 0.02 0.03 0.04 0.05 0.06
renormalized  (Q;)y  —0.029168) —0.023447) —0.020837) —0.019129) —0.014425)
at 1.3 GeV (Q2)o 0.05169) 0.036@43) 0.041533) 0.029124) 0.030120)
[GeVA] (Q3)o 0.00428) —0.01220) 0.00714) —0.01511) 0.000299)
(Qu)o 0.08227) 0.04918) 0.06913) 0.03510) 0.046092)
(Qs)y  —0.02626) —0.03216) —0.03312) —0.025394) —0.018782)
(Qg)o  —0.01248) —0.11124) —0.07418) —0.11512) —0.096a90)
(Q7)o 0.79717) 1.02118) 1.26921) 1.41721) 1.64023)
(Qsg)o 3.42869) 4.37473) 5.46986) 6.04687) 7.02494)
(Qo)y  —0.045370) —0.028743) —0.034134) —0.020524) —0.021221)
(Qio)o 0.034769) 0.030649) 0.027837) 0.027529) 0.023125)
(Q1)» 0.0134516) 0.0143613) 0.0152411) 0.0157810) 0.01636191)
(Qy)» 0.0132816) 0.0141712) 0.0150411) 0.01557199) 0.01613791)
(Qs),  —0.0000274(81)  —0.000030587) —0.0000339825  —0.000036774)  —0.0000400723)
(Q)),  —0.000219836)  —0.000234830)  —0.000252{25)  —0.00026521)  —0.000283020)
(Qs)» 0.000205637) 0.000219631) 0.000235725) 0.000248822) 0.000265620)
(Qe)» 0.00075814) 0.00078911) 0.000827491) 0.000851777) 0.000891870)
(Q7)» 0.204536) 0.224330) 0.246625) 0.265522) 0.289721)
(Qg)» 0.84616) 0.88013) 0.92410) 0.948486) 0.992279)
(Qo)» 0.0202624) 0.0216119) 0.0229%16) 0.0237615) 0.0246414)
(Qi0)2 0.0200624) 0.0214119) 0.0227216) 0.0235315) 0.0243914)

of unphysical effects. The empty and filled symbols indicatetical quality andmf,I dependence are similar to those for
the data fromv=16° and 24 volumes, respectively. Within  (Q- o).
the statistical errors at each; and the fluctuation for differ- As discussed in Sec. IV A, for extracting the values in the
ent values ofm;, both of which are larger for the smaller chiral limit, we adopt a quadratic polynomial form
spatial size 18 the data from the two spatial volumes do not
show indications of the presence of finite size effects. (Qi)= &0+ Exmiy+ £3myy, . (4.10
The remaining matrix element{€; g, for the Al =1/2
amplitude, which do not require the subtraction, are shown in
Fig. 8. These matrix elements are well determined and exin addition we also employ the chiral logarithm form
hibit clearmZ, dependences.
The matrix elements for thal=23/2 channel given by , 5 )
(Q1),=(Q,), and(Q- g, are plotted in Fig. 9. Their statis- (Qi)1=&o+ Exmy + EmyInmy (4.11
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TABLE X. Same as Table IX for the 34 32 lattice.

mea 0.02 0.03 0.04 0.05 0.06
bare (Q1)o  —0.023534) —0.020537) —0.021725) —0.016122) —0.019619)
[GeV?] (Qz)o 0.046028) 0.045727) 0.037819) 0.035116) 0.034511)
(Q3)o 0.01312) 0.021(13) 0.001G98) 0.011681) 0.000368)
(Quo 0.08211) 0.087112) 0.060G91) 0.062774) 0.054458)
(Qs)o  —0.02719) —0.04413) —0.051597) —0.039382) —0.044265)
(Qe)o  —0.10526) —0.18324) ~0.16717) —0.13614) ~0.11711)
(Q7)o 1.69715) 2.15729) 2.56335) 2.990140) 3.29544)
(Qsg)o 5.21144) 6.58485) 7.8411) 9.1312) 10.0813)
(Qo)y  —0.041728) —0.041228) —0.032420) —0.029917) —0.029512)
(Qio)o 0.027834) 0.02539) 0.026726) 0.021222) 0.024619)
(Q1), 0.01315443) 0.01416352) 0.01478148) 0.01533%45) 0.01585343)
(Q,), 0.01315443) 0.01416852) 0.01478148) 0.01533%45) 0.01585343)
(Q7), 0.399615) 0.422218) 0.455915) 0.490G14) 0.518413)
(Qg)» 1.211949) 1.244455) 1.312845) 1.378341) 1.427140)
(Qq)» 0.01973065) 0.02124478) 0.02217272) 0.02300367) 0.02377965)
(Qi)2 0.01973065) 0.02124478) 0.02217272) 0.02300867) 0.02377965)
mea 0.02 0.03 0.04 0.05 0.06
renormalized  (Q;)o  —0.020334) —0.017336) —0.018225) —0.013021) —0.016319)
at 1.3 GeV (Q2)o 0.043333 0.040134) 0.032223) 0.030919) 0.031G14)
[GeV?] (Q3)o 0.01514) 0.01714) —0.00411) 0.008488) —0.001473)
(Quo 0.07813) 0.07614) 0.04810) 0.053584) 0.046665)
(Qs)o  —0.00812) —0.01111) —0.021490) —0.014474) —0.023157)
(Qedo  —0.07220) —0.13219) —0.12014) —0.09511) —0.079G84)
(Q7)0 0.841580) 1.07415) 1.27117) 1.48819) 1.63721)
(Qg)o 3.63133) 4.56660) 5.43470) 6.35279) 7.00286)
(Qo)y  —0.037G33) —0.033834) —0.024724) —0.023320) —0.023114)
(Qio)o 0.025934) 0.023437) 0.025626) 0.020521) 0.023919)
(Q1)» 0.01346%44) 0.01449953) 0.01514049) 0.01571746) 0.01625344)
(Q.)» 0.01329%44) 0.01431753) 0.01494449) 0.01550745) 0.01603143)
(Qz),  —0.0000269411)  —0.0000301814)  —0.0000333(13)  —0.0000366213)  —0.0000396(L3)
(Q),  —0.000218015) —0.000230117) —0.000247615) —0.000266013) —0.000280713)
(Qs), 0.000203715) 0.000214217) 0.000231215) 0.000249713) 0.000263413)
(Qe)2 0.000756257) 0.000772853) 0.000814454) 0.000857548) 0.000886646)
(Q7), 0.201@15) 0.218017) 0.240915) 0.265814) 0.286614)
(Qg)» 0.844064) 0.861870) 0.907860) 0.955253) 0.987251)
(Qo)» 0.02028166) 0.02183080) 0.02279674) 0.02366669) 0.02447466)
(Qi0)2 0.02008%66) 0.02162880) 0.02257573) 0.02343169) 0.02422866)

In Tables XII and XllI, results from these chiral extrapo- 9
lations are summarized with the values @/ dof. The dif- B{?=— §<Q1>o, (4.12
ferences between two types of fits should be taken as a mea-
sure of systematic error. F¢8g),, one observes in Fig. 7 an
exceptional behavior of the data @mit=0.02. An additional w2 9
chiral extrapolation excluding this quark mass is hence also B> ™= §<Q2>0' (4.13
made for comparison and the fit lines indicated in the figures
are obtained.

3
BS™= £ (Qs)o, (4.19
C. B parameters
We convert renormalized hadronic matrix elementg.at BW2)_ E(Q ) (4.15
=m,=1.3 GeV intoB parameters defined Hy1] STy Yo '
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TABLE XI. Renormalized hadronic matrix elements at
=1.3 GeV in units of GeV from different matching points*
=1/a (left column and z/a (right column. Values are taken at
my;a=0.02 on a 23x 32 lattice.

g*=1/a g*=mla
(Q1)o —0.020334) —0.015233)
(Q2)0 0.043333) 0.042433)
(Qs)o 0.01514) 0.01914)
(Qa)o 0.07813) 0.07613)
(Qs)o —0.00812) —0.00512)
(Qs)o —0.07220) —0.05016)
(Q7)0 0.841580) 0.798677)
(Qg)o 3.631(33) 2.87326)
(Qo)o —0.037633) —0.031733)
(Q100 0.025934) 0.025734)
(Qu)2 0.01346944) 0.01431446)
(Q2)2 0.01329%44) 0.01376045)
(Q7)2 0.201@15) 0.191214)
(Qg)2 0.844064) 0.667851)
(Qg)2 0.02028166) 0.02175470)
(Q10)2 0.02008366) 0.02114969)
(1/2) _ 1
Bs —7<Q6>o, (4.16
BMA=— (Qrlo T (4.17
EY( k+1)— EX
Bgllz): _ %, (4.18
EY( k+1)— EX
B{¥?)= i<Ql>2- (4.19
4.2x
B(73/2)= _ <Q7>2 , (4.20)
S vily
6vV2 2
B(83/2): _ <Q8>2 , (4.21)
& v 2y
22 6
where
k= ——, X=3f (mZ—m?2),
f K™ f T K
B mg |*f,
Y=-4y3 me+mg| « (4.22
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We summarize the values 8f parameters in the chiral limit
obtained by the fit with quadratic polynomial or chiral loga-
rithm in Table XIV. Quark masses and other parameters used
in the calculations are given in Appendix B.

Let us compare our values & parameters with typical
ones quoted in phenomenologyee, e.g.[41]). For theB
parameters important for th&el =1/2 rule, the experimental
value of ReA, indicates BEZ(m.)=0.453 with A
=325 MeV, with which our valuB{¥?(m,)~0.4 to 0.5 is
consistent. On the other hand, our res@{§?(m,)~8 to 9
andB{Y?(m.)~3 to 4 are smaller thaB{"?(m,)=15 and
B 3r(Me) = 6.6 needed to explain the experimental value of
ReA,. For the parameteB{’? relevant for the direcCP
violation, the largest of our estima®{’?(m,)~0.3 from
the four-point fit of the data from the 34patial volume is
still much smaller thaB{“?=1 in the 1N, approach, while
B&?(m.)~0.9 is comparable t85?=1 again in the M,
approach. In general the parameters foi =0 are smaller
than the usual estimates.

Previous  studies gave B%®? (u=2 GeV,NDR)
=0.58(7) and B§?(u=2 GeV,NDR)=0.81(4) [20],
B®? (u=2 GeV,RI(MOM))=0.38(11) and B{?(u
=2 GeV,RI(MOM))=0.77(9) [21], BF? (u
=2 GeV,NDR)=0.58(9) and B{?(u=2 GeV,NDR)
=0.80(9) [22], from quenched lattice QCD, anB%?(u
=2 GeV,NDR)=0.55(12) and B{?(u=2 GeV,NDR)
=1.11(28) from dispersive sum rules whemg+my
=100 MeV is used [48]. Our values are B&'?(u
=1.3 GeV,NDR)=0.62(3) and B{?(u=1.3 GeV,NDR)
=0.92(4) on a 23x 32 lattice in broad agreement with the
above. Note that the scaje is different between our results
and those of other studies.

V. PHYSICAL RESULTS
A. Al=12 rule

The real part oA, relevant for theAl = 1/2 rule is written
as

G
ReA, :\/_g|vud| : |Vus|[i212 z(me)(Qi)i(m)

10

+<Rer>i=23 yi(m)(Qi)(mg) |. (5.1)

In Table XV, we list the values of R&,, ReA,, andw !
=ReA,/ReA, for each value ofn; and spatial volume, and
for the three choices of th& parametev\%z 325, 215, and
435 MeV.

Figure 10 plots Ré,, (left pane) and ReA, (right panel
as functions ofmg, for A%=325 MeV. In both panels,
empty and filled symbols denote the results from the volume
V=16 and 24, respectively. Signals for R&, are quite
clean, while those for R&, exhibit more fluctuations. Since
both amplitudes show a variation withZ , we need to ex-
trapolate them to the chiral limit to extract the physical pre-
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FIG. 7. Physical hadronic matrix elemer®®;), for i=1,2,3,4,5,6,9, and 10 as a function mf,, from top to bottom. These matrix
elements involve subtractions of unphysical effects. Empty and filled symbols are from the spatial Vohut6é and 24, respectively.
Chiral extrapolations with a quadratic polynomial are shown by sdlig 24%) and dashed\(=16°%) lines. Fit error in the chiral limit is
added for the former.
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FIG. 8. Physical hadronic matrix elemert3; g)o as a function ofnf,I . The organization of each panel is the same as that in Fig. 7.

diction. Following the analysis in Sec. IV A, we examine
two types of fit functions given by

ReA,=1.53126)(— 178 (—4)( T19%x 1078 [GeV],
(5.4)

ReA| -1 +0.7
) ) ' . ® =9.51.1)(+2.8)(0.6)(79. (5.5
Eot+ Eymiy + E3(m3))? (quadratic polynomial
= ) ) ) ) ) The central values are taken from the result on 3x2p
ot &My + E;mylnmy, - (chiral logarithm). lattice from the quadratic polynomial fit withA {2
=325 MeV. The first error is statistical, the second one is an
. ] o o estimate of uncertainty of chiral extrapolation using the chi-
Chiral extrapolations from the quadratic fit are indicated byya| |ogarithm fit, the third one is finite-size variation esti-
solid lines, and those from the chiral logarithm fit by dashedyated by the change of value for the- 16° lattice, and the
lines in Fig. 10. _ fourth one, associated with renormalization, is estimated as
For theAl = 3/2 amplitude plotted on the left, the extrapo- o largest variation under changes A)ﬁ—%, g*, and the

lated values show good agreement with the experimentgl, - . . 4 2
value ReA,=1.50x10 & GeV indicated by the horizontal a.FEG running. If the chiral symmetry breaking tern, /mj,

arrow. On the other hand, thel =1/2 amplitude Ré, is is included in the chiral fit(5.2), a nonzero value of_;

small at measured values of quark masses, and only amount%gy(.md theostz_msncal error is obtained only for,Rg result-
to about 50-60% of the experimental value 3339 in a 60% increase of the value of Re. The disagree-

% 10~8 GeV even after the chiral extrapolation. ment from experiment becomes worse in this case. The scal-

A breakdown of the amplitudes into contributions from Qs%in\:;?cfctil?r? oi?(iatlzsIa?i%in(;r;?%o?rirn%rl,ug\ggciz Ocjn:;;tetﬁ_
the ten operator®; withi=1, ... ,10 isillustrated in Fig. 11 '

for mga=0.03. The histograms for thé=16° and 24 cases atic uncertainty. In particular, the physical scale of lattice

o : spacing set by the string tension in this paper may differ by
are shoyvn by Qasheci_ a.nd solid Imt_as,.respectwely. The ho.”about 10-20 % from scales determined by other physical
zontal lines with statistical errors indicate the total ampli-

tude, the dashed and solid lines corresponds 4al6® and quantities due to the quenched approximation. This uncer-

243. An apparent absence of contributions from the operatorgalnty Is not included in the above error estimate.
with i=3,...,10 is due to themall value of the parameter
Rer~0.002; the real part of the decay amplitudes is deter-
mined by the matrix element&,), and (Q,),, with the
latter providing the dominant part.

The ratio o '=ReAy/ReA, is shown in Fig. 12. Re-
flecting an insufficient enhancement of thé=1/2 ampli-
tude, it only rises to about half of the experimental value
w~1~22. The situation hardly changes fbfs2= 215 or 435
MeV, for which the amplitudes shift by about 5-10 @&ee
Table XV). We collect chiral fit parameters for the case of
larger spatial volum&/=24% in Table XVI.

Altogether we find

(5.2

B. Direct CP violation (&'/€)
The formula(1.4) for ¢’/ can be rewritten as

e'le=Im(VEV [ P2 - PG, (5.6

P(l/z)zrzi: Vil {(Qi)o(m)(1=Q s ), (5.7

POP= = S yi(w)(Qbal ), 5.9

ReAy=16.52.2(+4.2(+0.7)( %)% 1078 [GeV],

(5.3 where
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0.018 . T T T T T T TABLE XII. Hadronic matrix elements in units of GéMn the
chiral limit m% —0 on a 16x 32 lattice. The columns named “qua-

0.016 | <Q;>, dratic,” “chiral log.” correspond to two types of fit forms described
in the text. Chiral extrapolations are made using data atngd
=0.02-0.06(5 pointy except for an alternative extrapolation of

0.014 (Qg)o excluding the point am;a=0.02 (4 points.

oot} -~ 16 quadratic  x%dof  chiral log.  y?/dof

. » 2432 (Q1)o —0.03420) 0.14 —0.03536) 0.14

0.010 | . (Q2)o 0.07q19) 3.03  0.08834) 3.05
(Qs)o 0.03382) 091  0.0615) 0.94

0008 bt (Qa)o 0.13179) 1.68  0.1714) 1.71

: : e [GeV] - (Qs)o —0.00872) 0.03  0.0313 0.02

(Qe)o 0.0812 2.64 0.2021) 2.63

0.35 — . . (Qg)o (4 pts) —0.0417) 432 -0.0231) 4.38
f <Q, (Q7)o 0.24778) 1.78  0.1115 1.69

0.30 | (Qg)o 1.0732) 2.87  0.4860) 2.77
(Qo)o —0.06719) 3.32 —-0.08235 3.35

025 | (Qu)o 0.03721) 0.17  0.03737) 0.17
(Q1)> 0.0110254) 0.34 0.0099(08) 0.29
(Qa)> 0.0108754) 0.33 0.0097897) 0.28

020 - . (Q3)» —0.000020812) 0.49 —0.000019%21) 0.46

I/ E;jaigg (Qu)» —0.00018812) 0.33 —0.00018722) 0.37

0.15 - — 1 (Qs)2 0.00017712) 0.33 0.00017@3) 0.34

(Qe)2 0.00069446) 0.31 0.00069@B3) 0.31

0.0 i . . ‘ ‘ ‘ . , (Q7)2 0.16412) 036  0.16723 0.38
0 01 02 03 04 05 06 07 08 (Qg), 0.77651) 0.30 0.77592) 0.31

m, [GeV] (Qo)s 0.0166081) 0.4 0014015  0.29

1.1 . ; ; ; ; (Q10)2 0.0164281) 0.33 0.014715) 0.29

<Qg>,

10 r tion of m? . Results fore'/e are shown in Fig. 14. Since
P(2) is smaller thanP®? in our data,’/e tends to be
negative.

0.9 1 A breakdown ofP(®? and P(*? into contributions from
the operatorg;(i=3,...,10) is displayed for the case of

o162 m;a=0.03 in Fig. 15, where dashed and solid lines denote

08 _ m24%a32 | data fromV=16° and 24, respectively. This figure demon-

€ strates tha{Qg), and(Qg)o are, respectively, dominant in

o . | . . . . \ P2 and P(*2) as usually considered. However, the matrix

0 0.1 02 03 04 05 06 07 08

m,’ [GeV]]

FIG. 9. Physical hadronic matrix elemerd,), and(Q; g, as

element 0f(Qg)g is too small; if the experimental value of
e’/ is to be reproduced by a change of this matrix element,
it has to be increased by about a factor of 5.

Numerical values o2 PC2) ande’/e for eachmy

a function ofmy, . The organization of each panel is the same asare summarized in Table XVII. In addition to the features of

that in Fig. 7.

GF(U

"= 2[s[ReA,

and the parametefl,, ,
breaking. Since thal =

(5.9

»=0.25(5) reflects the isospin
1/2 rule is only partially reproduced

the data discussed above, we observe that changing the
parameter from\{%=325 to 215 MeV decreasea*? by
20% andP®?) by 25%. Employing\ {22=435 MeV leads to
an increase by similar percentages for the two functions.
Therefore the trend toward a negative values6fe is not
altered.

If we make a quadratic chiral extrapolation we fiatf e
=—7.7(2.0)< 10" * with y?/dof=1.75 on a 2&x 32 lattice.

with our data, we employ the experimental values forAge
w, ande as input.

In Fig. 13 our data foP®? (left pane) and P2 (right
pane) calculated WithA%= 325 MeV are plotted as a func-

Including the chiral symmetry breaking terfnllmf,, in the

fit changes this value to+30(20)x10 * with y?/dof
=0.0015. The smalk? indicates that more data points, in
particular data at smaller masses, are necessary to constrain
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TABLE XlII. Same as Table XlI for the 2%x 32 lattice.

quadratic  y?dof  chiral log.  y?/dof
(Q1)o —0.03112) 0.98 —0.03921 1.04
(Q2)o 0.06611) 0.36 0.08220) 0.43
(Q3)o 0.03249) 0.83 0.04486) 0.82
(Qa)o 0.12445) 0.69 0.15%82) 0.69
(Qso 0.001(40) 044  0.00873) 0.43
(Qedo 0.01466) 153  0.1612) 1.20
(Qg)o(4 pts) —0.1913) 0.10 —0.1825) 0.10
Q7)o 0.25253) 043  0.0711) 0.45
(Qgo 1.2322) 027 058493 0.35
(Qo)o —0.06311) 0.45 —0.08220) 0.53
(Q10)0 0.03412) 1.09  0.03822) 1.14
(Q1)2 0.0110419) 4.55 0.0097€36) 2.99
(Q2)2 0.0108919) 4.79 0.0096435) 3.16
(Q3)2 —0.0000194%50) 0.25 —0.0000183X6) 0.18
(Qu)s ~0.000184859) 1.28 —0.00018711)  1.25
(Qs)» 0.000173761) 1.67 0.00017@1) 157
(Q¢)2 0.00069122) 2.08 0.00070812) 1.98
(Q1)» 0.158060) 127  0.16811) 1.18
(Qg)> 0.77225) 2.09 0.79247) 1.99
(Qo)2 0.0166328) 4.48 0.014764) 2.94
(Q10)2 0.0164628) 4.66 0.014583) 3.07
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perturbation theory should be modified in the quenched
theory [49]. We have applied the modified relation to the

g)g matrix elements and found that the effect is large, rang-
ing between 20% and 100% in magnitude. For example,
the renormalized Qg), on a 24x 32 lattice increases in
magnitude to —0.154(17), —0.182(16), —0.144(11),
—0.1238(90), and—0.0969(72) atm;=0.02, 0.03, 0.04,
0.05, and 0.06, respectivelyThis modification has been
tested also in the case of the staggered ferrhidh, and an
increase of Qg), of a similar magnitude has been obseryed.
In terms of &’/e, the modified relation leads to
—1.70(53), —0.53(51), —1.48(32), —2.09(26), and
—2.85(19) forA%= 325 MeV. The modification increases
the value ofe’/e, but it is still negative. A complete analysis
still remains to be made both in the theoretical analyses of
the relation in quenched chiral perturbation theory and in
numerical simulations.

VI. CONCLUSIONS

In this paper we have presented results of our investiga-
tion into the reduction method in the framework of chiral
perturbation theory at the lowest order to calculate khe
— a7 decay amplitudes. THé — 7 andK—0 hadronic ma-
trix elements of four-quark operators were calculated in a
quenched numerical simulation using domain-wall fermion
action for quarks and an RG-improved gauge action for glu-

the fit parameters well. The existence of large uncertaintie§nS {0 satisfy the requirements of chiral symmetry on the
associated with the possible presence of the chiral breakingttice. We have seen that the calculation of quark loop con-
term, and also a subtle quenching effect mentioned belowfactions which appear in Penguin diagrams by the random

make it difficult to draw a conclusive estimate ©f/¢.

noise method works successfully. As a result thie=1/2

Recently, Golterman and Pallante pointed out that the re2MPplitudes which require subtractions with the quark loop

lation betweerK — 7 andK — w7 matrix elements in chiral

TABLE XIV. B parameters in the chiral limit with the chiral
logarithm fit.

16%x 32 28x%32
quadratic  chiral log. quadratic chiral log.
B{¥2 8.35.0) 8.68.9 7.72.9 9.65.2
B{V2) 34395  4.11.7 3.2355) 4.0498)
B{V2) 2.7(6.7) 5(12) 2.63.9 3.67.1)
B2 3.62.1) 4.53.9 3.4(1.2 4.32.3
B2 0.0440) —0.1571)  0.0122) —0.0241)
B2 —0.1422) -0.3838 —0.0312) —0.2922
B4 pts) 0.0431)  0.0358  0.3525 0.3447)
B2 0.4915  0.2229  0.5010) 0.1421)
B{/2) 07322  0.3241)  0.8315 0.3929)
B{V2 5.51.6) 6.82.9) 5.1992) 6.7(1.7)
B{Y? 3.01.7) 3.03.0 2.7999 3.21.9
B 0.48024) 0.43143) 0.480982  0.42616)
B2 0.47323) 0.42542) 0.474%81) 0.42015)
B2 0.64049) 0.65188 0.61623)  0.63444)
B 0.92461) 0.9211)  0.92030)  0.94455)
B 0.48224) 0.43343) 0.483082 0.42916)
B 0.47724) 0.42843) 0.477982)  0.42315

contractions were obtained with a statistical accuracy of
about 10%. We have investigated the chiral properties re-
quired for theK— 7 matrix elements. If we leave aside
ng), we have found no strong sign for the existence of the
chiral symmetry breaking effect within the statistical preci-
sion of our data in the range of quark masses employed in
our simulations. HoweveQ{”) appears to show an excep-
tionally large chiral symmetry breaking effect compared to
other channels. It is not clear to us if this is an effect beyond
statistical fluctuation. For the definite conclusion on this
point, more data, particularly at smaller quark masses, will
be needed. Matching the lattice matrix elements to those in
the continuum aj.=1/a with the perturbative renormaliza-
tion factor to one loop order, and running to the scale
=m.=1.3 GeV with the renormalization group, we obtained
all the matrix elements needed for the decay amplitudes. Un-
fortunately the physical amplitudes thus calculated show un-
satisfactory features.

One of the pathologies of our results is a poor enhance-
ment of theAl =1/2 decay amplitude; the value of Rg is
about 50-60 % of the experimental one in contrast tARe
which reaches the expected value in the chiral limit. Another
deficiency is a small value of thal =1/2 contribution to
e'le; if we assume that thAl = 3/2 contribution has a cor-
rect order of magnitude, thal=1/2 contribution is too
small by %bout a factor of 5 to explain the experimental value
=2X10"°.
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TABLE XV. Values of ReA,, ReA,, andw ! obtained at eachn;a for both lattice sizes, with\%= 325, 215, and 435 MeV.

16°x 32 24%32
ReA[10 8GeV] ReA,[10 8GeV] 0! ReA[10 8GeV] ReA,[10 8GeV] 0!

AB)=325 MeV

0.02 13.11.4) 1.86722) 7.0179) 10.8069) 1.868962) 5.7937)
0.03 9.45%84) 1.99217) 4.7543) 9.9069) 2.012974) 4.9235)
0.04 10.4268) 2.11415) 4.9333) 8.2645) 2.100668) 3.9322)
0.05 7.6649) 2.18414) 3.5022) 7.61(39) 2.179264) 3.4917)
0.06 7.5240) 2.26713 3.3217) 7.8629) 2.252761) 3.4912)
A)=215 MeV

0.02 12.51.4) 1.91123) 6.5572) 10.4066) 1.913a63) 5.4334)
0.03 9.1781) 2.03919) 4.47(40) 9.5966) 2.060276) 4.6632)
0.04 10.0464) 2.16416) 4.6431) 8.01(43) 2.150Q70) 3.7220)
0.05 7.4147) 2.24014) 3.31(21) 7.3936) 2.230665) 3.31(16)
0.06 7.3039) 2.32113 3.1516) 7.6026) 2.3058693) 3.2912)
A)=435 MeV

0.02 13.71.5 1.821(22) 7.5284) 11.2072 1.822860) 6.14(40)
0.03 9.7889) 1.94317) 5.0346) 10.1873) 1.963572 5.1938)
0.04 10.8071) 2.06215) 5.24(35) 8.5048) 2.048967) 4.1523)
0.05 7.8751) 2.13414) 3.6924) 7.8240) 2.125462) 3.6919)
0.06 7.7442) 2.211(12) 3.5019) 8.11(29) 2.197@60) 3.6913)

The hadronic matrix elements fdrl = 1/2 involve signifi- N, (iii) finite lattice spacing, (iv) quenching effects, and
cant subtractions. For some of the matrix elements, this req) the neglect of the charm quark. Our use(\ renormal-
sults in flips of sign and a reduction in the magnitude. Hencgzation factors in one-loop order of perturbation theory is
insufficient choices of lattice parameters in simulations mayanother source of error in the renormalized matrix elements.
lead to sizable systematic errors in these matrix elementssinally (vii) higher order corrections in chiral perturbation
Possible origins of the errors af finite fifth-dimensional theory is also a possible source of error. It may well be that
size N5 of the domain wall fermion(ii) finite spatial size the origin of the deficiency resides in physical phenomena

2.5 T T T T T T T 40 T T T T T T T
Re A, [10°GeV] Re A, [10°GeV]
experiment
30 - s 1
0 16'x32
20 m 24°%32
- --- chiral log.
e —— quadratic
20
B 016x32
. m 24°32
15T ::/ ) . -~~~ chiral log. 1
B experiment —— quadratic 10 |
1 .0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 0 0.1 02 03 04 05 06 07 08
m,’ [GeV’] m,’ [GeV’]

FIG. 10. ReA, (left) and ReA, (right) in units of GeV as a function ofnZ, . For chiral extrapolation, quadratisolid) and chiral
logarithm (dashed forms are used. For the former, fit errors are shown in the chiral limit. Filled and empty symbols are for the spatial
volume 24 and 16, respectively.
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3-5 T T T T T T 12.0 T T T T T T T T T
8
30 Re A, [10'°GeV] Re A, [107GeV]

100 | T E 1
25| | (SRS
20— el ————— 8.0 | R ]
15 | ]

. 6.0 [ . 1
ol --- 1632 ] --- 16x32
. — 24%32 — 24%32
05 | | 40} |
0.0 2ol |
-05 | 1
10l 1 oo
i 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

FIG. 11. Breakdown of RA&, (left) and ReA, (right) into contributions from the operato;(i =1, . . .,10) atm;a=0.03. Data points
placed on horizontal lines show total values and errors. The solid and dashed lines are for the spatial vblmde184 respectively.
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X =(sd),[(uu)_+2(dd),_—3(ss), ]
25 T T T T T T T R JR—
1 +(su) (ud), (A2)
FE— o '=Re Aj/Re A, - -
20 | experiment 1 XQ)=(sd) (uu), —(su) (ud), , (A3)
Q)= (sd),[(uu),_+2(dd), +2(ss), ]
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mMZ[GeVZ] +(su) (ud)g, ))g,g ) (A7)

where we use the notation ¢f's and )’s for the Lorentz
structureL® L andL®R. The subscripts i;j” stand for the
representationi( ,jg) of the operator and the superscript (0)
or (2) denotes the isospin. A shorthand notation, e.g.,

FIG. 12. ReA,/ReA, as a function ofnf,I . For chiral extrapo-
lation, quadratic form(solid line with the fit error am2M=O) and
chiral logarithm form(dashed lingare used. Empty and filled sym-
bols are for the spatial volume 1@&nd 24, respectively.
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TABLE XVI. Fit parameters for Ré\, ReA,, andw ! with &+ & mZ, + £5(mZ,)? (quadratic fiy and
Eo+ E1m2 + £;mE In mé, (chiral logarithm fi). Results on a 24 32 lattice withA{%=325 MeV are shown.

243% 32 & & & & x2/dof
quadratic Re\[1078GeV] 16.52.2 —27.719.2 21.88.9 0.34
ReA,[10 8GeV] 1.531(26) 1.6212) —0.8613) 4.91
ot 9.51.1) —18.24.6 13.74.3 0.13
chiral log. ReA[10 8GeV]  20.74.0) —11.42.8 20.18.3 0.50
ReA,[1078GeV] 1.35350) 0.97131) —0.8211) 3.25
w0t 12.32.0 —-8.011.5 12.94.2) 0.26

(Sd)L—Sy,u(l 75)d is employed as in Eq$2.17)—(2.21),

0)c 2 c
and J{}° equals)}} with its color summation changed to y( -+ 44 (A14)
cross the two currents. In terms of these operators the inde-
pendent local operators are rewritten as Therefore the decomposition of the local operators ito
=1/2 andAl =3/2 parts is summarized as follows:

TR Nt N/T B
10 8,1 15 27,1 27,1

1 — — — —
QY= 3L~ (sabb) L (UpUa)L + 2(Sqlp) (Upda)

1
0 0 0 2
2c< )+ 1y >+ .+ §x<27?1,

10781 +(Sadp) L (dpda) ], (A15)
(A9)
1 _
1 Q= 3~ (sd)y (uu), +2(su), (ud),
:_;cgfl)+ T X0, (A10) -
+(sd),(dd), ], (A16)
Q5= (A1) O (sd) [ (Uu), +(dd)+(s9), ], (AL7)
Qe=1°, (A12) = (sa0p) L[ (UpU) |+ (daly) |+ (SpSa) L],
(A18)
= 5088, (A13) O = (sd) [ (ut)g+ (dd) g+ (59)], (A19)
7 T T T T T T T 7 T T T T T T T
6| P(3/2) # | 6l P(1/2) |
# me:xaz

51 * ¥ * 1 sl m 24°x32 1

4t . 4t 1

3t 016°x32 8 3t % I % % 7

m 2432 ]

2t 1 21 g 1

1F A 1F 7
% 01 02 03 04 05 06 07 08 ° 0 01 02 03 04 05 06 07 08

m,’ [GeV?] m,? [GeV?]

FIG. 13. P (left) and P2 (right) as a function ofnZ, . Empty and filled symbols are for the spatial volumé &6d 24, respectively.
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25 T T T T

/e [10
20 | EKTeV e/e [107]

15 1 E NA48 ]

10 R

016’32
5L m 24’32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
m,’ [GeV]

FIG. 14. ¢'/e as a function ofnf,I . Empty and filled symbols
are for the spatial volume $@nd 24, respectively. Experimental
values quoted in Eq1.4) are also shown.

QY= (a1 [ (UpUa) (o)t (SoSa)r], (A20)

1 — - - —
QY= S[(sd)L(uu)g—(su).(ud)r—(sd)L(s9)g],
(A21)

1 — — — —
QE”= 5 [(sadb) L (Uplia)r— (Sallp) L (Upa)r

—(82dp)L(SpSa)r], (A22)

1 -
Q= 5[ (sd).(uu), — (su) (ud), ~ (sd), (s9), ],

(A23)
8 8
[ (372)
P pi2
51 1r ---- 16%@2 18
I R — 24%32
4 14
- I
il ,,,,,,,,,
2 12
0 — )
-2 L L L L L L L 1 -2
7 8 9 10 3 4 5 6 7 8 9 10

FIG. 15. Breakdown o (left) and P2 (right) into con-
tributions from the operator®;(i=3, .. .,10) atma=0.03. Data
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o_ 1L s.do) (UnU)y — (Soup); (und
Qio 2[(sa b)L(UpUa) L = (Salp) L (Upda) L

— (Sadp) L(SpSa)L ], (A24)
Al=3/2:

1 — — - — -
= Q=3[ (sd)u(uu), +(su) (ud), — (sd),(dd), ],

(A25)
QP=QP=Q¥=q{"=o0, (A26)
1 - — - — -
Q= S[(sd)L(uu)g+(su) (ud)r—(sd) (dd)e],
(A27)
1 — — — —
QFY= 5L (Sado)L(UpUa) r+ (Sal)1 (Upda)r
~ (Sadp) L(dpda)g], (A28)
QP-0f-502, (29

where color indices are understood within each current in the
operators with two color traces. The equivalence between
Q!» and Q{?) is valid due to Fierz rearrangement, hence
Q¥¥=Q3 follows.

APPENDIX B: EXPERIMENTAL INPUT PARAMETERS

We collect the input parameters which were used in our
numerical calculation51,52].

Quark mass: m,=5 MeV, myg=8 MeV, (Bl
ms=120 MeV, m.=1.3 GeV, (B2)
m,=4.2 GeV, m=170 GeV. (B3)

Meson mass: m_=139.6 MeV, mg=497.7 MeV.
(B4)

Decay constant: f,=92.4 MeV, fx=113.1 MeV.
(B5)

Coupling constant: a=e?/(4m)=1/129 (at w=my),

(B6)
2 2

Ge= fgj =1.166x10°5 GeV 2 (B7)
amyy,

points placed on horizontal lines show total values and errors. The

solid and dashed lines are for the spatial volumé aad 16,
respectively.

(my=80.2 GeV.
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TABLE XVII. Values of P, P32 ande’/e at eachmsa for both lattice volumes, witm%= 325,
215, and 435 MeV.

163X 32 2£8x32

P(1I2) P(3I2) 8//8[1074] P(1/2) P(3/2) 8//8[1074]
A)=325 MeV
0.02 0.11.2 4.9311) —-6.31.5 1.6950) 4.92345) —4.21(64)
0.03 2.9761) 5.084898) —2.7478) 3.3647) 4.94449) —2.0660)
0.04 2.1944)  5.29170 —4.0356) 3.5033)  5.20041) —2.21(41)
0.05 3.6%29) 5.41659) —2.3037) 3.1926) 5.47Q37) —2.9633)
0.06 3.4222)  5.65753) —2.9029 3.01(19  5.6323H —3.41(24)
AB)=215 MeV
0.02 0.0694)  3.71387) —-4.7(1.2 1.3441)  3.70736) —3.0152
0.03 2.3850)  3.81570) —1.8663 2.7038  3.70139 —1.31(49
0.04 1.7436) 3.96256) —2.8945) 2.81(26) 3.89233) —1.40(33)
0.05 2.9824) 4.04947) —1.4530) 2.5621) 4.09427) —1.9927)
0.06 2.7%18)  4.22842) —1.9222 2.4116)  4.21129 —2.3419
AL)=435 MeV
0.02 0.11.4 6.1613) -7.81.9 2.0561)  6.15054) —5.3379)
0.03 3.6375  6.3611) —3.5695) 4.0958)  6.197598) —2.7473
0.04 2.6754)  6.62984) —5.1569 4.2640)  6.51850) —2.9350
0.05 4.4336)  6.79Q71) —3.0646) 3.8832  6.85344) —3.8740
0.06 4.1627)  7.09164) —3.8234) 3.6524)  7.05942) —4.4329)

Quantities relevant The renormalization formula has the form

to Kaon decays: RA&,=33.3x10" % GeV, (B - |
(Q)M*(g*)=Z{(g*a)(Q;")(1/a)

ReA,=1.50<10"% GeV, (B9) + 2P g*a)(Q) (L), (C1)
|w|=0.045, (B10)
where
Q,,=0.25, (B11)
|e|=2.280x 10 3, (B12) n
Qpe=Qa+Qs— (Q3Nj (N.=3: No. of colop
C
CKM elements: |V, =0.22, |V J=0.974, (B13) (C2
IM(VEV ) =1.3X1074, (B14)

is the sum of contributions from penguin operators. Since
our matrix elements are obtained in the form of propagator

=0.002. (B15  ratios, 29 and ZP°" are also ratios of the renormalization
factors Z§ and ZP*" calculated from corresponding vertex
functions and that of the local axial currenf [43]:

Rer=— Re< ViV
V:svud

APPENDIX C: RENORMALIZATION FACTORS AND
RG-EVOLUTION MATRIX

In this appendix, we summarize the renormalization fac- g _Zij pen_ i
tors and the RG-evolution matrix, and calculate their numeri- Zi) _?' 2= Z_z (€3
cal values for our choice of parameters. Throughout this pa- A
per, we employ the perturbative calculation MS scheme
with NDR. The diagonal partg} are given by
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( 2

g 3 .2 Z,+z_ .
Lt oy @t =5 |, 1=1234010
Z3 = { In(q a)2+z-vy), =57, (C4
g O[BNY 1-6.,8
el N (@ 22T hl

while for off-diagonal parts, one has

2 Z,—Z_
— —In(q*a)?+ — i,j)=(1,2,(2,1,(3,4
16’772|: N In(q a) + 2 :|1 (I7J) ( 1)1( 1)1( 1)1
(4,3,(9,10,(10,9,
2 Zo,—Z1tUo1— U )
28— —— 3In(g*a)+ =, i=(5,6),(7.8), (5
C
g .
TR 1=(65.(87),
0, others.
|
Similarly the contributions from the penguin operatp4$) M=1.41979 (C9)
are given by ,
9 C zp=—4.6930, (C10
pen_ = 2, ,pe
1623 —In(g*a)?+2zP*", (Co)
z,=-13.612,z_=-10.319, (C1)

Where C2 1 Cg 2 C4 CG_ Nf ,Cg C]_o: Nu— Nd/Z,Cg

=—1, andC,;=0 for otheri with N¢,N,,N4 being the num-

ber of flavors, up-like quarks, and down-like quarkJyis,

and z**" are constants. In our calculation, we should Net z;=—10.063, z,= - 16.125, (C12
=3N,=1, andNy4=2. Finally the axial vector renormaliza-

tion constant has the form

v12=8, vy=1, (C13

ZA: 1+ > Zp . (C7)
1 ben_ 4.494 (for 1=2,3,5,7,9 c

Z 14

! 3.494 (for i=4,6,8,10. (19

In the abovez. ,z;,2;,v15,v5, andz, are constants de-

pending on the choices of simulation parameters and renor-

malization scheme. With the use of mean field improvemenfrom the definition ofQP®", ZP*" can be written in the form
at one-loop level, we obtain the following valug$] at 8 of a 10<10 matrix 2" defined as Zpen Zpen
=2.6 andM =1.8 for the RG-improved gauge action:

P gaug — 2PN, ZPe=ZPE"=zP*" and Z”Jen 0 for otherj. The

s 2 renormalization factor can then be summarized as & 1D
9°=0ys(1/a)=2.273, (C8  matrix given by
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294 Zoen
[ 09997 —0.0350 0 0 0

~0.0350 0.9997 —0.0106 0.0318 —0.0106

0 0 09785  0.0287 —0.0212

0 0  —0.0597 1.0739 —0.0247

0 0 0 0 1.0154

| o 0  —0.0247 0.0742 —0.0884
0 0 0 0 0
0 0 0 0 0

0 0 0.0106 —0.0318 0.0106
Lo 0 0 0 0

For the derivation of the RG-evolution matrix, we start
with constructing the renormalization group equati®GE)
of W;(u)’s, and hence ol (u,1/a)’s. If we write the renor-
malization of Q; as Qi(o):Ziij where the superscridD)
indicates the value at tree level, RGE f@’s are readily
obtained as

d
dinu

d
17— Qi=—¥%;Q;j, yE(Zldln,u,Z)' (C16

On the other hand, interpretindy;’s as coupling constants in
the effective Hamiltonian, renormalization ®¥,’s is pos-
sible, W9=Z%W;, in place of that ofQ's. From the
equivalence of these renormalizatio@$=(Z~1)T follows.
Therefore using Eq(C16) we obtain

hence

muij(ﬂyl/a):(?’T)ikUkj(M,l/a)- (C17)

Using the 1< 10 anomalous dimension matrix defined in
Eq. (C16), the RGE forU(u,1/a) has been solved for the
QCD B function and anomalous dimensigncalculated at
next to leading ordef53,54:

g® 9°
BO)= B 5 Fire

(C19

PHYSICAL REVIEW D68, 014501 (2003

0 0 0 0 0
0.0318 0 0 0 0
0.0636 0 0 0 0
0.0742 0 0 0 0
-0.0924 0 0 0 0
1.0190 0 0 0 0
0 1.0154 —0.0924 0 0
0 —0.0637 0.9448 0 0
—~0.0318 0 0 0.9997 —0.0350
0 0 0  —0.0350 0.9997]
(C1H
1IN, — 2N,
Bo= —3
34 , 10
Bl ?NC_EN Nf_ZCFNf,
(C19
_ 2, ¢ 2
Yas,a)=ys(99)+ EF(Q ) (C20
2
2 _ (0%
vs(99) =5 -+ vs 47T) , (C21)
P(g%)= v+ 52D, (C22

The solution at this order is written as

U(pg,po,a)= U(ﬂlvﬂ2)+ R(Mlyﬂz) (C23

Using the matrixV that diagonalizes the®)T, we obtain
diad y©1=V " 1yOTV andG=V 19TV, Then,

ag(p#1)
JU(O)(Ml,Mz)

U(pg, i) =UO (g, u0)+

S(Mz)

—UO (g, 1) J, (C29
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v (C25

ag(pmo) 751260
U(O)(Ml,#z): )

asg(pmy)

J=VHV ! (C26)

(0) Bl
ij 7D| -

285

Hy = o
0 0
2B+ ¥ =75

(C27
Moreover, withM(O=V 1,07y,

K(O)(Ml,ltz)

2
R, pp)=— EV

3

1
+ 0o 2 K (upo) VT (C28)
mi=1

2/30M-‘-°)
7{301)_ 2Bo

(as(Mz)) "oli260 1
ag(pmy) as(pmy)

K(O)(Ml Mz)lj

NETRIE N

ag(pm1) ag(pz)]’

[U Y(mg1/a)]"

F0.9738 00730 0.0035 —0.0003 —0.0033
0.0731 0.9736 —0.0024 0.0149 -—0.0053
0 0 0.9794 0.1043 —0.0212
0 0 0.0731 1.0105 —-0.0186
0 0 —0.0083 —0.0065 1.0465
B 0 0 —0.0090 0.0228 -—0.0421
0 0 0 0 0.0002
0 0 0 0 0
0 0 0.0021 —0.0149 0.0053
0 0 —0.0035 —0.0001 0.0032
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(1) )2
KO )y = oM (“S(“ 2))%' "
RN )
(0)
¥bi 12Bo
_ ( aS(ILL2)) , (C30)
as(Ml)
M=y~ (Y(l)T Py yOT4[yOT 37|V
Bo
(C31)
K (e, p2) = — as( m) KO (g, u)H, (C32
K (e, p2) = as( ) HK O (g, 1), (C33

whereu;=u.=1.3 GeV, andu,=1/a.

_Using the value of the strong coupling constant
a¥3(1/a)=0.30171 and a¥°(1.3 GeV)=0.39601 with
A%z 372 MeV, together withy functions presented in Ref.
[41], we obtain the matridd(m¢,1/a,«) given in Eq.(C23
and the RG-evolution matrix:

—0.0002 0.0005 0 0.0005 0.000}
0.0116 0.0002 0 0.0001 0.0041
0.0247 —0.0002 0 —0.0006 —0.0001
0.0306 —0.0005 0 —0.0004 0

—0.0996 0.0005 0 0 0
0.7878 0 0.0007 0 0

0 1.0349 —0.0929 0.0008 0
0.0004 —-0.0367 0.7602 0.0001 —0.0001
—0.0116 0.0009 0.0001 0.9750 0.0731
0.0002 0.0006 0 0.0736 0.9740
(C349
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In order to check the systematic error associated with the 2N¢  2N;
matching procedure above, we also employ an alternative - 3N, 3
procedure in which the RG-evolution is carried out in the [=T,=Ts= , (C36)
qguenchedheory fromu,=q* to u,=u.=1.3 GeV where ﬁ _ 2Ns
matching to theN;=3 theory is made. For the quenched 3 3N,
RG-evolution, the two-loop anomalous dimension matrix
¥ is modified according t§54] 2N 22N¢
3N, 3
Ta=T4= N, 20CEN: 4N - (€3
P
[7(51)]quenched_’['y(sl)]full_A'y(Sl)a (C3H 3 Ne

Note thatN;= 3 in this case. For the gauge coupling in the

quenched theory, we emplays>(1/a) =0.180 891 from Eq.
whereA yP=diad I';,I',,I'5,I'4,I's] with the 2x2 matri-  (C8), and «¥>(1.3 GeV)=0.20439 obtained by the two-
cesI’;, which are given by loop running withN;=0.
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