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We examine the momentum and energy dependence of the scattering rate of the high-temperature cuprate
superconductors using angle-resolved photoemission spectroscopy. The scattering rate is of the forma+bv

around the Fermi surface for under-and optimal doping. The inelastic coefficientb is found to be isotropic. The
elastic terma, however, is found to be highly anisotropic for under-and optimally doped samples, with an
anisotropy which correlates with that of the pseudogap. This is contrasted with heavily overdoped samples,
which show an isotropic scattering rate and an absence of the pseudogap aboveTc. We find this to be a generic
property for both single-and double-layer compounds.
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I. INTRODUCTION

There is a general consensus that understanding the nor-
mal state excitation spectrum is a prerequisite to solving the
high temperature superconductivity problem. Angle-resolved
photoemission spectroscopysARPESd has played an impor-
tant role in these studies because of the unique momentum
and energy resolved information it provides. This includes
the observation of a dramatic spectral line shape change
caused by the superconducting transition1, the large momen-
tum anisotropy of the superconducting gap consistent with
d-wave symmetry,2,3 an anisotropic pseudogap aboveTc,

4,5

the existence of nodal quasiparticles in the superconducting
state,6 and “strange metal” behavior aboveTc sRefs. 7 and 8d
in the so-called “normal state.” This state is well described
by a phenomenological model called the marginal Fermi liq-
uid sMFLd,9 however there is as yet no consensus about its
microscopic origin.

A number of studies have been conducted in order to bet-
ter understand the normal state. Of particular interest is the
determination of the scattering rate, which governs the trans-
port properties. Earlier on, Vallaet al. showed for optimally
doped Bi2Sr2CaCu2O8+d sBi2212d samples that the scattering
rate measured at the chemical potential is highly anisotropic
around the Fermi surface and it varies linearly with
temperature.10 This anisotropy was attributed to scattering by
out-of-plane impurities.11,12 In contrast, studies by Bogdanov
et al.13 and Yusof et al.14 concluded that for overdoped
Bi2212 samples, the width of the energy distribution curves
sEDCsd srelated to the scattering rated at the chemical poten-
tial is isotropic around the Fermi surface. Although these
studies of the scattering rate around the Fermi surface pro-
vide useful information, they are limited in their scope. They

measure or infer the scattering ratesIm Sd at a single energy
svd and do not extract its functional form. Other studies that
investigate the scattering rate as a function of energy are
limited to the nodal direction alone.13–15

The data presented in this paper provide a comprehensive
measurement of the functional form of the scattering rate as
a function of energy and momenta around the Fermi surface.
Consequently, we are able to shed light on the nature of the
excitations. We have conducted measurements of the scatter-
ing rate in under-, optimally, and overdoped samples and
examine how these relate to the anisotropy. The key findings
are as follows.s1d In under- and optimally doped samples,
which show an anisotropic scattering rate around the Fermi
surface, there is a linear dependence of the scattering rate as
a function of energysfor all points around the Fermi sur-
faced. s2d In contrast, for overdoped samples there is no an-
isotropy around the Fermi surface and the scattering rate is
more consistent with a superlinear behavior with energy.s3d
We also find that the presence of the scattering rate aniso-
tropy in under- and optimally doped samples and its absence
in overdoped samples applies equally well to both single and
double layered compounds, which suggests that bilayer split-
ting is not responsible for the anisotropy.s4d For under- and
optimally doped samples, the momentum dependence of the
pseudogap mirrors the momentum dependence of the scatter-
ing rate, which implies that both may be caused by the same
interaction.s5d The functional form of the scattering rate for
under- and optimally doped samples isa+bv, where the in-
elastic parameter,b, is isotropic around the Fermi surface.
Finally s6d we show that the bare Fermi velocity can be
directly obtained from ARPES.
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FIG. 1. sColor onlined Energy distribution
curvessEDCsd along the Fermi surface:sad EDC
data from optimally doped Bi2212
sTc=90 Kd at T=140 K. sbd The same for over-
doped Bi2201 sTc,0d at T=40 K. The inset
shows the color coded points on the Fermi sur-
face where the EDCs shown insad and sbd were
measuredsN is the node andA is the antinode of
the d-wave gapd. scd Comparison of the EDCs at
the antinode for optimally and overdoped Bi2201
at T=40 K. sdd The samesat the bonding Fermi
surfaced for optimally and overdoped Bi2212 at
T=100 K.

FIG. 2. sColor onlined Quality of the fitting to
the momentum distribution curvessMDCsd. Data
for an optimally doped Bi2212 sample, same as
in Fig. 1sad. Each curve corresponds to a different
energysvd and is measured along theky direction
at kx=0.59:sad Lorentzian fits to the data andsbd
Gaussian fits to the data.
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II. EXPERIMENTAL DETAILS

Most samples employed for this work are single crystals
grown using the floating zone method. They include opti-
mally doped Bi2212 samplessTc=90 Kd sused in an earlier
study15d, as well as heavily overdopedsTc,0d
Bi1.80Pb0.38Sr2.01CuO6−d sBi2201d.16 The overdoped Bi2212
and optimally doped Bi2Sr1.6La0.4CuOy thin film samples
sthe latter referred to as optimally doped Bi2201d were
grown using an rf sputtering technique. The samples were
mounted withG-M parallel to the photon polarization17 and
cleavedin situ at pressures less than 2310−11 Torr. Mea-
surements were performed at the Synchrotron Radiation
Center in Madison, WI, on the U1 undulator beamline sup-
plying 1012 photons/s, using a Scienta SES 200 electron ana-
lyzer with an energy resolution of 16 meV and momentum
resolution of 0.01Å−1 for a photon energy of 22 eV.

III. SCATTERING RATES AND RENORMALIZED FERMI
VELOCITY

In Figs. 1sad and 1sbd, we plot energy distribution curves
sEDCsd along the Fermi surface in the pseudogap state of

optimally doped Bi2212 and the normal state of highly over-
doped Bi2201, respectively. These data reveal that in the
optimally doped case, there is a strongly anisotropic
pseudogap which is zero in an arc centered at the node of the
d-wave superconducting gapsG-Y Fermi crossingd, and takes
its maximal value at the antinodesM-Y Fermi crossingd.
Moreover, there appears to be a strong anisotropy of the
scattering rate, since the spectral peaks at the antinode are
much broader than at the node. Although this has been sug-
gested to be due to an unresolved energy splitting caused by
bilayer mixing,18 in Fig. 1scd, we show data at the antinode
for optimally doped single layer Bi2201, which has similar
spectral characteristics to that of Bi2212fshown in panel
sddg, arguing against a bilayer effect as the origin of the an-
isotropy. We can contrast the behavior shown in Fig. 1sad
with that of heavily overdoped Bi2201 in the normal state,
where no energy gap is presentfFig. 1sbdg. In this case, the
spectral peak is isotropic around the Fermi surface, indicat-
ing that the scattering rate is also isotropic. A similar conclu-
sion was reached in recent studies of heavily overdoped
Bi2212 samples where strong bilayer splitting is present.14,19

FIG. 3. sColor onlined The data obtained from
MDCs fsame as in Figs. 1sad and 1sbdg for se-
lected momentum cuts parallel toM-Y flabeled
by thekx value alongG-M, see inset to Fig. 1sbdg.
sa,bd Band dispersion.sc,dd Fermi velocity—raw
data are shown as empty circles, the data cor-
rected by the angle of the cut are shown as dots.
se,fd Peak widths.sad, scd, sed optimally doped
Bi2212 at T=140 K andsbd, sdd, sfd overdoped
Bi2201 atT=40 K.
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To obtain more quantitative information, we analyze mo-
mentum distribution curvessMDCsd.8 As we pointed out
earlier,15 the MDC halfwidth sin the absence of an energy
gapd is equal to the imaginary part of the self-energy at that
energy, ImSsvd, divided by the bare Fermi velocity,vF0 snot
the renormalized one,vFd. Also, the peak position of the
MDC sas a function of binding energyd gives the band dis-
persion.

First we examine the quality of the fits to the MDCs.
Figure 2 shows sample data from Bi2212 with Lorentzian
fpanelsadg and Gaussianfpanelsbdg fits. The Lorentzian fits
are a much better representation of the data at all energies,
with a chi-squared statistic several times lower than for the
Gaussian fits.

In Fig. 3, we plot the dispersion, Fermi velocity, and peak
widths obtained from the MDCs along selected cuts in mo-
mentum space, parallel to theM-Y direction. The first inter-
esting point to note is that the slopes of the MDC dispersion
curves are fairly similar in optimally doped Bi2212fpanel
sadg and vary much more in overdoped Bi2201fpanel sbdg.
The slope of the MDC dispersion at the chemical potential is
equalto the renormalized Fermi velocity. We extract this
from the MDC dispersion and plot it in panelsscd and sdd.
The Fermi velocity for optimally doped Bi2212fpanelscdg is
roughly isotropic, a conclusion also reached in an earlier
ARPES study.10 Since in the nodal region the cuts along
which the data were obtained are not perpendicular to the
Fermi surface, we also show the velocities that were cor-
rected by taking into account the angle of the cut versus the
Fermi surface normalssolid circlesd. We now examine the
renormalized Fermi velocity in heavily overdoped Bi2201
fpanel sddg. In contrast to optimally doped Bi2212, this is
highly anisotropic and is much smaller at the antinode, a
result consistent with a previous tight binding fit to normal
state ARPES dispersions in overdoped Bi2212.20 The strong
anisotropy observed in Bi2201 arises from the close proxim-
ity of the saddlepoint of the band dispersion atsp ,0d swhere
the velocity is zerod to the Fermi energy for this heavily
overdoped sample.16 Stated another way, the small aniso-
tropy in the optimally doped case implies that the saddle-
point in the band structure atsp ,0d is significantly far away
from the Fermi energy.

This effect is illustrated in Fig. 4sad. Here we plot the
band dispersion obtained from a tight binding fit where the
saddlepoint has been assumed to lie far below 150 meV the
chemical potential—the same energy as atsp ,0d in opti-
mally doped Bi2212. The band dispersion from the tight
binding fit is plotted along cuts taken in the same geometry
as the experimental datasFig. 3d. In panelsbd we show the
Fermi velocity calculated from the slope of the band disper-
sion. This velocity bears a close resemblance to the real data
for optimally doped Bi2212 in the sense that is roughly iso-
tropic fFig. 3scdg. We now address panelsscd and sdd,
which show the tight binding dispersion and Fermi velocity,
respectively, in the case where the saddlepoint atsp ,0d lies
nears10 meV belowd the chemical potential—similar to the
situation in overdoped Bi2201.16 The effect of the saddle-
point is readily apparent as the velocity decreases quite rap-
idly near thesp ,0d point—exactly the same as in the experi-
mental datafFig. 3sddg. In summary, our results for the Fermi
velocity are consistent with tight binding calculations and
suggest that renormalization effects in the normal state are
momentum independent. This strongly supports our conclu-
sionssee laterd that theb term of the self-energy in under and
optimally doped Bi2212 is also momentum independentsiso-
tropicd.

IV. FUNCTIONAL FORM OF THE SELF-ENERGY

The energy dependence of the MDC peak widths for the
various momentum cuts is shown in Figs. 3sed and 3sfd. Con-
sider first the optimally doped Bi2212 datafFig. 3sedg. To a
good approximation, the result for any particular cut can be
fit to the form aM +bMv.21 This is analogous to theaM
+bMT form indicated for the temperature dependence of
MDC widths previously reported by Vallaet al.10

In Fig. 5sad, we show the momentum dependence of the
aM andbM terms extracted from the MDC half width at half
maximum sHWHMd for optimally doped Bi2212 in Fig.
3sed. To complement these results, we have also fit the EDCs
along the Fermi surface for this sample using a model self-
energy,S. We have tested both quadratic and linear energy
dependences for ImS and found that only the latter gives an
adequate description of the data. ReS is determined by

FIG. 4. The band dispersionsa,cd and renor-
malized Fermi velocitysb,dd obtained via a tight
binding model where the saddlepoint atsp ,0d
lies at sa,bd 150 meV below the chemical poten-
tial sequivalent to optimally doped Bi2212d and
sc,dd 10 meV belowsequivalent to overdoped
Bi2201d.
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Kramers-Kronig transformation of ImS=a+bv, assuming
the latter saturates at a constant value beyond a cutoff energy
of 0.5 eV. The background signal was determined using
methods described previously22 and added to the calculated
curves. The experimental energy resolution was taken into
account by convoluting the calculated curves with the appro-
priate Gaussian function. The experimental momentum reso-
lution was taken into account by summation of the spectra
over the analyzer momentum window. The quality of the fits
is illustrated in Fig. 6 along with plots of the relevant self-
energiesS. To improve the determination of theb coefficient
we have performed fits to EDCs peaked at high binding en-
ergy, whereb has the biggest impact on the line shape. The
EDC fits performed close to the Fermi momentum allow a
precise determination of thea coefficient. In Fig. 5sbd, we
show the values of thea and b coefficients obtained from
these EDC fits.23. Note the similarity of the results to those in
panel sad despite the quite different methodologies used.
Hence, we can have confidence in the validity of our results
for the a andb parameters.

V. EXTRACTION OF THE BARE FERMI VELOCITY
FROM ARPES

As an interesting aside, we can exploit the above to
estimate in a very simple way the bare velocity. We have
previously shown15 that the width of the MDC peak is
given by WM =S9svd /vF0. Since nowWM =aM +bMv and
Im S=a+bv, it follows that vF0=b/bM, therefore, we can
extract the bare velocity around the Fermi surface directly
from our data as shown in Fig. 5scd.25 We note that the bare
velocity obtained in this simple way is consistent with band
theory predictions and is in agreement with alternative
method of extracting bare velocity.26

VI. CONCLUSIONS

Returning to Figs. 5sad and 5sbd, the first conclusion to
draw from the data is that theb sbMd term is isotropic in both
plots. At first sight, it would appear that the Bi2201 case is
different, since thebM term in that casefslope of the curves
in Fig. 3sfdg appears to increase as the antinode is ap-
proached. But once the velocity is divided outfFig. 3sddg,27

we find in this case as well that theb term for ImS is iso-
tropic, which is consistent with the isotropy of the EDC line
shapes shown in Fig. 1sbd. The isotropy ofb provides strong
support of the original marginal Fermi liquid conjecture,9

where isotropicsi.e., locald behavior is required to guarantee
v /T scaling.

The aM term fobtained from the zero intercept in Fig.
3sedg is highly anisotropic. This is consistent with the strong
anisotropy of the EDC line shapes shown in Fig. 1sad. The
anisotropy of thea term in optimally doped samples has
been attributed to off planar impurities.11,12 On the other
hand, we note the remarkable similarity between the aniso-
tropy of this term and that of the pseudogap28 fFig. 5sddg.
This indicates to us that the anisotropy is probably not due to
impurity scattering, but rather is related to the same interac-
tion that gives rise to the pseudogap. This is consistent with

the observation of isotropic line shapes for more heavily
overdoped samples of Bi2212 where no pseudogap is
present. However, other possibilities could also be consid-
ered, such as the cold spots model of Ioffe and Millis, where

FIG. 5. sColor onlined The pseudogap and the elastics“a” d and
inelastics“b” d portions of the scattering ratesImS=a+bvd around
the Fermi surface for optimally doped Bi2212.sad Momentum de-
pendence of theaM andbM terms obtained by fitting MDC HWHM
data from Fig. 3sed. sbd Momentum dependence of thea and b
terms obtained by fitting EDCs from Fig. 1sad. scd Bare velocity
obtained by dividing theb andbM coefficients—raw data are shown
as empty circles, the data corrected by the angle of the cut are
shown as dots.sdd Position of the midpoint of the leading edge of
the EDC around the Fermi surface for optimally doped Bi2212
obtained from Fig. 1sad. This is an approximate measure of the
pseudogap—the actual value of the pseudogap is equal to about
twice the midpoint shiftsRef. 24d. skx labels the momentum cut as
in Fig. 3, with kx=0.4 corresponding to the node andkx=1.0 to the
antinode.d
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a highly anisotropic scattering rate is conjectured due to scat-
tering fromd-wave pairing fluctuations.29,30

Finally, we note that an anisotropy in the “zero intercept”
of the MDC width is also evident in the heavily overdoped
Bi2201 samplefFig. 3sfdg. But, in this case, it can be ac-
counted for by the anisotropy in the bare Fermi velocity,
which decreases towards the antinode. Thus thea term in
ImS is isotropicfagain, this is consistent with the isotropy of
the EDC line shapes shown in Fig. 1sbdg.

In conclusion, we find that the normal state scattering rate
in under- and optimally doped cuprates can be approximated
by the forma+bv. The inelasticb term is found to be iso-
tropic, which is a necessary ingredient in the marginal Fermi
liquid conjecture.9 In contrast, thea term is found to be

anisotropic for under- and optimally doped samples, with the
anisotropy linked to that of the pseudogap.
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