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A phase diagram is presented for the superconducting and antiferromagnetic states in the
heavy-fermion compounds U(Pt; _, Pd, }5, x<0.10. Superconductivity is depressed for x values
larger than 0.005, whereas antiferromagnetism is observed in the composition range

0.01 < x <0.1. Specific heat experiments show a sharp transition at the Néel temperature of 6.1
K for x = (.05, in contrast to the alioys with x = 0.02 and 0.07 in which rather broad
anomalies are observed around 3.6 and 5.5 K, respectively. Experimental observations indicate
an optimal condition for antiferromagnetism around x = 0.05. The effect of pressure on the

phase diagram is discussed.

The intermetalilic compound UPt, is regarded as one of
the most interesting heavy-fermion systems because of its
unexpected superconducting ground state that develops at
T =0.48 K.! The low-temperature normal state of UPt; is
characterized by pronounced spin-fluctuation effects as in-
dicated by theexistenceofa T° In( 7 /7T *) termin the specific
keat?? and in the volume thermal expansion.®* Recent neu-
tron scattering experiments™® further support the concept of
spin fluctuations. An intriguing question regarding UPt, is
whether the same many-body interactions cause the super-
conductivity as well as the spin fluctuations. Although sev-
eral theoretical approaches’™® suggest unconventional odd-
parity superconductivity in this system, there is no clear
experimentai evidence available yet. Note that a convention-
al type of superconductivity cannot be exciuded.'®

So far, theoretical approaches to UPt, do not take into
account anisotropy, whereas the experiments on UPt; re-
vealed strongly anisotropic properties. We mention magne-
tization,' "2 magnetic susceptibility,'"'? electrical resistiv-
ity,'* thermal expansion,” magnetoresistance,'® and
magnetostriction. ' The low-temperature behavior turns out
to be sensitive to alloying or changes of external parameters
such as magnetic field and pressure. A depression of super-
conductivity by stresses or impurities is a typical exam-
ple."'® When Pd is substituted for Pt in UPt, the supercon-
ductivity is rapidly lost in the resulting pseudobinary
compound U(Pt, _ _Pd, ), ie., below 40 mK for x = 0.003.
Samples with x = 0.001 and x = 0.002 had z superconduct-
ing transition temperature of 0.460 and 3.337 K, respective-
ly.”

The effect of alloying by Pd on the normal state proper-
ties is large. Specific heat experiments'® show that for
x<0.10, the y value, obtained from an extrapolation fo zero
temperature, increases with increasing Pd concentration,
reaching 2 maximum value of ~600 mI/K?moi U for
x = 0.10. For higher Pd concentrations the y value rapidly
drops (¥ = 30 mI/K? mol Ufor x = 0.30). Since the large y
valueis attributed to spin fluctuations, this increasing behav-
tor indicates further enhancement of the spin-fluctuation ef-
fects. An interesting feature is the peak that is found for
x = 0.02, 0.05, and 0.07 at 3.6, 6.1, and 5.5 K, respectively
(see Fig. 1). This peak represents antiferromagnetic order-
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ing, as was shown recently. Neutron experiments’® on the
x = 0.05 compound gave clear evidence for a long-range an-
tiferromagnetically ordered state with an ordered moment
of 0.6 + 0.2 4, on the uranium sites. It is surprising that in
the magnetically ordered state, the ¢/7T value does not drop
at all; still keeping its increasing behavior with decreasing
temperature. This suggests that the antiferromagnetic state
is formed in the spin-fiuctuation state without suppressing
the spin fluctuations.

The peak at the transition temperature T is sharp for
the x = $.05 compound, whereas it is less pronounced at
both sides of this Pd concentration. The disappearance of the
antiferromagnetic transition for x>0.10 may be caused by a
second crystallographic phase. The existence of a second
phase has been confirmed by x-ray investigations which we
performed on polycrystalline samples with x<0.30. This sec-
ond phase has not been identified yet. By applying a2 magnet-
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FIG. 1. Temperature dependence of the specific heat of polycrystalline
U(Pt, _,Pd, ); compounds.
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ic field of 5 T for x = 0.05, the transition temperature is
shifted downwards with 0.3 K.'®
The effect of Pd substitution has also been studied by the
electrical resistivity'® of U(Pt, _  Pd, ). In the normal state
UPt, has a spin-fluctuation-like resistivity curve: a 7'* law is
obeyed up to 2 K, followed by a steep increase and a tenden-
cy to saturate in the room temperature region. Up to
x == 0.10 alloying resuits in a large increase of g, and a less
steep resistivity curve. For x = 0.10 and x = 0.15 a Kondo-
like increase of the resistivity at low temperatures has been
found. The antiferromagnetic ordering is for x = 0.05 re-
fiected by an anomaly in the resistivity around T,. For
x = 0.02 and x = (.07 the anomalies are less pronounced.
Following the  experimental results for the
U(Pt, _ . Pd, ), series that have been obtained so far, a phase
diagram up to 10 at. % Pd is presented in Fig. 2. From the
phase boundaries we expect that in a narrow concentration
range 0.005 < x < 0.01, neither superconductivity nor anti-
ferromagnetism is found. The arrows in Fig. 2 indicate the
sign of the pressure effect for pure UPt; on the supercon-
ducting tranmsition temperature: dIln7T,/9P = — 26
Mbar~' and on the spin-fluctuation temperature Tgp:
J1in Tse /9P = 30 Mbar~1.%° In order to complement these
data, resistivity experiments were performed to determine
the effect of pressure on the Néel temperature. A standard
four-point ac techniqgue was used and helium served as the
pressure transmitting medium. It was performed on a
x = (.05 single-crystalline sample with the current along the
a axis. The data are shown in Fig. 3. The anomaly at T,
= 5.8 K shifts to lower temperature with pressure at the rate
of — 0.3 K/kbar. The relative pressure dependence of Ty
amounts to — 55 Mbar . Itis concluded that the supercon-
ducting as well as the antiferromagnetic phase are depressed
by pressure. However, the relative pressure dependences of
T, and T, differ by a factor of 2. Another interesting feature
is the depression of the resistivity curve with increasing pres-
sure. At 1.4 K the relative pressure dependence of the resis-
tivity along the a axis is — 50 Mbar™*, whereas at room
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FIG. 2. T, and 7' as function of Pd concentration for the U(Pt;, _,Pd, ),
system up to 10 at. % Pd. § indicates the superconducting phase, AF the
antiferromagnetic phase, X the Kondo regime, and SF the spin-fluctuation
region which persists into the AF region. The arrows indicate the sign of the
pressure effect on 7, T, and 77, Note the expanded sczle for Pd concen-
trations below 0.5 at. %.
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FIG. 3. Temperature dependence of the electrical resistivity of single-crys-
talline U{Pt, o5 Pdg s ), along the @ axis. The sample was spark eroded from

a large single-crystalline sample that has been used in a specific heat experi-
ment, yielding 7', = 5.8 K (as indicated by the arrow).

temperature itis — 6 Mbar ™. This decrease of the resistiv-
ity over the whole temperature range can be explained by the
pressure effect on the spin-fluctuation phenomena as seen in
UPt,. 132921 Assuming a linear depression of p{ 1.4 K) with
increasing pressures, it is expected that a pressure of 18 kbar
for the x = 0.05 compound is nearly sufficient to reach the
resistivity values, which are characteristic for UPt,;. Apart
from this, the low-temperature resistivity is decreased in
such a way that a pressure-dependent p, cannot be excluded.
Since p, is usually attributed to the impurity concentration
in metals, this strong pressure dependence is not easy to ac-
count for. It would be necessary to look for new mecha-
nisms, which might be related {o pressure-induced changes
of the electronic states near the Fermi level,
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