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For the understanding of longshore currents along a natural beach, the effects of
bottom unevenness are considered to be important, especially for the flow in the
swash zone. Currents in the swash zone are strongly influenced by the bed slope
because the effect of gravity overwhelms the effect of the depth change. In the present
paper, we investigate these effects and focus on waves propagating from offshore over
a flat ocean basin of constant depth to a beach with a sloping wavy bottom. The waves
are incident at a small angle to the beach normal, and the bed slope in the alongshore
direction is varied slowly. To simplify the problem, only cnoidal waves and solitary
waves are considered and the bed level is varied sinusoidally in the longshore direction.

A perturbation method is applied to the two-dimensional nonlinear shallow water
equation (two-dimensional NLSWE) for the wave motion in order to generate a
more simplified model of wave dynamics consisting of a one-dimensional NLSWE
for the direction normal to the beach and an equation for the alongshore direction.
The first equation, the one-dimensional NLSWE, is solved by Carrier & Greenspan’s
transformation. The solution of the second one is found by extending Brocchini
& Peregrine’s solution for a flat beach. Two methods for the solution of the one-
dimensional NLSWE are introduced in order to get a solution applicable to large-
amplitude swash motions, where the amplitude is comparable to the beach length.
One is the Maclaurin expansion of the solution around the moving shoreline, and
the other is Riemann’s representation of the solution, which exactly satisfies the one-
dimensional NLSWE and the boundary conditions. After doing a consistency check
by confirming that Riemann’s method, a numerical solution, agrees with the exact
solution for an infinitely long, sloping beach, we assumed that the Maclaurin series
solution can also describe wave motion in the swash zone properly not only for this
model but also for our ‘wavy’, finite beach model.

The solution obtained from the Maclaurin series is then plugged into the equation
for the alongshore direction to calculate the shore currents induced by wave run-up
and back-wash motions, where a ‘weakly two-dimensional solution’ is derived from
geometrical considerations. The results show that since the water depth near the
shoreline is comparable to the bed level fluctuations, the flow is strongly affected
by the bed unevenness, leading to recognizable changes in shoreline movement and
the time-averaged velocity and the mass flux of the flow in the swash zone. More
specifically, the inhomogeneity of the alongshore mass flux generates offshore currents
because of the continuity condition for the fluid mass.
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1. Introduction
An understanding of the flow in the swash zone, i.e. the area of the beach where

the waves displace the instantaneous shoreline back and forth, is of importance in
understanding and controlling coastal erosion and accretion. Shore currents in the
swash zone have been under intensive investigation recently in order to reveal the
sediment transport processes of a beach. Mass and momentum transfer in this region
for a smooth uniformly sloping beach has similar properties to the Stokes’ drift for
progressing waves in the open ocean, as discussed in Brocchini & Peregrine (1996) and
Brocchini (1997). However, the flow over a natural beach with a spatially fluctuating
elevation, i.e. a ‘wavy’ beach, displays a different flow pattern with cells of circular
drifting flow because the gravity effects due to the fluctuations of elevation dominate
the flow fields, especially near the shoreline.

Run-up and back-wash of normal incident waves have been studied by many re-
searchers both numerically and analytically. In the following three paragraphs, we
briefly review some previous research done on three different beach models with no
‘wavy’ beaches. The first two models are one-dimensional with the beach first treated
as a virtually infinite line with a uniform slope and then as a uniformly sloping line seg-
ment with an ocean basin of constant depth. The third model is two-dimensional with
the beach depicted with a uniform slope terminating in a flat, horizontal ocean basin.

For the one-dimensional ‘infinite-line model’, Stoker (1948) found a change of
variables by which the one-dimensional nonlinear shallow water equation (one-
dimensional NLSWE) is transformed into a linear equation. Carrier & Greenspan
(1958) chose to use an auxiliary dependent variable in Stoker’s transformation so that
they could generate analytical solutions for some initial and boundary conditions.
Analytical studies of a single bore and its run-up on a beach were done by Ho &
Meyer (1962) and Shen & Meyer (1962).

For the one-dimensional flat ocean basin model with a uniformly sloping beach,
Kim, Liu & Liggett (1983) calculated solitary wave run-up and propagation apply-
ing the boundary element method. Zelt (1991) numerically solved the Boussinesq
equation described in a Lagrangian coordinate system, where the friction and the
dissipation terms were considered. Synolakis (1987) utilized Carrier & Greenspan’s
(1958) transformation in the calculation of a solitary wave run-up, where nonlinearity
was eliminated in the offshore region and the amplitude of the fluctuations of the
shoreline was considered to be small compared to the slope length. Subsequently,
Synolakis, Deb & Skjelbreia (1988) derived an analytical formula illustrating the
cnoidal wave run-up.

For the two-dimensional flat ocean basin model with a uniformly sloping beach,
Ryrie (1983) derived a simplified model, which was decomposed into one equation
for the offshore direction and one for the alongshore direction, for the study of
quasi-normally incident waves over a flat bed and of the induced current in the swash
zone. The equation suggested by Ryrie has been adopted by many researchers to
study the generation of currents due to wave motion. For example, Asano (1994) and
Kobayashi & Karjadi (1994) obtained numerical solutions of Ryrie’s equation and
compared it with experimental data. Brocchini & Peregrine (1996) extended Carrier
& Greenspan’s solution (1958) for the case of obliquely incident waves. Brocchini
(1997) discussed longshore mass flux and drift on a uniform sloping beach.

However, for the understanding of longshore currents along a natural beach, i.e.
a ‘wavy’ beach, the effects of bottom unevenness are considered to be important
especially for the flow in the swash zone. In the present paper, we investigate
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these effects and focus on waves propagating from offshore over an ocean basin of
constant depth to a beach with a wavy bottom. In addition, discussions are restricted
to obliquely incident long waves of small incident angle to the beach normal, where
the two-dimensional NLSWE and the nonlinear Boussinesq equation are used as the
governing equations at the beach and offshore, respectively.

In § 2.1, the two-dimensional NLSWE for a ‘wavy beach’ is reduced by a perturba-
tion method to more simplified equations consisting of a one-dimensional NLSWE
for the direction normal to the beach and an equation for the alongshore direction.
The multiple-scale perturbation method is applied to the two-dimensional NLSWE,
which includes gravitational terms due to the bed slope of the beach normal and
bed fluctuations in the alongshore direction. The solution of the first equation is
represented in terms of Carrier & Greenspan’s transformation. The second equation
is an extension of Ryrie’s equation to a wavy bottom and its solution is found by
extending Brocchini & Peregrine’s solution for a flat beach.

In § 2 and § 3, we tackle the one-dimensional NLSWE. The matching condition
between the solution of the one-dimensional NLSWE and the cnoidal wave solution
is illustrated, and the governing parameters of its run-up motions are introduced in
§ 2.2. In § 3.1, the one-dimensional NLSWE is solved analytically to give the Maclaurin
series solution for a uniformly sloping beach. In § 3.2, Riemann’s representation for
hyperbolic equations is applied to derive an integral equation governing wave motion
at the edge of the slope. Comparisons are made between the Maclaurin series solution
of § 3.1 and the numerical solution of the integral equation.

In § 4.1, we introduce the similarity transformation of the spatial and temporal
variables by which the one-dimensional NLSWE is extended to be applicable to
the two-dimensional flow. Also, the equation for the alongshore direction, which is
composed of Ryrie’s equation and a gravitational term due to bed fluctuations, is
solved by utilizing geometrical considerations. In § 4.2, the Maclaurin series solution
derived in § 3.1 is utilized for evaluation of currents induced by wave run-up and
back-wash processes. It is emphasized in this section that the mass transport, the time-
averaged velocity and the mean bottom friction fields are very different in character
from each other, particularly at the lower part of the swash zone. Throughout this
paper, wave run-up and longshore currents are discussed stressing the differences in
character of these fields between those for cnoidal waves for which the Eulerian mean
velocity is zero and those for solitary waves.

2. Governing equations
In this paper, currents over a sinusoidal bed in the swash zone, as shown in figure

1, are studied. We use the two-dimensional NLSWE for a uniformly sloping beach.
Offshore, for a seabed of constant depth, the nonlinear long-wave equation with
a dispersion term obtained from Boussinesq theory (see Mei 1983) is used as the
governing equation. Hence, the solutions for the beach and for the offshore region
are determined separately and matched with each other.

2.1. Equations for the beach

Ryrie (1983) developed a quasi-normal incident wave theory for a uniformly sloping
beach. In the present work, a multiple-scale perturbation method is applied to the
two-dimensional NLSWE after using the scaling of the variables suggested by her, and
we extend Ryrie’s model to include a variable bed topography. The two-dimensional
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Figure 1. Schematic of the coordinate system and parameters.

NLSWE without friction terms are given as follows:

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0, (2.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂

∂x
(d+ h+ slx+ b(y)), (2.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂

∂y
(d+ h+ slx+ b(y)), (2.1c)

where t is the time, x and y are the horizontal coordinates of the onshore and
the alongshore directions, respectively, and u and v denote the depth-averaged flow
velocity in the x- and y-directions, respectively; g is the gravitational acceleration. In
addition, d and h are the depth of the water in the horizontal ocean basin and at
the sloping beach, respectively. The function b(y) is the fluctuation of the bed level
from z = slx, where sl is the slope of the beach and z is taken vertically upward.
Here, waves are incident from x = −∞, the origin of the x-coordinate is taken at the
shoreline of the still water, and ζ is the free-surface displacement from the still water
level. Hence, ζ offshore and on the sloping beach is given by h− d and h+ slx+ b(y),
respectively, as shown in figure 1.

We consider a bed fluctuation satisfying a scaling b(y) � d, which implies 0 6
h/b(y) 6 ∞ because the depth h varies from d to 0 depending on the distance from
the shoreline. Though there is a discontinuity of the bed level at the bottom edge
of the beach, i.e. the boundary of the beach and the ocean basin, since b(y) 6= 0
at x = −d/sl , the discontinuity can be assumed to influence the wave propagation
only roughly to a magnitude of b(y)/d because a discontinuity of the bed level in a
horizontal ocean basin affects the linear long-wave propagation to the order of the
step height divided by the total depth (see for instance, Mei 1983, p. 120).

We consider waves with a small incident angle to the x-direction and over an
uneven bed having an infinitesimal slope prescribed by

O

(
v

u

)
= O

(
db

dy

)
= ε, (2.2)

where ε is the perturbation parameter representing the order of magnitude of the
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incident angle of the waves. Equation (2.2) implies that the perturbation expansion
of the solution to (2.1) requires that

h = h0 + εh1 + ε2h2 + · · · , b = b0, (2.3a,b)

u = u0 + εu1 + ε2u2 + · · · , v = εv1 + ε2v2 + · · · . (2.3c,d )

The ratio h0/b0 varies from 0 to ∞ depending on the offshore distance from the
shoreline. Therefore, b has not been scaled by ε. The fluctuating bed level b is
assumed to be a function of a slow variable εy, as implied by (2.2). Therefore,
a multiple-scale perturbation is introduced and all the independent variables are
assumed to depend on the variables

t, x, y1 = εy, . . . , (2.4)

so that the secular terms in the perturbation equations can be removed.
Then, the zeroth-order perturbation equations become

∂h0

∂t
+ u0

∂h0

∂x
+ h0

∂u0

∂x
= 0,

∂u0

∂t
+ u0

∂u0

∂x
+ g

∂h0

∂x
+ gsl = 0, (2.5)

which coincide with the one-dimensional NLSWE. But, the variables u0 and h0 are
weakly dependent on the variable y through the boundary condition at the edge of
the sloping beach since the waves are incident quasi-normally to the beach.

The next-order equations are given as follows:

∂h1

∂t
+ u0

∂h1

∂x
+
∂h0

∂x
u1 + h0

∂u1

∂x
+
∂u0

∂x
h1 = 0, (2.6a)

∂u1

∂t
+ u0

∂u1

∂x
+
∂u0

∂x
u1 + g

∂h1

∂x
= 0, (2.6b)

∂v1

∂t
+ u0

∂v1

∂x
= −g

(
∂h0

∂y1

+
∂b0

∂y1

)
. (2.6c)

The right-hand side of (2.6c) is the external force, which can be determined by (2.5).
Following the multiple-scale perturbation technique, the functional forms of h0 and
u0 in (2.5) with respect to the variable y1 have to be determined for v1 in (2.6) to
obtain a physically acceptable solution. This solution is derived in § 4.1 as a weakly
two-dimensional solution. Because the equations for h1 and u1 given by (2.6) have no
external forces, we set h1 and u1 to zero. Then, the next-order equations reduce to

∂h2

∂t
+

∂

∂x
(u0h2 + u2h0) +

∂

∂y1

(h0v1) = 0,

∂u2

∂t
+

∂

∂x
(u0u2 + gh2) + v1

∂u0

∂y1

= 0, (2.7)

which are used in § 4.2 for the evaluation of the mass flux.
In the following, some remarks are given regarding the shoreline boundary condi-

tions. The boundary conditions at the shore x = xS (t, y) are given by

h = 0,
∂xS

∂t
− u+ v

∂xS

∂y
= 0 at x = xS (t, y). (2.8a,b)

The first condition means that the water depth at the shoreline is identical to 0, and
the second one governs the shoreline changes induced by the flow velocity. It is shown
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from the identity

d

dt
h(t, xS , y) + v(t, xS , y)

d

dy
h(t, xS , y) + h(t, xS , y)

(
∂u

∂x
+
∂v

∂y

)
=
∂h

∂x

(
∂xS

∂t
− u+ v

∂xS

∂y

)
+

(
∂h

∂t
+
∂hu

∂x
+
∂hv

∂y

)
, (2.9)

that (2.8b) is deduced from (2.8a) and the mass conservation law indicated in the first
of (2.1). Therefore, these three equations are not independent. Note that the operators
d/dt and d/dy in (2.9) are total derivatives and that xS is considered to be a function
of t and y.

As a result, xS is determined from the condition h(t, xS , y) = 0 alone, provided that
a regular solution (h, u) of (2.1) is obtained. The perturbation system is completely
determined by this condition as seen in § 3. Substitution of the expansion

xS (t, y) = xS0(t, y1) + ε2xS2(t, y1) + O(ε3) (2.10)

and (2.3) into the kinematic boundary condition (2.8) yields the perturbation equations
of the zeroth- and the second-order as follows:

h0 = 0,
∂xS0

∂t
− u0 = 0 at x = xS0, (2.11a,b)

h2 +
∂h0

∂x
xS2 = 0,

∂xS2

∂t
− u2 +

∂u0

∂x
xS2 + v1

∂xS0

∂y1

= 0 at x = xS0. (2.11c,d )

Here the first-order term of xS with respect to ε has been eliminated in (2.10) because
h1 = 0 and u1 = 0. Consequently, only the first condition of each equation in (2.11)
is needed to determine all the unknown variables.

2.2. Equations for the offshore region

Although the dispersion of long waves can be ignored on the sloping beach, it is
important for the offshore region. Hence, the nonlinear Boussinesq equation is used
for our governing equation in this region. According to Mei (1983), Boussinesq theory
leads to the following weakly nonlinear shallow water equation:

∂ζ

∂t
+ ∇ · (hu) = 0,

∂u

∂t
+ u · ∇u+ g∇ζ − d2

3
∇∇ · ∂u

∂t
= 0. (2.12)

Here u is a velocity vector defined by (u, v), ζ is a free-surface displacement described
in figure 1, and ∇ denotes the gradient operator of the spatial variables x and y. Since
we are considering quasi-normally-incident, weakly-nonlinear long waves propagating
to the beach, the waves offshore can be described by a linear superposition of the
incident and the reflected waves, as shown in Miles (1977). Therefore, in this section,
the solution of the one-dimensional waves is derived first and then is extended to the
case of oblique incidence later in § 4. Since derivations of the following equations can
be found in the book written by Mei (1983), only results are shown here. Assuming
that the ratio between wave amplitude and depth offshore is small, the solution of
(2.12) can be expanded as a series

u = εu(1) + ε2u(2) + · · · , ζ = εζ(1) + ε2ζ(2) + · · · , (2.13)
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where ε is the perturbation parameter for the wave amplitude. Under the Boussinesq
scaling, the solution is given as follows:

ζ(1) = ζ
(1)
I + ζ

(1)
R , u(1) =

c0

d

(
ζ

(1)
I − ζ(1)

R

)
, c0 ≡

√
gd, (2.14)

where ζ(1)
I and ζ(1)

R denote the incident and the reflected waves, respectively. These are
governed by the KdV equation

∂ζ
(1)
I

∂t
+ c0

∂ζ
(1)
I

∂x
+

3g

2
√
gd
ζ

(1)
I

∂ζ
(1)
I

∂x
+
d2
√
gd

6

∂3ζ
(1)
I

∂x3
= 0, (2.15a)

∂ζ
(1)
R

∂t
− c0

∂ζ
(1)
R

∂x
− 3g

2
√
gd
ζ

(1)
R

∂ζ
(1)
R

∂x
− d2
√
gd

6

∂3ζ
(1)
R

∂x3
= 0. (2.15b)

The reflected wave ζ
(1)
R can be determined by a matching of the free-surface

displacement at the boundary between the offshore region and the sloping beach. It
is useful for the calculation of the wave motion on the sloping beach to derive a
boundary condition at the end of the slope, which does not involve the reflected wave
component. Elimination of the reflected wave component in (2.14) between the two
equations in (2.14) yields the following relation:

ζ(1) +
d

c0

u(1) = 2ζ(1)
I at x = −rb, (2.16)

where rb = d/sl denotes the distance between the shoreline of the still water and the
end of the sloping beach. The boundary condition for the waves in the sloping beach
is given by considering the continuity of the free-surface level and the flow velocity
at this boundary.

In the present study, Wiegel’s formula for the cnoidal wave solution (Wiegel 1960)

ζ
(1)
I =

H

µ

(
1− µ− E

K

)
+H cn2

[
2K

L
(x− Ct)

]
, (2.17a)

C2 = gd

{
1 +

H

µd

(
−µ+ 2− 3

E

K

)}
, (2.17b)

L = 4Kd

√
µ d

3H
, (2.17c)

is adopted to give the incident wave. Here, H is the wave height, C is the wave
celerity, L is the wavelength, cn is the cosine-elliptic function, and K and E denote
the complete elliptic integrals of the first kind and the second kind, which are defined
by

K =

∫ π/2

0

(1− µ sin2 χ)−1/2 dχ, E =

∫ π/2

0

(1− µ sin2 χ)1/2 dχ, (2.18)

respectively. Finally, µ is a parameter related to the wave profile (see also Mei 1983).
There are three non-dimensional parameters which govern the run-up phenom-

ena. Applying non-dimensionalization to (2.1) using rb,
√
rb/(gsl) and

√
gslrb as the

characteristic length, time, and velocity scales, the transformed equation (2.1) for the
unknowns h/(slrb), u/

√
gslrb, and v/

√
gslrb does not explicitly include any governing

parameters (see, for example, Brocchini & Peregrine 1996). Therefore, the governing
parameters of the wave motion appear only in the boundary condition (2.16), which
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is described by(
ζ(1)

slrb
+

u(1)

√
gslrb

)∣∣∣∣
x/rb=−1

= 2
H

d

{
1

µ

(
1− µ− E

K

)
+ cn2

[
2K
(
−rb
L
− C

L

√
rb

gsl

t√
rb/(gsl)

)]}
. (2.19)

Since the phase of the cnoidal function at t = 0 is only related to the translation of
the time, it is ignored for the stationary motion. This equation reveals that the three
non-dimensional parameters

µ,
H

d
, K

C

L

√
rb

gsl
≡ κ (2.20)

govern the run-up and back-wash motion. The first two parameters are related to
the incident cnoidal wave and the last one represents the wave characteristics at the
slope.

3. Analytical expressions for the solution for the beach
Before studying the two-dimensional wave motions, the one-dimensional problem

governed by (2.5) needs to be solved under the boundary condition (2.16). Extension
of the one-dimensional problem to the two-dimensional one is achieved by the
geometrical considerations introduced in the next section.

Here, two methods to derive solutions of non-breaking waves in (2.5) are introduced.
The first is a series solution, which is applied for large-amplitude swash motions.
The second is an exact integral equation derived by Riemann’s representation of
hyperbolic equations (Courant & Hilbert 1965). The numerical solution of Riemann’s
representation is compared with the series solution to assess the truncation error of
the series.

3.1. Series solution

In our model, the beach has a slope smaller than 1/10 and a length shorter than
the wavelength of the non-breaking long waves incident to the beach. Therefore, it
is appropriate to use the series expansion of Carrier & Greenspan’s transformation,
which is applicable to the case of large-amplitude swash motions.

Carrier & Greenspan’s (1958) solution of (2.5) is given by

u0 =
m

σ

∂φ

∂σ
, h0 =

sl

16m
σ2, x = − σ2

16m
+

1

4

∂φ

∂λ
− u2

0

2m
, t =

λ

2m
− u0

m
, (3.1)

where m = slg and φ satisfies

∂

∂σ

(
σ
∂φ

∂σ

)
− σ∂

2φ

∂λ2
= 0. (3.2)

Here, λ and σ are independent variables. Taking into account that σ = 0 corresponds
to the shoreline and that both the velocity u0 and the depth h0 are represented by
analytic functions at the shoreline, φ can be expanded in a Maclaurin series with
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Figure 2. The Bessel function of zeroth-order J0(σ) and its truncated series.

respect to σ. Substitution of the Maclaurin series into (3.2) gives an iterative relation
for the coefficients given by

φ(`) =
`− 1

`

d2

dλ2
φ(`−2), φ(`) ≡ ∂`

∂σ`
φ
∣∣∣
σ=0

(3.3)

where ` = 2, 4, 6, . . . ,∞. Equation (3.3) can be manipulated to give

φ =

∞∑
n=0

σ2n

n! 22n Γ (n+ 1)

d2nA(λ)

dλ2n
, A(λ) ≡ φ∣∣

σ=0
, (3.4)

where Γ is the Gamma function and A(λ) is a function which is determined from the
matching condition at the end of the slope. In order to examine the convergence of
the series (3.4), the zeroth-order Bessel function J0(σ), which is the amplitude of an
exact solution of (3.2) given by φ = J0(σ) sin λ, and its truncated series with respect
to σ are depicted in figure 2. The figure suggests that the truncated series (3.4) up to
order σ20 is sufficient to approximate oscillations of the long waves on the uniformly
sloping beach. In the present study, we will consider cnoidal waves with wavelength
roughly four times the length of the sloping beach. Therefore, the following truncated
series of φ:

φ ≈ φap =

10∑
n=0

σ2n

n! 22n Γ (n+ 1)

d2nA(λ)

dλ2n
, (3.5)

is used as an approximate solution of (3.2).
Assuming the terms proportional to the square of A(λ) in (3.1) are small at the

matching point x = −rb and substituting (3.5) into (3.1), the approximate values
of ζ0, which is defined by slx + h0, and u0 at x = −rb are obtained explicitly by a
perturbation method as follows:

u0b ≈ m

2

d2A

dλ2
+ m2rb

d4A

dλ4
+

2m3r2
b

3

d6A

dλ6
+

2m4r3
b

9

d8A

dλ8
+

2m5r4
b

45

d10A

dλ10
+

4m6r5
b

675

d12A

dλ12

+
8m7r6

b

14175

d14A

dλ14
+

4m8r7
b

99225

d16A

dλ16
+

2m9r8
b

893025

d18A

dλ18
+

4m10r9
b

40186125

d20A

dλ20
, (3.6a)
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ζ0b ≈ sl
(

1

4

dA

dλ
+ mrb

d3A

dλ3
+ m2r2

b

d5A

dλ5
+

4m3r3
b

9

d7A

dλ7
+
m4r4

b

9

d9A

dλ9
+

4m5r5
b

225

d11A

dλ11

+
4m6r6

b

2025

d13A

dλ13
+

16m7r7
b

99225

d15A

dλ15
+

m8r8
b

99225

d17A

dλ17
+

4m9r9
b

8037225

d19A

dλ19

)
, (3.6b)

where the subscript b of u0 and ζ0 denotes the value at x = −rb. Here, all of
the first-order terms of A(λ) at the edge of the slope has been considered in (3.6),
i.e. σ ≈ 4

√
mrb + O(A(λ)) at x = −rb. It is applicable to finite-amplitude swash

motions, where the amplitude is comparable to the beach length. Although the above
approximation leads to the elimination of the term u0/m at the matching point, it
does not mean that the term u0/m has been ignored at the beach. The convergence of
the truncated series (3.6) can be checked roughly by taking the ratio of the successive
terms in (3.6), which yields

O

(
4m10r9

b

40186125

d20A

dλ20

/
2m9r8

b

893025

d18A

dλ18

)
=

2mrb
45

(
ω

2m

)2

� 1, (3.7)

where we have assumed λ ≈ 2mt, and ω is the wave frequency defined by 2πC/L.
Hence, the truncated series (3.5) is accurate if inequality (3.7) is satisfied. Note that
the ratio in (3.7) is proportional to κ2, which appears in (2.20).

If (3.6) is used as an approximate solution of u0b and ζ0b, the matching condition
(2.16) leads to the equation of A(λ)

ζ0b +
d

c0

u0b = 2ζ(1)
I |x=−rb . (3.8)

To calculate the wave run-up distance, σ is put to 0 in (3.1), giving

xS0 =
1

4

dA

dλ
− 1

2m

(
m

2

)2(
d2A

dλ2

)2

, tS0 =
λ

2m
− 1

2

d2A

dλ2
, (3.9)

where xS0 and tS0 denote shore position and time along the shoreline to the zeroth
order with respect to ε, respectively. The linear approximation (3.8) at the matching
point, as implied by (2.19), implies the following formulas for the maximum and
minimum shoreline positions:

xS0max = 1
4

maxλ

[
dA

dλ

]
=
H

4sl
fmax(κ, µ),

xS0min = 1
4

minλ

[
dA

dλ

]
=
H

4sl
fmin(κ, µ),

 (3.10)

where the subscripts max and min indicate the maximum and the minimum of the
corresponding function, and both fmax and fmin are functions of κ and µ which will
be shown later in figure 5. The above equality suggests that the run-up height is
represented by only two non-dimensional parameters. This result is consistent with
Synolakis’s formula for the solitary wave run-up height (Synolakis 1987). Equa-
tion (3.10) is satisfied for waves whose nonlinearity is negligible at the end of the
slope.

In order to check the accuracy of the solution to (3.8), a solitary wave run-up
is calculated as an example. Applying the Fourier transformation to the differential
equation (3.8) and using the solitary wave solution of (2.15), the unknown function
A(λ) is provided by a Fourier integral. Figure 3 shows the run-up distance, which is
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Figure 3. Solitary wave run-up distance xS0 as a function of time. Here, d = 50 m and H/d = 0.01.

calculated by (3.9) for H/d = 0.01. Here, the depth is fixed to d = 50 m, g = 9.8 m s−2,
and the bed slope is sl = 1

10
, 1

15
, 1

20
, and 1

25
, successively. The exact expression (3.1) has

been applied to evaluate the run-up distance in figure 3, as discussed by Synolakis
(1987). This expression includes nonlinear terms which cause the troughs to be steeper
than the crests of the oscillations in figure 3. But, both the frequency and amplitude
of the tails are larger than the numerical results depicted in figure 10 shown in the
next section. This discrepancy comes from the truncation error of the series (3.4)
since higher-order terms of the series (3.4) are necessary to describe these short-wave
components.

To examine the swash motion of periodic long waves, we modelled the incident
waves on the beach as cnoidal wave with a zero Eulerian mean velocity. Putting the
modulus µ at 0.99 and H/d to 0.01 in (2.17), the wave period Tp is then equal to
191.6 s and the wavelength 4246 m according to cnoidal wave theory (Wiegel 1960).
Figure 4 shows the run-up height as a function of time for various bed slopes. Here,
d = 50 m and the bed slope is sl = 1

10
, 1

15
, 1

20
, and 1

25
, successively. Though the run-up

height in general becomes a decreasing function of the bed slope, it seems to be
more complicated than expected as indicated by Synolakis et al. (1988) because it
appears as a consequence of the interaction between the incident and the resulting
reflected waves. Figure 5 depicts the values of both fmax(κ, µ) and fmin(κ, µ) defined
by (3.10) as a function of κ for µ = 0.9 and 0.99, where the run-up formula derived
by Synolakis et al. (1988) is applied for the calculation. Lozenges and crosses in the
figure show the data obtained from figure 4 and the numerical simulation of the next
section, respectively. Although Synolakis et al. used the exact solution of (3.2), σ at
x = −rb was approximated by 4

√
mrb. Hence, Synolakis’s (1987) theory leads to an

error in predicting swash motions, where the amplitude is not negligible compared to
the beach length.

The dependence of the non-dimensional run-up height on µ for a fixed value of κ
is not strong since the parameter κ dominates the oscillations of the flow in the beach
as indicated in (2.19).

In the present study, we keep the parameters d, H , and g as dimensional quantities
in order to relate them more easily to the real situation, though non-dimensional
similarity parameters exist for this phenomena as mentioned in § 2.2. The solutions
obtained in this section are applied to evaluations of the currents in § 4.
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Figure 4. Run-up height of cnoidal wave as a function of time. Here, d = 50 m,
H/d = 0.01, and Tp = 191.6 s.
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Figure 5. fmax and fmin as a function of κ for µ = 0.9 and µ = 0.99, respectively. Here, lozenges
and crosses denote the values obtained from figure 4 and figure 12, respectively.

In the next section, the accuracy of the present series solution is investigated with
a numerical simulation.

3.2. An exact integral formula in terms of Riemann’s representation

After substitution of (3.6) into (3.8), the resulting partial differential equation has a
high enough accuracy for our purposes provided any nonlinearity of the waves at
x = −rb, i.e. the border of the beach with the ocean basin, is negligible. In this section,
an exact equation, which satisfies the nonlinear matching condition at x = −rb, is
derived and calculated numerically to check the accuracy of the approximation done
in the previous section. Riemann’s representation of hyperbolic equations reduces the
domain problem to the boundary value problem, which is composed of one integral
equation and two nonlinear algebraic equations.

Consider the transformation of the variables from σ and λ to the characteristic
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coordinates α and β,

α =
λ+ σ

2
, β =

−λ+ σ

2
, φ =

Y√
α+ β

, (3.11)

where α = const. and β = const. depict the incoming and the outgoing characteristics
from the shoreline, respectively. Then, we have the Euler–Poisson equation for the
variable Y (Shen & Meyer 1962)

∂2Y

∂α∂β
+

1

4(α+ β)2
Y = 0. (3.12)

Riemann’s solution Rn of (3.12) is

Rn(α, β; α0, β0) =

√
(α0 + β0)(α+ β)

(α0 + β)(α+ β0)
2F1

[
1
2
, 1

2
, 1,

(α− α0)(β − β0)

(α+ β0)(β + α0)

]
, (3.13)

which has been determined so as to satisfy two initial conditions given by
Rn(α0, β; α0, β0) = 1 and Rn(α, β0; α0, β0) = 1 (Rozdestvenskii & Janenko 1983). Here,

2F1 denotes the hypergeometric function.
The boundary integral method gives the relation between the values of Y at the

edge of the beach and the shoreline. Application of Green’s theorem to (3.12) in the
region BPSRSI depicted in figure 6 yields the following integral relation:

2Y (BP ) = Y (SR) + Y (SI )

−
∫
SRSI

[(
∂Y

∂αS
Rn − Y ∂Rn

∂αS

)
dβS
dν

+

(
∂Y

∂βS
Rn − Y ∂Rn

∂βS

)
dαS
dν

]
ds. (3.14)

Here, s is the distance along the curve SRSI , ν denotes its outward normal vector, and
(αS , βS ) is the point on the curve SRSI parametrized by s, so that

ds2 = dα2
S + dβ2

S ,
dαS
dν

=
dβS
ds

,
dβS
dν

= −dαS
ds

. (3.15)

Moreover, due to the relation αS + βS = 0, which is identified with the boundary
condition h0 = 0 on the shoreline, (3.15) leads to

αS (s) =
s√
2
, βS (s) = − s√

2
, (3.16)

and both Y (SR) and Y (SI ) are equal to 0 provided that φ is finite at the shoreline, that
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is, for non-breaking waves. Therefore, (3.14) is regarded as the determining equation
of φ(BP ), which reduces to

φ(BP ) =
1√
2 π

∫ sI

sR

φ(αS , βS )√
(αb + βS )(αS + βb)

ds, (3.17)

where the limit αS + βS → 0 is applied to (3.14). Here, the asymptotic expansion of
the hypergeometric function 2F1 around a logarithmic singular point

2F1[
1
2
, 1

2
, 1, z] = −1

π
log |1− z|+ O(1) (3.18)

has been used for the derivation of (3.17).
Also, sR and sI are related to the position BP (αb, βb) by

βS (sR) = βb, αS (sI ) = αb, (3.19)

as shown in figure 6. A change of the variable s to τ, defined by τ = s/
√

2, changes
(3.17) to the more general formula

φ(αb, βb) =
1

π

∫ αb

−βb

φS (τ)√
(βb + τ)(αb − τ) dτ, φS (τ) ≡ φ(τ,−τ), (3.20)

where φS denotes the value of φ at the shoreline. For numerical computations, it
would be convenient to transform (3.20) into

φ(αb, βb) =
1

π

∫ 1

−1

φS (τ(δ; t))√
1− δ2

dδ, (3.21)

where transformation of the variable τ to δ is defined as follows:

τ(δ; t) =
αb + βb

2
δ +

αb − βb
2

. (3.22)

Carrier & Greenspan’s transformation at the boundary x = −rb gives equations
for the two unknowns φS (τ) and βb(t) as follows:

−rb =
1

8

(
∂φb

∂αb
− ∂φb

∂βb

)
− (αb + βb)

2

16m
− u2

0

2m
, (3.23a)

t =
αb − βb

2m
− u0

m
, (3.23b)

where

u0 =
m

2(αb + βb)

(
∂φb

∂αb
+
∂φb

∂βb

)
, φb ≡ φ(αb, βb), (3.23c)

where the partial derivatives of φb are given by

∂φb

∂αb
=

1

2π

∫ 1

−1

√
1 + δ

1− δφ
′
S (τ(δ; t)) dδ,

∂φb

∂βb
=
−1

2π

∫ 1

−1

√
1− δ
1 + δ

φ′S (τ(δ; t)) dδ.

 (3.24)

Here, we have used a partial integration so that the kernels of these integrals have
a weak singularity. Note that αb is given as a function of t for the subcritical flow
because it is conserved on the incoming characteristics (Carrier & Greenspan 1958).
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Figure 7. Graph of τ = τ(δ; t) and mesh of integration in (3.24).

In this case, βb(t) and φ′S (τ(δ; t)) are the unknowns and can be determined by their
past data through (3.23) and (3.24).

Consider an incident wave propagating from offshore to the still water on the
beach. There is a difficulty in solving (3.24) numerically because the variable τ
of φ′S depends on both δ and t. It is resolved, however, if the following variable
mesh is introduced for the numerical integration. Assuming that φ′S (τ(1; ti)), where
i = 0, . . . , n− 1, are given, then the numerical integration in (3.24) is performed under
mesh points δ = δi, i = 0, . . . , n− 1, which are specified by

τ(δi; tn) = τ(1; ti), (3.25)

as shown in figure 7.
In order to calculate φ′S (τ(1; tn)) and βb(tn), the successive over-relaxation (SOR)

method (see for instance, Lapidus & Pinder 1982) is applied since (3.23) is highly
nonlinear with respect to βb. At the first iteration, u0 of (3.23) is given an initial value,
then βb is calculated by (3.23b). Also, discretizing (3.24) using the quadrature rule
(Baker 1978), which is applied in numerical integrations to achive high accuracy and
to avoid the appearance of any singularities during the discretization processes, φb is
determined from (3.23a). Note that φ′S (τ(δ; 0)) = 0 because no wave arrives on the
shoreline at t = 0. Lastly, convergence is checked through the relation between u0

and φb shown in (3.23c).
To represent the shoreline motion in terms of φS , equation (3.9) is utilized in the

following analysis. Since φS and A are related by

φS (α) = A(2α) (3.26)

because α = λ/2 on the shoreline, equation (3.9) can be written by using the variables
φS and αb as follows:

xS0 = 1
8
φ′S (αb(t))− m

128
φ′′S (αb(t))

2, tS0 =
αb(t)

m
− 1

8
φ′′S (αb(t)), (3.27)

where the time variable t introduced in the present section and tS0 in § 3.1 are different
because the former is based on the line x = −rb while the latter is the time on the
shoreline as seen in figure 6. In the following, numerical results for the wave run-up
and the back-wash are shown as an instructive example of the effectiveness of the
present numerical method. The results are compared with the series solution in § 3.1.

Since the value α is conserved on the incoming characteristics, it is calculated from
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the incident wave, so that we have

αb(t) = u0Ib + 2
√
gh0Ib + mt

≈ 2c0

d
ζ

(1)
I + 2

√
gd+ mt, (3.28)

where the subscript I of u0Ib and h0Ib indicates the values for the incident wave,
and where the same parameters adopted in § 3.1 are applied. In order to check the
accuracy of the present numerical method, Carrier & Greenspan’s solution for the
limiting wave

φ =
8g

ω
J0

(
ωσ

2m

)
sin

(
ωλ

2m

)
, (3.29)

is compared to the numerical result, as shown in figure 8, where ω = 2π/Tp, Tp =
191.6 s, and sl = 1

20
. The boundary condition of the numerical simulation is given

at x = −10000 m, so that the second approximation in (3.28) has a high enough
accuracy. On the other hand, the initial condition is given by βb = 0 and φS = 0. The
result in figure 8 shows that the present method works reasonably well even for the
critical case because the numerical result converges to the exact solution.
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Figure 10. Run-up distance xS0 as a function of time tS0 due to solitary wave propagation.
Here, d = 50 m, H/d = 0.01, and sl = 1
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Figures 9 and 10 show the water depth at the boundary x = −rb and the run-up
height of the solitary wave, respectively. The analytical solution in § 3.1 can describe
the wave profile in general, except the tails, as seen in figure 3. The lowest trough in
figure 10 shows the multiple-valued transformation between (t, x) and (λ, σ) of Carrier
& Greenspan’s transformation as indicated by Stoker (1948). The sharp corner there
corresponds to wave breaking during back-wash. Note that the integral equation
(3.17) is applicable only to non-breaking waves.

Figures 11 and 12 show the water depth at the boundary x = −rb and the run-
up height of the cnoidal wave, respectively. The curve in figure 11 for sl = 1

10
is multi-valued around t = 100 s, i.e. the curve wraps back on itself. Because the
multi-valuedness of the curve indicates that the solution obtained from Carrier &
Greenspan’s transformation does not describe physically-acceptable solutions, we
need to check whether the multiplicity appears also in the beach region between the
shoreline and the lower boundary of the beach. If it does not then we may apply
Carrier & Greenspan’s solution for the wave motion.

Comparison between figure 12 and figure 4 shows that the wave profile for sl = 1
10

is
quite similar for these figures. On the other hand, there is a discrepancy between those
for sl = 1

15
, 1

20
, 1

25
. The reason is that the convergence of the series (3.4) becomes worse
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Figure 12. Run-up height as a function of time tS0 due to cnoidal wave propagation.
Here, d = 50 m, H/d = 0.01, and sl = 1
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as the distance from the shoreline to the edge of the slope, i.e. rb, becomes longer.
Nevertheless, the run-up height seems to be described in general by the analytical
solution in § 3.1 as shown in figure 5, where the data obtained from the exact integral
formula and the series solution collapse onto each other as κ becomes smaller, i.e. at
sl = 1

10
and 1

15
.

4. Obliquely incident waves over an uneven bed surface
Waves incident obliquely on the beach induce a current because of the zigzag

motion of the fluid particles in the swash zone (Asano 1994; Brocchini 1997). In
this section, it is shown that bed unevenness strongly affects the current because
of the thin sheet of liquid in the swash zone. We consider a bed which has a
sinusoidal fluctuation with amplitude 0.5 m and wavelength 1000 m as an example.
Here, d = 50 m and H/d = 0.01, as in the previous section.

The series solution in § 3.1 is applied in § 4.2 for evaluation of the current because
it can be treated analytically so that it is possible to proceed with the computations
accurately without the need for a large computer memory. First, in § 4.1, the solution
of the one-dimensional NLSWE in § 3 is extended to the solution of the two-
dimensional NLSWE by means of a geometrical considerations discussed below.
Second, the solution v1 which satisfies both the momentum equation (2.6) and the
boundary condition at the edge of the sloping beach for the obliquely incident waves is
derived. Then in § 4.2, the mass flux and the time-averaged velocity of the cnoidal and
the solitary waves are calculated from the formula derived in § 4.1. In the following,
the subscripts 0 and 1 of b0 and y1 are dropped for simplicity of the manipulations.

4.1. Longshore velocity

Since we are considering the quasi-normally incident waves, the governing equation
of the zeroth order, that is (2.5), does not involve the y-derivative terms explicitly,
but the variable y enters the equation through the boundary condition at the edge
of the sloping beach. Since the formula (2.14) is also satisfied for the quasi-normally
incident waves with weak nonlinearity (Miles 1977), the extension of the matching
condition for the one-dimensional waves to the two-dimensional waves is achieved by
replacing the phase function of the incident wave in (3.8) as follows:

ζ0b +
d

c0

u0b = 2ψ
∣∣
x=−rb , ζ

(1)
I ≡ ψ(−ωt+ kxx+ kyy). (4.1)
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Here (kx, ky) and ω are the wavenumber vector and the frequency, respectively, and
ψ is a function representing the two-dimensional incident wave. In the following, the
parametric form of u0 and h0 with respect to the variable y is determined through
geometrical considerations.

In order to obtain the solution which satisfies the boundary condition (4.1), Carrier
& Greenspan’s transformation of the variables x and t is applied for the derivation.
At first, based on the transformation given by (3.1), the bed level change due to the
fluctuation from z = slx to z = slx+ b(y) necessitates the replacement

x→ X ≡ x+
b(y)

sl
(4.2)

in (3.1), so that the shoreline is represented by σ = 0. Next, in order that the wave
crest at the end of the sloping beach is straight after the replacement (4.2), the variable
t also needs to be replaced as follows:

t→ T ≡ t+
1

ω

(
kx
b(y)

sl
− kyy

)
. (4.3)

As a result, we have an extended Carrier & Greenspan’s transformation which
is applicable to waves of oblique incidence over a wavy bed. The weakly two-
dimensional solution given by u0 = u0(T ,X) and h0 = h0(T ,X) obviously satisfies
(2.5) because (4.2) and (4.3) are a linear transformation of the variables t and x. Also,
it is shown that the above weakly two-dimensional solution is consistent with the
boundary condition (4.1) since (4.1) is represented by X and T only.

Alongshore velocity v1 is determined from (2.6c). Substitution of the expression
h0 = h0(T ,X) into this equation and the change of the variables (x, t) to (X, T ) lead to

∂v1

∂T
+ u0

∂v1

∂X
= −b

′(y)

sl

(
g
∂h0

∂X
+ gsl

)
− g

slω
(kxb

′(y)− kysl)∂h0

∂T
, (4.4)

where the prime on b(y) denotes its y-derivative. The first term of the right-hand side
of (4.4) represents the external force due to the gravitational force produced by the
bed slope, while the second term is related to the incident angle of the wave. The
solution v1 balancing these external forces is found as follows:

v1(t, x, y) =
b′(y)

sl
u0(T ,X) +

(
sin θ − b′(y)

sl
cos θ

)
vp(T ,X), (4.5)

where vp is the particular solution of (4.4), which is in balance with the external force
∂h0/∂T and has been found by Brocchini & Peregrine (1996). Here the wavenumber
vector is written in terms of the magnitude k and the argument θ as

(kx, ky) = k(cos θ, sin θ). (4.6)

Also, the parametric representation of u0, h0, and vp in (4.5) is given by

u0 =
m

σ

∂φ

∂σ
, h0 =

sl

16m
σ2, vp =

gksl

4ω

∂φ

∂λ
,

x = − σ2

16m
+

1

4

∂φ

∂λ
− u2

0

2m
− b(y)

sl
,

t =
λ

2m
− u0

m
− 1

C

(
b(y)

sl
cos θ − y sin θ

)
. (4.7)

The introduction of the multiple scale in (2.4) is necessary to eliminate a secular
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term of the perturbation equations because the expansion of (4.1) with respect to ky
produces a secularity which is proportional to the variable y.

Although the general solution of (4.4) can be determined from the initial condition
of v1, it has been ignored in (4.5). The shore current specified by the particular
solution (4.5) is examined in the following section.

4.2. Mass flux and time-averaged velocity over the beach

In this section, the mass flux and the time-averaged flow velocity induced by a cnoidal
wave, i.e. a periodic wave, is discussed first, and then the differences between the flow
of cnoidal and solitary waves are studied. The series solution derived in § 3.1 is used
for evaluation of these vector fields. The effect of the bed topography on the shore
current is calculated applying (4.5).

A mass flux of unit width of the cnoidal wave is defined by

qx =
1

Tp

∫ Tp

0

uh dt, qy =
1

Tp

∫ Tp

0

vh dt, for periodic waves

uh ≈ u0h0 + u2h0 + u0h2, vh ≈ v1h0,

φ ≈ φap, (4.8)

where Tp denotes the wave period. Since qy is known by (4.5), qx can be calculated
by the mass conservation law (2.7), which yields

qx = −
∫ x

xSmax

∂qy

∂y
dx. (4.9)

Here, xSmax denotes the maximum run-up distance from the shoreline, where it is
clear that qx = 0. Substitution of v1 of (4.5) into the expression for qy gives

qy =

(
sin θ − b′(y)

sl
cos θ

)
qy0, qy0 ≡ 1

Tp

∫ Tp

0

gksl

4ω

∂φ

∂λ
h0 dt, (4.10)

because of the zeroth-order mass conservation law u0h0 = 0, where the over bar
denotes the time average. Equations (4.9) and (4.10) indicate that the mass flux due
to the second-order effect of the flow with respect to the bed fluctuation can be
evaluated without first obtaining h2 and u2.

In this section, the time integration at a fixed spatial position is achieved numerically
as follows. First, σ is determined as a function of λ for fixed values of X through
the transformation of x in (4.7), which leads to σ = σ(λ;X). Second, this relation is
substituted into the transformation of t in (4.7). Then, all the variables in (4.7) are
represented as a function of t through the intermediate variable λ.

The parameters are fixed to d = 50 m, H/d = 0.01, and Tp = 191.6 s, i.e. µ = 0.99.
To investigate the basic property of the wave-induced motion, we will start with a
discussion of the flow over a uniformly sloping beach, i.e. b(y) = 0. Figures 13(a)
and 13(b) show the mass flux qy0 and the mean velocity vp due to the cnoidal wave,
respectively. The crests of these curves show that the mass flux attains its maximum
at the lowest part of the swash zone, while the mean velocity takes its maximum at
the shoreline of still water.

Next, in order to see the difference between u0 and vp, both curves are plotted
simultaneously in figure 14(a); u0 is negligible compared to vp as implied by the fact
that the flow velocity normal to the shoreline is almost time periodic, while the fluid
particles are drifting alongshore in a zigzag motion. The overall picture of the mass
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(b) Mean velocity vp outside the swash zone.

flux and the mean velocity in figures 13 and 14 is quite similar to the work done
by Brocchini & Peregrine (1996). Kobayashi & Karjadi (1994) measured longshore
currents and calculated nonlinear shallow water equations having bottom friction
terms. Their experiment shows that the peak of the longshore currents occurs near
the shoreline of the still water, while their numerical simulation shows that the peak
position is shifted off-shoreward. This discrepancy implies that the bottom friction in
the swash zone is overestimated in their study.

Because a time-average of nearly sinusoidal oscillations is estimated by the mean
value between the maximum and the minimum of the displacement, the order of vp
in the present study is also estimated as follows:

O(vp) = 1
2
(max

λ
[vp|σ=0] + min

λ
[vp|σ=0])

=
gk

2ω
(sl xS0max + sl xS0min)

=
gH

8C
{fmax(κ, µ) + fmin(κ, µ)}, (4.11)

where (3.10) and the expression for vp in (4.7) have been used in the manipulation.
Plugging in the values for fmax and fmin from figure 5 to (4.11), it can be verified that
the order of vp is well-estimated by (4.11).



338 H. Kyotoh, S. Fujii and D. V. To

Onshore distance, x (m)

A
lo

ng
sh

or
e

di
st

an
ce

 y
 (

m
) 1000

10–10
0

–10

Onshore distance, x (m)
2010

(b)

0 0

t = 0

t = Tp/8

t = 7 Tp/8500

(a)

t = 7 Tp/8

t = Tp/8

t = 0

θ = π/8

Figure 15. Shoreline profile xS0 as a function of y at t = 0, Tp/8, . . ., and 7Tp/8. Here, θ = π/8.

(a) sl = 1
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. The length of the dashes for each curve indicates the time elapsed from
t = 0. For example, the full solid line depicts the run-up distance at t = 0 the dots to Tp18, and the
longest dashes correspond to the curve at t = 7Tp/8.

In figure 14(b), the distribution of vp outside the swash zone is depicted for a
discussion of the qualitative difference between the mass flux and the time-averaged
velocity. The mass flux qy0 is positive in the swash zone as seen in figure 13(b), whereas
the time-averaged velocity vp becomes negative outside the swash zone. In addition,
the maximum of qy0 and the minimum of vp seem to be reached at the lower boundary
of the swash zone. Though these values are quite small for the small-amplitude wave
with H/d = 0.01, their magnitude will become prominent for large-amplitude waves.

Now, consider the fluctuating bed level given by

b(y) = bam cos

(
2πy

Lb

)
. (4.12)

Here bam and Lb denote the bed amplitude and the wavelength along the y-direction.
In the following, Lb = 1000 m and bam = 0.5 m. A parametric representation of the
moving shoreline at the zeroth order of ε is given by (t|σ=0, x|σ=0) in (4.7). Figure 15
depicts the shoreline generated by obliquely incident waves with θ = π/8 as a function
of y, at t = 0, Tp/8, . . ., and 7Tp/8, successively. The peak of the shoreline profile during
the run-up is located on the lower side of the bed trough, i.e. y 6 Lb/2 = 500 m,
and it moves to the upper side, i.e. above y = 500 m, during the back-wash because
of the gravity force due to the bed slope. On the other hand, the run-up height,
which is seen from figure 15 as the envelope of the upper shorelines, is the same as,
that for the wave over the uniformly sloping beach except for geometrical translation
corresponding to the translation of the bed level. The effect of v1 on the shoreline
profile will appear in the second order term of the ε-perturbation as discussed in § 2.1.

The mass flux (qx, qy) and the time-averaged velocity (u0, v1) generated by the waves
over the fluctuating bed are shown in figures 16, 17, and 18. Here the bed slope sl
is fixed to 1

25
. The ridge and the trough of the beach correspond to y = 0 m and

y = 500 m, respectively. The arrows and the dotted line at x = −29.6 m in these
figures show the direction of the vector and the mean shoreline at the lowest side
of the swash zone, respectively. The magnitude of the vectors can be estimated from
(4.5), (4.10), and figure 13. These figures imply that the bed unevenness, where the
fluctuation of the bed slope alongshore has the order bam/Lb = 1/2000, causes a
meandering of these vector fields. Figure 16 shows the vector fields generated by the
normally incident waves. The strong mass flux outside the swash zone is induced by
the existence of the swash zone as shown in figure 16(a). The inhomogeneity of the
alongshore mass flux generates offshore currents because of the continuity condition
(4.9) for the fluid mass. Because the water depth near the shoreline is small compared



Currents induced by long waves propagating towards a beach 339

Onshore distance (m)

A
lo

ng
sh

or
e 

di
st

an
ce

 (
m

)

1000

–200 –200

Onshore distance (m)
42.4

(b)

–29.6

(a)

1000

500 500

0 0

–100 –29.6 42.4 –100
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to the bed level fluctuation, v1 is strongly influenced by the bed unevenness as seen
in figure 16(b).

In figure 17, the incident wave angle is fixed to θ = π/8 to see the effect of the
incident wave angle on the flow. While the obliquely incident wave generates a large
time-averaged velocity in the alongshore direction in the swash zone, the velocity
outside is not large.
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Figure 18 shows the critical mass flux due to the obliquely incident waves, where
the net longshore mass flux disappears because of the component of gravity in the
alongshore direction. This critical condition is derived from (4.10), which leads to

qy
∣∣
θ=θcr

= 0, where tan θcr =
maxy b

′(y)

sl
. (4.13)

Note that the alongshore velocity v1 is not equal to 0 at the boundary where qy = 0,
as implied by the expression (4.5) for v1.

Though we ignored the bottom friction for evaluation of the flow velocity, a
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qualitative discussion of the bottom friction is possible through

|uap|uap, uap ≡ (u0, v1). (4.14)

Figure 19 shows the distribution of the vector |uap|uap in the swash zone due to the
cnoidal wave for sl = 1

25
, θ = 0, and bam = 0.5 m. All of the vectors are pointing

offshore, similar to the time-averaged velocity vector uap shown in figure 16(b). The
sign of the y-component in the two figures seems to be identical, which can be
explained if the approximation

uap ≈ (ũ0, v1), ũ0 ≡ u0 − u0, (4.15)

is applied to (4.14), as pointed out by Mei (1983), as follows:

|uap|uap ≈
√
ũ2

0 + v2
1 (ũ0, v1) ≈ |v1|(ũ0, v1) = |v1|(0, v1). (4.16)

Figure 19(b) implies that the peak of the bottom friction appears near the foreshore
at x = −29.6 m in the swash zone.

Finally, figure 20 depicts the time-integrated mass flux and velocity of the solitary
wave, which are defined by

Tpqx =

∫ Tp

0

uh dt, Tpqy =

∫ Tp

0

vh dt,

Tpu0 =

∫ Tp

0

u0 dt, Tpv1 =

∫ Tp

0

v1 dt, (4.17)

respectively, where Tp is multiplied by the mass flux and the time-averaged velocity
because the time average of these values approaches 0 as Tp →∞. Here the slope and
the wave amplitude are fixed to sl = 1

25
and H/d = 0.01, respectively. For a period

of Tp = 191.6 s for the cnoidal wave, the time-integrated mass flux and velocity of
the solitary wave are roughly two times larger than that of the cnoidal wave. The
fluctuations in these curves come from the tails of the solitary wave. As noted in § 3.2,
these fluctuations have not been accurately described by the truncated series solution
obtained in § 3.1 since the series could not reproduce the tails of the solitary wave.
Figure 21 shows the time-integrated mass flux and velocity fields of the solitary wave
for oblique incidence with the angle θ = π/8. The solitary wave transports mass in a
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uniform direction over the whole region of the beach, and all the velocity vectors are
directed alongshore, because the flow is not oscillatory.

5. Concluding remarks
Run-up and back-wash of the cnoidal and the solitary waves are calculated for a

finite, ‘wavy-bottom’ beach with an ocean basin of constant depth. It is applied to
large swash motions, where the swash amplitude is comparable to the beach length.
An exact integro-differential equation derived by Riemann’s method is introduced
and solved numerically. Since it is satisfied at the boundary between the beach and
the ocean basin, the calculation is performed along this boundary, and Riemann’s
representation provides an efficient method for calculating non-breaking long-wave
motions for various kinds of incident waves. The comparison between the series
solution and the solution of the integral equation reveals that the swash motion
due to non-breaking waves is well predicted by the series solution, provided that the
nonlinearity of the waves at the matching point, i.e. at the lower boundary of the
beach, is negligible.

A ‘weakly two-dimensional solution’ describes the flow induced by obliquely in-
cident waves over the spatially fluctuating bed topography. The shoreline motion,
the mass flux and the time-averaged velocity influenced by the bed unevenness are
evaluated systematically. The time-averaged flow velocity in the swash zone is dom-
inated by the bed level change since the water depth there is comparable to the
bed amplitude. A strong offshore mass flux outside the swash zone is generated by
the inhomogeneity of the alongshore current caused by the gravity force due to the
wavy bed. The solitary wave runs up the beach and induces an alongshore current
more strongly than the cnoidal wave because the solitary wave has a non-zero mass
transport velocity.

Bottom friction is qualitatively discussed using the flow velocity calculated from
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the inviscid two-dimensional NLSWE. The peak of the bottom friction appears near
the foreshore in the swash zone.

Though we have only studied currents over a sinusoidal bed surface, various bottom
topographies could be investigated if b(y) is expanded in a Fourier series.

This work was partly completed during the first author’s stay at the Asian In-
stitute of Technology, Bangkok, Thailand, from 1995 to 1997. Discussions with Dr
Sutat Weesakul are much appreciated. The authors are also grateful to Dr Anil C.
Wijeyewickrema, Mr Pranab Jyoti Baruah, and Mr Tom Copeland for checking the
manuscript.
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