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We consider the inverse scattering problem for the Sdihger operator with op-
tical potential introduced in nuclear physics to study the scattering of nucleons by
nuclei. We show that the corresponding spin—orbit interaction and the complex
matrix potential can be uniquely reconstructed from the scattering amplitude at
fixed energy. ©2004 American Institute of Physic§DOI: 10.1063/1.1753665

I. INTRODUCTION

The optical model is an operator phenomenologically or empirically introduced in nuclear
physics to study the scattering of nucleons by nuclei. The model corresponds to thdiSmpéro
operator with a complex potential and it was first effectively used by Feshbach, Porter, and
Weisskopf to reproduce with great success the experimental results on the scattering of neutrons.
Since then this optical model has been improved and accepted as a fundamental tool in nuclear
physics. Usually the spin—orbit interaction is included and the following form of the Hamiltonian
is adopted:

H=—A+V,

V=W(X)+a(x)o:-(xXp)+Ux), p=-—iVy,
(1.2

W(X)=C1F(r;R1,a1)+i

d
CzF(r;Rz,az)_03d_rF(r;R2,a2)],

1d
a(X):C4F EF(riRa,as),

whereF(r;R,a) is the so-called Woods—Saxon potential having the following form:

F(r—R
1+exg —
o

andU.(x) is the Coulomb interaction. Hemx:Ef:laixi ando=(0,0,,03) is the vector of
Pauli spin matrices, that is, they are th& 2 Hermitian matrices satisfying the following com-
mutation relations:

-1
F(r;R,a)=
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0'10'2:i0'3, 0'20'3:i0'1, 0'30'1:i0'2. (12)

A standard representation of the Pauli matrices is

0 1 0 —i 1 0
Ul:(l 0), o= . ), 0'3=( ) 1.3

i 0 0 -1

The original problem of scattering nucleons should be dealt with byNHeody Schrdinger
operator, in which many scattering channels appear. Usually the elastic process is dominant, and in
order to ignore the inelastic processes, physicists introduced the complex two-body potential so
that these inelastic scattering processes are regarded to be absorbed into the background. This is
the origin of the terminologyoptical in analogy to the scattering and absorption of light by
materials. By suitably adjusting constacfdwhich are usually energy-dependeabdR; , «; , the
cross section calculated by this model is known to reproduce very well the experimenta@edata
e.g., Feshbaéror Roy and Nigarf).

Let us consider the operat6t.1) in (L%(R®%))2, where

V=a(x)o- (xXp)+W(x), (1.4

anda(x), W(x) satisfy the following assumptions:
(A.1) a(x) is a complex-valued Gfunction onR? such that for some,>0,

|0¢ a(x)|<C,e %X Va.

(A.2) W(X) is a 2% 2-matrix valued function ofR® with complex entries such that for some
80>0,

|W(x)|<Ce %M,

In Sec. Il, we shall show that under these assumptions, there is a discrélgiset neigh-
borhood of(0,%) such that forE e (0,2)\&,, there exists a solutiog(x,E,w), we S?, of the
Schralinger equation

(—A+V)Y(X,E,0)=Ey(X,E,w)

having the following asymptotic expansion:

iVEr
Y(X,E,0)~ et

: f(E;0,0), 6O6=xIr, r=|x|—x.

The 2x2-matrix valued functionf(E; 6,w) of §,we S? is the scattering amplitude. The main
theorem of this paper is the following one.

Theorem 1.1:For each fixed energy E(0,2)\&,, one can uniquely reconstruct the pertur-
bations gx),W(x) from the scattering amplitude(E; 6, w).

The Born approximation at high energies is not valid in the case considered in this paper since
the perturbation is energy dependent so that it is natural to consider the fixed energy problem.

There has been considerable works in recent years in studying inverse scattering problem at
fixed energy for the case of the ScHilger equation associated to a potential, that is the two-body
problem. To solve this problem one can use Faddeev's Green fuheaiimhthe direction depen-
dent Faddeev's Green’s functidsee Ref. 12 for a review and references the method of
constructing complex geometrical optics solutions initiated by Caftferod the connection to the
Dirichlet-to-Neumann mafsee Ref. 22 for a review and referencé@he problem considered here
is more closely related to the case of the Sdimger equation in the presence of a magnetic field
studied in Ref. 5 or 16. An important ingredient in those articles is the reduction to the case of a
lower order perturbation of the Laplacian by exponentiating with a pseudodifferential operator. We
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use a similar method to deal with the main difficulty in the optical model, which is the recon-
struction of the spin—orbit interactica(x) o- (xX p). Namely by making semi-classical analysis
type argumentsLemma 5.1 and using the commutation relations of the Pauli spin matrices, we
reconstructi(x) using the complex Born approximation of the scattering amplitude. We shall also
use the gauge invariance of the scattering amplitude and introduce an auxiliary magnetic field to
reconstruct the complex potentidl(x).
For earlier results on the scattering theory for non-self-adjoint $iihger operators see, e.g.,
Refs. 15, 19, 14, and 4 from the mathematical side, and Refs. 2 and 21 from the physical side.
Some remarks on the notations. For two Banach spdcasdY, B(X;Y) denotes the set of
all bounded operators frond to Y. Forxe R®, (x)=(1+|x|%)Y2 C’s denote various constants.

II. RESOLVENT ESTIMATES AND THE SCATTERING AMPLITUDE

We shall derive in this section the analytic continuation of the resolvent af+V and
introduce the scattering amplitude.

A. Resolvent estimates

Let Hy=—A in (L3(R%)?. ForaeR, we define
f e Hae|flly, =X X)Lz <. (2.2)

Then, by passing to the Fourier transformation and by shifting the pdif-aftegration, for any
6>0 Ry(z)=(Hy—2) ! defined for Imz>0 has an analytic continuation across«p,nto the
region

Q;={z;im z>0}U{z;Re\z>0, 0=Im z>-6} (2.2

as aB(Hs;H- s5)-valued function. We denote this operator B&+)(Z). This is actually the inte-
gral operator with kerned Z*~Yl/(47|x—y|).
For a technical reason, which will be explained in Sec. VI, we include also a magnetic field
b(x). LetH=Hy+V, where
V=V(-iV,), (2.3
V(€)=(2b(x)-£—i divb(x)+|b(x)|?)l +a(x)o- (XX &) +W(X), (2.4

| being the 2<2 identity matrix. We shall assume that
(A.1) a(x) e C*(R%C),b(x) e C*(R%R?) and for somes,>0

|afa(x)|+|0")0((b(X)|$Cae*5o|X|, Va.
(A.2) W(x) is a M,(C)-valued function such that for sondg>0,
|W(X)|<Ce*5o\x\_

These assumptions imply that for05<< 5,/2, Rg”(z)v is aB(H_;s;H_s)-valued analytic
function on() s and is compact for each We define&, to be the set

Eo=1zeQ;;—1espeg(REP(2)V)}. (2.5

Here speg(A) denotes the point spectrum of the operator
Lemma 2.1: (1) There exists>D such that

Eoﬂ{l T, T>C}:@

(2) & is discrete inQ) 4.
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Proof: Suppose 7e &, and letu be the associated eigenvector. Singif)(i 7) e B(L%H?),
we haveu e H?. Since (—A+V—ir)u=0, we then have

2= (1= A)u,u)<C(|u]| 2o+ lul?),

which implies||ul;2<C /7| ul| 2. Using the equatiom=—R{")(i7)Vu, we then have

lull.o=—llulli= —=llull.>.
;

N
Thereforeu=0 for larger>0. This proveg1). Assertion(2) follows from the analytic Fredholm
theorem(Ref. 17, p. 204 O
We define
R(z)=(1+R{(2V) 'R{M(2), zeQp&. (2.6

The following theorem is easily proved.
Theorem 2.2:(1) R(z) is aB(Hs;H_s)-valued analytic function o) )\&,.
(2) R(2)=(H-2) tforze{z;im z=0N(Q)N).
(3) For Ze Q‘;\go,
R(z)=R{"(2)—R{"(2)VR(z). (2.7
ForseR, L2% is defined by

ue L®e]lulls=](1+[xD*u(x)]| zrs) <.

Since R{(E)=(—A—E—i0)"*eB(L?%L?>"%) for s>1/2 andE>0 (see, e.g., Ref. 19it
follows from (2.6) that

R(E)eB(L%5L27S), s>1/2, Ee(02N\E. (2.9

In fact, letA; andA, be Rg”(E)V acting onH_ 5 andL?~S, respectively. Then it is easy to
see that

—lespeg(A)) = —1espeg(Ay). (2.9
B. Scattering amplitudes
Theorem 2.3:For E e (02)\&, and w e S, there exists a unique solutiof of the equation
(=A+V-E)y=0

such that u= — e E** satisfies the radiation condition

uel? ¢ O<a<l/2.

e

Suchy is represented as
P(x,E,0)=e"FeX—R(E)Ve Eox, (2.10

Proof: To show existence, we have only to plats in(2.9). To show the uniqueness, we note
that the difference of two such solutions satisfies
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(—A—E)u=—Vu, (l;ir—i\/E)UELZ"“.

Thenu=—R{"(E)Vu. Hence ifu#0, —1c speg(A,). O
Using the resolvent equatid2.7), we have
o iVEr
P(X,E,w)~eVEe x4 Tf(E;a,w), 6=x/r (2.11)

asr=|x|—, where
1 —iVE#-x\/ o \E 1 ~iVE# i JE
f(E;0,0)=—— | e VEOxygEoxgey — | o IVEOxyRE)VEE Xy, (2.12)
41 )R3 41 )R3

We introduce the following notation for»22-matricesf (x),g(x):

<f,g>=fR3f(X)*g(X)dX- (2.13

Thenf(E; 0, ) is written as

f(E;0,0)=— 4i f e NE(0= o) xy([Ew)dx+ i{v*(\/EG)ei EO-X R(E)V(VEw)e E@ X)),
T JR3 4
(2.14
where

VX (£)=2D(X)- £+ a(xX) o (XX &) —ia- (xxVa(x))+|b(x)|2+W(x)*. (2.15

Ill. DIRECTION DEPENDENT GREEN OPERATORS

The aim of this section is to construct Green operators-far+V depending on a direction
2
ve S

A. Unperturbed operator

For e>0, we let
D.={zeC;Imz>0,|Rez|<€/2}. (3.2

We fix an arbitrary directiory e S2.
Theorem 3.1: (1) For any 6>0 and E>0, there exists are>0 and aB(H;H_5)-valued
analytic function U, o(E,z) defined on D such that

(—A—=2izy-V+22~E)U, o(E,2)=1.
(2) When z-te (—€/2,el2), U, o(E,z) has a boundary value Li(E,t). Moreover
U,o(E,t) e B(LZ5L27S), s>1/2.
(3) For 7>0,

e™ ()

(E+iry?-E%

U,/’O(E,iT)f(X)=(27T)_3/2f ,
R

f being the Fourier transform of.fIf f is rapidly decreasing, the integral is absolutely conver-
gent
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4) For 0<s<1,U E,i")eB LZ’S;LZ’S_1 , and
( 7,0
||UY’O(E,iT)HB(LZ,S;LZ,s—l)SCS/T, 1.

Proof: For the proof see Ref. 13, Theorem 2.10. The last asseiiois proved in the same
way as in Sylvester—Uhimarfi,Lemma 3.1. O
We next observe a relation between this direction dependent Green operator and the

‘J-operator. For e C3,Im (+0, let

e (9
320 €
For 7e S such thaty- y=0, letp(7) = VE+ 77 and{(7)=p(7) +iry. Then

G(Of(x)=(2m) 32 fR dé. (3.2

e PIXY o(E,i )P *=G({(7)). 33
We also define
M (7)=7G({(7)), (3.4
e (¢

Nvf:(z”)_slsz32§~<n+iy> de.

(3.5
Lemma 3.2: (1) Fol0<s<1 and >0,
M, (1) e B(L?%L?*7 1),
(2) For felL250<s<1,
M, (7)f—N_f
in L2571 as 7.

The proof is the same as the one in Ref. 20, Proposition 3.6 and Ref. 13, Theorem 4.6.

B. Perturbed operator

Let p=—iV,. For{eC3, we let

Ho(0)=(p+0)? (3.6)

and

H(O)=(p+b(x)+{)?+a(x) o (xX (p+)+W(x)=Ho({) +V(p+), 3.7

whereV is defined by(2.4).

Our aim is to construct a direction dependent Green operatoH{ary) —E. The main
difficulty comes from the term () - (p+zy)+a(x)o- (xX(p+2zy)), which we are going to
eliminate by introducing a suitable pseudodifferential operd®bO). Namely by using the
identity

(H(Z’)/)_E)SU)/,O(Evz)871: 1+([HO(ZY)aS]+V(p+z7’)s)uy,0(EaZ)Sil,

we seekS in such a way that the right-hand side is invertible.

Before entering into the technical details, we explain the idea in the background. Let us
suppose for the sake of simplicity tha¢x)=0. If Sis aW¥DO belonging taS° to be introduced
below, the natural choice is to assume that the synfow|¢) of S satisfies
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2(é+zy)- Vi S(x, &) tia(xX)o- (xX(€+zy))S(x,£)=0.

In general when one considers inverse scattering problems at a fixed energy for systems of partial
differential equations, one often encounters the equatidhS=B(x,{)S, where{ is a complex

vector satisfying some conditions am{x,{) is a matrix coming from the lower part of the
equation. This sort of Cauchy-Riemann type equation is difficult to solve for systrasRef. 6

for a recent review It is trivial to solve for scalar equations like in the case of the Sdimger
equation in the presence of a magnetic field. However, in our case it is sufficient to solve the
equation

2(&+zy)- Vg t+ia(x)=0,

and putS=e®, C=y(x,D,)o- (xX(Dy+27y)), Dy=—iV,. This is due to the fact that at the
level of symbolsC solves

2i(¢+zy)- W C=a(x)o- (xX(§+2y))=B(x,+2y),

and the symbol ofC commutes withB(x,é+2zvy). (See Lemma 3.3 beloyvNow the above
equation fory is just the one we encounter in considering the inverse scattering problem for the
scalar Schrdinger operator in a magnetic field, and the solution plays a significant role only near
the zeros of £+2zvy)?—E. With these remarks in mind, let us return to the construction of the
perturbed direction dependent Green operator.

For a sufficiently smalk>0, let yo(t) e C*(R) be such thag(t) =1 if [t|<e/2, xo(t)=0 if

[t|>€ and let
. (é+iTy)>—EJ?
x(E+iTy)=xo %) (3.9
Note that on the support of(¢+iTy),
|£2+2i 7y é— P —E|<e(E+ 2+ ]&)?). (3.9
Let us put
. . . ok P(K)- (E+iTy)
e(x,§+iTy)=—(2m) 3/2X(§+|77)JR39'X'kWiT;;, : (3.10
. . - a(k)
PY(X,E+iTy)= —(277)73/2X(§+IT’)/) J’Rselx'kmdk. (3.1)

FormeR, let S™ be the class of’DO’s with symbolp(x,&;7) satisfying
|58 P& T=Cop() Nt [E)™ ¥ Va,B, 7>1.
We use the same notatid" to denote the associated class of symbols.
Lemma 3.3: (1) (X, é+i7y) e SO, y(x,é+iTy)e S~ L.
(2) We have
2i(E+iTy)-Vee(X,E+iTy)=2x(E+iTy)b(X)- (§+iTy),
2i(§+iTy) - Vi[g(x,E+iTy)o- (xX(E+iry))]=x(E+ity)a(X) o-(XX(E+iTy)).

The assertior{2) follows from a direct computation. The assertid) is proved in the Ap-
pendix.
Let oo(7),%o(7) be ¥DO’s with symbole(x,&+i7y), (X, E+i7y) and let
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A(7)=@o(7) + ho(T) o (XX (p+iTy)), S(m)=e. (3.12
Lemma 3.4: Let
K(7)=([Ho(i7y),S(1)]+V(p+i7y)S(7))U,o(E,i)S(7) . (3.13
Then forl/2<s<1 and large 7>0,
IK(7)|[g(L2s. 25<Cs/T.
Proof: For two operatord,(7) andP,(7) we write
P1(7)~Pa(7), (3.19
if they satisfy for larger>0,
IP1(7) = Pa(7)|lgLzs;L25<Cs/ 7. (3.19

Let L>sup_1p<s<11<,|A(7)[[gL2s25) - Then we have

1
(1) = Z(5__ -
e i ‘Z|:Le(z A(7)) ldz (3.16
Therefore we have
. 1 .
[Ho(IT~y),eA‘T)]=2—7Ti ‘leLeZ(Z—A(T))‘l[Ho(ITy).A(T)](Z—A(T))‘le- (3.17

SinceA(7) e S° by Lemma 3.31), by the symbolic calculus we have
[Ho(i7y),A(T)]=Py(7)+Py(7), (3.18
where||Po(7)|g(L2s-1.25=<Cs, andP;(7) is the WDO with symbol
—2x(&+iTy)b(X)- (§+iTy)—x(Et+iry)a(X)o- (XX (&+iTy)). (3.19
Let Q(7) be the¥DO with symboly(é+i7y). By (3.18 and(3.19, we have
[Ho(i7y),A(7)]= = Q(7)R(7) + P3(7), (3.20

wherel|P3(7)||g2s-1..29<Cs, and

R(7)=2b(x)-(p+iry)+a(x)o- (xX(p+iry)). (3.2
Let us note that
[Q(7),A(T)]eS™ (3.22
[R(7),A(7)]eS°, (3.23
[(1=Q(7))U, o E,i 7)||g(L2s:25<Cs/ 7% (3.29

The estimat&3.24) follows from Theorem 3.13). Then in view of Theorem 3.14), we have

Downloaded 03 Apr 2007 to 130.158.56.189. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 45, No. 7, July 2004 Inverse scattering problem in nuclear physics 2621

[Ho(i79),S(7)JU,o(E,i7T)~— e%(z—A(7) ' R(1)Q()(z—A(7) 'dzU, E,i7)

27 Jiz=1

1 z -2 H
~—R(7 ﬁjzl_Le (z—A(7)) “dzU, o(E,iT)

=—R(71)eMIU_((E,i7).

It then follows that

K(T)N(—R(T)+V(p+iT’y))S(T)U%O(E,iT)S(T)_J'NO. (3.29
This proves the lemma. O
With the aid of Lemma 3.4, we define the modified direction dependent Green operator for
large >0 by
L(7)=S(1U,o(E,in)S(7) H(1+K(7) " (3.26

By definition it satisfies
(H(iry)—E)L (1) =1. (3.27
We define&,(E) to be the set ofe D, such that

—lespeg(U, o(E,2)V(p+2zy)).

Lemma 3.5: (1) £,(E)N{z;Im z>0} is discrete
(2) £,(E)NRis a closed set of measure zero
(3) There exists a constant>0 such that

ir¢£(E) if 7>C.

Proof: We have only to show the last assertion. The assertibnand (2) follow from the
analytic Fredholm theorem and the well-known Riesz’ theorem on boundary values of analytic
functions(see, e.g., Ref. 11, p. B2 et K (7)=U, o(E,i7)V(p+iry). SinceK,(7) is compact,
we have only to show that RanfIK,(7)) is dense inL? S,1/2<s<1 for large r>0. For f
eC5(RY), let u=L(7)(Ho(i7y)—E)f. Then we have Kiy(i7y)—E)(u—f+K;(7)u)=0.
Sinceu—f+K,(r)ueL?75,1/2<s<1, we haveu—f+K,(7)u=0 by virtue of Theorem 2.2 of
Agmon—Hamander: O

Let us define foz¢ £,(E),

U(E,2)=(1+U,«E,2)V(p+zy)) U, E,2). (3.28

Theorem 3.6.(1) As aB(H;;H_ 5)-valued functionU (E,z) is meromorphic on D.
(2) When z-te (—€/2,e/2)\E,(E), U,(E,z) converges to Y(E,t) and

U(E,t)eB(L*L>7%) s>1/2.
(3) For large 7>0,
U, (E,im)=L,(7).
Proof: We show the last assertion. We have only to show that the equati¢ir{) —E)u
=0,ueL?"S, has only a trivial solution for large>0. Since H(i7y)—E)u=—V(p+i7y)u

eL?®, we have by the uniqueness theorem of Agmonrtmder, u=—U, «(E,i7)V(p
+i7y)u. Thereforeu=0 by using Lemma 3.%3). O
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IV. FADDEEV SCATTERING AMPLITUDE

The Faddeev theory, which we have rewritten in Ref. 12, is transferred without any essential
change to the non-self-adjoint case. Eor 0, let

fo(E)f(w)=(2w)*3’2(E/4)1’4f 3e’i"E“"Xf(x)dx. (4.2
R

As is well knownFo(E) e B(L25;L2(S?)) if s>1/2. Then forE ¢ &,, the scattering amplitude is
written as, up to a constant depending onlyEn

A(E)=Fy(E)(V-VR(E)V)Fo(E)*. 4.2

The scattering amplitudé(E; 6,w) from (2.12 is the integral kernel ofA(E). Let for te
(—€/2,el2)\E (E),

R/E,H)=e"'"*U (E,t)e” "X 4.3
Then the Faddeev scattering amplitude is defined by
AL(E,t)=Fo(E)(V=VR/(E,t)V)Fo(E)*. (4.4

The following two theorems are proved in the same way as in Theorems 7.1 and 7.3 of Ref. 12.
Theorem 4.1:Let F,(E,t) be the operator of multiplication by the characteristic function of
the set{w e S%;y- w=t/\JE}. Then

A(E,t)=A(E)+2miA(E)F (E,1)A(E,1).
Theorem 4.2:Let K=2miA(E)F (E,t). Then
te £, (E)=1espeg(K).
Let us give a brief sketch of the proof of the above theorems. Let
T, =27 Fo(E)*F (E, 1) Fo(E). (4.5
Then we haveRef. 12, Lemma 6.4
R,=R—(1-RV)T,(1-VR)), (4.6)

whereR,=R,(E,t),R=R(E). The eigenoperataf(E) and the Faddeev eigenoperaBy(E,t)
are defined by

FE)=Fo(E)(1-V*R(E)*), (4.7
F(E;)=Fo(E)(1—V*R(E,)*). 4.9
Then by the resolvent equati@d.6) we have
FE* =FE)* +(1-RVT VF,(E,H)*.
Using (4.5 we get
FED* =FE)* + 2w FE)*F(E,HA (E,).

Multiplying this by F,(E)V, we obtain Theorem 4.1.
To prove Theorem 4.2 we note the following operator equation:
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1+R,/,O(E,t)V=(1+R0(E+iO)V)(l—R), 4.9

K=(1-R(E)V)T,V, (4.10

whereRy(2) =(—A—2) "L R, o(E,t)=€"Y*U_ o(E,t)e” "%, In fact, this follows from the for-
mula

R,o(E,t)=Ro(E+i0)—T,

(Ref. 12, Lemma 6.8and the resolvent equation.
SinceE ¢ &, 1+ Ry(E+i0)V is invertible. Therefore

te &, (E)e1lespeg(K). (4.11)
Letting
$=27i(1-R(E)V) Fo(E)*F (E,t),
S =Fo(E)V,
we have
K=5,S,, K=S,S,.
Therefore

1espeg(K)=1espeg(K). (4.12

This proves Theorem 4.2.
It follows from Theorems 4.1 and 4.2 that foe (— €/2,e/2)\E (E),

A(E,H)=(1-K) TA(E). 4.13

We have thus constructed the Faddeev scattering ampliy(e,t) from the scattering amplitude
A(E). The kernel ofA (E,t) is written as, up to a constant depending onlyEn

ASEL6',6)= f & E 0y (JEp)dx— (VF (VER') e B X R, (EDV(VER)E E),
R
(4.19

whereV* (¢) is defined by(2.15. We now put
VEO=\VE—t2w+ty, VEO =VE—t2w +1y, (4.15
wherew,w’ € %,w- y=w’-y=0. Then the above kernel is rewritten as

J‘R3efi\/ﬂ(w’7w)~xv( \/Eg)dx_<v*(\/Eﬁ’)eiﬁw"x,uy(E,t)V(\/Eﬁ)ei ﬁw-x>’
(4.16

which we denote b (o', w;t). SinceU (E,t) is a boundary value of a meromorphic function,
B,(»’,w;t) is uniquely extended to a meromorphic functionDp.
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V. RECONSTRUCTION OF THE SPIN-ORBIT INTERACTION

In this section we reconstruct the spin—orbit term fr@y(«’,»;t) defined by(4.16. Our
intention is to consider the case without magnetic fie{at). However, since we shall use an
auxiliary magnetic field in the next section, we incluole<) until Lemma 5.5.

As has been noted above,(w',w;t) is meromorphically extended ©.. By Theorem 3.6
(3), for large >0, B,(w',w;i7) has the following expression:

B, (0, w;i ’T):J’ e’! vE+TZ(“”7“’)'XV(\/Et9)dx

—(V*(JEB)EVE P KL (r)V(JEg)eEF e, (5.2
where

\/E¢9= VE+ ?w—i—iry, \/E0’= VE+ Tzw’—l-iry.

For £ R%, we takey, ne S? such thaté- y=¢&- »=7-y=0, and put

2\ 1/2 2\ 12
w=w(7)=< —%) 77—257, w’=w(7‘)'=(1— %) n+ 2_57"
p(1)=VE+7w(r), p(7) =VE+Pw(r),
{n)=p(n)+iry, {(r)'=p(n) +iry.
We splitB,(w(7)",0(7);i7) into two parts:
B,(o(7),w(7);in)=B(r)+BP (1), (5.2
B(;)(T):f e 1P =P Xy(£(7))dx, (5.3
BP)(1)=—(V*({(1))ePO X L (1)V({(7)eP ), (5.4
Noting that
p(r) —p(7)=E+0(77Y),
L) r=n+iy+0O(r 1Y),
we have by(2.4)
lim Bgl)(f)/fzf e X E2b(x) - (p+iy)+a(x)o- (XX (p+iy))ldx. (5.5
To computeB{?)(7), we rewrite it as follows:
BY(7)=—(V*({(1)")e! PO =PI X y(7) 2L (1) U(D)V(L(7)), (5.6
where
U(r)=eP()x, (5.7)

By (3.3) and(3.26), the termU(7) 'L (7)U(7) is rewritten as
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U() Ly(DU(1)=U(7) 'S(1)U(7)-G(4(7)-U(r) 1S(7) H(L1+K(7) *U(7).
Let A(7) be from(3.12 and put
B(7)=U(7)*A(7)U(7). (5.8
Then we have by virtue of3.12
U(7r)1S(7) tU(r)=e B0, (5.9
Lemma 5.1: Let
V(X E+L(7)=e(X,E+ (7)) + (X, E+ {(7)) o (XX (E+ (7)),
and let A7) be the¥ DO with symbol € ¥*:¢7¢{(7) Then
e BO—p(res™

Proof: Modulo S %, B(7) is a WDO with symbolW (x,&é+£(7)). Therefore for largdz|,
(z—B(7)) tis a¥DO with symbol g— V¥ (x,&+ £(7))) ! moduloS 2. Since for largeM,

1
-B(r)—_— —Z(5__ -1
e o |Z‘:Me (z—B(7)) “dz,
e B8 is aWwDO with symbole™ " *¢7¢(") moduloS 2. O
We put
n=e€1, Y=€;, nXy=e;z, (5.10
Y, . (X)=f+go-(xX(e;+iey)), (5.11
_b(k)- (e, +iep)
— _ —-3/2 ix-k
f (2m) JR3e —k1+ik2 , (5.12
_ ack)
— —3/2 ix-k

wherek;=k-e;,x;=x-e; anda(&;,§,,X3) is the partial Fourier transform with respectxp, x,
of a(x). We also let

fo(X)=2b(X)- (e, +i€,) +a(xX)o- (XX (&1 +i€,)). (5.14

Lemma 5.2:

1 _
lim=B{(r)=— fRSe*'X'ffoe‘I'wNy(e*“'wfo)dx.

Proof: First we note
U(r) Y1+K () MUV 7—Fo(X). (5.15
Let

. 2|(é+iTy)?—E]| . .
x1(é+iTy)=xo TEr A ) X2(é+iTy)=1—x1({+iTy),
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Xo(t) being as in(3.8), and letQ; be theWwDO with symbol x;(é+i7y). On the support of
X2(§+iTy), we have

[(6+i77)2~E[= 5 (E+72+|€2).

So we have
U, o(E.i7)Qqllg2. 2y=<C/ 7.
Therefore as an operator B(L?S;L25"1),0<s<1,
U,oEin)=U,«E,ir)Q;+0O(7 ?). (5.16
On the other hand, by Lemma 5.1, we have
QuU(7)'S(7)MU(1) =Qse B ~Q,P(7), (5.17)

andQ,P(7) converges strongly te~ ®=*).
Similarly U(7) ~*S(7)U(r) converges strongly te"=®). Furthermore by Lemma 3.2,

7G({(7)—N,.

These facts prove Lemma 5.2. O
Our next aim is to computbl,/(e“l’wfo). Let us note that putting= 3(e, +ie,) - V,, we have

4igV,.=1,. (5.18
Sinced¥., and¥,, commute, we also have
eVe= (g0, )ev=. (5.19

Lemma 5.3:

J’efix'gfoeq’“Nyefq'xfodX=4iJ eiix.g(geq,m)(eilpm_l)dx-
Rr3 RS

Proof: The left-hand side is equal to

f & i (oW, )eV =N eV +4i (9W . dx=16 f e ™ ¢(geV)N,(de~ V=)dx.
R

RS
Using
— i
N,dge V== Z(e—‘Poc—l),
which follows from Liouville’s theorem, we get the lemma. (I
Lemma 5.4:

f3e‘ix‘§f0e‘PwNVe‘“'°°f0dx=0.
R

Proof: By integration by parts, we have
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Jz , e X {(ge¥=) (e Ve—1)dx, dX,
X +x5<r?

1 ) ) . —
=§Li+xgrze"x“-f(x1+|x2)(1—e“’°c)d¢9—f2 , & £e¥=ge ™ Vedx, dx,=(1)—(I1).

X1+X2<f

The second term is written as

— 1 .
(” ): - jx2+><2<r2e7|x'gaq}oodx1 ngZ B E JXZ zeilx'g(xl_l' in)‘IfwdH.
1772

2_
1TX5=r

On the other handg¥==1+W¥ .+ O(|x| ?). Therefore

1 :
~—= e~ X E(X+iXp) W..dh.
=3 [ o i)

Using (5.5 and Lemmas 5.2, 5.4, one can compute

JR3e_iX'§{2b(X) (priy)+a(x)o- (XX (g+iy))}tdx (5.20

form the scattering amplitude.
Here let us recall the following formulas for spin matrices, which are proved by using the
commutation relations:

(0-&)(o-m=E& ntio-(§X7), (5.2
[O"(XX(e1+ie2)),U'e3]:2iX30"(e1+ie2). (522

We now reconstruca(x). We takeb(x)=0. Then by(5.20 and(5.22), one can recover

j e % fa(x)xgXx.

Since¢=(0,0£3), one can recover

J'Rsa(xl,xz,xg)dx1 dx,.

Choosing the direction of arbitrarily, one can reconstrueix) by the inversion formula of the
Radon transforngsee, e.g., Ref. 10

VI. RECONSTRUCTION OF THE COMPLEX POTENTIAL
A. Gauge invariance

In the previous section we constructed the spin—orbit tefxr) o - (xX p) from the scattering
amplitude of the operator

—A+V(p), V(p)=a(X)o-(xXp)+W(x).

To reconstructV(x) we shall make use of the gauge invariance.
Let #(x) be the solution of

(—A+V(p)—E)y=0 (6.9
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having the asymptotic expansion

iVEr

wwei\f‘ﬁwx_'_ r f(E;0,w), 6O=xIr, r=|x|—o. (6.2

Let c(x) =exp(|x?) and ¢, (x) =e'**™y(x), \ being a large parameter. Then satisfies

((p—by)?+V(p—by)—E)y=0 (6.3

with b, (X) =\ Vc(x). Sincec(x) is exponentially decreasings;, has the same asymptotic expan-

sion as in(6.2). This means that the family of operatorg—b,)2+V(p—b,);A>0} has the

same scattering amplitude. One should also note that due to the unitary equivalence, the sets of
exceptional pointg, and&,(E) are independent of>0.

B. Reconstruction of the complex potential

We use the same notation as in Sec. V vitheplaced byb, =AVc(x). Let
Vi(§)=2by-&+ao- (xX§),
V,=—idivbh,—|b,|?—ac- (xXb,)+W.
Then
V({(1)=by)=7Vi(n+iy)=Vi(£2)+V,,
V*({(7)' =b\)=7VI(n—iy)+VI(£2)+ V3.

Recall that we already knowa(x) andb, (x).
We first show that up to known terms

BV(7)+BP(7)= fRse*inW(x)dx—(e*ix-fv;(n—i7),e‘PxNye*“’x(—vl(g/2)+v2)>
—(e VI (&12)+V,),e¥*N e Y=V (n+iy)).

In fact,

B(yl)(r)zrf e*ix'fvl(nﬂy)dx—f e*ival(g/z)derf e &V, dx.
RS RS RS

Up to a known term, this is equal te™ ™ *W(x)dx.
Next we note that

BY)(1)~ — (Vi (n—iy) P L (1)Vi(n+iy)ePD) — (Vi (n—iy)eP L (7)
X (= V1(£12) +V,) €PX) = 7((VE (£12) +V3) P X L (1)Vy(n+iy)ePD%).
Since
L(71)=S(7)U,o(E,in)S(1) " (1-K(7)+O(73),
the first term is a known term. Applying
L(71)=S(1)U,o(E,iT)S(7)*+0O(7?),

and arguing in the same way as in the proof of Lemma 5.2, we get
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B{(r)=—(e ™ Vi (n—iy),e"*N,e (= Vi(&)+V,))—(e ™ 4V (&2)
+V3),e¥=N e V=V (n+iy)).

The right-hand side is equal to
- f e*£(9e"=)N e~ V=(—Vy(£&/2) +V,)dx+ f e (V4 (£/2)+V,)eV=N (s =)dx

= f ™ E(N ge¥=)e V=(—Vy(&2)+ V) dx+ f ™ (V1 (£12)+V,)e"=(N ge~ V=)dx,
where we have use.6). Since
N i
N,e=We=Z2(e"M=-1),
this is equal to
i (. i [
Zf e'x"f(l—e‘l'—x)(—vl(g/2)+v2)dx+Zf eX(V4(&/2)+ Vo) (1—e¥=)dx.

SinceW..= —iAc(x) +g, by the stationary phase method, the term contaieifid = vanishes as
N—o. Here one must note that (0)=0. What remains is

i ix-&
5 e sV, dx.

Up to a known term this is equal 62 fe™ W dx. We have thus reconstruct&t(£).
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APPENDIX

We summarize here basic properties ofﬂqeperator used in this paper. Note that we define
9= (9l Ix,+1 9l o) /2.

Theorem 7.1:If |f(z)|<C(1+|z]) 1€ for some Ge>0, the solution of the equatioru
=f satisfying {z)—0 as|z|—« is unique and is given by

1 f(0) — 1 f(X1—Yy1,X2—Y2)
u(z)—ﬁ c—g_zdg’Ddg—;fRz Yitiy, dy.dy,.

Using the identity

1 1 n é« k 1 g n+1
il =l

we have if (1+z|)"f(z) e L}(C),

n

1 _ 1
_ —k— k -n-—
uz)=—=—2, z 1L§ f(¢)dzOdz + 52 1JC

27 =0

M)

7 dndz.

In particular we have
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Theorem 7.2.1f |f(2)|<C(1+]z]) "3 ¢, the above solution satisfies

1
(X, +ixy)u(z)= p sz(yl \Y2)dy,dy,+O(|x| 7).

From this theorem it follows that

ix-k'f Kk
u(x)=(2w)‘1fRzil+—”((2)dk (A1)
satisfies
_ i
(U0 = 5= [ fay+0( ), #2)
if [f(y)[<C(1+]y) %<
For f e S(R3), let
ix-gf
Nf(x)= (277)—3’2ng2(€§1—+§2)<1§. (A3)
Then we have
1( J a) i
E é’_Xl—Hr?_Xz Nf—Zf, (A4)
_i_ f(y1.¥2.X3)
NT0)= 4 fszl—y1+i(X2_Y2) v (A%
f3(Nf(X))g(X)dX=—f LT (Ng(x))dx. (A6)
R R

Let us prove Lemma 3.8L). We first note that&2+ 2i ry- £é— *— E|<e(E+ 72+ £]?) im-
plies there exists a consta@t>0 such that

C lr<|¢g=<Cr, |'y~%|$CE, (A7)

for large 7>0. Therefore we have only to show the following lemma.
Lemma 7.3: Let ;e R. Suppose (x,&; 7) satisfies

|05 aEF (X, & 1)< Cog() % 17+ [eh)™ 1 Va8
for &, 7 satisfying the condition (7.7). Then

e k&)
. _ -3/ ix-k
9(x,&7)=(2m) 32L3€‘ k-(é+i77)
satisfies
|05 89(x, & 7| <Cup(x) " +]eh™ 1 Va,p,

for &, 7 satisfying the condition (7.7)
Proof: We make the linear change of variables Ak, where
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-k.

£
PN

3
P1=_-k P2=7-K,ps=
Then lettingf (x,&;7) =f('Ax,&;7), we have

[ fA(Xl_ylyXZ_YZyXSag;T)
t . —
g( AxlgiT)_ 277_7_ fRZ y1+ |y2 dyy

whose derivative is estimated as follows:

(1+|x" —y[+[xg)) 2
R? Iyl
wherex’ =(X1,X,). The integral over the regiofjy|<|x'|/2} is estimated as
f (1+ X" =yl +xgph) 2
Iyl<Ix'li2 lyl
The integral over the regiofly|>|x'|/2} is estimated as

f (1+]x" —y[+]x3) 3
ly|>|x'|/2 ly|

|08 9B ('AX, & 7)|<C g7+ €)™ 21l

dy<C(1+]|x|)~2

ay= o | L+l Ry = o
=— X =73 _.
YN s U N U IFER P

If |x"|>1, this is dominated from above I6(1+|x|) 1. If [x'|<1, we estimate in the following
manner:

d
dysC(1+|x3|)—3f Y (14 xs)=C(1+x]) 2,
yl<1ly]

f (L+]x" —y|+]x3)) 3
Ix'[12<]y|<1 1yl

f (L+]x" —y|+[xg) 3
ly|>1

dinf (1+|x"—y|+[x3]) ~3dy
|yl lyl<1

<C(1+|xg)) " t=Cc(1+|x))~ L
We have thus proven
|95 E9('AX, & 7)| < Cop(X)~H(r+ €)™ 1AL

From this we can conclude the lemma. O
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