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We consider the inverse scattering problem for the Schro¨dinger operator with op-
tical potential introduced in nuclear physics to study the scattering of nucleons by
nuclei. We show that the corresponding spin–orbit interaction and the complex
matrix potential can be uniquely reconstructed from the scattering amplitude at
fixed energy. ©2004 American Institute of Physics.@DOI: 10.1063/1.1753665#

I. INTRODUCTION

The optical model is an operator phenomenologically or empirically introduced in nuclear
physics to study the scattering of nucleons by nuclei. The model corresponds to the Schro¨dinger
operator with a complex potential and it was first effectively used by Feshbach, Porter, and
Weisskopf9 to reproduce with great success the experimental results on the scattering of neutrons.
Since then this optical model has been improved and accepted as a fundamental tool in nuclear
physics. Usually the spin–orbit interaction is included and the following form of the Hamiltonian
is adopted:

H52D1V,

V5W~x!1a~x!s•~x3p!1Uc~x!, p52 i¹x ,
~1.1!

W~x!5c1F~r ;R1 ,a1!1 i H c2F~r ;R2 ,a2!2c3

d

dr
F~r ;R2 ,a2!J ,

a~x!5c4

1

r

d

dr
F~r ;R3 ,a3!,

whereF(r ;R,a) is the so-called Woods–Saxon potential having the following form:

F~r ;R,a!5S 11expS r 2R

a D D 21

,

andUc(x) is the Coulomb interaction. Heres•x5( i 51
3 s ixi ands5(s1 ,s2 ,s3) is the vector of

Pauli spin matrices, that is, they are the 232 Hermitian matrices satisfying the following com-
mutation relations:
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s1s25 is3 , s2s35 is1 , s3s15 is2 . ~1.2!

A standard representation of the Pauli matrices is

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~1.3!

The original problem of scattering nucleons should be dealt with by theN body Schro¨dinger
operator, in which many scattering channels appear. Usually the elastic process is dominant, and in
order to ignore the inelastic processes, physicists introduced the complex two-body potential so
that these inelastic scattering processes are regarded to be absorbed into the background. This is
the origin of the terminologyoptical in analogy to the scattering and absorption of light by
materials. By suitably adjusting constantsci ~which are usually energy-dependent! andRi ,a i , the
cross section calculated by this model is known to reproduce very well the experimental data~see,
e.g., Feshbach8 or Roy and Nigam18!.

Let us consider the operator~1.1! in (L2(R3))2, where

V5a~x!s•~x3p!1W~x!, ~1.4!

anda(x), W(x) satisfy the following assumptions:
(A.1) a(x) is a complex-valued C`-function onR3 such that for somed0.0,

u]x
a a~x!u<Cae2d0uxu ;a.

(A.2) W(x) is a 232-matrix valued function onR3 with complex entries such that for some
d0.0,

uW~x!u<Ce2d0uxu.

In Sec. II, we shall show that under these assumptions, there is a discrete setE0 in a neigh-
borhood of~0,̀ ! such that forEP(0,̀ )\E0 , there exists a solutionc(x,E,v), vPS2, of the
Schrödinger equation

~2D1V!c~x,E,v!5Ec~x,E,v!

having the following asymptotic expansion:

c~x,E,v!;eiAEv•x1
eiAEr

r
f ~E;u,v!, u5x/r , r 5uxu→`.

The 232-matrix valued functionf (E;u,v) of u,vPS2 is the scattering amplitude. The main
theorem of this paper is the following one.

Theorem 1.1:For each fixed energy EP(0,̀ )\E0 , one can uniquely reconstruct the pertur-
bations a(x),W(x) from the scattering amplitude f(E;u,v).

The Born approximation at high energies is not valid in the case considered in this paper since
the perturbation is energy dependent so that it is natural to consider the fixed energy problem.

There has been considerable works in recent years in studying inverse scattering problem at
fixed energy for the case of the Schro¨dinger equation associated to a potential, that is the two-body
problem. To solve this problem one can use Faddeev’s Green function7 and the direction depen-
dent Faddeev’s Green’s function~see Ref. 12 for a review and references! or the method of
constructing complex geometrical optics solutions initiated by Caldero´n3 and the connection to the
Dirichlet-to-Neumann map~see Ref. 22 for a review and references!. The problem considered here
is more closely related to the case of the Schro¨dinger equation in the presence of a magnetic field
studied in Ref. 5 or 16. An important ingredient in those articles is the reduction to the case of a
lower order perturbation of the Laplacian by exponentiating with a pseudodifferential operator. We
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use a similar method to deal with the main difficulty in the optical model, which is the recon-
struction of the spin–orbit interactiona(x)s•(x3p). Namely by making semi-classical analysis
type arguments~Lemma 5.1! and using the commutation relations of the Pauli spin matrices, we
reconstructa(x) using the complex Born approximation of the scattering amplitude. We shall also
use the gauge invariance of the scattering amplitude and introduce an auxiliary magnetic field to
reconstruct the complex potentialW(x).

For earlier results on the scattering theory for non-self-adjoint Schro¨dinger operators see, e.g.,
Refs. 15, 19, 14, and 4 from the mathematical side, and Refs. 2 and 21 from the physical side.

Some remarks on the notations. For two Banach spacesX andY, B(X;Y) denotes the set of
all bounded operators fromX to Y. For xPR3, ^x&5(11uxu2)1/2. C’s denote various constants.

II. RESOLVENT ESTIMATES AND THE SCATTERING AMPLITUDE

We shall derive in this section the analytic continuation of the resolvent of2D1V and
introduce the scattering amplitude.

A. Resolvent estimates

Let H052D in (L2(R3))2. For aPR, we define

f PHa⇔i f iHa
5ieauxu f ~x!iL2(R3),`. ~2.1!

Then, by passing to the Fourier transformation and by shifting the path ofuju-integration, for any
d.0 R0(z)5(H02z)21 defined for Imz.0 has an analytic continuation across (0,`) into the
region

Vd5$z;Im z.0%ø$z;ReAz.0, 0>Im Az.2d% ~2.2!

as aB(Hd ;H2d)-valued function. We denote this operator byR0
(1)(z). This is actually the inte-

gral operator with kerneleiAzux2yu/(4pux2yu).
For a technical reason, which will be explained in Sec. VI, we include also a magnetic field

b(x). Let H5H01V, where

V5V~2 i¹x!, ~2.3!

V~j!5~2b~x!•j2 i div b~x!1ub~x!u2!I 1a~x!s•~x3j!1W~x!, ~2.4!

I being the 232 identity matrix. We shall assume that
(A.1) a(x)PC`(R3;C),b(x)PC`(R3;R3) and for somed0.0

u]x
aa~x!u1u]x

ab~x!u<Cae2d0uxu, ;a.

(A.2) W(x) is a M2(C)-valued function such that for somed0.0,

uW~x!u<Ce2d0uxu.

These assumptions imply that for 0,d,d0/2, R0
(1)(z)V is a B(H2d ;H2d)-valued analytic

function onVd and is compact for eachz. We defineE0 to be the set

E05$zPVd ;21Pspecp~R0
(1)~z!V!%. ~2.5!

Here specp(A) denotes the point spectrum of the operatorA.
Lemma 2.1: (1) There exists C.0 such that

E0ù$ i t;t.C%5B.

(2) E0 is discrete inVd .
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Proof: Supposei tPE0 and letu be the associated eigenvector. SinceR0
(1)( i t)PB(L2;H2),

we haveuPH2. Since (2D1V2 i t)u50, we then have

iuiH1
2

5~~12D!u,u!<C~ iuiH1/2
2

1tiuiL2
2

!,

which impliesiuiH1<CAtiuiL2. Using the equationu52R0
(1)( i t)Vu, we then have

iuiL2<
C

t
iuiH1<

C

At
iuiL2.

Thereforeu50 for larget.0. This proves~1!. Assertion~2! follows from the analytic Fredholm
theorem~Ref. 17, p. 204!. h

We define

R~z!5~11R0
(1)~z!V!21R0

(1)~z!, zPVd\E0 . ~2.6!

The following theorem is easily proved.
Theorem 2.2: (1) R(z) is a B(Hd ;H2d)-valued analytic function onVd\E0 .
(2) R(z)5(H2z)21 for zP$z;Im z.0%ù(Vd\E0).
(3) For zPVd\E0 ,

R~z!5R0
(1)~z!2R0

(1)~z!VR~z!. ~2.7!

For sPR, L2,s is defined by

uPL2,s⇔iuis5i~11uxu!su~x!iL2(R3),`.

Since R0
(1)(E)5(2D2E2 i0)21PB(L2,s;L2,2s) for s.1/2 and E.0 ~see, e.g., Ref. 19!, it

follows from ~2.6! that

R~E!PB~L2,s;L2,2s!, s.1/2, EP~0,̀ !\E0 . ~2.8!

In fact, letA1 andA2 be R0
(1)(E)V acting onH2d andL2,2s, respectively. Then it is easy to

see that

21Pspecp~A1!⇔21Pspecp~A2!. ~2.9!

B. Scattering amplitudes

Theorem 2.3:For EP(0,̀ )\E0 and vPS2, there exists a unique solutionc of the equation

~2D1V2E!c50

such that u5c2eiAEv•x satisfies the radiation condition

S ]

]r
2 iAEDuPL2,2a, 0,a,1/2.

Suchc is represented as

c~x,E,v!5eiAEv•x2R~E!VeiAEv•x. ~2.10!

Proof: To show existence, we have only to putc as in~2.9!. To show the uniqueness, we note
that the difference of two such solutions satisfies
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~2D2E!u52Vu, S ]

]r
2 iAEDuPL2,2a.

Thenu52R0
(1)(E)Vu. Hence ifuÞ0, 21Pspecp(A1). h

Using the resolvent equation~2.7!, we have

c~x,E,v!;eiAEv•x1
eiAEr

r
f ~E;u,v!, u5x/r ~2.11!

as r 5uxu→`, where

f ~E;u,v!52
1

4p E
R3

e2 iAEu•xVeiAEv•xdx1
1

4p E
R3

e2 iAEu•xVR~E!VeiAEv•xdx. ~2.12!

We introduce the following notation for 232-matricesf (x),g(x):

^ f ,g&5E
R3

f ~x!* g~x!dx. ~2.13!

Then f (E;u,v) is written as

f ~E;u,v!52
1

4p E
R3

e2 iAE(u2v)•xV~AEv!dx1
1

4p
^V* ~AEu!eiAEu•x,R~E!V~AEv!eiAEv•x!&,

~2.14!

where

V* ~j!52b~x!•j1a~x!s•~x3j!2 is•~x3¹a~x!!1ub~x!u21W~x!* . ~2.15!

III. DIRECTION DEPENDENT GREEN OPERATORS

The aim of this section is to construct Green operators for2D1V depending on a direction
gPS2.

A. Unperturbed operator

For e.0, we let

De5$zPC;Im z.0,uRezu,e/2%. ~3.1!

We fix an arbitrary directiongPS2.
Theorem 3.1: (1) For anyd.0 and E.0, there exists ane.0 and aB(Hd ;H2d)-valued

analytic function Ug,0(E,z) defined on De such that

~2D22izg•¹1z22E!Ug,0~E,z!5I .

(2) When z→tP(2e/2,e/2), Ug,0(E,z) has a boundary value Ug,0(E,t). Moreover

Ug,0~E,t !PB~L2,s;L2,2s!, s.1/2.

(3) For t.0,

Ug,0~E,i t! f ~x!5~2p!23/2E
R3

eix•j f̂ ~j!

~j1 i tg!22E
dj,

f̂ being the Fourier transform of f. If f is rapidly decreasing, the integral is absolutely conver-
gent.
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(4) For 0,s,1, Ug,0(E,i t)PB(L2,s;L2,s21), and

iUg,0~E,i t!iB(L2,s;L2,s21)<Cs /t, t.1.

Proof: For the proof see Ref. 13, Theorem 2.10. The last assertion~4! is proved in the same
way as in Sylvester–Uhlmann,20 Lemma 3.1. h

We next observe a relation between this direction dependent Green operator and the
]̄-operator. ForzPC3,Im zÞ0, let

G̃~z! f ~x!5~2p!23/2E
R3

eix•j f̂ ~j!

j212z•j
dj. ~3.2!

For hPS2 such thath•g50, let p(t)5AE1t2h andz(t)5p(t)1 i tg. Then

e2 ip(t)•xUg,0~E,i t!eip(t)•x5G̃~z~t!!. ~3.3!

We also define

Mg~t!5tG̃~z~t!!, ~3.4!

Ng f 5~2p!23/2E
R3

eix•j f̂ ~j!

2j•~h1 ig!
dj. ~3.5!

Lemma 3.2: (1) For0,s,1 and t.0,

Mg~t!PB~L2,s;L2,s21!.

(2) For fPL2,s,0,s,1,

Mg~t! f→Ng f

in L2,s21 as t→`.
The proof is the same as the one in Ref. 20, Proposition 3.6 and Ref. 13, Theorem 4.6.

B. Perturbed operator

Let p52 i¹x . For zPC3, we let

H0~z!5~p1z!2, ~3.6!

and

H~z!5~p1b~x!1z!21a~x!s•~x3~p1z!!1W~x!5H0~z!1V~p1z!, ~3.7!

whereV is defined by~2.4!.
Our aim is to construct a direction dependent Green operator forH(zg)2E. The main

difficulty comes from the term 2b(x)•(p1zg)1a(x)s•(x3(p1zg)), which we are going to
eliminate by introducing a suitable pseudodifferential operator~CDO!. Namely by using the
identity

~H~zg!2E!SUg,0~E,z!S21511~@H0~zg!,S#1V~p1zg!S!Ug,0~E,z!S21,

we seekS in such a way that the right-hand side is invertible.
Before entering into the technical details, we explain the idea in the background. Let us

suppose for the sake of simplicity thatb(x)50. If S is a CDO belonging toS 0 to be introduced
below, the natural choice is to assume that the symbolS(x,j) of S satisfies
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2~j1zg!•¹xS~x,j!1 ia~x!s•~x3~j1zg!!S~x,j!50.

In general when one considers inverse scattering problems at a fixed energy for systems of partial
differential equations, one often encounters the equationz•¹xS5B(x,z)S, wherez is a complex
vector satisfying some conditions andB(x,z) is a matrix coming from the lower part of the
equation. This sort of Cauchy-Riemann type equation is difficult to solve for systems~see Ref. 6
for a recent review!. It is trivial to solve for scalar equations like in the case of the Schro¨dinger
equation in the presence of a magnetic field. However, in our case it is sufficient to solve the
equation

2~j1zg!•¹xc1 ia~x!50,

and putS5eC, C5c(x,Dx)s•(x3(Dx1zg)), Dx52 i¹x . This is due to the fact that at the
level of symbols,C solves

2i ~j1zg!•¹xC5a~x!s•~x3~j1zg!!5..B~x,j1zg!,

and the symbol ofC commutes withB(x,j1zg). ~See Lemma 3.3 below.! Now the above
equation forc is just the one we encounter in considering the inverse scattering problem for the
scalar Schro¨dinger operator in a magnetic field, and the solution plays a significant role only near
the zeros of (j1zg)22E. With these remarks in mind, let us return to the construction of the
perturbed direction dependent Green operator.

For a sufficiently smalle.0, letx0(t)PC`(R) be such thatx0(t)51 if utu,e/2, x0(t)50 if
utu.e and let

x~j1 i tg!5x0S u~j1 i tg!22Eu2

E1t21uju2 D . ~3.8!

Note that on the support ofx(j1 i tg),

uj212i tg•j2t22Eu<e~E1t21uju2!. ~3.9!

Let us put

w~x,j1 i tg!52~2p!23/2x~j1 i tg!E
R3

eix•k
b̂~k!•~j1 i tg!

k•~j1 i tg!
dk, ~3.10!

c~x,j1 i tg!52~2p!23/2x~j1 i tg!E
R3

eix•k
â~k!

2k•~j1 i tg!
dk. ~3.11!

For mPR, let S m be the class ofCDO’s with symbolp(x,j;t) satisfying

u]x
a]j

b p~x,j;t!u<Cab^x&21~t1uju!m2ubu ;a,b, t.1.

We use the same notationS m to denote the associated class of symbols.
Lemma 3.3: (1)w(x,j1 i tg)PS 0,c(x,j1 i tg)PS 21.
(2) We have

2i ~j1 i tg!•¹xw~x,j1 i tg!52x~j1 i tg!b~x!•~j1 i tg!,

2i ~j1 i tg!•¹x@c~x,j1 i tg!s•~x3~j1 i tg!!#5x~j1 i tg!a~x! s•~x3~j1 i tg!!.

The assertion~2! follows from a direct computation. The assertion~1! is proved in the Ap-
pendix.

Let w0(t),c0(t) be CDO’s with symbolw(x,j1 i tg),c(x,j1 i tg) and let
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A~t!5w0~t!1c0~t!s•~x3~p1 i tg!!, S~t!5eA(t). ~3.12!

Lemma 3.4: Let

K~t!5~@H0~ i tg!,S~t!#1V~p1 i tg!S~t!!Ug,0~E,i t!S~t!21. ~3.13!

Then for1/2,s,1 and larget.0,

iK~t!iB(L2,s;L2,s)<Cs /t.

Proof: For two operatorsP1(t) andP2(t) we write

P1~t!;P2~t!, ~3.14!

if they satisfy for larget.0,

iP1~t!2P2~t!iB(L2,s;L2,s)<Cs /t. ~3.15!

Let L.sup21/2,s,1,1,tiA(t)iB(L2,s;L2,s) . Then we have

eA(t)5
1

2p i Euzu5L
ez~z2A~t!!21dz. ~3.16!

Therefore we have

@H0~ i tg!,eA(t)#5
1

2p i Euzu5L
ez~z2A~t!!21@H0~ i tg!,A~t!#~z2A~t!!21dz. ~3.17!

SinceA(t)PS0 by Lemma 3.3~1!, by the symbolic calculus we have

@H0~ i tg!,A~t!#5P1~t!1P2~t!, ~3.18!

whereiP2(t)iB(L2,s21;L2,s)<Cs , andP1(t) is theCDO with symbol

22x~j1 i tg!b~x!•~j1 i tg!2x~j1 i tg!a~x!s•~x3~j1 i tg!!. ~3.19!

Let Q(t) be theCDO with symbolx(j1 i tg). By ~3.18! and ~3.19!, we have

@H0~ i tg!,A~t!#52Q~t!R~t!1P3~t!, ~3.20!

whereiP3(t)iB(L2,s21;L2,s)<Cs , and

R~t!52b~x!•~p1 i tg!1a~x!s•~x3~p1 i tg!!. ~3.21!

Let us note that

@Q~t!,A~t!#PS 21, ~3.22!

@R~t!,A~t!#PS 0, ~3.23!

i~12Q~t!!Ug,0~E,i t!iB(L2,s;L2,s)<Cs /t2. ~3.24!

The estimate~3.24! follows from Theorem 3.1~3!. Then in view of Theorem 3.1~4!, we have
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@H0~ i tg!,S~t!#Ug,0~E,i t!;2
1

2p i Euzu5L
ez~z2A~t!!21R~t!Q~t!~z2A~t!!21dzUg,0~E,i t!

;2R~t!
1

2p i Euzu5L
ez~z2A~t!!22dzUg,0~E,i t!

52R~t!eA(t)Ug,0~E,i t!.

It then follows that

K~t!;~2R~t!1V~p1 i tg!!S~t!Ug,0~E,i t!S~t!21;0. ~3.25!

This proves the lemma. h

With the aid of Lemma 3.4, we define the modified direction dependent Green operator for
larget.0 by

Lg~t!5S~t!Ug,0~E,i t!S~t!21~11K~t!!21. ~3.26!

By definition it satisfies

~H~ i tg!2E!Lg~t!5I . ~3.27!

We defineEg(E) to be the set ofzPDe such that

21Pspecp~Ug,0~E,z!V~p1zg!!.

Lemma 3.5: (1)Eg(E)ù$z;Im z.0% is discrete.
(2) Eg(E)ùR is a closed set of measure zero.
(3) There exists a constant C.0 such that

i t¹Eg~E! if t.C.

Proof: We have only to show the last assertion. The assertions~1! and ~2! follow from the
analytic Fredholm theorem and the well-known Riesz’ theorem on boundary values of analytic
functions~see, e.g., Ref. 11, p. 52!. Let K1(t)5Ug,0(E,i t)V(p1 i tg). SinceK1(t) is compact,
we have only to show that Ran(11K1(t)) is dense inL2,2s,1/2,s,1 for large t.0. For f
PC0

`(R3), let u5Lg(t)(H0( i tg)2E) f . Then we have (H0( i tg)2E)(u2 f 1K1(t)u)50.
Sinceu2 f 1K1(t)uPL2,2s,1/2,s,1, we haveu2 f 1K1(t)u50 by virtue of Theorem 2.2 of
Agmon–Hörmander.1 h

Let us define forz¹Eg(E),

Ug~E,z!5~11Ug,0~E,z!V~p1zg!!21Ug,0~E,z!. ~3.28!

Theorem 3.6.(1) As aB(Hd ;H2d)-valued function, Ug(E,z) is meromorphic on De .
(2) When z→tP(2e/2,e/2)\Eg(E), Ug(E,z) converges to Ug(E,t) and

Ug~E,t !PB~L2,s;L2,2s! s.1/2.

(3) For large t.0,

Ug~E,i t!5Lg~t!.

Proof: We show the last assertion. We have only to show that the equation (H( i tg)2E)u
50,uPL2,2s, has only a trivial solution for larget.0. Since (H0( i tg)2E)u52V(p1 i tg)u
PL2,s, we have by the uniqueness theorem of Agmon–Ho¨rmander, u52Ug,0(E,i t)V(p
1 i tg)u. Thereforeu50 by using Lemma 3.5~3!. h
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IV. FADDEEV SCATTERING AMPLITUDE

The Faddeev theory, which we have rewritten in Ref. 12, is transferred without any essential
change to the non-self-adjoint case. ForE.0, let

F0~E! f ~v!5~2p!23/2~E/4!1/4E
R3

e2 iAEv•xf ~x!dx. ~4.1!

As is well knownF0(E)PB(L2,s;L2(S2)) if s.1/2. Then forE¹E0 , the scattering amplitude is
written as, up to a constant depending only onE,

A~E!5F0~E!~V2VR~E!V!F0~E!* . ~4.2!

The scattering amplitudef (E;u,v) from ~2.12! is the integral kernel ofA(E). Let for tP
(2e/2,e/2)\Eg(E),

Rg~E,t !5eitg•xUg~E,t !e2 i tg•x. ~4.3!

Then the Faddeev scattering amplitude is defined by

Ag~E,t !5F0~E!~V2VRg~E,t !V!F0~E!* . ~4.4!

The following two theorems are proved in the same way as in Theorems 7.1 and 7.3 of Ref. 12.
Theorem 4.1:Let Fg(E,t) be the operator of multiplication by the characteristic function of

the set$vPS2;g•v>t/AE%. Then

Ag~E,t !5A~E!12p iA~E!Fg~E,t !Ag~E,t !.

Theorem 4.2:Let K52p iA(E)Fg(E,t). Then

tPEg~E!⇔1Pspecp~K !.

Let us give a brief sketch of the proof of the above theorems. Let

Tg52p iF0~E!* Fg~E,t !F0~E!. ~4.5!

Then we have~Ref. 12, Lemma 6.4!

Rg5R2~12RV!Tg~12VRg!, ~4.6!

whereRg5Rg(E,t),R5R(E). The eigenoperatorF(E) and the Faddeev eigenoperatorFg(E,t)
are defined by

F~E!5F0~E!~12V* R~E!* !, ~4.7!

Fg~E,t !5F0~E!~12V* Rg~E,t !* !. ~4.8!

Then by the resolvent equation~4.6! we have

Fg~E,t !* 5F~E!* 1~12RV!TgVFg~E,t !* .

Using ~4.5! we get

Fg~E,t !* 5F~E!* 12p iF~E!* Fg~E,t !Ag~E,t !.

Multiplying this by F0(E)V, we obtain Theorem 4.1.
To prove Theorem 4.2 we note the following operator equation:
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11Rg,0~E,t !V5~11R0~E1 i0!V!~12K̃ !, ~4.9!

K̃5~12R~E!V!TgV, ~4.10!

whereR0(z)5(2D2z)21,Rg,0(E,t)5eitg•xUg,0(E,t)e2 i tg•x. In fact, this follows from the for-
mula

Rg,0~E,t !5R0~E1 i0!2Tg

~Ref. 12, Lemma 6.3! and the resolvent equation.
SinceE¹E0 , 11R0(E1 i0)V is invertible. Therefore

tPEg~E!⇔1Pspecp~K̃ !. ~4.11!

Letting

S152p i ~12R~E!V!F0~E!* Fg~E,t !,

S25F0~E!V,

we have

K̃5S1S2 , K5S2S1 .

Therefore

1Pspecp~K̃ !⇔1Pspecp~K !. ~4.12!

This proves Theorem 4.2.
It follows from Theorems 4.1 and 4.2 that fortP(2e/2,e/2)\Eg(E),

Ag~E,t !5~12K !21A~E!. ~4.13!

We have thus constructed the Faddeev scattering amplitudeAg(E,t) from the scattering amplitude
A(E). The kernel ofAg(E,t) is written as, up to a constant depending only onE,

Ag~E,t;u8,u!5E
R3

e2 iAE(u82u)•xV~AEu!dx2^V* ~AEu8!eiAEu8•x,Rg~E,t !V~AEu!eiAEu•x&,

~4.14!

whereV* (j) is defined by~2.15!. We now put

AEu5AE2t2v1tg, AEu85AE2t2v81tg, ~4.15!

wherev,v8PS2,v•g5v8•g50. Then the above kernel is rewritten as

E
R3

e2 iAE2t2(v82v)•xV~AEu!dx2^V* ~AEu8!eiAE2t2v8•x,Ug~E,t !V~AEu!eiAE2t2v•x&,

~4.16!

which we denote byBg(v8,v;t). SinceUg(E,t) is a boundary value of a meromorphic function,
Bg(v8,v;t) is uniquely extended to a meromorphic function onDe .
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V. RECONSTRUCTION OF THE SPIN–ORBIT INTERACTION

In this section we reconstruct the spin–orbit term fromBg(v8,v;t) defined by~4.16!. Our
intention is to consider the case without magnetic fieldb(x). However, since we shall use an
auxiliary magnetic field in the next section, we includeb(x) until Lemma 5.5.

As has been noted above,Bg(v8,v;t) is meromorphically extended toDe . By Theorem 3.6
~3!, for larget.0, Bg(v8,v; i t) has the following expression:

Bg~v8,v; i t!5E e2 iAE1t2(v82v)•xV~AEu!dx

2^V* ~AEu8!eiAE1t2v8•x,Lg~t!V~AEu!eiAE1t2v•x&, ~5.1!

where

AEu5AE1t2v1 i tg, AEu85AE1t2v81 i tg.

For jPR3, we takeg,hPS2 such thatj•g5j•h5h•g50, and put

v5v~t!5S 12
uju2

4t2D 1/2

h2
j

2t
, v85v~t!85S 12

uju2

4t2D 1/2

h1
j

2t
,

p~t!5AE1t2v~t!, p~t!85AE1t2v~t!8,

z~t!5p~t!1 i tg, z~t!85p~t!81 i tg.

We split Bg(v(t)8,v(t); i t) into two parts:

Bg~v~t!8,v~t!; i t!5Bg
(1)~t!1Bg

(2)~t!, ~5.2!

Bg
(1)~t!5E e2 i (p(t)82p(t))•xV~z~t!!dx, ~5.3!

Bg
(2)~t!52^V* ~z~t!8!eip(t)8•x,Lg~t!V~z~t!!eip(t)•x&. ~5.4!

Noting that

p~t!82p~t!5j1O~t21!,

z~t!/t5h1 ig1O~t21!,

we have by~2.4!

lim
t→`

Bg
(1)~t!/t5E e2 ix•j$2b~x!•~h1 ig!1a~x!s•~x3~h1 ig!!%dx. ~5.5!

To computeBg
(2)(t), we rewrite it as follows:

Bg
(2)~t!52^V* ~z~t!8!ei (p(t)82p(t))•x,U~t!21Lg~t!U~t!V~z~t!!&, ~5.6!

where

U~t!5eip(t)•x. ~5.7!

By ~3.3! and ~3.26!, the termU(t)21Lg(t)U(t) is rewritten as
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U~t!21Lg~t!U~t!5U~t!21S~t!U~t!•G̃~z~t!!•U~t!21S~t!21~11K~t!!21U~t!.

Let A(t) be from ~3.12! and put

B~t!5U~t!21A~t!U~t!. ~5.8!

Then we have by virtue of~3.12!

U~t!21S~t!21U~t!5e2B(t). ~5.9!

Lemma 5.1: Let

C~x,j1z~t!!5w~x,j1z~t!!1c~x,j1z~t!!s•~x3~j1z~t!!!,

and let P(t) be theCDO with symbol e2C(x,j1z(t)). Then

e2B(t)2P~t!PS 21.

Proof: Modulo S 21, B(t) is a CDO with symbolC(x,j1z(t)). Therefore for largeuzu,
(z2B(t))21 is a CDO with symbol (z2C(x,j1z(t)))21 moduloS 21. Since for largeM ,

e2B(t)5
1

2p i Euzu5M
e2z~z2B~t!!21dz,

e2B(t) is a CDO with symbole2C(x,j1z(t)), moduloS 21. h

We put

h5e1 , g5e2 , h3g5e3 , ~5.10!

C`~x!5 f 1gs•~x3~e11 ie2!!, ~5.11!

f 52~2p!23/2E
R3

eix•k
b̂~k!•~e11 ie2!

k11 ik2
dk, ~5.12!

g52~2p!23/2E
R3

eix•k
â~k!

2~k11 ik2!
dk, ~5.13!

wherekj5k•ej ,xj5x•ej and ã(j1 ,j2 ,x3) is the partial Fourier transform with respect tox1 ,x2

of a(x). We also let

f 0~x!52b~x!•~e11 ie2!1a~x!s•~x3~e11 ie2!!. ~5.14!

Lemma 5.2:

lim
t→`

1

t
Bg

(2)~t!52E
R3

e2 ix•j f 0eC`Ng~e2C` f 0!dx.

Proof: First we note

U~t!21~11K~t!!21U~t!V~z~t!!/t→ f 0~x!. ~5.15!

Let

x1~j1 i tg!5x0S 2u~j1 i tg!22Eu
E1t21uju2 D , x2~j1 i tg!512x1~j1 i tg!,
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x0(t) being as in~3.8!, and letQj be theCDO with symbol x j (j1 i tg). On the support of
x2(j1 i tg), we have

u~j1 i tg!22Eu>
e

4
~E1t21uju2!.

So we have

iUg,0~E,i t!Q2iB(L2;L2)<C/t2.

Therefore as an operator inB(L2,s;L2,s21),0,s,1,

Ug,0~E,i t!5Ug,0~E,i t!Q11O~t22!. ~5.16!

On the other hand, by Lemma 5.1, we have

Q̃1U~t!21S~t!21U~t!5Q̃1e2B(t);Q̃1P~t!, ~5.17!

andQ̃1P(t) converges strongly toe2F`(x).
Similarly U(t)21S(t)U(t) converges strongly toeC`(x). Furthermore by Lemma 3.2,

tG̃~z~t!!→Ng .

These facts prove Lemma 5.2. h

Our next aim is to computeNg(e2C` f 0). Let us note that putting]̄5 1
2(e11 ie2)•¹x , we have

4i ]̄C`5 f 0 . ~5.18!

Since]̄C` andC` commute, we also have

]̄eC`5~ ]̄C`!eC`. ~5.19!

Lemma 5.3:

E
R3

e2 ix•j f 0eC`Nge2C` f 0dx54i E
R3

e2 ix•j~ ]̄eC`!~e2C`21!dx.

Proof: The left-hand side is equal to

E
R3

e2 ix•j4i ~ ]̄C`!eC`Nge2C`4i ~ ]̄C`!dx516E
R3

e2 ix•j~ ]̄eC`!Ng~ ]̄e2C`!dx.

Using

Ng]̄e2C`5
i

4
~e2C`21!,

which follows from Liouville’s theorem, we get the lemma. h

Lemma 5.4:

E
R3

e2 ix•j f 0eC`Nge2C` f 0dx50.

Proof: By integration by parts, we have
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E
x1

2
1x2

2
,r 2

e2 ix•j~ ]̄eC`!~e2C`21!dx1 dx2

5
1

2 Ex1
2
1x2

2
5r 2

e2 ix•j~x11 ix2!~12eC`!du2E
x1

2
1x2

2
,r 2

e2 ix•jeC`]̄e2C`dx1 dx2[~ I !2~ II !.

The second term is written as

~ II !52E
x1

2
1x2

2
,r 2

e2 ix•j]̄C`dx1 dx252
1

2 Ex1
2
1x2

2
5r 2

e2 ix•j~x11 ix2!C`du.

On the other hand,eC`511C`1O(uxu22). Therefore

~ I !;2
1

2 Ex1
2
1x2

2
5r 2

e2 ix•j~x11 ix2!C`du.

h

Using ~5.5! and Lemmas 5.2, 5.4, one can compute

E
R3

e2 ix•j$2b~x!•~h1 ig!1a~x!s•~x3~h1 ig!!%dx ~5.20!

form the scattering amplitude.
Here let us recall the following formulas for spin matrices, which are proved by using the

commutation relations:

~s•j!~s•h!5j•h1 is•~j3h!, ~5.21!

@s•~x3~e11 ie2!!,s•e3#52ix3s•~e11 ie2!. ~5.22!

We now reconstructa(x). We takeb(x)[0. Then by~5.20! and ~5.22!, one can recover

E e2 ix•ja~x!x3dx.

Sincej5(0,0,j3), one can recover

E
R3

a~x1 ,x2 ,x3!dx1 dx2 .

Choosing the direction ofj arbitrarily, one can reconstructa(x) by the inversion formula of the
Radon transform~see, e.g., Ref. 10!.

VI. RECONSTRUCTION OF THE COMPLEX POTENTIAL

A. Gauge invariance

In the previous section we constructed the spin–orbit terma(x)s•(x3p) from the scattering
amplitude of the operator

2D1V~p!, V~p!5a~x!s•~x3p!1W~x!.

To reconstructW(x) we shall make use of the gauge invariance.
Let c(x) be the solution of

~2D1V~p!2E!c50 ~6.1!
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having the asymptotic expansion

c;eiAEv•x1
eiAEr

r
f ~E;u,v!, u5x/r , r 5uxu→`. ~6.2!

Let c(x)5exp(2uxu2) andcl(x)5eilc(x)c(x), l being a large parameter. Thencl satisfies

~~p2bl!21V~p2bl!2E!cl50 ~6.3!

with bl(x)5l¹c(x). Sincec(x) is exponentially decreasing,cl has the same asymptotic expan-
sion as in~6.2!. This means that the family of operators$(p2bl)21V(p2bl);l.0% has the
same scattering amplitude. One should also note that due to the unitary equivalence, the sets of
exceptional pointsE0 andEg(E) are independent ofl.0.

B. Reconstruction of the complex potential

We use the same notation as in Sec. V withb replaced bybl5l¹c(x). Let

V1~j!52bl•j1as•~x3j!,

V252 i div bl2ublu22as•~x3bl!1W.

Then

V~z~t!2bl!.tV1~h1 ig!2V1~j/2!1V2 ,

V* ~z~t!82bl!.tV1* ~h2 ig!1V1* ~j/2!1V2* .

Recall that we already knowa(x) andbl(x).
We first show that up to known terms

Bg
(1)~t!1Bg

(2)~t!.E
R3

e2 ix•jW~x!dx2^e2 ix•jV1* ~h2 ig!,eC`Nge2C`~2V1~j/2!1V2!&

2^e2 ix•j~V1* ~j/2!1V2!,eC`Nge2C`V1~h1 ig!&.

In fact,

Bg
(1)~t!.tE

R3
e2 ix•jV1~h1 ig!dx2E

R3
e2 ix•jV1~j/2!dx1E

R3
e2 ix•jV2dx.

Up to a known term, this is equal to*e2 ix•jW(x)dx.
Next we note that

Bg
(2)~t!;2t2^V1* ~h2 ig!eip(t)8x,Lg~t!V1~h1 ig!eip(t)x&2t^V1* ~h2 ig!eip(t)8x,Lg~t!

3~2V1~j/2!1V2!eip(t)x&2t^~V1* ~j/2!1V2* !eip(t)8x,Lg~t!V1~h1 ig!eip(t)x&.

Since

Lg~t!5S~t!Ug,0~E,i t!S~t!21~12K~t!!1O~t23!,

the first term is a known term. Applying

Lg~t!5S~t!Ug,0~E,i t!S~t!211O~t22!,

and arguing in the same way as in the proof of Lemma 5.2, we get
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Bg
(2)~t!.2^e2 ix•jV1* ~h2 ig!,eC`Nge2C`~2V1~j/ !1V2!&2^e2 ix•j~V1* ~j/2!

1V2* !,eC`Nge2C`V1~h1 ig!&.

The right-hand side is equal to

2E eix•j~ ]̄eC`!Nge2C`~2V1~j/2!1V2!dx1E eix•j~V1~j/2!1V2!eC`Ng~ ]̄e2C`!dx

5E eix•j~Ng]̄eC`!e2C`~2V1~j/2!1V2!dx1E eix•j~V1~j/2!1V2!eC`~Ng]̄e2C`!dx,

where we have used~7.6!. Since

Nge6 iC`5
i

4
~e6 iC`21!,

this is equal to

i

4 E eix•j~12eC2`!~2V1~j/2!1V2!dx1
i

4 E eix•j~V1~j/2!1V2!~12eC`!dx.

SinceC`52 ilc(x)1g, by the stationary phase method, the term containinge6 iC` vanishes as
l→`. Here one must note thatbl(0)50. What remains is

i

2 E eix•jV2dx.

Up to a known term this is equal toi /2*eix•jW dx. We have thus reconstructedŴ(j).
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APPENDIX

We summarize here basic properties of the]̄-operator used in this paper. Note that we define
]̄5(]/]x11 i ]/]x2)/2.

Theorem 7.1: If u f (z)u<C(11uzu)212e for some C,e.0, the solution of the equation]̄u
5 f satisfying u(z)→0 as uzu→` is unique and is given by

u~z!5
1

2p i EC

f ~z!

z2z
dz∧dz̄5

1

p E
R2

f ~x12y1 ,x22y2!

y11 iy2
dy1dy2 .

Using the identity

1

z2z
52

1

z (
k50

n S z

zD
k

1
1

z2z S z

zD
n11

we have if (11uzu)nf (z)PL1(C),

u~z!52
1

2p i (k50

n

z2k21E
C
zkf ~z!dz∧dz̄1

1

2p i
z2n21E

C

zn11f ~z!

z2z
dz∧dz̄.

In particular we have
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Theorem 7.2.If u f (z)u<C(11uzu)232e, the above solution satisfies

~x11 ix2!u~z!5
1

p E
R2

f ~y1 ,y2!dy1dy21O~ uxu21!.

From this theorem it follows that

u~x!5~2p!21E
R2

eix•k f̂ ~k!

k11 ik2
dk ~A1!

satisfies

~x11 ix2!u~x!5
i

2p E
R2

f ~y!dy1O~ uxu21!, ~A2!

if u f (y)u<C(11uyu)232e.
For f PS(R3), let

N f~x!5~2p!23/2E
R3

eix•j f̂ ~j!

2~j11 i j2!
dj. ~A3!

Then we have

1

2 S ]

]x1
1 i

]

]x2
DN f5

i

4
f , ~A4!

N f~x!5
i

4p E
R2

f ~y1 ,y2 ,x3!

x12y11 i ~x22y2!
dy, ~A5!

E
R3

~N f~x!!g~x!dx52E
R3

f ~x!~Ng~x!!dx. ~A6!

Let us prove Lemma 3.3~1!. We first note thatuj212i tg•j2t22Eu<e(E1t21uju2) im-
plies there exists a constantC.0 such that

C21t<uju<Ct, ug•
j

uju
u<Ce, ~A7!

for larget.0. Therefore we have only to show the following lemma.
Lemma 7.3: Let mPR. Suppose f(x,j;t) satisfies

u]x
a]j

b f ~x,j;t!u<Cab^x&232uau~t1uju!m2ubu ;a,b

for j, t satisfying the condition (7.7). Then

g~x,j;t!5~2p!23/2E
R3

eix•k
f̂ ~k,j;t!

k•~j1 i tg!
dk

satisfies

u]x
a]j

bg~x,j;t!u<Cab^x&21~t1uju!m212ubu ;a,b,

for j, t satisfying the condition (7.7).
Proof: We make the linear change of variablesp5Ak, where
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p15
j

t
•k, p25g•k,p35S j

t
3g D •k.

Then lettingf A(x,j;t)5 f ( tAx,j;t), we have

g~ tAx,j;t!5
i

2pt ER2

f A~x12y1 ,x22y2 ,x3 ,j;t!

y11 iy2
dy,

whose derivative is estimated as follows:

u]x
a]j

bg~ tAx,j;t!u<Cab~t1uju!m212ubu E
R2

~11ux82yu1ux3u!23

uyu
dy,

wherex85(x1 ,x2). The integral over the region$uyu,ux8u/2% is estimated as

E
uyu,ux8u/2

~11ux82yu1ux3u!23

uyu
dy<C~11uxu!22.

The integral over the region$uyu.ux8u/2% is estimated as

E
uyu.ux8u/2

~11ux82yu1ux3u!23

uyu
dy<

C

ux8u ER2
~11uyu1ux3u!23dy<

C

ux8u~11ux3u!
.

If ux8u.1, this is dominated from above byC(11uxu)21. If ux8u<1, we estimate in the following
manner:

E
ux8u/2,uyu,1

~11ux82yu1ux3u!23

uyu
dy<C~11ux3u!23E

uyu,1

dy

uyu
<C~11ux3u!23<C~11uxu!23,

E
uyu.1

~11ux82yu1ux3u!23

uyu
dy<CE

uyu,1
~11ux82yu1ux3u!23dy

<C~11ux3u!21<C~11uxu!21.

We have thus proven

u]x
a]j

bg~ tAx,j;t!u<Cab^x&21~t1uju!m212ubu.

From this we can conclude the lemma. h
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