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Configuration mixing calculation for complete low-lying spectra with a mean-field Hamiltonian
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We propose a new theoretical approach to ground and low-energy excited states of nuclei extending the
nuclear mean-field theory. It consists of three steps: stochastic preparation of many Slater determinants, the
parity and angular-momentum projection, and diagonalization of the generalized eigenvalue problems. The Slater
determinants are constructed in the three-dimensional Cartesian coordinate representation capable of describing
arbitrary shape of nuclei. We examine feasibility and usefulness of the method by applying the method with the
Bonche-Koonin-Negele interaction to light 4N nuclei, 12C, 16O, and 20Ne. We discuss difficulties of keeping
linear independence for basis states projected on good parity and angular momentum and present a possible
prescription.
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I. INTRODUCTION

One of the goals in the microscopic nuclear many-body
theory is the ab initio nuclear structure calculation starting
with a fixed Hamiltonian. Indeed, recent Green’s function
Monte-Carlo calculation with a bare nucleon-nucleon (NN)
interaction is a milestone in this direction [1–5]. However,
these ab initio calculations are still limited to nuclei with mass
number less than around 12 and to the lowest energy state
for each parity and angular momentum. The no-core shell
model [6] utilizes unitary transformation to accommodate the
short-range correlations. These introduce effective NN interac-
tions (without phenomenological adjustments); however, their
applications are also limited to light nuclei near the closed
configurations. Systematic description of ground and excited
states in nuclei in a wide mass region requires development of
a new computational approach.

One of difficulties of the nuclear many-body problem
is due to the strong short-range correlation. This forbids a
naive mean-field approach using the bare NN interaction. To
overcome this difficulty, effective NN interactions have been
extensively developed in history of the nuclear theory [7].
Namely, the short-range behavior of two-body correlation
is effectively renormalized in the interaction. Then, nuclear
many-body wave functions should take account of long-range
correlations only. Most of microscopic nuclear structure mod-
els adopt the effective interactions; e.g., nuclear mean-field
models [8–11], shell models [12,13], cluster models [14], and
so on. The success of these models indicates that a variety
of low-lying modes of excitation are governed by nothing but
the long-range correlations. In the present study, we aim for
developing a new method to treat the whole correlation of long
range beyond the mean field, utilizing the effective interaction
for the mean-field models.

To test our theory, we will apply the method to light N = Z

even-even nuclei. There are a variety of nuclear models for

light nuclei. Yet, the existing models are not satisfactory in
some respects. The shell model nicely describes spectroscopic
properties of light nuclei. However, because the model space
is truncated to a specific shell, states very different from the
ground state, which require a wider space, cannot be described
adequately. A classic example is the second Jπ = 0+ state in
16O. Although this is the lowest-lying excited state of this
doubly closed-shell nucleus, the shell model fails. The state
has been successfully described by the cluster model. The
nuclear cluster models have provided a fruitful description of
many light nuclei, especially for those states lying close to the
threshold. The antisymmetrized molecular dynamics (AMD),
which was first utilized for study of heavy-ion collision [15],
is an extension of the microscopic cluster model successful
to describe shell-model-like states as well [16,17]. However,
the model space of the AMD is a superposition of small
number of Slater determinants whose orbitals are restricted
to a Gaussian form. These models, the shell model and the
AMD, are applicable to either light nuclei or those near the
closed configuration. In contrast, the nuclear mean-field theory
has been successful to describe nuclei of a wide mass region
with a few parameters associated with the (density-dependent)
effective nuclear force. The theory provides a reasonable
description with a single Slater determinant for total binding
energy, radius, and deformation of ground states. However,
the superposition of multiple Slater is often required. For
example, when the mean-field solution violates symmetries
of the original Hamiltonian, one should superpose many
Slater determinants to restore the symmetry (“projection”) [7].
The symmetry restoration is crucial for many properties of
light nuclei. Recently, we developed a method of the parity
(angular-momentum) projection before (after) variation and
showed that the mean-field model is capable of describing
some typical cluster structures in light nuclei [18]. In this
article, we intend to further extend the method to a kind of
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complete calculation of the long-range correlations to obtain
energies and wave functions for the ground and low-lying
excited states starting from a nuclear mean-field Hamiltonian.

Our method has some resemblance to the generator co-
ordinate method (GCM) [7,19] and the Monte Carlo shell
model (MCSM) [20]. In the GCM, the generator coordinate is
adopted a priori, under a certain physical intuition, to describe
specific long-range correlations; e.g., quadrupole and octupole
correlation. In most practical calculations, the coordinate is
limited to one dimension. Our method stochastically take
into account all the important correlations. In the MCSM,
basis states are stochastically generated and selected, then the
diagonalization of the Hamiltonian is performed in the space
spanned by those states. This concept is very similar to ours,
but we use the mean-field-model Hamiltonian and our model
space is much wider than that of the shell model.

The article is organized as follows. In Sec. II, we present
the outline of our method. Its details are described in the
following sections; Selection of Slater determinants and the
parity and angular-momentum projection are shown in Secs. III
and IV, respectively. In Sec. V, we discuss configuration
mixing calculation and how to avoid numerical instability
caused by the overcompleteness of a selected basis and
numerical errors. Then, we test the accuracy of our approach
by taking 16O as an example. In Sec. VI, we compare numerical
results of 12C and 20Ne to experimental data. The summary is
given in Sec. VII.

II. FORMALISM

In this section, we present the outline of our method to
illustrate its essence. Roughly speaking, our method consists
of three steps:

(i) generation and selection of Slater determinants important
for ground and low-lying excited states

(ii) parity and angular-momentum projection
(iii) configuration mixing (diagonalization of the Hamiltonian)

Each of these steps is not as straightforward as it first looks. For
the step (i), because the short-range correlation is renormalized
in the effective interaction, we should be careful not to adopt
a Slater determinant involving components with very high
momentum. For the step (ii), because there is no symmetry
restriction on the wave function, we need to carry out the
projection with respect to the full three-dimensional Euler
angles. The diagonalization in (iii) is cursed by the well-known
overcompleteness problem of nonorthogonal basis and also
by accumulated numerical errors in the step (ii). We present
prescriptions to overcome these problems in Secs. III, IV,
and V, respectively.

Following the prescription given in Sec. III, many Slater
determinants are stochastically generated, then those important
for low-energy excitations are selected. Single-particle wave
functions in each Slater determinant are represented in the
three-dimensional (3D) Cartesian coordinate space without
any symmetry restriction. The selected Slater determinants
form a basis set, {|�n〉; n = 1, . . . , N}. We then make parity
and angular-momentum projection for each Slater determi-
nant. The Hamiltonian and the norm kernels for the fixed parity

(π = ±) and angular-momentum (J,K), where K indicates
its body-fixed component, are given by{

H
J (±)
nK,n′K ′

N
J (±)
nK,n′K ′

}
= 〈�n|

{
H

1

}
P̂ ±P̂ J

KK ′ |�n′ 〉. (1)

Here, Ĥ is the many-body Hamiltonian with effective inter-
action, P̂ ± is the parity projection operator, and P̂ J

KK ′ is the
angular-momentum projection operator. Finally, we solve the
following generalized eigenvalue problem,∑

n′K ′

(
H

J (±)
nK,n′K ′ − EJ (±)N

J (±)
nK,n′K ′

)
gn′K ′ = 0. (2)

If the space spanned by the set of the Slater determinants,
{|�n〉; n = 1, . . . , N}, is approximately complete for the long-
range correlation, we should obtain a convergent solution for
the ground and the low-lying excited states. Note that this is
merely an outline of the method. As a matter of fact, to avoid
the zero eigenvalues of the norm kernels, we will screen the
selected basis states and modify Eqs. (2). This prescription is
given in Sec. V.

To demonstrate applicability of our method, we show
numerical calculations employing the simplified mean-field
Hamiltonian, the so-called Bonche-Koonin-Negele (BKN)
force [21]. The BKN force consists of two-body plus three-
body forces. The two-body force consists of those of zero-
range part (t0), finite-range Yukawa part (VY), and the Coulomb
part (VC). The three-body term is a zero-range force (t3). The
Hamiltonian is given by

H =
A∑

i=1

(
− h̄2

2m

)
∇2

i + 1

2

∑
ij

V (2)(ij ) + 1

6

∑
ijk

V (3)(ijk),

(3)

V (2)(ij ) = t0δ(�ri − �rj ) + VY(�ri − �rj ) + VC(�ri − �rj ), (4)

V (3)(ijk) = t3δ(�ri − �rj )δ(�rj − �rk). (5)

The BKN interaction assumes that all nucleons have a charge
e/2, and four nucleons with different spin and isospin occupy
the same spatial orbital. To express the orbital wave functions,
we employ a grid representation discretizing 3D Cartesian
coordinate. Grid points inside a sphere of 8 fm are adopted
with grid spacing of 0.8 fm.

III. PREPARATION OF BASIS

A. Generation and selection of Slater determinants

The first step is to prepare a set of Slater determinants that
span the space necessary for low-lying states with the full
long-range correlations. We make use of the imaginary-time
method starting from initial configurations which are gener-
ated stochastically. The imaginary-time method is often used
to obtain self-consistent solutions. Instead, we utilize it for
generating many kinds of low-energy collective surfaces. We
pick up Slater determinants on the way to the self-consistent
solutions before reaching minima, and employ them in the
configuration mixing calculation.
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(A)

(B)(C)

FIG. 1. Schematic picture of the energy surface. Two crosses
represents minima of the energy surface. Three paths, (A), (B), and
(C), show imaginary-time trajectories starting from different initial
Slater determinants. The dotted arrow of (B) indicates the trajectory
(B) passes through a shoulder state.

Figure 1 shows a schematic picture of the imaginary-time
calculations starting from different initial configurations. The
imaginary-time iteration has a property suitable for generating
the basis to calculate the long-range correlations. It quickly
removes high-energy components of the wave function in a
early stage of the iteration. The Slater determinant is expected
to rapidly fall onto a potential energy surface important for
low-energy modes of excitation. This is the very property we
want, because we should exclude Slater determinants that take
account of the short-range correlation in the Hamiltonian.
Therefore, we simply dispose all the Slater determinants
generated in the first few hundred iterations of the imaginary-
time evolution and then select Slater determinants after the
rate of energy decrease becomes relatively slow.

A series of Slater determinants generated with the
imaginary-time calculation starting from an arbitrary initial
state eventually converge to a self-consistent solution; either
the Hartree-Fock ground state [paths (A) and (B) in Fig. 1]
or local minima solutions [path (C) in Fig. 1]. During the
iterations, it sometimes happens that the configuration changes
very slowly and the state stays almost unchanged for a long
period of the iterations [a part presented by the dotted arrow
of path (B)]. This is called a shoulder state. Although these
shoulder states are not self-consistent solutions, they may play
an important role for the low-lying excitation spectra and the
ground-state correlation.

We repeat the imaginary-time iteration many times starting
from different initial configurations. We construct the initial
Slater determinants by a stochastic procedure: The single-
particle orbitals of the initial Slater determinant are in a
Gaussian form whose centers are randomly chosen. After
generating large number of imaginary-time trajectories, we
may expect that those Slater determinants span the complete
space for calculation of the long-range correlations.

Figure 2 is an example of the actual imaginary-time
calculations for 16O, showing the energy expectation value,
E(Nit) = 〈�(Nit)|H |�(Nit)〉, as a function of the iteration
number, Nit. The path is similar to (B) in Fig. 1, passing
through a shoulder state. In Nit < 100, the energy expectation
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FIG. 2. An example of the imaginary-time evolution in 16O
started from a randomly generated Slater determinant. Solid line
indicates energy expectation value of the Slater determinant, |�(Nit)〉,
as a function of iteration number, Nit. Snapshots of the density
distribution at every 500 iterations are shown. The dashed and the
dash-dotted line indicate energy of even and odd parity component
of the Slater determinant, respectively. The imaginary-time step of
�τ = 0.001 h̄/MeV is adopted in the calculation.

value decreases very rapidly. From Nit = 200 to 1500, the
energy decreases very slowly, corresponding to a shoulder
state. We have found that this shoulder state corresponds
to the cluster structure of 12C+α, which is considered as
a dominant component of the first excited state of 16O
in the cluster model studies. The dashed and dash-dotted
curves are the energy expectation value after parity projection,
E(±)(Nit) = 〈�(±) (Nit)|H | �(±)(Nit)〉/〈�(±)(Nit)|�(±)(Nit)〉,
where |�(±)(Nit)〉 = P ±|�(Nit)〉.

B. Selection of Slater determinants

During the imaginary-time iterations of Ntotal steps, Slater
determinants for every Ns iterations are taken as candidates
of the basis states. Thus, the Slater determinants at Nc

it =
Ns, 2Ns, . . . , knNs are nominated first. The number of Slater
determinants taken from a single path is kn = Ntotal/Ns .
The typical numbers are Ns = 50 and Ntotal = 2000, leading
to kn = 40. However, we cannot include all these Slater
determinants in the basis set of the configuration mixing
calculation, because too many Slater determinants lead to a
numerical instability caused by the overcompleteness. Thus,
we need to reduce their number. Here, we impose two
additional constraints on those candidates:

(i) E(Nc
it ) < EHF + 30 MeV.

(ii) Overlap between any pair of selected Slater determinants
must be less than 0.7 (see below for details).

The condition (a) means that the energy expectation value of
each Slater determinant, E(Nc

it ) = 〈�(Nc
it )|H |�(Nc

it )〉, should
not be so large because we are interested in low-lying states
and the long-range correlations only. In the present work, we
adopt the cut-off energy as 30 MeV above the Hartree-Fock
ground-state energy.

The second condition is directly related to the linear
independence among the Slater determinants. To determine
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whether to include a candidate in the basis set, we examine the
overlaps between the new Slater determinant (candidate) and
all the Slater determinants that have been already included in
the basis set. If the maximum of the absolute values of the
overlap is less than a certain value, we add the candidate
to the set of basis states. Because we make parity and
angular-momentum projection later, it is desirable to check this
condition for projected wave functions. However, it costs too
much to achieve angular-momentum projection at this stage.
Instead, we examine the overlap for different configurations
produced by the interchange and the inversion of the Cartesian
axes. These transformations correspond to 24 choices of the
coordinate system and are easily realized in the 3D Cartesian
coordinate representation. The condition (b) for adding a
new Slater determinant |�(Nc

it )〉 to the selected basis set
{|�n〉; n = 1, . . . ,M} is expressed by∣∣〈�(

Nc
it

)∣∣P ±R̂i |�n〉
∣∣∣∣〈�(

Nc
it

)∣∣P ±∣∣�(Nc
it )

〉〈�n|P ±|�n〉
∣∣ 1

2

< 0.7,

for n = 1, . . . ,M, (6)

where R̂i , i = 1 . . . 24 are special rotations and inversions
corresponding to permutation of the axes (x, y, z).

In practice, the Hartree-Fock state |�HF〉 is always selected
first. Then, we start the examination of constraints (a) and (b)
for generated Slater determinants |�(Nc

it )〉 in the ascending
order of the energy expectation value. Here, we employ
not the energy expectation values with respect to the Slater
determinant, but those with respect to the states projected onto
negative parity, P −|�(Nc

it )〉. This makes it easier to select
exotic deformations which often appear in the negative-parity
excited states. For the case in Fig. 2, states at Nit ≈ 2000 are
examined first. Because those around Nit ≈ 500 also show
local minima in the energy surface of negative parity, they are
also nominated with high priority.

The number of Slater determinants satisfying the criteria (a)
and (b) are typically from zero to three in a single trajectory of
the imaginary-time evolution. Apparently, larger the number of
selected Slater determinants, M , the more difficult it becomes
to find the (M + 1)-th Slater determinant to satisfy the
condition (b). In actual calculations, about 100 imaginary-time
trajectories will be repeatedly generated to obtain about 50
Slater determinants that satisfy these conditions.

IV. PARITY AND ANGULAR-MOMENTUM PROJECTION

A. Projection with respect to 3D Euler angles

For each Slater determinant in a set {|�n〉; n = 1, 2, . . . , N}
that are generated and selected in Sec. III we perform the parity
and angular-momentum projection. Because we construct
wave functions employing the 3D Cartesian coordinate rep-
resentation without any restrictions on the spatial symmetries,
the full three-dimensional angular-momentum projection is
necessary. The three Euler angles, (α, β, γ ), are abbreviated as
	. The angular-momentum-projection operator P J

MK is given
as usual by

P J
MK = 2J + 1

8π2

∫
d	DJ ∗

MK (	)R̂(	), (7)

where DJ
MK (	) is the Wigner’s D function and R̂(	) is the

rotation operator.
Quantities necessary for solving a generalized eigenvalue

equation in Sec. V are matrix elements of the norm and
Hamiltonian kernels. For two Slater determinants, |�n〉 and
|�n′ 〉, we calculate matrix elements for parity and angular-
momentum projected wave functions.{

N
J (±)
nK,n′K ′

H
J (±)
nK,n′K ′

}
≡ 〈�n|P ±†P J †

MK

{
1
Ĥ

}
P J

MK ′P
±|�n′ 〉

= 〈�n|
{

1
Ĥ

}
P J

KK ′P
±|�n′ 〉

= 2J + 1

16π2

∫
d	DJ ∗

KK ′ (	)〈�n|eiαĴz

×
{

1
Ĥ

}
(1 ± P̂ )eiβĴy eiγ Ĵz |�n′ 〉, (8)

where K and K ′ specifies quantum numbers for body-fixed
component of the angular-momentum operator. Because the
rotation operator commutes with the Hamiltonian, we apply
rotations of angles β and γ to the ket vector |�n′ 〉 and the
rotation of α to the bra vector 〈�n| in the practical calculations.
The parity projection operator is given by P ± = (1/2)(1 ± P̂ ),
where P̂ is the space inversion operator.

The parity transformation and rotation of the Slater de-
terminant, |�〉 = det{|φk〉}/

√
A!, are achieved by the cor-

responding transformation of their single-particle orbitals,
|φk〉, k = 1, . . . , A. The rotation of finite angle is realized
by successive rotations of a small angle. For instance, for a
rotation of angle α around z axis,

|φα
k 〉 ≡ e−iαĵz |φk〉 = (e−i�αĵz )Ndiv |φk〉, �α = α/Ndiv. (9)

Each small-angle rotation is performed using the Taylor
expansion of the rotation operator;∣∣φα+�α

k

〉 = e−i�αĵz
∣∣φα

k

〉
≈

Nmax∑
k=0

(−i�αĵz)k

k!

∣∣φα
k

〉
, (10)

where Nmax = 4 gives an accurate result. We usually employ
�α = 2π/360.

The integrand of Eq. (8) is the overlap/Hamiltonian matrix
element between two different Slater determinants, e−iαĴz |�n〉
and (P̂ )eiβĴy eiγ Ĵz |�n′ 〉. These matrix elements are simply
expressed in terms of the interstate density matrix defined
in Appendix.

B. Numerical details of the projection

We here discuss numerical accuracy of the 3D angular-
momentum projection. Numerical error in the matrix elements
of Eq. (8) may cause a serious trouble when we solve the
generalized eigenvalue problem of Eq. (2). For instance, the
norm matrix, NJ±

nK,n′K ′ , should be positive definite; however, in
practice, calculated norm matrix suffers from many negative
eigenvalues though their absolute values are small.

The finite difference approximation for the angular momen-
tum and the finite-order expansion for the rotation operator in
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FIG. 3. Eigenvalues of norm matrix for J π = 3− in 16O. The horizontal line indicates the sequential number according to the magnitude of
the eigenvalues. The top, middle, and bottom panels show those of No. 1 to 200, 200 to 320, and 320 to 350, respectively. The norm matrix is
calculated with various discretization on Euler angles. In the left panels (a), β is discretized into 20 (squares), 40 (circles), and 80 (triangles)
points, whereas α and γ are discretized into 20 points. In the right panels (b), α and γ are discretized into 10 (squares), 20 (circles), and
40 (triangles) points, whereas β is discretized into 40 points.

Eq. (10) are a good approximation. We have examined the
identity of the single-particle orbitals before and after rotating
over 2π . The overlap between these two single-particle wave
functions is very close to unity, with error less than 10−4.
Therefore, the error in each rotated wave function is relatively
small. However, it seems that these numerical errors are
accumulated during the 3D integration over Euler angles,
0 � α < 2π, 0 � β < π , and 0 � γ < 2π .

The numerical integration is carried out using the trape-
zoidal rule with the finite-number discretization. Figure 3
shows the norm eigenvalues calculated for Jπ = 3− in 16O.
Fifty Slater determinants are generated in the procedure
explained in Sec. III, thus the dimension of the norm matrix is
350 (= 7 × 50, where 7 is the number of different K quantum
numbers). The eigenvalues of norm matrix N

3(−)
nK,n′K ′ are plotted

in descending order. The left three panels show the eigenvalues
when the number of grid points of the angle β is varied from 20
to 80, whereas those for α and γ are fixed at 20. For the right
panels, we vary the number for α and γ from 10 to 40, being
fixed at 40 for β. The norm eigenvalues are converged for α and
γ if we adopt 15 or more grid points for their discretization.
In contrast, the convergence with respect to β is rather slow
and we still have about 70 negative eigenvalues with 80 grid

points. Apparently, it is desirable to have larger number of
grid points for the discretization of β angle. However, we must
make a compromise and sacrifice some accuracy, because the
calculation for the Hamiltonian kernels in Eq. (8) are very
demanding in the 3D rotation. In the present work, we employ
discretization of 15 grid points for α and γ and 20 points for β.
Even with this discretization, we need to evaluate 4500 matrix
elements for each pair of the Slater determinants.

A price of sacrificing the accuracy is a complication of
solving the eigenvalue problem, due to appearance of negative
norm. In Sec. V, we explain how to cope with this difficulty.

V. CONFIGURATION MIXING; ENERGY SPECTRA
OF 16O

A. Zero- and negative-norm problem

Although we collect a set of linearly independent Slater
determinants in the procedure explained in Sec. III, the
linear independence is often lost after the parity and angular-
momentum projection. This will lead to number of eigenvalues
of the norm matrix close to zero. Moreover, the numerical
error in the angular-momentum projection even produces the
negative eigenvalues. To solve the eigenvalue Eq. (2), we must
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remove states that cause the zero and negative eigenvalues. In
this section, we give a possible prescription for this.

For each angular-momentum state J , we reduce the
dimension of the configuration space as follows. We first
diagonalize the norm matrix in different K states for each
Slater determinant. This is the diagonalization of (2J + 1) ×
(2J + 1) matrix,

J∑
K ′=−J

N
J (±)
nK,nK ′v

nν
K ′ = λJ (±)

nν vnν
K . (11)

Here the eigenstates are labeled by ν. After the K diagonal-
ization, the basis is specified by the label ν, instead of K . The
collected basis states are denoted as {|J (±)

nν 〉}n,ν,J ;∣∣J (±)
nν

〉
M

=
∑
K

vnν
K P J

MKP ±|�n〉, M = −J, . . . , J. (12)

The magnetic quantum number in the laboratory frame, M ,
is a trivial conserved quantity simply giving the (2J + 1)-fold
degeneracy for each state, thus omitted hereafter. At this stage,
we exclude states whose eigenvalues λJ (±)

nν are smaller than
10−2. A small eigenvalue will appear when, for example, the
Slater determinant is an approximate eigenstate of a specific
K quantum number. In the case of Jπ = 3− of 16O, we have
350 configurations constructed from 50 Slater determinants,
among which about one 100 configurations have λJ (±)

nν less
than 10−2 and are discarded.

Although the states in {|J (±)
nν 〉}n,ν,J are truncated according

to the norm eigenvalues, to avoid numerical instability, we
need to reduce the number furthermore. For this purpose, we
consider a following “normalized” norm matrix,

Ñ
J (±)
nν,n′ν ′ ≡ N

J (±)
nν,n′ν ′(

N
J (±)
nν,nν

)1/2(
N

J (±)
n′ν ′,n′ν ′

)1/2 , (13)

which is constructed so as to make the diagonal elements
ÑJ (±)

nνnν equal to unity. We make a further selection according
to the magnitude of eigenvalues of this matrix, λ̃i , obtained by
solving ∑

n′ν ′
Ñ

J (±)
nν,n′ν ′u

i
n′ν ′ = λ̃iu

i
nν, (14)

for each parity and angular-momentum sector. The existence of
small eigenvalue, λ̃i 
 1, indicates a strong overcompleteness
of the basis set. We impose the condition on the eigenvalues,
that the smallest eigenvalue, λ̃min, must be greater than 10−3.
This is done by the following procedure. First, we calculate
eigenvalues of 2 × 2 matrix of Ñ

J (±)
nν,n′ν ′ for all possible pairs of

(|J (±)
nν 〉, |J (±)

n′ν ′ 〉). If the smaller eigenvalue is less than 10−3,
we remove one of them according to the magnitude of its
diagonal element (remove |n′ν ′ 〉 if Ñ

J (±)
n′ν ′,n′ν ′ < ÑJ (±)

nν,nν). The
number of basis states, {|J (±)

nν 〉} surviving these screenings
is now denoted as Nsc. For the Jπ = 3− states of 16O, Nsc is
of order 100. If the λ̃min of the Nsc × Nsc matrix, Ñ

J (±)
nν,n′ν ′ , is

larger than 10−3, we can proceed to the configuration mixing
calculation to solve Eq. (17). Otherwise, we will further reduce
the number of states: We diagonalize the matrix Ñ

J (±)
nν,n′ν ′ in a

space spanned by the basis except for a single state, |J (±)
mµ 〉.

This is the diagonalization of the (Nsc − 1) × (Nsc − 1) matrix.
We do this Nsc times for all possible |J (±)

mµ 〉, to find the one,
|J (±)

mµ 〉ex, for which the minimum eigenvalue of the remaining
(Nsc − 1) × (Nsc − 1) matrix become the largest. This state,
|J (±)

mµ 〉ex, is removed from the basis set. This process is
repeated and the number of basis is reduced one by one,
until all the eigenvalues, λ̃i (i = 1, . . . , N

J (±)
b ), become larger

than 10−3. In the case of Jπ = 3− in 16O, several dozens of
configurations of |3(−)

mµ 〉 are discarded in this screening, so

that the final number of the basis states is N
3(−)
b ≈ 50. Note

that NJ (±)
b is the number of states in {|J (±)

nν 〉}, thus the number
of adopted Slater determinants (that of |�n〉) is in general less
than N

J (±)
b .

To check numerical accuracy and stability, it is convenient
to define a “normalized” norm eigenstate corresponding to an
eigenvalue λ̃i as

∣∣JM(±)
i

〉
M

≡ 1√
λ̃i

∑
nν

ui
nν√

N
J (±)
nν,nν

∑
K

vnν
K P J

MKP ±|�n〉. (15)

Using these states as a basis, we calculate the norm and
Hamiltonian kernel matrices,

Ñ
J (±)
ij ≡ 〈


J (±)
i

∣∣J (±)
j

〉
, H̃

J (±)
ij ≡ 〈


J (±)
i

∣∣H ∣∣J (±)
j

〉
, (16)

and solve the generalized eigenvalue equation

N
J (±)
b∑

j=1

{
H̃

J (±)
ij − EJ (±)Ñ

J (±)
ij

}
g̃

J (±)
j = 0. (17)

We obtain the energy eigenvalues EJ (±) and the eigenvectors
g̃

J (±)
i .

B. Quality of solutions

In this section, we examine quality of solutions obtained by
diagonalizing Eq. (17) and how “complete” the selected basis
is. Let us emphasize again that we do not intend to obtain the
exact eigenstates of a given Hamiltonian. The exact ground
state of a Hamiltonian with the zero-range interaction such as
Eq. (3) perhaps leads to an unphysical solution. Instead, we
aim to take into account correlations of its long-range part
only. Therefore, we examine whether the method can produce
convergent results for low-lying states.

Let us suppose that we have selected N
J (±)
b basis states

for specific parity and angular momentum, (J,M,±). We
solve Eq. (14) to obtain eigenvalues, λ̃i , and vectors, ui

nν ,
then construct the norm eigenstates of Eq. (15), |J (±)

i 〉. First,
the states {|J (±)

i 〉} are sorted according to the magnitude of
their norm eigenvalues, λ̃i . Thus, the eigenstates are arranged
in sequence of λ̃1 > λ̃2 > · · · > λ̃Nb

. The middle and bottom
panels in Fig. 4 show distributions of λ̃i and the diagonal
elements of the Hamiltonian, ẼJ (±)

i = H̃
J (±)
ii , respectively, for

Jπ = 0+ (left) and 3− states (right) in 16O. In this calculation,
there are 19 basis states for Jπ = 0+ and 53 for Jπ = 3− for
which all the norm eigenvalues are larger than 10−3. The λ̃i

decrease linearly in the logarithmic scale. An interesting thing
is the fact that the energy expectation values, ẼJ (±)

i , are closely
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FIG. 4. Energies and norm eigenstates of J π = 0+ states (left) and 3− states (right) in 16O. The top panels show calculated energy EJ (±) of
Eq. (17) as a function of dimension of the adopted model space. The middle and bottom panels show λ̃i and Ẽ

J (±)
i = H̃

J (±)
ii , respectively. See

text for details.

correlated with the norm eigenvalues λ̃i . The energies Ẽ
J (±)
i

roughly show a monotonic increase with i, as λ̃i decrease. This
may justify the screening process to discard states with small
norm eigenvalues, because those states possess large energy
expectation values and are expected not to play a significant
role for low-energy excitations.

The top panels in Fig. 4 show resultant energy eigenvalues,
EJ (±), obtained by the diagonalization of Eq. (17). The
horizontal axis indicates the number of basis states included in
the calculation, which is increased one by one from left to right;
{|J (±)

1 〉}, {|J (±)
1 〉, |J (±)

2 〉}, . . . , {|J (±)
1 〉, . . . , |J (±)

Nb
〉}.

Calculated spectra for Jπ = 0+ and 3− states in 16O are
shown in the left and right panels, respectively. As is seen
in the figure, low-energy spectra become almost invariant with
respect to the inclusion of new basis states. In other words,
energies of the ground and low-lying states are insensitive to
the inclusion of states with small norm eigenvalues. These
convergent behaviors suggest that the long-range correlations
for low-lying states are taken into account in the calculation.

To further examine the completeness of the basis states,
we check the identity of results produced with different
sets of basis states (initially generated with different random
numbers). If our prescription provides a complete set of basis
for the long-range correlations of the Hamiltonian, the energy

spectra should not depend on the initial Slater determinants
from which the imaginary-time iteration started. In Fig. 5,
excitation energies in the 16O nucleus calculated with four
different sets of Slater determinants are compared. In these
four independent calculations, different seeds for the random
number were used in preparing the initial Slater determinants.
The energies of the lowest and the next lowest states for each
parity and angular momentum (Jπ ) coincide to each other in
reasonable accuracy. For example, negative-parity excitations
of 1−, 2−, and 3− states appear below 15 MeV, and there
are no other states in this energy region. The results become
less reliable for higher states in each Jπ sector. The second
0+ state (first excited 0+) appears around 15∼17 MeV in all
calculations. However, excitation energy of the third (second
excited) 0+ state in the bottom-left panel is notably higher than
the other three.

The excitation energy of the second 0+ state is much
higher than the experimental value (6.05 MeV). The three
negative-parity excited states with Jπ = 3−, 1−, and 2−,
are experimentally observed at 6.13, 7.12, and 8.87 MeV,
respectively. The BKN interaction adopted in the present
work, which does not contain the spin-orbit interaction, is too
simple to give a quantitative description of nuclear structure.
However, it should be noted that, although these negative-
parity states are thought to have a dominant 1p-1h character,
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FIG. 5. Excitation energies of 16O. Symbols at the bottom of each panel indicate the quantum numbers, J π . Results of calculations
employing four different sets of Slater determinants are displayed.

recent coupled-cluster calculation with a realistic two-body
force also fails to reproduce their excitation energies [22,23].
Thus, it will be of significant interest to investigate origins of
these discrepancies using a Skyrme interaction in future.

We also perform the same examination for other nuclei
discussed below, 12C and 20Ne. The final number of basis
states N

J (±)
b and behavior of the convergence is similar to

those of 16O. The comparison of results among sets of basis
generated with different random numbers may provide a
useful information about reliability of calculations. From these
analysis, we may judge how many eigenstates in each Jπ sector
can be trusted.

Before finishing this section, let us comment on the cut-off
value of the norm eigenvalues. In the bottom panels of Fig. 4,
the energy expectation values become somewhat scattered as
the norm eigenvalues, λ̃i , approach to 10−3. This may be an
indication of the numerical instability. In fact, if we include
basis functions with λ̃i < 10−3, the configuration mixing leads
to unphysical solutions. For instance, if we set a cutoff of
λ̃i > 10−4, the ground state becomes completely different
from the Hartree-Fock state and its energy is unreasonably
lowered by the diagonalization of the Hamiltonian. It is
most likely that this problem originates from the numerical
error in evaluating the matrix elements, especially in the
angular-momentum projection.

VI. ENERGY SPECTRA OF 12C AND 20Ne

The BKN interaction of Eq. (3) is adopted for testing our
new method. As we have mentioned before, one should not
expect a quantitative description of the low-lying spectra.
However, the present calculation gives a reasonable description

for some excited states of light nuclei, especially for those
composed of the LS-closed clusters. In this section, we present
calculated energy spectra of 20Ne and 12C nuclei. In these
nuclei, there appear the LS-closed clusters in the ground and
excited states (α + 16O for 20Ne and 3α for 12C). In this article,
we restrict our discussion on the energy spectra in these N = Z

even-even nuclei. A detailed discussion on the structure of
excited states including information on the transition matrix
elements will be given in our next work employing a realistic
Skyrme interaction.

Figure 6 shows calculated energy spectra (left panel) and
those in measurement (right) in 20Ne. It is well known that
the Kπ = 0+ ground-state band and the Kπ = 0− negative-
parity band starting with 1− state at 5.785 MeV constitute a
kind of inversion doublet band of the α-16O cluster structure.
This inversion doublet bands are reasonably described in our
calculation. In the measurement, the lowest negative-parity
band is the Kπ = 2− band at 4.968 MeV. In our calculation,
it is around 9 MeV, reflecting the importance of the spin-orbit
splitting of p and d orbitals for this excitation.

We next discuss results for 12C whose spectra are shown
in Fig. 7. Again, the calculation (left panel) is compared with
measured spectra (right). The calculation produce the ground-
state rotational band, but its moment of inertia is significantly
larger than the observed values. In the negative parity, our
calculation produces 3− state in the lowest energy, also 1− and
2− states at low excitation energies. These are qualitatively
in agreement with experiments. In the positive parity excited
states, the calculation indicates two 0+ states around 10 and
12 MeV. These may correspond to the measured states around
8 and 10 MeV.
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FIG. 6. Calculated and experimental excitation energy spectra of 20Ne. Symbols at the bottom of each panel indicate the quantum
numbers, J π .

In Refs. [24], we have reported the variation after parity
projection calculation employing the BKN interaction. The
angular momentum projection after variation is achieved in
the calculation employing Skyrme force [18,25–27]. A part of
results presented in this section coincide fairly well with these
variation after parity projection calculations. This suggests
that the variation after parity projection gives a dominant
correlation for a certain class of states (with clustering) in
12C and 20Ne.

VII. SUMMARY

In this article, we report our attempt to develop a new com-
putational method to include all the long-range correlations
beyond the mean-field approximation. We aim at a systematic
description of the ground and low-lying excited states using
a mean-field Hamiltonian, without assuming their structure
a priori.

First, we stochastically generate many Slater determi-
nants. The single-particle orbitals are expressed on the
three-dimensional Cartesian grid representation. To remove
high-energy components in those states, we use the imaginary-
time iteration method. The imaginary-time evolution pro-
duces many trajectories important for low-energy modes
of excitation. We select some of these states to keep the
linear independence. We then project them on good parity

and angular momentum and perform a configuration mixing
calculation. The BKN interaction is utilized to examine
feasibility and difficulty of the method. We have found that
there is a numerical difficulty to achieve the configuration
mixing calculation. The eigenvalues of the norm matrix can
be close to zero, when the selected states are overcomplete.
In the practical calculations, a small numerical error in the
angular-momentum projection results in the occurrence of
negative eigenvalues of the norm matrix. We eliminate states
responsible for these zero and negative eigenvalues before
solving the generalized eigenvalue problem.

We show calculated results for some light 4N nuclei, 12C,
16O, and 20Ne. In these nuclei, appearances of various cluster
states are known in excited states. Our calculation provides
reasonable excitation energies for α+16O states of 20Ne and
3α states of 12C for which the spin-orbit interaction, which
is not included in the BKN force, does not play an important
role.

The results calculated with different sets of random
numbers are approximately identical to each other. However,
the discrepancy becomes more evident for states at higher
energies. In the present level of accuracy, we may predict the
lowest and possibly the second-lowest states in each parity
and angular-momentum sector. Improvement in numerical
accuracy, especially in the three-dimensional angular-
momentum projection, is desired for future work with more
realistic interactions.
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FIG. 7. The same as Fig. 6 but for 12C.
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APPENDIX: MATRIX ELEMENTS BETWEEN
NONORTHOGONAL SLATER DETERMINANTS

In this appendix, we present useful expressions for cal-
culating matrix elements such as the integrand of Eq. (8).
In general, we discuss transition amplitude of an operator
Ô between two different Slater determinants, 〈�|Ô|〉. The
Slater determinants are expressed in terms of orthonormal
single-particle orbitals, |�〉 = det{|φi(j )〉}/√A! and |〉 =
det{|ψi(j )〉}/√A!, with 〈φi |φj 〉 = 〈ψi |ψj 〉 = δij . Here, we
assume |�〉 and |〉 are not orthogonal to each other. To
calculate these matrix elements, it is convenient to define
following orbitals,

|ψ̃i〉 =
∑

j

|ψj 〉(B−1)ji , (A1)

where the matrix B is defined by Bij = 〈φi |ψj 〉. The overlap
matrix element is given by the determinant of B, 〈�|〉 =

det B. It can be easily confirmed that |ψ̃i〉 are biorthogonal to
|φj 〉, having

〈φi |ψ̃j 〉 = δij . (A2)

We also note that the Slater determinant constructed from |ψ̃i〉
is proportional to |〉,

|̃〉 ≡ 1√
A!

det{ψ̃i(j )} = |〉
〈�|〉 . (A3)

Because the Slater determinant |〉 is now represented by
single-particle orbitals |ψ̃i〉 that have a biorthogonal property
(A2), the matrix elements 〈�|Ô|〉 can be expressed in a
familiar form very similar to that of the expectation value,
〈�|Ô|�〉. Suppose that the expectation value of the operator
Ô, 〈�|Ô|�〉, is expressed as a functional of the density matrix,
ρij (�) = 〈�|c†j ci |�〉,

O[ρ(�)] = 〈�|Ô|�〉. (A4)

Then, the matrix element between |�〉 and |〉 is expressed as

〈�|Ô|〉 = 〈�|Ô|̃〉〈�|〉 = O[ρ̃(�)]〈�|〉, (A5)

where the interstate density ρ̃(�) is defined by

ρ̃ij (�) = 〈�|c†j ci |̃〉. (A6)

Therefore, the matrix element between two Slater deter-
minants, 〈�|Ô|〉, is given by O[ρ] × det B, where the
density matrix ρ is replaced by the interstate density
matrix (A6).
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