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Linear response theory in the continuum for deformed nuclei: Green’s function vs time-dependent
Hartree-Fock with the absorbing boundary condition
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The continuum random-phase approximation is extended to the one applicable to deformed nuclei. We propose
two different approaches. One is based on the use of the three-dimensional (3D) Green’s function, and the other is
the small-amplitude TDHF with the absorbing boundary condition. Both methods are based on the 3D Cartesian
grid representation and applicable to systems with no symmetry on nuclear shape. The accuracy and identity
of these two methods are examined with the BKN interaction. Using the full Skyrme energy functional in the
small-amplitude TDHF approach, we study the isovector giant dipole states in the continuum for 16O and for
even-even Be isotopes.
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I. INTRODUCTION

Mean-field theories with effective interactions [1–4] have
been extensively used for systematic description of nuclear
ground-state properties from light to heavy nuclei, including
infinite nuclear matter. Nuclear mass, radius, density distri-
bution, and deformation are the primary target of the static
effective mean-field theory [5]. The concept of the nuclear
mean-field theory is rather different from the Hartree-Fock
theory in electronic systems but is more close to the density
functional theory. Especially, the Hartree-Fock (HF) with the
zero-range Skyrme interaction results in an energy functional
of local densities. A similar form of functional was obtained
from the density-matrix expansion of energy functionals
calculated with the microscopic nucleon-nucleon forces [6,7].

Although the static mean-field calculations well reproduce
the bulk nuclear properties throughout the nuclear chart, it
is necessary to go beyond the mean field to describe excited
states and correlations associated with many kinds of collective
motions. The generator coordinate method (GCM) [8,9] is one
of the standard methods to take account of the configuration
mixing. The GCM based on the mean-field theory provides
a unified description of single-particle and collective nuclear
dynamics. In practice, collective variables, q, are chosen from
physical intuition and are restricted to one dimension in most
cases. For instance, to describe quadrupole excitations, the
most common choice is the mass quadrupole moment, q =
A〈�(q)|r2Y20|�(q)〉, where the single-Slater states |�(q)〉
are determined by the constrained Hartree-Fock(-Bogoliubov)
calculation. This is a drawback of the GCM that one has to
prepare, a priori, a set of states {|�(q)〉}.

The time-dependent Hartree-Fock (TDHF) theory is a
complementary method to the GCM. The system determines
its collective path for itself and the TDHF takes care of both
collective and single-particle excitations. The TDHF is also
known to produce the proper inertial parameters [10] because
it is a dynamical theory to incorporate time-odd components
in the wave function. A drawback is its semiclassical nature.
Namely, to calculate quantal quantities, such as eigenenergy
and transition probability, one has to requantize obtained
TDHF dynamics. Although it is a difficult task to requantize

the TDHF orbitals in general [11], the perturbative regime
can be easily handled. The linear approximation leads to the
random-phase approximation (RPA) for the effective density-
dependent forces, which is analogous to the time-dependent
local-density approximation in electronic systems [12,13].
Another advantage of TDHF is its ability to describe spreading
width of collective motion induced by the interaction between
particles and time-dependent mean-field potential (one-body
dissipation). The escape width can be also described by the
TDHF but requires proper treatment of the continuum. In this
article, we propose a feasible method to treat the continuum
in the real-space TDHF calculation. That is the absorbing
boundary condition (ABC) approach. We have already stud-
ied photoabsorption in molecules [14] and nuclear breakup
reaction [15,16] with the similar technique. Our earlier
attempts for nuclear response calculation have been reported
in Refs. [17–20].

The Green’s function method in the linear response pro-
posed by Shlomo and Bertsch [21] is a common way to
treat the continuum boundary condition. It is usually called
“continuum RPA” in nuclear physics. The same idea was
proposed later in the time-dependent density functional theory
(TDDFT) for calculations of photoresponse in rare-gas atoms
[22]. The method has been widely applied to spherical (magic
or semimagic) nuclei [23–32]; however, its application to
deformed systems has not been done so far, because the
explicit construction of Green’s function is extremely difficult
for deformed potential. We have recently proposed an iterative
method to construct response functions for deformed systems
with the proper boundary condition in the three-dimensional
(3D) coordinate space and studied molecular photoabsorption
using the TDDFT [14,33]. There, the dynamical screening
effect in the continuum for a multicenter problem was a key
issue for understanding the photoabsorption cross section at
photon energies higher than the ionization potential. The same
method is applicable to nuclear mean-field models that do not
contain nonlocal densities. In this respect, applications to the
Skyrme energy functional is parallel to the TDDFT. In this
article, we extend a method of the continuum RPA to the one
in the 3D coordinate space and apply it to deformed nuclei.
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We call this “3D continuum RPA” in this article. This provides
the exact treatment of the nucleonic continuum for deformed
nuclei [34]. The results can be used to check validity of the
ABC approach.

Another issue addressed in this article is the self-consistent
treatment in the continuum response calculation. The nuclear
energy functional is far more complicated than that of
electronic TDDFT. The Skyrme functional is one of the
simplest, because its nonlocal part is expressed by derivatives
of local densities. Even so, the continuum RPA calculations so
far neglect the spin-orbit and Coulomb residual particle-hole
interactions, which violates the self-consistency with the HF
field [29,35]. In addition, a time-reversal-odd (time-odd) part
of densities, such as spin densities, are often omitted. Because
the spin-orbit term in the time-even mean field is related to
spin-current terms in the time-odd mean field by the local
gauge (Galilean) invariance [36,37], the neglect of spin density
violates this symmetry. As far as we know, at present, there
is no fully self-consistent Skyrme-HF-based continuum RPA
calculations, even for spherical nuclei. We perform the small-
amplitude TDHF calculation with the ABC (TDHF+ABC) in
fully self-consistent manner for the giant dipole resonance
in 16O and examine effect of residual interactions that have
been neglected so far. In the time-dependent relativistic mean-
field approach without the continuum, the small-amplitude
real-time calculation has been attempted for spherical nu-
clei [38,39]. However, only a very short time period (3 ∼
4 h̄MeV−1) was achieved, which prevents them from car-
rying out a quantitative analysis. See also recent articles
[40–42] and references therein for the present status of
the self-consistent HF(B)+(Q)RPA calculations for spher-
ical nuclei. It should be noted that, without the con-
tinuum boundary condition, there exist a few works of
fully self-consistent RPA for deformed nuclei calculated in
the 3D coordinate space with the full Skyrme interaction
[43,44].

In recent developments of radioactive-ion-beam facilities,
the Coulomb excitation and the inelastic scattering are
becoming standard methods to investigate excited states in
unstable nuclei. For weakly bound systems, the treatment
of the continuum should be extremely important. Moreover,
we know most of open-shell nuclei are deformed. Collective
modes of excitation in the particle continuum in deformed
nuclei become the main interest in those studies. This has not
been examined in a self-consistent manner so far. The present
article provides us with general methods of linear response in
the continuum for systems whose energy functional is given
by local one-body densities.

The article is organized as follows: Section II presents a
method of extending the continuum RPA to deformed nuclei.
In Sec. III, we present a real-time TDHF method using the
absorbing boundary condition. Some illustrative examples
show effect of the continuum and comparison between these
two methods in Sec. IV. In Sec. V, we present numerical
results of the small-amplitude TDHF+ABC calculation in real
time using the Skyrme energy functional for giant dipole
resonances. Effects of time-odd densities, and E1 strengths
in 16O and those in neutron-rich Be isotopes are discussed.
The conclusion is summarized in Sec. VI.

II. 3D CONTINUUM RPA

For spherical systems, the continuum RPA is formulated
in terms of the radial Green’s function using a multipole
expansion [21]. Hereafter, we refer to this as “1D continuum
RPA.” In Ref. [14], we have presented a method to construct
a Green’s function in the 3D grid representation for a system
without any spatial symmetry. In this section, we recapitulate
the method of constructing the response function. Spin and
isospin indices are suppressed for simplicity and h̄ = 1 is used.

The HF Hamiltonian, h[ρ], is a functional of one-body den-
sity matrix [45]. In case of zero-range effective interactions, it
is a functional of local one-body density ρ(r). The stationary
condition is as follows:

[h, ρ] = 0, (1)

which defines the HF ground state density ρ = ρ0. Then, the
TDHF equation with an external perturbation,

i
d

dt
ρ(t) = [h[ρ] + Vext(t), ρ(t)], (2)

is linearized with respect to the density fluctuation as follows:

ρ(r, t) = ρ0(r) + δρ(r, t). (3)

This leads to the well-known RPA equation. The transition
density, δρ(r; ω), which is the Fourier transform of δρ(r, t),
can be expressed as follows [22,35]:

δρ(r; ω) =
∫ ∫

dr�(r, r′; ω)Vext(r′; ω) (4)

=
∫

dr′�0(r, r′; ω)

×
(
Vext(r′; ω)+

∫
dr′′v(r′, r′′)δρ(r′′; ω)

)
, (5)

where � and �0 are the RPA and the independent-particle
response function, respectively. The v(r, r′) is a residual
interaction which is defined by the following:

v(r, r′) ≡ δ2E[ρ]

δρ(r)δρ(r′)
. (6)

Here, we assume that the total energy functional, E[ρ], is a
function of local density ρ(r) only. The HF mean field is also
local in the coordinate space. Assuming that a one-particle
moment F (r) depends only on the spatial coordinates, the
transition strength is obtained from the transition density as
follows:

dB(ω; F )

dω
≡

∑
n

|〈n|F |0〉|2δ(ω − En) (7)

= − 1

π
Im

∫ ∫
drdr′F (r)�(r, r′; ω)F (r′) (8)

= − 1

π
Im

∫
drF (r)δρ(r; ω)

∣∣∣∣
Vext=F

. (9)

In case of deformed nuclei, |0〉 and |n〉 are not eigenstates of
total angular momentum operator. Thus, dB(ω; F )/dω should
be regarded as the intrinsic transition strength. In Sec. V B,
we assume the strong coupling scheme [46] to transform
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calculated intrinsic strength to the quantity in the laboratory
frame. The response function is written as follows:

�(r, r′; ω) = �0(r, r′; ω)

+
∫ ∫

dr′′dr′′′�0(r, r′′; ω)v(r′′, r′′′)�(r′′′, r′; ω), (10)

�0(r, r′; ω) =
A∑

i=1

{φi(r)G(−)(r, r′; εi − ω)φ∗
i (r′)

+φ∗
i (r)G(+)(r, r′; εi + ω)φi(r′)}. (11)

The single-particle Green’s function in Eq. (11) is defined by
the following:

G(±)(r, r′; E) = 〈r|(E − h[ρ0] ± iη)−1|r′〉. (12)

Here, the superscript +(−) indicates the outgoing (incoming)
boundary condition. In case that h[ρ0] is rotationally invariant,
the Green’s function of Eq. (12) can be constructed by using
the partial-wave expansion as follows:

G(±)(r, r′; E) = 2m
∑
lm

Ylm(r̂)
ul(r<)w(±)

l (r>)

W
[
ul, w

(±)
l

]
rr ′ Y

∗
lm(r̂′).

(13)
Here, W is the Wronskian and ul and wl are solutions of the
radial Schrödinger equation for h[ρ0] = −∇2/2m + V (r):(

E + 1

2m

d2

dr2
− l(l + 1)

2mr2
− V (r)

)
Rl(r) = 0. (14)

ul is regular at origin and w
(±)
l has an outgoing/incoming

asymptotic form. In the 1D continuum RPA [21], Eq. (10) is
also expanded in partial waves. Then, the 1D RPA response
function (in the radial coordinate) is explicitly constructed by
using Eqs. (10), (11), and (13).

There are some difficulties to extend the theory to non-
spherical systems. The first one is a purely numerical difficulty.
Because the number of spatial grid points in the 3D space is
much larger than that of the radial grid points, it is hard to
explicitly construct the response function, �(r, r′; ω), and to
perform spatial multifold integration. We also need to calculate
an inverse matrix to solve Eq. (10). The second difficulty lies
in the complexity of boundary condition. Equations (13) and
(14) cannot be used for cases of a deformed HF potential.

We solve the first numerical problem by using an iterative
procedure for implicit calculation of the response and Green’s
function. For instance, to calculate the transition density, we
recast Eq. (5) into an integral equation for δρ as follows:∫

dr′′
{
δ(r − r′′) −

∫
dr′�0(r, r′; ω)v(r′, r′′)

}
δρ(r′′; ω)

=
∫

d3r ′�0(r, r′; ω)Vext(r′; ω). (15)

This is equivalent to a linear algebraic equation in the 3D
grid space and we use the iterative method to solve it. For the
linear algebraic problem, A|x〉 = |b〉, the iterative methods
require neither a full knowledge of the matrix A nor an
inverse matrix A−1 but do require only results of operating
A on a certain vector |y〉. This means that we do not need

to calculate an explicit form of �0(r, r′; ω). All we need to
calculate is the action of �0; that is, �0 · v · δρ and �0 · Vext,
where the dot indicates the integral in Eq. (15). This is an
advantage of the iterative method over the direct method. In
addition, the iterative method is known to be very efficient for
a large sparse matrix. Then, the next task is to calculate action
of �0. According to Eq. (11), we have to operate G±(E)
on certain states |y〉. Now the problem is coupled to the
second difficulty, that is, the continuum boundary condition
for deformed systems.

We start to divide the HF potential into a long-range
spherical part and a short-range deformed one, h[ρ0] =
−∇2/2m + V0(r) + Ṽ (r). In the present work, V0(r) is taken
as the Coulomb potential of a sphere of radius 1.2A1/3 fm with
a uniform change Ze. The single-particle Green’s function
for h0 = −∇2/2m + V0(r) is constructed in the same way as
Eq. (13), which is denoted by G

(±)
0 (E) below. We have an

identity for G,

G(±)(r, r′; E) = G
(±)
0 (r, r′; E)

+
∫

d3r ′′G(±)
0 (r, r′′; E)Ṽ (r′′)G(±)(r′′, r′; E). (16)

The boundary condition of G
(±)
0 determines an asymptotic

behavior of G(±). The action of G(±), |x(±)〉 = G(±)|y〉 for
a given state |y〉, is obtained by solving a linear algebraic
equation as follows:{

1 − G
(±)
0 Ṽ

}|x(±)〉 = G
(±)
0 |y〉. (17)

Here, we use, again, the iterative method to solve this equation.
In summary, to obtain the transition density, we solve

Eq. (15). To do this, we need to calculate the operation of �0,
which then requires us to solve Eq. (17) with a proper boundary
condition. The procedure results in multiple-nested linear
algebraic equations that are solved with iterative methods,
such as the conjugate gradient method. The detailed algorithm
is given in Ref. [14].

III. REAL-TIME TDHF+ABC

A. Absorbing boundary condition (ABC)

The TDHF equation can be efficiently solved in the 3D
lattice space in real time [11,47,48]. The same technique has
been applied to TDDFT of finite [49,50] and infinite electronic
systems [51]. In the real-time calculation, we propagate single-
particle wave functions {φi}i=1,...,A using the same technique
as that in Ref. [47].

φi(r, t + 
t) = exp(−i
t · h[ρ(t + 
t/2)])φi(r, t),
(18)

where the exponential operator is expanded in a power series
to (
t)4. The time step in following applications is taken
as 
t = 0.001 MeV−1. There are many good reasons for
solving the problem in real-time representation. First, the
computation algorithm becomes very simple. To make the
time evolution, only the operation of the HF Hamiltonian
on a certain single-particle state, h[ρ]|ψ〉, is needed to be
calculated, though the self-consistency between ρ(t) and h[ρ]
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brings slight complication. Second, a single calculation of the
time evolution provides information for a wide range of energy.
Thus, for the strength function in a wide energy region, the
real-time calculation is often more efficient than that in the
energy domain. Last but not least, the TDHF wave packet
in real space in real time gives an intuitive understanding
of dynamics. In pioneering works on heavy-ion collisions,
the TDHF dynamics nicely demonstrated time evolution of
nuclear inelastic scattering [11,47,52].

The TDHF time evolution is relatively easy in the present
computer power. The problem is how to impose the continuum
boundary condition. The exact treatment of the continuum
such as the Green’s function method is very difficult (even
impossible) in this case, because the energy of escaping
particles cannot be determined uniquely. Thus, we attempt
an approximate treatment. The usual approach to TDHF in
real space is to assume the wave function to be zero at some
distance R from the origin, which we call “Box boundary
condition” (BBC) hereafter. Then, the time evolution must be
completed before a significant portion of the wave reaches
the boundary. Seeking higher accuracy, we must employ a
larger R value, increasing the computation task. Instead, in this
article, we employ the “absorbing boundary condition” (ABC),
which introduces a complex absorbing potential outside of
the system. The method was first tested by Hamamoto and
Mottelson for a schematic one-dimensional model of TDHF
calculation [53]. Since then, however, its capability has not
been fully examined in nuclear theory. Conversely, in other
fields of quantum physics, especially in atomic and molecular
collision theories, the method has become one of standard
methods for calculations of reactive scattering problems (see
a recent review article [54] and references therein). We have
demonstrated that the ABC is able to produce results identical
to that of the exact continuum with the Green’s function
for TDDFT study of photoabsorption in molecules [14]. In
nuclear three-body reaction models [15], the method was also
tested in detail for deuteron breakup reaction and provides
an alternative method to the continuum-discretized-coupled
channels (CDCC). A similar approach has been tested to
calculate nuclear resonance states in a simple model [55].

The success of the ABC approach is based on its simplicity.
Actually, it requires only a minor modification of the real-time
TDHF code, simply adding a complex potential, −iη̃(r). We
replace the HF Hamiltonian in Eq. (18) by the following:

h[ρ] −→ h[ρ] − iη̃(r). (19)

This prescription is equivalent to the use of Green’s function of
Eq. (12) in which the infinitesimal imaginary part η is replaced
by a finite and coordinate-dependent η̃(r). The absorbing
potential must be zero in a region where the ground-state
density has a finite value, and it is finite outside of the
system. Of course, the addition of the complex potential
violates the unitarity of time evolution. Thus, the norm of each
single-particle state decreases with time, which represents a
physical process, the emission of particles.

We adopt the same form of absorptive potential as previous
works [14,15]. This is a linear dependence on the coordinate
[56,57] as follows:

η̃(r) =
{

0 for 0 < r < R,

iη0
r−R

r

for R < r < R + 
r.
(20)

The size of the inner model space (r < R) is chosen so that
the HF ground state converges within this space. The outer
space of width 
r (R < r < R + 
r) is the absorbing region
that should be large enough to prevent reflection of emitted
outgoing waves. The condition of a good absorber for a particle
with mass m and energy E is given by the following:

7
E1/2


r
√

8m
< |η0| <

1

10

r

√
8mE3/2. (21)

Here, we demand the reflection smaller than 0.1% and the
transmission smaller than 3.3%. The similar condition was
given in Refs. [14,56,57]. Because the condition is energy
dependent, we choose 
r and W0 as follows:


r = 12 fm, η0 = 10 MeV. (22)

This satisfy the condition of Eq. (21) for 7 < E < 60 MeV.
For the linear response calculation, first, we solve the

static HF problem with the imaginary-time method [58] to
determine the occupied HF orbitals {φ0

i }i=1,...,A. Then, an
external perturbative field, Vext(r, t) = εF (r)δ(t), is turned on
instantaneously at t = 0. This results in an initial state of the
TDHF calculation as follows:

φi(r, t = 0+) = e−iεF (r)φ0
i (r), (23)

where the constant ε is arbitrary but should be small enough
to validate the linear approximation of Eq. (3). We calculate
time evolution of the expectation value of F (r) (assumed to be
real) as follows:

〈�(t)|F |�(t)〉 =
∫

dr
A∑

i=1

φ∗
i (r, t)F (r)φi(r, t)

=
∫

drF (r)δρ(r, t). (24)

Here, we assume that the ground-state expectation value of
F (r) is zero at the last equation. Comparing its Fourier
transform with Eq. (9), we have the following:

dB(ω; F )

dω
= − 1

πε
Im

∫
dt〈�(t)|F |�(t)〉eiωt . (25)

Note that 〈�(t)|F |�(t)〉 is fully determined by wave functions
in the inner space (r < R), as far as the linear approximation
is valid. This can be easily understood using a relation, δρ =∑

i φ
0∗
i δφi + h.c., and the condition that φ0

i = 0 at r > R.

B. Adaptive-coordinate 3D grid space

There is a significant improvement of the computational
cost by reducing the number of grid points in the outer space.
Although we take the outer model space roughly the same
size as the inner one in the radial coordinate (R ≈ 
r), its
volume is considerably larger because the volume element
increases as r2dr . Therefore, the calculation of wave functions
in the outer model space consumes most of the computation
time. However, because wave functions in the outer space are
irrelevant for 〈�(t)|F |�(t)〉, the accurate description is not
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FIG. 1. Adaptive grid in the (x, y) plane for the coordinate
transformation of Eq. (26) with x0 = 8 fm, k = 5, and n = 2. The
(u, v, w) space is discretized in square mesh of 0.9 fm.

necessary there. Therefore, we use the adaptive curvilinear
coordinate in the small-amplitude TDHF+ABC calculation
[59]. The coordinate transformation we use in this article is as
follows:

x(u) = x0
ku/x0

1 + (k − 1)u/(x0 sinh(u/x0))n
, (26)

and the same form for y(v) and z(w) as well. This function
has an asymptotic values, x(u) ∼ u at u � x0 and x(u) ∼ ku

at u � x0. All the derivatives and integrals in (x, y, z) space
are mapped to those in (u, v,w) space. For instance,

∂2

∂x2
= d2u

dx2

∂

∂u
+

(
du

dx

)2
∂2

∂u2
, (27)

∫
dr =

∫
dudvdw

dx

du

dy

dv

dz

dw
. (28)

The 3D (u, v,w) space is discretized in square mesh and
finite-point formula in this space is applied to numerical
differentiation. The curvilinear grid space employed in Secs.
IV and V is shown in Fig. 1.

IV. ILLUSTRATIVE EXAMPLES: APPLICATION WITH
THE BKN INTERACTION

In this section, some illustrative examples are shown to
demonstrate the effects of continuum, the validity of the
bound-state (L2) approximation, and a comparison between
Green’s function and the ABC approach. We adopt the BKN
interaction used in Ref. [47]. Note that, for this schematic
interaction, the spin-isospin degeneracy is assumed all the time
and the Coulomb potential acts on all orbitals with a charge
e/2. The HF one-body Hamiltonian is given by the following:

h[ρ] = − 1

2m
∇2 + 3

4
t0ρ + 3

16
t3ρ

2 + WY + WC, (29)

where the Yukawa potential, WY , and Coulomb potential, WC ,
consist of their direct terms only. The parameters are taken
from Table I of Ref. [47].

A. Continuum in the spherical nucleus: 16O

1. L2 approximation of the continuum

RPA calculations are often performed on the L2 basis set,
such as the harmonic oscillator basis. Bound excited states
are well described in those calculations, but how accurate is
the L2 approximation for resonance and continuum states?
In other words, what size of model space is necessary to
describe an excited state with a finite life time? In Ref. [17],
we give a relation between the box size R and the energy
resolution 
E for continuum states; 
E ∼ h̄v/R, where v is
the velocity of an escaping particle. If we consider a resonance
with a lifetime of τ , we should read 
E ∼ h̄v/(R + vτ ). For
a long-lived state, vτ � R, this is identical to the uncertainty
principle, 
E ∼ h̄/τ . However, for a state of vτ � R, such
as broad resonance and nonresonant continuum, the resolution
is limited by the size of model space.

Using the BKN interaction, it is easy to perform
the self-consistent 1D continuum RPA calculation for closed-
shell spherical nuclei. We show, in Fig. 2, results of the 1D
continuum RPA and the RPA in a box radius R with BBC,
which is referred to as “discretized RPA,” for isoscalar (IS)
octupole resonance in 16O. We should note that a similar
study on monopole resonance can be found in Ref. [17].
For the continuum RPA calculation, the outgoing boundary
condition is imposed at r = 8 fm (top panels). For simplicity,
we use the free asymptotic form, w

(±)
l ∼ e±ikr with k2/2m =

[E − VC(r) − l(l + 1)/2mr2] at r = 8 fm, instead of the exact
Coulomb wave function. For the discretized RPA, the radius
of model space is chosen as R = 20 fm (middle panels)
and R = 8 fm (bottom panels). Because the discretized RPA
produces only discrete peaks, we use a smoothing parameter
�, adding an imaginary part, i�/2, to the real energy ω. In the
continuum calculation, though we do not need to smear out
the continuum strength, we use the same value of � to make
the resolution as coarse as the discretized RPA.

The continuum RPA calculation clearly shows the low-
energy octupole resonance (LEOR) and high-energy octupole
resonance (HEOR). The single-particle energy for p shell is
about −16 MeV in this calculation. Thus, the LEOR is a bound
peak whose width is entirely from a smoothing parameter �. As
you see in Fig. 2, the bound LEOR peak depends neither on the
boundary condition nor on the box size R. This justifies the use
of the discretized RPA for bound excited states. Conversely,
the structure of HEOR, which is embedded in the continuum,
strongly depends on values of R. Note that the continuum
RPA results with � = 0.5 MeV is almost identical to that with
� = 0, which means that the width of HEOR is not artificial
in contrast to the LEOR. The parameter � actually controls
the energy resolution. For the discretized calculations with
R = 20 fm, we need � >∼ 8 MeV to produce roughly identical
results to the continuum calculation. For those with R =
8 fm, we still see some discrepancy even with � = 10 MeV.
To obtain sensible results in the discretized basis, we should
average the strength function with � inversely proportional
to the box size. We find an empirical formula, � ≈ 3(h̄v/R)
for this calculation. The continuum results with � = 0.5 MeV
can be reproduced by the discretized calculation if we employ
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FIG. 2. Mass octupole strengths as functions of excitation energy for 16O calculated with the BKN interaction. The top panels show results
of the self-consistent continuum RPA. The middle and bottom panels show results of the discretized RPA of R = 20 and 8 fm, respectively.
The smoothing parameter � increases from left to right, 0.5, 2, and 10 MeV. The solid curves show the RPA strength function, while the dashed
show unperturbed one. Because each orbital has a fourfold degeneracy (spin-isospin), the E3 strengths are those shown multiplied by e2/4.

a model space of R >∼ 200 fm. It is nearly impossible to
treat this size of the 3D grid space with a present computer
power. Therefore, it is certainly desirable to develop a method
of treating the continuum boundary condition for deformed
nuclei. The methods described in Secs. II and III will serve
this purpose. Next, we discuss applications of these methods
to the BKN interaction.

2. Small-amplitude TDHF+ABC vs. continuum RPA

In this section, we examine accuracy and feasibility of
methods in Secs. II and III. We compare results of two methods
and show how accurate the TDHF+ABC can be.

We use the same BKN model, Eq. (29), and, again, calculate
octupole states in 16O. For the 3D continuum RPA calculation,
the model space is the 3D coordinate space of R = 8 fm,
discretized in square mesh of 
x = 
y = 
z = 1 fm. For the
real-time method with small-amplitude TDHF+ABC, we use
the adaptive curvilinear coordinate of Fig. 1, with R = 8 fm
and 
r = 12 fm and η0 = 10 MeV for the absorbing potential.
The time evolution is calculated up to t = 30 MeV−1, and
then we perform the Fourier transform of the time-dependent

octupole moment with F (r) = r3Y30(r̂). Results of the Green’s
function method is shown in Fig. 3(a) and those of the real-time
method in Fig. 3(b). These figures are almost identical to each
other, but one may notice small difference. First, the strength
at 20 < ω < 30 MeV is slightly higher for the real-time
calculation. This is probably because the condition for the
absorber, Eq. (21), breaks down for low-energy particles (E <

7 MeV). Second, the peak position is higher for the real-time
calculation by about 0.3 MeV for LEOR and about 0.6 MeV
for HEOR. This is due to the use of adaptive coordinate
representation. The time evolution of octupole moment is
shown in Fig. 4 with use of the square and the adaptive
coordinate. Discrepancy seen at t > 1 MeV−1 corresponds
to 0.3 MeV difference in the LEOR energy. Comparing results
of these calculations with those of the 1D continuum RPA
in the radial coordinate, we see a very good agreement (see
the top-left panel of Fig. 2). This means that the nucleonic
continuum states are properly treated in both calculations of
the 3D coordinate space; the Green’s function method and the
small-amplitude TDHF+ABC. There is a small peak in
the 3D calculation at ω = 2.5 MeV. This is due to small
admixture of the spurious translational mode. In Fig. 3(a), the
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FIG. 3. The same as Fig. 2, but calculated with (a) the Green’s
function method in the 3D grid space and (b) the real-time small-
amplitude TDHF+ABC in the adaptive 3D space. The smoothing
parameter is � = 0.5 MeV. Calculated spurious dipole strength is
shown by crosses for 0 < ω < 5 MeV in units of square femtometers.

strength calculated with Vext = rY10 is presented by crosses
for 0 < ω < 5 MeV in units of square femtometers. In the 1D
continuum RPA calculation with the partial-wave expansion,
these octupole and dipole modes are separated. Thus, this
mixing is not present in Fig. 2. However, in the 3D grid space,
the translational and rotational invariance of the Hamiltonian is
not exact. Adopting finer grid spacing diminishes the spurious
peak height and moves its position toward zero energy.

Figure 4 demonstrates an interesting feature in real time.
The total energy is conserved within 300 keV up to t =
30 MeV−1. With the BBC instead of the ABC, the energy
conservation becomes even better. The absolute scale of its
vertical axis does not have a significant meaning because it
depends linearly on the arbitrary small parameter ε. In the
beginning, there is interference between the LEOR and HEOR;
however, for t >∼ 1 MeV−1, only the LEOR mode survives.
This feature clearly indicate stability of the bound collective
excitation and decay of the collective mode in the continuum.
The single-mode oscillation of the LEOR continues to the end
of the time evolution (t = 30 MeV−1). The HEOR decays into
the nucleon emission within time scale of t ∼ 0.5 h̄/MeV.
Therefore, a part of the calculated energy width of HEOR, at
least a few mega electron volts is associated with this nucleon
escape width.

0 1 2 3

t [ MeV-1 ]

0

< (t)|r3Y3| (t)>

FIG. 4. Time evolution of the octupole moment as a function of
time for 16O. The calculation in the adaptive (square) mesh coordinate
is shown by the solid (dashed) line.

B. Continuum in the deformed nucleus: 20Ne

Now let us discuss a light deformed nucleus, 20Ne. This
illustrates usefulness and difficulties of the present approaches.
Using the BKN interaction, 20Ne has a superdeformed prolate
shape with β ≈ 0.6. This nucleus has a ground-state rotational
band and the measured B(E2; 2+ → 0+) value is consistent
with the deformation. Former calculations of the variation
after parity projection have produced the Y30-type octupole-
deformed ground state with the BKN [60] and with the Skyrme
interaction [61]. Because the system is deformed, the 1D
continuum RPA is no longer applicable. This is the first attempt
of the 3D continuum RPA calculation for deformed nuclei.

We use the same model space as the previous calculation on
16O. The IS monopole (r2) and quadrupole field [r2Y2K (r̂)] are
adopted as the external perturbations in Eq. (4). Results of the
3D continuum RPA are shown in Fig. 5. The calculated single-
particle energy of the last occupied orbital is −10.8 MeV. Thus,
all the high-energy peaks in the figure are embedded in the
continuum. The giant quadrupole resonance shows three peaks
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FIG. 5. Calculated strength functions for 20Ne. The smoothing
parameter � = 1 MeV is used. (a) IS monopole resonance. The
solid (dotted) line indicates the RPA (unperturbed) strengths. (b) IS
quadrupole resonance. The K = 0, K = 1, and K = 2 quadrupole
strengths are shown by solid, dash-dotted, and dashed lines, respec-
tively.
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in order of K = 0, 1, and 2 in increasing energy [Fig. 5(b)].
Energy spacing between K = 0 and 1 peaks is smaller than
that between K = 1 and 2. This agrees with the simple scaling
rule [62]. The result also indicates no low-energy quadrupole
vibration except for the zero-mode with K = 1. This is a
characteristic feature in the superdeformation [63,64].

The monopole strength seems to consist of two compo-
nents: a peak at 15 MeV and a broad hump in the energy region
of E > 20 MeV. The peak position is lower than that of the
unperturbed peak, by about 5 MeV. For the monopole strength
in 16O, calculated strength is shifted higher in energy with the
BKN interaction [17]. Therefore, we consider this lowering in
energy due to strong coupling to the quadrupole resonance.
In fact, the peak lies at exactly the same energy as the K = 0
quadrupole resonance [Fig. 5(b)]. We have reported a similar
result for the oblate nucleus, 12C [65]. Although the BKN
interaction may not be realistic for arguing real phenomena
in 20Ne, effects of such coupling in the continuum between
different multipole resonances in deformed nuclei would be
an interesting subject in future. There are experimental data
on this issue [66–68].

At the end of this section, we mention a numerical problem
of the real-time TDHF+ABC method. We have difficulty cal-
culating a certain class of IS modes of excitation with the real-
time method. This is associated with zero (Nambu-Goldstone)
modes. For instance, calculating TDHF time evolution with
the external perturbative IS K = 0/K = 1 octupole field, the
center of mass of the nucleus starts moving because of coupling
to the translational motion. Of course, if we adopt a very small
grid spacing, these modes are decoupled, which is guaranteed
by the self-consistent HF+RPA theory. In practice, we use
a mesh of order of 1 fm in the 3D Cartesian coordinates
and a finer mesh size drastically increases a computational
task. The problem is more serious in deformed cases than
in spherical, because the angular momentum selection rule
no longer works. In addition, the deformed nucleus has the
rotational mode as another zero mode, which is clearly seen in
the K = 1 mode in Fig. 5. In 16O, we are able to perform the
time evolution up to t � 30 MeV−1; however, for the K = 0
octupole mode in 20Ne, t ≈ 10 MeV−1 is a limit of time
period in which the reliable calculation can be done. This is,
of course, a matter of computational cost. If we do not use the
adaptive curvilinear coordinate and adopt a larger space, we
can carry out a stable calculation for a longer period. Because
of this problem, in the next section we discuss applications
with the Skyrme interaction to the isovector (IV) giant dipole
resonances (GDR), which is more stable and feasible.

V. GDR STUDIED WITH SKYRME TDHF+ABC

A. Effects of time-odd mean field in 16O

The continuum RPA with the Skyrme energy functional
is a standard method for describing collective excitations in
closed-shell spherical nuclei. However, its fully self-consistent
calculations have not been achieved in practice, neglecting
residual spin-orbit and Coulomb interactions. In addition,
some of the time-odd densities, which are known to be
important for nuclear moment of inertia and the local Galilean

invariance [37], are often neglected in the continuum RPA. In
this section, we present an application of the small-amplitude
TDHF+ABC method to the giant dipole resonance (GDR)
in 16O. Then, we compare the result with that of the former
1D continuum RPA (which neglected the residual spin-orbit,
Coulomb, and spin-spin parts), discussing effects of the
residual interactions.

We adopt the Skyrme energy functional as same as
Eqs. (A.2), (A.15), and (A.16) in Ref. [70]. The static HF+BCS
code based on this functional is called EV8, which assumes
the parity and the z-signature symmetry. In the present work,
we assume no symmetry to allow a time-dependent state to be
any Slater determinant during the time evolution. The energy
density is written in terms of local densities as follows:

H(r) = 1

2m
τ (r) + Heven(r) + Hodd(r), (30)

with

Heven(r) = Heven[ρn, ρρ, ρτ, ρ
↔
∇ · ↔

J ], (31)

Hodd(r) = Hodd[j2, s2, s · ∇ × j]. (32)

Here, we follow the notation in Ref. [37]. According to

Ref. [70], terms of s · T − ↔
J 2, s · s, and (∇ · s)2 are omitted.

The energy functional, Heven + Hodd, keeps the local gauge
invariance [36,37]. It is customary in the static HF calculation
to take account of the center-of-mass correction by multiplying
the first term in Eq. (30) by a factor (A − 1)/A. We use this
correction both for static and dynamic calculations.

To see effects of time-odd components, we adopt the
SIII interaction, which was used in the 1D continuum RPA
calculation in Ref. [23]. We perform the TDHF calculation
with the full functional of Heven + Hodd and the one neglecting
Hodd. Hereafter, let us call the former functional “SIII-full”
and the latter “SIII-even.” The instantaneous external field is
chosen as follows:

Vext(r, t) = εM(E1, µ = 0)δ(t) = εe(E1)rY10(r̂)δ(t),
(33)

where e(E1) indicates the E1 recoil charge, Ne/A for protons
and −Ze/A for neutrons. ε is an arbitrary small number. Then,
solving the TDHF equation as follows:

i
∂

∂t
φi(t) =

{
− 1

2m
∇2 + V even(t) + V odd(t)

}
φi(t), (34)

for i = 1, . . . , A. The time evolution is performed up to t =
30 MeV−1. The time-even mean field, V even, has been well
tested against a large number of experimental observations.
To test the time-odd mean field, V odd, we need to investigate
dynamical properties of nuclei.

Figure 6(a) shows time evolution of calculated E1 dipole
moment, 〈�(t)|M(E1)|�(t)〉. In the SIII-even calculation,
we see a beating pattern that results in two main peaks of the
dashed line in Fig. 6(b). This is in a good agreement with the
result of the 1D continuum RPA [23]. However, the inclusion
of the time-odd mean field, which is necessary for the Galilean
invariance, changes the strength distribution into a single peak
(solid line). We decompose effects of time-odd densities into
those of current density j and spin density s in Figs. 6(c) and (d),
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FIG. 6. Results of the Skyrme TDHF+ABC for GDR in 16O. (a-1)
Time evolution of the E1 moment as a function of time calculated with
the SIII-full. (a-2) The same as (a-1) but with SIII-even. (b) Calculated
photoabsorption cross section as a function of excitation energy. The
SIII-full calculation (solid line) is compared to the SIII-even (dashed
line). The smoothing parameter � = 0.5 MeV is used. (c) The same
as (b) but neglecting the spin density s. Experimental photoneutron
cross section (×3.5) is shown by the dotted line [69]. (d) The same
as (b) but neglecting the current density j. See text for details.

respectively. The current density provides additional residual
interaction to push the GDR to higher energy by 0.5–
1.3 MeV, whereas the spin density merges the two main peaks
into one. This effect of time-odd density is not special to the
SIII interaction. The same effect is observed with the SGII
parameters of the Skyrme interaction. See Ref. [71] for a
brief report on the same calculation with the SGII force. It is
somewhat surprising that not only the current but also the spin
density significantly modify the GDR structure. Photoneutron
cross-sectional data [69] are shown in Fig. 6(c) with a dotted
line. Their absolute values are multiplied by 3.5, because
the data indicate less than 20% of the TRK sum rule. The
experimental shape of the GDR resembles that of the SIII-even
calculation, but the two main peaks are calculated lower by

about 3 MeV. Agreement on the main peak position is slightly
improved in the SIII-full calculation, though the calculated
peak is still lower than that of the experiment by 2–2.5 MeV.

If the interaction commutes with the E1 operator, the
oscillator sum is as follows:

S(E1) ≡
∫ ∞

0
EB(E1; 0+ → E(1−))dE, (35)

=
1∑

µ=−1

∫ ∞

0
E|〈E(1µ)|M(E1, µ)|0〉|2dE, (36)

is identical to the following TRK classical sum rule value:

S(E1)class = 9e2

8πm

NZ

A
. (37)

For 16O, the classical sum rule gives S(E1)class =
59.4 e2 fm2 MeV. Because the Skyrme interaction has momen-
tum and isospin dependence, the classical sum rule is violated
to a certain extent. We have S(E1) = 75.1 e2 fm2 MeV
for SIII-full and S(E1) = 67.1 e2 fm2 MeV for SIII-even.
The enhancement of the TRK sum is 26% for SIII-full and it
reduces to 13% if we neglect the time-odd mean field. This
difference mainly comes from the spin density. If we integrate
the strength in the energy region up to 30 MeV, we have
S(E1) ≈ S(E1)class for both SIII-full and SIII-even.

B. E1 resonances in even-even Be isotopes

Finally, we apply the small-amplitude TDHF+ABC method
to E1 resonances in beryllium isotopes. Beryllium nuclei have
been extensively studied both theoretically and experimentally
(see, e.g., Ref. [72] and references therein). 8Be is well
known for the α-α clustering structure with an elongated
prolate shape. Valence neutrons added to 8Be are expected
to cause variety of structure change in the ground and excited
states [73–75]. 10Be has two neutrons in addition to 8Be. The
α-α distance in the ground state is considered to be slightly
smaller than that in 8Be. 12Be is a semimagic nucleus (N = 8);
however, its properties are different from spherical closed-shell
nuclei. The measured spectroscopic factors suggest that the
last neutron pair is two-thirds in the sd configurations [76].
The neighboring odd nucleus, 11Be, is famous for the parity
inversion and for the halo structure in the ground state. The
existence of 14Be at the drip line beyond N = 8 also indicates
weakening of shell closure at N = 8. Because both Z = 4 and
N = 10 are the magic numbers at the prolate superdeformed
shape, we expect 14Be to be deformed as large as 8Be. A new
mode of excitation of significant interest is the soft E1 mode
near the neutron drip line [77,78]. Coupling in the continuum
between the soft E1 mode and the quadrupole deformation
is an unsolved problem that can be addressed by the present
method to some extent.

We use the Skyrme interaction of the SIII parameters
including the time-odd components (SIII-full). The adopted
model space is the adaptive grid in Fig. 1 with R = 10 fm and

r = 12 fm. Usually, the static HF calculation is carried out
with constraint on the center of mass at the origin. However, in
this calculation, we impose no condition on the center-of-mass
and on the direction of the principal axis. Although this results
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in heavy computation for the imaginary-time step, it turns out
that this is important for the stable time evolution of the TDHF
state kicked off by the external perturbation. The external
field is the same form as Eq. (33) but includes rY1±1. The
TDHF calculation with the perturbative E1 field provides
the E1 intrinsic strength, dB(ω,M(E1,K))/dω through
Eq. (25). Assuming the strong coupling scheme [46], the
B(E1) transition strength in the laboratory frame is given by
the following:

dB(ω; E1)

dω
≡

∫
dEx B(E1; 0+ → Ex(1−))δ(ω − Ex),

=
∑
K

∫
dEx |〈Ex |M(E1,K)|0〉|2δ(ω − Ex),

=
∑

K=0,±1

dB(ω;M(E1,K))
dω

. (38)

Here, the state |0〉 (|Ex〉) is the intrinsic ground (excited) state.
The static HF calculation predicts all these nuclei to be

deformed in prolate shape in the ground state. Calculated
quadrupole deformations are given in Table I. As we expected,
8Be and 14Be possess large deformation. 12Be has the smallest
deformation, but its proton distribution has a moderate de-
formation. The static HF analysis on Be isotopes with the
SIII force have been already done in Ref. [79]. The total
binding energies are well reproduced. Calculated occupied
single-particle energies are listed in Table II. In the linear
response approximation of the TDHF, the neutron continuum
plays its role at energies higher than the absolute value of
single-particle energy of the last-occupied neutron. Because
the proton orbitals become deeply bound in neutron-rich
nuclei, the proton continuum is expected to be less important.
However, in these Be isotopes, the protons are important to
produce prolate deformation of the mean field.

Now let us discuss dynamical properties of these nuclei. In
Fig. 7, calculated time-dependent E1 moment is presented as
functions of time. The time evolution is calculated up to t =
30 MeV−1. The beginning third of the total period is shown
in Fig. 7. Note that the amplitude is magnified by a factor
of 10 in the latter half of period. Performing the Fourier
transform, calculated B(E1) transition strength is shown in
Fig. 8. In 8Be, we observe large splitting of the GDR peak
associated with the large quadrupole deformation (β ≈ 1). The
magnitude of splitting is more than 10 MeV and the K = 0
peak (the oscillation along the symmetry axis) is lowered
to around 15 MeV in energy. In Fig. 7(a), the amplitude of
the K = 0 oscillation almost monotonically decays as time

TABLE I. Calculated quadrupole deformation for even-even Be
isotopes. The last two columns show deformation of neutron and
proton density distribution, βn and βp , separately.

β βn βp

8Be 1.07 1.06 1.09
10Be 0.39 0.33 0.49
12Be 0.12 0.07 0.22
14Be 0.74 0.77 0.66

FIG. 7. Calculated E1 moment as functions of time for (a) 8Be,
(b) 10Be, (c) 12Be, and (d) 14Be. The dashed (solid) line indicates
the external field with K = 0 (K = ±1). Scale of the vertical axis
is arbitrary because it linearly depends on the small parameter ε. It
is magnified by a factor of 5 for the latter half of period, 5 < t <

10 MeV−1.

increases, whereas that of the K = 1 mode shows a beating
pattern. This results in a splitting of the high-lying K = 1
peak. In the total B(E1) strength function, this is seen as a
small peak in the middle of two main peaks. We also see that
the K = 0 oscillation stays longer than the K = 1. This is
because the peak position is near the particle decay threshold,
thus, the allowed phase space is smaller for the K = 0 peak
(Table II).

In 10Be, we see a similar behavior to that of 8Be. Because
of the smaller deformation, the lower K = 0 peak shifts to
higher energy by about 5 MeV. Figure 8(b) again indicates the
K = 1 mode split into two peaks. Although the ground-state
deformation in 10Be is less than half that of 8Be, the energy
splitting between the lowest and highest peaks is still as large
as 7 ∼ 8 MeV.

Next, let us discuss 12Be. The calculated quadrupole
deformation is the smallest among these even-even isotopes.
In contrast to 8,10Be, we see a not distinguished double-peak
structure. The GDR shows a peak at 21 MeV with a broader
structure around 25 MeV. There exists low-energy E1 strength
in the continuum below 10 MeV. The peak very near zero
energy is due to small admixture of the translational mode.
Because of this mixing, the response function suffers from
spurious oscillatory behavior at energy below 2 MeV. Thus,
we concentrate our focus on states at ω > 2 MeV.
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TABLE II. Calculated neutron (n) and proton ( p) single-particle energies in
units of mega electron volts for Be isotopes. Each state has a twofold degeneracy
associated with the time-reversal symmetry.

8Be 10Be 12Be 14Be

n p n p n p n p

−24.8 −22.9 −26.3 −31.6 −25.5 −36.7 −24.9 −39.1
−13.3 −11.5 −12.5 −16.0 −11.5 −20.6 −14.0 −25.7

−9.7 −10.3 −9.1
−4.3 −3.5

−2.6

Though the B(E1) strength in low energy looks small
compared to that in the main GDR, the integrated strength in
the energy region of 2 < ω < 10 MeV amounts to B(E1) ≈
0.14 e2 fm2. The lowest sharp peak at 4.5 MeV has
B(E1; 0+ → 1−) ≈ 0.023 e2 fm2. The next lowest peak at
5.6 MeV has B(E1) ≈ 0.027 e2 fm2. Both peaks have a domi-
nant K = 1 character. The low-lying 1− state has been recently
observed in 12Be [80]. The observed excitation energy is Ex =
2.68(3) MeV with B(E1; 0+ → 1−) = 0.051(13) e2 fm2. Our
result is higher in energy by a factor of 2 and the sum of B(E1)
for the lowest two peaks is comparable to the experiment. The
two-neutron pairing model in Ref. [81] predicted the 1− energy
very well (2.7 MeV) but overestimated B(E1) by ∼5 times.
The shell model calculation with extended single-particle wave
functions in Ref. [82] well reproduced the lowest 1− state

FIG. 8. Calculated values of dB(E1; 0 → 1−)/dω for 8,10,12,14Be.
The smoothing parameter � = 0.2 MeV is used. The thin dashed
(solid) line is a contribution of Kπ = 0− (1−) states and the thick
solid line for the total strength.

(Ex = 2.14 ∼ 2.9 MeV with B(E1) = 0.063 ∼ 0.072 e2 fm2

depending on the interaction and model space). They also
calculated B(E1) strength distribution in the GDR energy
region without taking account of the continuum. Although
their results strongly depend on the adopted interaction and
model space, the calculated GDR energy is lower than ours. A
striking difference from our result is that they have predicted
three main peaks with the WBP interaction. It is not clear at
present whether this difference is due to the treatment of the
continuum or to the ground-state correlation.

Finally, let us move to the drip line, 14Be. The doubly
magic closed-shell configuration (N = 10, Z = 4) at su-
perdeformation leads to the large quadrupole deformation
of β = 0.74. The K = 0 and K = 1 resonance peaks are at
different positions whose centroids are at 15 and 24 MeV.
Figure 7(d) indicates quick damping of the K = 0 oscil-
lation. The oscillating pattern almost disappears by t =
3 MeV−1. This leads to the large width of the K = 0 peak in
Fig. 8(d). As a consequence of the large width, the double-peak
structure in the total B(E1) strength function is not as clear
as in 8,10Be. It looks more like a single broad resonance at
20 MeV with the width of about 20 MeV. In Fig. 7(d), after the
K = 0 mode disappears, the K = 1 mode becomes dominant
at t > 3 MeV−1. This long-lived high-frequency K = 1 mode
results in subpeaks embedded in the broad K = 1 resonance
(20 < ω < 25 MeV).

It is known that the weakly bound neutrons strongly couples
to the continuum and produces the large dipole strength [83].
The Coulomb breakup of 11Be is a typical example [84]. This
is often called “threshold effect,” which has a peak at the
threshold energy. Because the SIII interaction gives the last
neutron binding of 2−3 MeV, the threshold effect is weak.
In the present calculation, we have not significant threshold
strength. Conversely, another soft dipole peak is seen at
5 MeV. This peak carries B(E1) ≈ 0.26 e2 fm2. A Coulomb
dissociation experiment seems to suggest enhanced strength
at Ex ≈ 2 and 5 MeV [85]. The shell-model calculation
of Ref. [82] also indicates a similar peak [Ex = 6.76 ∼
7.46 MeV with B(E1) = 0.097 ∼ 0.146 e2 fm2]. Using the
SGII interaction, this peak is at 7 MeV with B(E1) ≈
0.14 e2 fm2 [20], which well agrees with the shell-model
result. On the GDR main peaks, our result looks rather different
from the shell-model: the shell-model indicates a single main
peak at 12–17 MeV, whereas we have a broad resonance
whose centroid is around 20 MeV. Because the shell model
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TABLE III. Energy-weighted sum rule values in units of e2 fm2

MeV. The second column shows values of the classical TRK formula.
The small-amplitude TDHF+ABC calculation produces values in
the third and fourth columns. The fourth column gives the soft
E1 strength of the energy-weighted sum, which is defined by ω <

15 MeV. The last column indicates the deformation parameter
obtained by the splitting of the GDR peaks.

S(E1)class S(E1) S(E1; E < 15 MeV) δ

8Be 29.7 34.0 3.14 0.43
10Be 35.7 42.8 1.26 0.21
12Be 39.6 48.2 2.54 0.05
14Be 42.5 52.2 7.57 0.35

also indicates continuous E1 strength in the energy region of
ω > 10 MeV, this difference may be simply due to lack of the
continuum in Ref. [82].

Calculated TRK sum rule values are listed in Table III.
The enhancement is slightly smaller than the spherical 16O
case. Among the even-even Be isotopes, the enhancement
is the biggest for 12Be whose deformation is the smallest.
According to the analysis on 16O in Sec. IV A, about half of
this enhancement comes from the effect of the time-odd spin
density. The large deformation leads to a strong coupling to
the K quantum number, and this may restrict dynamics of spin
degrees of freedom. The soft E1 strength, which is defined by
the oscillator sum up to 15 MeV in the table, varies among
these isotopes. The large value in 8Be is due to the large
ground-state deformation that brings the low-energy K = 0
peak down close to 14 MeV. In 14Be, it is the largest. This is
due to combination of the deformation, the soft dipole peak at
5 MeV, and the large width of the K = 0 resonance at 15 MeV.
The deformation parameter δ is estimated from the average
energies of K = 0 and K = 1 modes. We use Eq. (6-344)
in Ref. [46]. The δ turns out to be much smaller than the
deformation of the HF density distribution, β. The deformation
derived from the GDR splitting is known to well agree with
that from the E2 moment for actinide nuclei [46]. In light
nuclei, the geometrical interpretation of the GDR frequencies
may not be justified so well.

VI. CONCLUSION

We have developed the linear response theory in the contin-
uum applicable to deformed systems. The exact treatment of
the continuum is done by the iterative method for construction
of the Green’s function in the 3D Cartesian grid space (3D
continuum RPA). The method is identical to the conventional
1D continuum RPA in the spherical limit. At the same time,
we have shown that the approximate but yet accurate treatment
of the continuum can be done by the ABC approach. The
small-amplitude TDHF+ABC method in the linear response
regime is practically identical to the 3D continuum RPA.
Applications of these methods to the TDHF with the BKN
interaction reveals their usefulness and accuracy. The real-time
TDHF method has a difficulty when we study excitation

modes coupled to the zero modes. Because the method is
fully self-consistent, the increase of model space (finer grid
spacing) will solve the problem, though it requires heavier
computation.

Applications to systems with a realistic effective interac-
tion have been performed with the small-amplitude Skyrme
TDHF+ABC. The analysis on the GDR in 16O suggests
a significant contribution coming from the time-odd mean
field which was often neglected in the 1D continuum RPA.
The peak structure in the continuum is affected by these
residual interactions, especially by the spin density. Because
the spin-dependent terms in the Skyrme energy functional,
such as s2, s · s, and (∇ · s)2, are not linked to the time-even
components by the local gauge invariance, the analysis may
give a useful constraint on these parts of the Skyrme functional.

The coupling to the continuum becomes more important
for weakly bound systems. We have studied the deformed
continuum of the GDR in Be isotopes. The large deformation
splitting of about 10 MeV is predicted for 8,14Be. The K = 0
main peak is significantly lowered by the deformation to less
than 15 MeV. The time evolution of the E1 moment indicates
different damping between 8Be and neutron-rich Be isotopes,
especially for the K = 0 dipole mode. The soft dipole strength
(E < 10 MeV) appears in 12Be and 14Be. Considering the fact
that the SIII parameters were not determined by the isovector
properties, we have a reasonable agreement with experiment
on the low-energy 1− state in 12Be and 14Be.

In this article, we have studied only the IV GDR in neutron-
rich nuclei, because of the numerical difficulty discussed
above. The IS modes in neutron-rich deformed nuclei are
also interesting to investigate. For instance, the octupole
correlation in superdeformed 14Be is expected to be stronger
than 8Be. This is because the superdeformed magic numbers
are classified into two category, and the N = 10 shell closure
has a stronger octupole correlation than the N = 4 [63,86].
The small-amplitude TDHF+ABC may be a good method to
see how the continuum affects this expectation,

An important extension of the present approaches is the
inclusion of pairing. Because the pairing plays an important
role in heavy nuclei, this is very desirable but a difficult
task. In this respect, we should mention that the HFB-based
continuum QRPA has been recently proposed by Matsuo
[87] to take account of the continuum for both particle-hole
(p-h) and particle-particle (p-p)/hole-hole (h-h) channels. The
combination of the 3D continuum RPA and the continuum
QRPA may produce a general theory to calculate excited states
in the p-h, p-p, and h-h continuum for nuclei in the whole
nuclear chart.
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[40] N. Paar, P. Ring, T. Nikšić, and D. Vretenar, Phys. Rev. C 67,

034312 (2003).
[41] G. Giambrone, S. Scheit, F. Barranco, P. F. Bortignon, G. Colò,
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